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Abstract: In response to the shortcomings of the traditional A-star algorithm, such as excessive
node traversal, long search time, unsmooth path, close proximity to obstacles, and applicability
only to static maps, a path planning method that integrates an adaptive A-star algorithm and an
improved Dynamic Window Approach (DWA) is proposed. Firstly, an adaptive weight value is
added to the heuristic function of the A-star algorithm, and the Douglas–Pucker thinning algorithm
is introduced to eliminate redundant points. Secondly, a trajectory point estimation function is
added to the evaluation function of the DWA algorithm, and the path is optimized for smoothness
based on the B-spline curve method. Finally, the adaptive A-star algorithm and the improved DWA
algorithm are integrated into the fusion algorithm of this article. The feasibility and effectiveness of
the fusion algorithm are verified through obstacle avoidance experiments in both simulation and real
environments.

Keywords: adaptive A-star algorithm; improved Dynamic Window Approach; path planning

1. Introduction

With the development of automation control technology, mobile robots have been
widely used in industrial production, e-commerce, logistics, and other fields. As an essen-
tial component of mobile robot automatic control, path planning algorithms have attracted
a series of research studies by scholars in recent years. The commonly used global path
planning algorithms for mobile robots include the Dijkstra algorithm [1,2], the A-star
algorithm [3–5], the RRT algorithm [6–8], etc. The commonly used local path planning
algorithms include the artificial potential field method [9,10], the Dynamic Window Ap-
proach [11], etc. Indeed, other scholars have made important contributions to the field
of path planning by studying other algorithms. Reference [12] extracts the variability of
travel time from the existing correlation between traffic flow and corresponding link time,
conducts multi-objective analysis on the generated paths, and generates a Pareto optimal
set for each pair of demand nodes in the network. This solves the problem of finding a set
of non-dominated shortest paths in a stochastic traffic network. Reference [13] proposes a
new fully hierarchical genetic algorithm method to solve the problem of bus network path
planning design. This method effectively handles the multi-objective nature of the problem
and has universality and adaptability for path planning on a practical scale. Among them,
the A-star algorithm, as a classic path planning algorithm, performs well in calculating the
global optimal path and plays a key role in robot navigation, game NPC pathfinding, and
other fields [14–19].

However, in practical applications of many engineering projects, it has been found
that the traditional A-star algorithm has shortcomings, such as having too many traversing
nodes, uneven paths, and too many turning nodes in the path it finds. In order to obtain
a better path, many scholars have studied some improvement methods. Reference [20]
proposes an EBS-A* algorithm, which introduces extended distance, bidirectional searches,
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and smoothing into path planning. This greatly improves the efficiency of path planning
and reduces the number of key nodes and the number of right-angle turns. However,
it requires both forward and backward searches, which require more computational re-
sources. Reference [21] addresses the challenge of determining heuristic functions in the A*
algorithm and compares the performance of four heuristic functions: Manhattan distance,
Euclidean distance, Chebyshev distance, and diagonal distance. However, the author
only focused on the selection of heuristic functions and did not consider other factors that
may affect the performance of the A* algorithm. In Reference [22], the key point selection
strategy is applied to eliminate redundant points and unnecessary turning points, and
the turning points in the path are smoothed. This reduces the path length and results
in smoother path planning, but it takes longer to plan paths in areas without obstacles.
Reference [23] expands the search neighborhood from 3 × 3 to 5 × 5, and this reduces the
number of inflection points, improves the turning angle, and removes redundant points but
does not consider the smoothness of the path. Reference [24] proposes an A-star algorithm
based on bidirectional search paths, which greatly reduces the length of the driving path.
However, since it requires the simultaneous processing of searches in both directions, it
also requires more computational resources and time.

By analyzing the advantages and disadvantages of the algorithms in the literature,
it is found that these methods reduce the path length, improve the search efficiency, and
reduce the number of turns compared to the traditional A-star algorithm. However, each
of these algorithms has its own shortcomings and is only applicable to static maps. In
response to this, this article introduces adaptive weights into the heuristic function of the
A-star algorithm and integrates it with the improved DWA algorithm, thereby enabling the
algorithm to have a good path search efficiency and dynamic obstacle avoidance capability.
The flowchart of the algorithm improvement in this article is shown in Figure 1.

Electronics 2024, 13, x FOR PEER REVIEW 2 of 20 
 

 

[20] proposes an EBS-A* algorithm, which introduces extended distance, bidirectional 
searches, and smoothing into path planning. This greatly improves the efficiency of path 
planning and reduces the number of key nodes and the number of right-angle turns. How-
ever, it requires both forward and backward searches, which require more computational 
resources. Reference [21] addresses the challenge of determining heuristic functions in the 
A* algorithm and compares the performance of four heuristic functions: Manhattan dis-
tance, Euclidean distance, Chebyshev distance, and diagonal distance. However, the au-
thor only focused on the selection of heuristic functions and did not consider other factors 
that may affect the performance of the A* algorithm. In Reference [22], the key point se-
lection strategy is applied to eliminate redundant points and unnecessary turning points, 
and the turning points in the path are smoothed. This reduces the path length and results 
in smoother path planning, but it takes longer to plan paths in areas without obstacles. 
Reference [23] expands the search neighborhood from 3 × 3 to 5 × 5, and this reduces the 
number of inflection points, improves the turning angle, and removes redundant points 
but does not consider the smoothness of the path. Reference [24] proposes an A-star algo-
rithm based on bidirectional search paths, which greatly reduces the length of the driving 
path. However, since it requires the simultaneous processing of searches in both direc-
tions, it also requires more computational resources and time. 

By analyzing the advantages and disadvantages of the algorithms in the literature, it 
is found that these methods reduce the path length, improve the search efficiency, and 
reduce the number of turns compared to the traditional A-star algorithm. However, each 
of these algorithms has its own shortcomings and is only applicable to static maps. In 
response to this, this article introduces adaptive weights into the heuristic function of the 
A-star algorithm and integrates it with the improved DWA algorithm, thereby enabling 
the algorithm to have a good path search efficiency and dynamic obstacle avoidance ca-
pability. The flowchart of the algorithm improvement in this article is shown in Figure 1. 

 
Figure 1. Improved algorithm flowchart. 

The structure of this article is as follows: Sections 2 and 3 introduce the related algo-
rithms and how this article improves upon existing algorithms. Section 4 validates the 
algorithm proposed in this article and analyzes the results in both simulated and real en-
vironments. Section 5 discusses the application scope, limitations of the algorithm in this 
article, and directions for future research improvements. Section 6 reveals the conclusion. 

2. Principles and Improvements of A-Star Algorithm 
2.1. Basic Principles of Traditional A-Star Algorithm 

The A-star algorithm, as a commonly used path planning algorithm, has been widely 
applied in areas such as robot navigation and automatic path finding for characters in 
games. It mainly addresses the problem of low efficiency in the Dijkstra algorithm, which 
calculates the distance from a single source node to all nodes, traverses all nodes, and 
expands the nodes in all possible directions until finding the target node [25–30]. Unlike 

Figure 1. Improved algorithm flowchart.

The structure of this article is as follows: Sections 2 and 3 introduce the related
algorithms and how this article improves upon existing algorithms. Section 4 validates
the algorithm proposed in this article and analyzes the results in both simulated and real
environments. Section 5 discusses the application scope, limitations of the algorithm in this
article, and directions for future research improvements. Section 6 reveals the conclusion.

2. Principles and Improvements of A-Star Algorithm
2.1. Basic Principles of Traditional A-Star Algorithm

The A-star algorithm, as a commonly used path planning algorithm, has been widely
applied in areas such as robot navigation and automatic path finding for characters in
games. It mainly addresses the problem of low efficiency in the Dijkstra algorithm, which
calculates the distance from a single source node to all nodes, traverses all nodes, and
expands the nodes in all possible directions until finding the target node [25–30]. Unlike it,
the A-star algorithm is a heuristic algorithm that greatly improves path search efficiency
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by incorporating information about target points while maintaining optimal path search
performance. The evaluation function is as follows:

f (n) = g(n) + h(n) (1)

where, f (n) is the evaluation function of node n from the starting point to the target point;
g(n) represents the actual cost from the starting point to node n; h(n) is the estimated cost
from node n to the target point, also known as the heuristic function. Based on project
requirements, the cost of distance is generally calculated using Euclidean distance, with the
following formula: h(n) =

√(
xgoal − xn

)2
+

(
ygoal − yn

)2

g(n) =
√
(xn − xstart)

2 + (yn − ystart)
2

(2)

where (xn, yn), (xstart, ystart), and (xgoal , ygoal) represent the coordinates of node n, starting
point s, and target point g, respectively;

The steps of the A-star algorithm are as follows:

1. Start the search from the starting point s, and add s to the “open_list” as a node to
be searched.

2. Search all the nodes around the starting point s that can be traversed, and add them
to the “open_list”. Set the starting point s as the parent node of these nodes.

3. Remove the starting point s from the “open_list”, and add it to the “close_list”.
4. Calculate the estimated cost f (n) for each node in the current “open_list”, and select

the node n1 with the smallest f (n) value. Remove n1 from the “open_list” and add it
to the “close_list”.

5. Search all the nodes around node n1. If these nodes are obstacles or nodes in the
“close_list”, they are not considered. If these nodes are not in the “open_list”, add
them to the “open_list” and calculate their estimated cost f (n), setting n1 as the parent
node. If an adjacent node n2 is already in the “open_list”, calculate the new path cost
from point s to node n2 using g(n). If the new g(n) value is lower, set n1 as the parent
node and recalculate f (n); if the new g(n) value is higher, do not make any changes.

6. Continue to find the node with the smallest f (n) value in the “open_list”, remove
it from the “open_list”, add it to the “close_list”, and find adjacent reachable nodes.
Repeat this process until the target point g appears in the “open_list”, indicating that
a path has been found and the loop is ended.

2.2. Improvement of A-Star Algorithm
2.2.1. Improved A-Star Algorithm Evaluation Function

To improve the search efficiency of A-star algorithm, an adaptive weight value is
introduced on the basis of the traditional A-star algorithm evaluation function τt, then the
evaluation function is as follows:

f (n) = g(n) + τt ∗ h(n) (3)

The traditional A-star algorithm evaluation function has a weight of 1:1 for g(n) and
h(n). When τt > 1, the algorithm tends to the estimated cost h(n) during path planning,
which accelerates the speed of traversing nodes and improves search efficiency, but may
miss the optimal path; When τt < 1, the algorithm tends to lean towards the actual cost g(n)
during path planning, which tends to search for the optimal path and increases the search
time. Therefore, when the mobile robot is closer to the starting point s, increase the adaptive
weight value τt. Expand the algorithm search to the target point as soon as possible, reduce
the number of nodes traversed, and improve search efficiency; When the mobile robot is
closer to the target point g, reduce the adaptive weight value τt. The algorithm will slow
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down the search speed and increase the search range to find the optimal path. This article
will introduce adaptive weight values τt is represented as

τt =

√(
xgoal − xn

)2
+

(
ygoal − yn

)2

√
(xn − xstart)

2 + (yn − ystart)
2

=
h(n)
g(n)

(4)

When the mobile robot is closer to the starting point s, g(n) < h(n), then τt > 1; When
the mobile robot is closer to the target point g, g(n) > h(n), then τt < 1; The new improved
evaluation function is as follows:

f (n) = g(n) + τt ∗ h(n) = g(n) +
h(n)
g(n)

∗ h(n) =
g(n)2 + h(n)2

g(n)
(5)

2.2.2. Redundant Point Removal

The path planned by the traditional A-star algorithm has many redundant nodes,
resulting in unnecessary path turns and affecting the life of the motor. The Douglas–Pucker
thinning algorithm can compress a large number of redundant points to extract key points.
In general, the algorithm can preserve feature points on more frequently curved shapes,
so it can accurately remove fixed points on consecutive small corners. The simulation
environment that this article is going to build will add many obstacles, so this algorithm
is well-suited for the complex multi-obstacle environment in which the experiment will
be conducted.

The optimization effect of the Douglas–Pucker algorithm is shown in Figure 2. The
path composed of black arrows represents the path before optimization, and the path com-
posed of green arrows represents the path after redundancy point processing optimization.
And the processing steps for path redundancy points are shown in Figure 3.
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The specific algorithm steps are as follows:

(1) Set the threshold dthreshold for removing redundant points. The smaller the dthreshold,
the higher the precision and the fewer the redundant points removed.

(2) Connect the start point S and end point G of the path with a straight line (as shown in
Figure 3).

(3) Calculate the distances between all path points between the start and end points to
this straight line, and find the maximum distance dmax and the corresponding path
point (as shown in Figure 3, point 8).

(4) If dmax < dthreshold, it means that the start and end points S and G can represent
the characteristics of this path and remove all path points between them. The path
processing is complete.

(5) If dmax ≥ dthreshold, it means that the start and end points S and G cannot fully reflect
the characteristics of this path and thus need to be divided further. Split the path at
the path point corresponding to dmax into two parts, and repeat step (2) again.

(6) Until all path points are processed, the redundant point optimization is completed.

3. Principles and Improvements of DWA Algorithm
3.1. Basic Principles of Traditional DWA Algorithm
3.1.1. Kinematics Model

This article selects the Blue Whale Xiaoqiang XQ-5 mobile robot as the experimental
platform for experimental verification. This robot is a non-omnidirectional two-wheel
differential mobile robot, and its kinematic model is shown in Figure 4a.
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Because mobile robots do not have omnidirectional motion, they can only move
forward and rotate, with the direction of forward speed consistent with the heading angle
of the robot. At the same time, the control variables are the acceleration to control forward
motion and the angular acceleration to control steering. The kinematic model of the robot
is as follows: 

x(t) = x(t − 1) + v(t)∆tcos(θ(t − 1))
y(t) = y(t − 1) + v(t)∆tsin(θ(t − 1))

θ(t) = θ(t − 1) + ω(t)∆t
(6)

where x(t), y(t), θ(t) is the position and orientation of the robot under the world coordinate
axis at time t, x(t − 1), y(t − 1), θ(t − 1) is the position and orientation of the robot under
the world coordinate axis at the previous moment.

3.1.2. Speed Sampling

The speed sampling constraints of the DWA algorithm [31] are as follows:
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(1) The sampling speed of a mobile robot should be controlled within the range between
its maximum and minimum speeds, as shown in the following formula:

VS = {(v, ω)|v ∈ [vmin, vmax] ∧ ω ∈ [ωmin, ωmax]} (7)

where v is the linear velocity, ω is the angular velocity, VS is the set of all vector
velocities that the robot can reach.

(2) Due to limitations in the motor performance of a mobile robot, there is a range of
acceleration, within which the maximum acceleration and deceleration are able to
reach before a dynamic window is formed. This ensures that

Vd = {(v, ω)|v ∈ [vt − avmax ∆t, vt + avmax ∆t] ∧ ω ∈ [ωt − aωmax ∆t, ωt + aωmax ∆t]} (8)

where vt is the linear velocity at the current moment, ωt is the current angular velocity,
∆t is the time interval, avmax and aωmax represent the maximum linear acceleration and
the maximum angular acceleration of the mobile robot, respectively.

(3) Considering the safety of the mobile robot, to avoid collision with obstacles, the speed
should meet the following requirements:

Va =

{
(v, ω)

∣∣∣∣v ≤
√

2dist(v, ω)
.
v ∧ ω ≤

√
2dist(v, ω)

.
ω

}
(9)

where dist(v, ω) is the shortest distance from the current trajectory to the obstacle.

Under the restriction of the three influencing factors mentioned above (v, ω) a dynamic
window will be formed, with a speed range

Electronics 2024, 13, x FOR PEER REVIEW 6 of 20 
 

 

3.1.2. Speed Sampling 
The speed sampling constraints of the DWA algorithm [31] are as follows: 

(1) The sampling speed of a mobile robot should be controlled within the range between 
its maximum and minimum speeds, as shown in the following formula:  𝑉ௌ = ሼ(𝑣, 𝜔)|𝑣 ∈ ሾ𝑣௠௜௡, 𝑣௠௔௫ሿ ∧ 𝜔 ∈ ሾ𝜔௠௜௡, 𝜔௠௔௫ሿሽ (7)

where 𝑣 is the linear velocity, 𝜔 is the angular velocity, 𝑉ௌ is the set of all vector 
velocities that the robot can reach. 

(2) Due to limitations in the motor performance of a mobile robot, there is a range of 
acceleration, within which the maximum acceleration and deceleration are able to 
reach before a dynamic window is formed. This ensures that 𝑉ௗ = ൛(𝑣, 𝜔)ห𝑣 ∈ ൣ𝑣௧ − 𝑎௩೘ೌೣ∆𝑡, 𝑣௧ + 𝑎௩೘ೌೣ∆𝑡൧ ∧ 𝜔 ∈ ൣ𝜔௧ − 𝑎ఠ೘ೌೣ∆𝑡, 𝜔௧ + 𝑎ఠ೘ೌೣ∆𝑡൧ൟ (8)

where 𝑣௧ is the linear velocity at the current moment, 𝜔௧ is the current angular ve-
locity, ∆𝑡 is the time interval, 𝑎௩೘ೌೣ and 𝑎ఠ೘ೌೣ represent the maximum linear ac-
celeration and the maximum angular acceleration of the mobile robot, respectively. 

(3) Considering the safety of the mobile robot, to avoid collision with obstacles, the 
speed should meet the following requirements: 𝑉௔ = ቄ(𝑣, 𝜔)ቚ𝑣 ≤ ඥ2𝑑𝑖𝑠𝑡(𝑣, 𝜔)𝑣ሶ ∧ 𝜔 ≤ ඥ2𝑑𝑖𝑠𝑡(𝑣, 𝜔)𝜔ሶ ቅ (9)

where 𝑑𝑖𝑠𝑡(𝑣, 𝜔) is the shortest distance from the current trajectory to the obstacle. 
Under the restriction of the three influencing factors mentioned above (𝑣, 𝜔) a dy-

namic window will be formed, with a speed range 𝑉𝓇 that meets 𝑉𝓇 = 𝑉ௌ ∩ 𝑉ௗ ∩ 𝑉௔ (10)

3.1.3. Evaluation Function 
The DWA algorithm uses a cost function to evaluate the predicted trajectory. The 

evaluation function is as follows: 𝐺(𝑣, 𝜔) = 𝜎(𝛼 ∗ ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑣, 𝜔) +  𝛽 ∗ 𝑑𝑖𝑠𝑡(𝑣, 𝜔) + 𝛾 ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑣, 𝜔)) (11)

Among them, ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑣, 𝜔) is the angle deviation between the heading angle and 
the line connecting the robot and the target point is used to correct the robot’s heading (as 
shown in Figure 4b). 𝑑𝑖𝑠𝑡(𝑣, 𝜔) is the distance between the robot’s trajectory and the 
nearest obstacle, used to keep the robot at a safe distance from the obstacle. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑣, 𝜔) 
is the speed of the robot, used to make the robot reach the target point as soon as possible. 𝛼，𝛽，𝛾 are three parameters represent the weights, 𝜎 is the smoothing coefficient. 

In order to prevent the weight of one evaluation function from being too large due to 
different evaluation criteria for each evaluation function, thus affecting the accuracy of 
the evaluation function, normalization is required for each evaluation function: 𝑛𝑜𝑟𝑚𝑎𝑙௛௘௔ௗ௜௡௚(௜) = ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑖)Σ௜ୀଵ௡ ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑖) (12)

𝑛𝑜𝑟𝑚𝑎𝑙ௗ௜௦௧(௜) = 𝑑𝑖𝑠𝑡(𝑖)Σ௜ୀଵ௡ 𝑑𝑖𝑠𝑡(𝑖) (13)

𝑛𝑜𝑟𝑚𝑎𝑙௩௘௟௢௖௜௧௬(௜) = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖)Σ௜ୀଵ௡ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖) (14)

where 𝑛 is the total number of sampled trajectories, and 𝑖 is the current trajectory to be 
evaluated. 

  

that meets

Electronics 2024, 13, x FOR PEER REVIEW 6 of 20 
 

 

3.1.2. Speed Sampling 
The speed sampling constraints of the DWA algorithm [31] are as follows: 

(1) The sampling speed of a mobile robot should be controlled within the range between 
its maximum and minimum speeds, as shown in the following formula:  𝑉ௌ = ሼ(𝑣, 𝜔)|𝑣 ∈ ሾ𝑣௠௜௡, 𝑣௠௔௫ሿ ∧ 𝜔 ∈ ሾ𝜔௠௜௡, 𝜔௠௔௫ሿሽ (7)

where 𝑣 is the linear velocity, 𝜔 is the angular velocity, 𝑉ௌ is the set of all vector 
velocities that the robot can reach. 

(2) Due to limitations in the motor performance of a mobile robot, there is a range of 
acceleration, within which the maximum acceleration and deceleration are able to 
reach before a dynamic window is formed. This ensures that 𝑉ௗ = ൛(𝑣, 𝜔)ห𝑣 ∈ ൣ𝑣௧ − 𝑎௩೘ೌೣ∆𝑡, 𝑣௧ + 𝑎௩೘ೌೣ∆𝑡൧ ∧ 𝜔 ∈ ൣ𝜔௧ − 𝑎ఠ೘ೌೣ∆𝑡, 𝜔௧ + 𝑎ఠ೘ೌೣ∆𝑡൧ൟ (8)

where 𝑣௧ is the linear velocity at the current moment, 𝜔௧ is the current angular ve-
locity, ∆𝑡 is the time interval, 𝑎௩೘ೌೣ and 𝑎ఠ೘ೌೣ represent the maximum linear ac-
celeration and the maximum angular acceleration of the mobile robot, respectively. 

(3) Considering the safety of the mobile robot, to avoid collision with obstacles, the 
speed should meet the following requirements: 𝑉௔ = ቄ(𝑣, 𝜔)ቚ𝑣 ≤ ඥ2𝑑𝑖𝑠𝑡(𝑣, 𝜔)𝑣ሶ ∧ 𝜔 ≤ ඥ2𝑑𝑖𝑠𝑡(𝑣, 𝜔)𝜔ሶ ቅ (9)

where 𝑑𝑖𝑠𝑡(𝑣, 𝜔) is the shortest distance from the current trajectory to the obstacle. 
Under the restriction of the three influencing factors mentioned above (𝑣, 𝜔) a dy-

namic window will be formed, with a speed range 𝑉𝓇 that meets 𝑉𝓇 = 𝑉ௌ ∩ 𝑉ௗ ∩ 𝑉௔ (10)

3.1.3. Evaluation Function 
The DWA algorithm uses a cost function to evaluate the predicted trajectory. The 

evaluation function is as follows: 𝐺(𝑣, 𝜔) = 𝜎(𝛼 ∗ ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑣, 𝜔) +  𝛽 ∗ 𝑑𝑖𝑠𝑡(𝑣, 𝜔) + 𝛾 ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑣, 𝜔)) (11)

Among them, ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑣, 𝜔) is the angle deviation between the heading angle and 
the line connecting the robot and the target point is used to correct the robot’s heading (as 
shown in Figure 4b). 𝑑𝑖𝑠𝑡(𝑣, 𝜔) is the distance between the robot’s trajectory and the 
nearest obstacle, used to keep the robot at a safe distance from the obstacle. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑣, 𝜔) 
is the speed of the robot, used to make the robot reach the target point as soon as possible. 𝛼，𝛽，𝛾 are three parameters represent the weights, 𝜎 is the smoothing coefficient. 

In order to prevent the weight of one evaluation function from being too large due to 
different evaluation criteria for each evaluation function, thus affecting the accuracy of 
the evaluation function, normalization is required for each evaluation function: 𝑛𝑜𝑟𝑚𝑎𝑙௛௘௔ௗ௜௡௚(௜) = ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑖)Σ௜ୀଵ௡ ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑖) (12)

𝑛𝑜𝑟𝑚𝑎𝑙ௗ௜௦௧(௜) = 𝑑𝑖𝑠𝑡(𝑖)Σ௜ୀଵ௡ 𝑑𝑖𝑠𝑡(𝑖) (13)

𝑛𝑜𝑟𝑚𝑎𝑙௩௘௟௢௖௜௧௬(௜) = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖)Σ௜ୀଵ௡ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖) (14)

where 𝑛 is the total number of sampled trajectories, and 𝑖 is the current trajectory to be 
evaluated. 

  

= VS ∩ Vd∩Va (10)

3.1.3. Evaluation Function

The DWA algorithm uses a cost function to evaluate the predicted trajectory. The
evaluation function is as follows:

G(v, ω) = σ(α ∗ heading(v, ω) + β ∗ dist(v, ω) + γ ∗ velocity(v, ω)) (11)

Among them, heading(v, ω) is the angle deviation between the heading angle and
the line connecting the robot and the target point is used to correct the robot’s heading
(as shown in Figure 4b). dist(v, ω) is the distance between the robot’s trajectory and the
nearest obstacle, used to keep the robot at a safe distance from the obstacle. velocity(v, ω)
is the speed of the robot, used to make the robot reach the target point as soon as possible.
α, β, γ are three parameters represent the weights, σ is the smoothing coefficient.

In order to prevent the weight of one evaluation function from being too large due to
different evaluation criteria for each evaluation function, thus affecting the accuracy of the
evaluation function, normalization is required for each evaluation function:

normalheading(i) =
heading(i)

Σn
i=1heading(i)

(12)

normaldist(i) =
dist(i)

Σn
i=1dist(i)

(13)

normalvelocity(i) =
velocity(i)

Σn
i=1velocity(i)

(14)

where n is the total number of sampled trajectories, and i is the current trajectory to be
evaluated.
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3.2. Improvement of DWA Algorithm
3.2.1. Improved DWA Algorithm Evaluation Function

In the traditional DWA (Dynamic Window Approach) algorithm, the evaluation
function mainly considers the distance to obstacles, path distance, and target distance.
However, the traditional DWA algorithm sometimes deviates too much from local planning.
This article introduces a new trajectory point estimation function: “trajcost”, to the original
evaluation function, which can more comprehensively assess the quality of the path. This
makes the planned path more in line with the actual motion characteristics of the robot and
reduces the impact of known obstacles on the path. The evaluation function is as follows:

G(v, ω) = σ(α ∗ heading(v, ω) + β ∗ dist(v, ω) + γ ∗ velocity(v, ω) + θ ∗ trajcost(v, ω)) (15)

The trajectory point estimation function takes four parameters: traj (the predicted
trajectory), goal (the target position), ob (the position of the obstacle), and R (the radius of
the obstacle). Firstly, trajcost is initialized to 0, and then each point in traj is traversed. For
each point, it calculates the heading evaluation value heading and the distance evaluation
value dist, and then adds these two values to trajcost. Finally, the value in trajcost is divided
by the number of points in traj to obtain the average cost. The pseudocode is as follows:

trajcost(traj, goal, ob, R){
trajcost = 0;
for (each point in traj){

heading = calculate_heading(point, goal);
dist = calculate_distance(point, ob);
trajcost += heading + dist;

}
return trajcost / traj.size();

Its complexity and scalability largely depend on the implementation of the calcu-
late_heading and calculate_distance functions. If these two functions can handle various
types of targets and obstacles, such as calculating the distance from a point to complex
geometric shapes in the calculate_distance function, then this algorithm can be applied to
more complex environments. This paper does not cover obstacle avoidance for complex
obstacles, mainly to simplify the experimental process and facilitate the analysis of results.

3.2.2. Optimization of B-Spline Curve Path

While the Dynamic Window Approach (DWA) is an effective path planning method,
the paths it generates may not be smooth, which may not be ideal for the actual movement
of robots. Literature [22] uses the Bezier curve method to optimize the generated path, but
due to its large computational load and inability to modify locally, it does not perform well
in complex environments with multiple obstacles. The B-spline curve method compensates
for these shortcomings, so this article uses the B-spline curve method to smooth and
optimize the path.

The B-spline curve is a linear combination of B-spline basis functions with a recursive formula:

Bi,k(u) =


{

1, ui ≤ u ≤ ui+1
0, other

, k = 1
u−ui

ui+k−1−ui
Bi,k−1(u) +

ui+k−u
ui+k−ui+1

Bi+1,k−1(u) , k ≥ 2
(16)

There are n + 1 nodes: P0, P1, P2,. . ., Pn. The definition formula of B-spline curve is

P(u) =
[
P0 P1 · · · Pn

]


B0,k(u)
B1,k(u)

...
Bn,k(u)

 = ∑n
i=0 PiBi,k(u) (17)
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Among them, Bi,k(u) is the i-th k-order B-spline basis function. The higher the degree
of the B-spline basis function, the higher the number of derivative functions of the curve,
which will generate many zeros. More derivative zeros will lead to more extreme values
in the original curve, resulting in more peak and valley values in the curve. The lower
the degree of B-spline basis functions, the better the approximation of the spline curve
to the control point. On the other hand, the cubic B-spline curve can achieve second-
order derivative continuity, so this article selects the cubic B-spline curve as the curve for
trajectory planning for smooth optimization.

3.2.3. Algorithm Fusion

After the optimization strategy mentioned above, the adaptive A-star algorithm can
complete global path planning and find the optimal path in a static working environment.
However, when unknown obstacles suddenly appear in the map environment, it cannot
perform dynamic obstacle avoidance and local path planning. The improved DWA (Dy-
namic Window Approach) algorithm can enable robots to avoid obstacles dynamically, but
because it cannot perform global planning, it cannot guarantee obtaining the optimal path
solution. To complement the advantages, the two algorithms are integrated. The DWA
algorithm is used for local planning between two adjacent nodes in the path planned by
the adaptive A-star algorithm. The next node in the current path is initialized, the speed
is sampled, and the latest node is continuously updated to find the optimal path. This
allows the robot to have both global path planning and local dynamic obstacle avoidance
capabilities. The flowchart of the integrated algorithm is shown in Figure 5.
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4. Simulation and Real Experiment Verification
4.1. Simulation Verification
4.1.1. Simulation Experiment of Adaptive A-Star Algorithm

To validate the effectiveness of the adaptive A-star algorithm, a simulation experiment
was conducted in MATLAB R2022a using a 30 × 30 multi-obstacle map constructed by
the grid method. The start point is (5, 2), the end point is (23, 25), black squares represent
obstacles, white squares represent free space, and each grid side length is set to 1 m.
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Simulation experiments were conducted on the traditional A-star algorithm, algorithm [22],
algorithm [23], and the adaptive A-star algorithm proposed in this article, and the data
were exported for comparison, as shown in Figures 6 and 7 and Table 1.
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From the simulation results, it can be seen that the adaptive A-star algorithm proposed
in this article reduces the search time by 43.4% compared to the traditional A-star algorithm,
reduces the traversed nodes by 51.8%, reduces the path length by 17.9%, reduces the turning
angle by 53.5%, and reduces the number of path turning points by 46.7%. Compared to
algorithm [22], the adaptive A-star algorithm proposed in this article reduces the search
time by 34.6%, reduces the traversed nodes by 24%, reduces the path length by 8.2%,
increases the turning angle by 22.2%, and increases the number of path turning points
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by 33.3%. Compared to algorithm [23], the adaptive A-star algorithm proposed in this
article reduces the search time by 4.1%, reduces the traversed nodes by 17.6%, reduces the
path length by 5.1%, reduces the turning angle by 15.4%, and reduces the number of path
turning points by 20%.

Table 1. Comparison of algorithm simulation experiment data.

Algorithm Search Time Search
Nodes Length Turning

Angle
Turning

Point

Traditional A-star 2.51 s 369 41.05 m 1065◦ 15
Reference [22] 2.17 s 244 36.72 m 405◦ 6
Reference [23] 1.48 s 216 35.51 m 585◦ 10

Adaptive A-star 1.42 s 178 33.70 m 495◦ 8

4.1.2. Simulation Experiment of Improved DWA Algorithm

Section 3 introduces an improvement to the DWA algorithm by adding a fourth
function, the trajectory point evaluation function (trajcost), to the original three evaluation
functions (heading, dist, velocity). In actual operation, it is necessary to optimize and
normalize the parameters (α,β,γ,θ) of these four evaluation functions. By comparing the
time of the DWA algorithm’s local path planning under different values of α,β,γ,θ, the
purpose of comparative analysis can be achieved.

(1) Analysis of α and γ parameters

Based on engineering experience, set β = 0.3 and conduct MATLAB simulation exper-
iments, respectively, in α = (0.02~0.1) and γ = (0.05~0.3). In the figure, the black squares
represent obstacles, the circles represent the robot, and the blue curve represents the
robot’s trajectory. In the first experimental map, the starting point is (0, 0), and the target
point is (10, 8); in the second experimental map, the starting point is (0, 0), and the target
point is (10, 4). The simulation experiment results and the bar chart analysis are shown
in Figures 8 and 9.
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From the analysis of the experimental results in Figure 9, it can be seen that when
β = 0.3 and α is certain, the path planning time decreases as γ increases from 0.05 to 0.15,
and the path planning time is very close when γ is between 0.15 and 0.30. When γ is
certain, the path planning time decreases as α increases from 0.02 to 0.06 and increases as α
increases from 0.06 to 0.10.

(2) Analysis of β parameters

Based on the conclusions drawn from the analysis of α and γ parameters, that is, when
α = 0.06 and γ is in the range of 0.15 to 0.3, we analyze the impact of changes in β (ranging
from 0.05 to 0.3) on the path planning time of the DWA algorithm. The experimental
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maps still use the two sets of maps in Figure 9, and the experimental results are shown in
Figure 10.
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As can be seen from Figure 10, experiments were conducted under the conditions
of α = 0.06, β ranging from 0.05 to 0.3, and γ ranging from 0.15 to 0.3. The navigation
efficiency is optimal when α = 0.06, β = 0.20, and γ = 0.25.

(3) Analysis of θ parameters

We introduce a new trajectory point evaluation function to the original evaluation
functions of the DWA algorithm. Hence, it is also necessary to analyze the appropriate value
of the parameter θ. Still using the two sets of maps from the previous experiments, based
on the results of the previous two sets of analysis experiments, when α = 0.06, β = 0.20, and
γ = 0.25, we analyze the impact of the parameter θ on the path planning and navigation
time of the DWA algorithm.

Experiments were conducted on two sets of maps, comparing and analyzing the impact
of the parameter θ on the robot’s path planning. The results are shown in Figures 11 and 12.

From the analysis of Figures 11 and 12 and Table 2, it can be seen that under two
different sets of maps, when θ = 2, the robot’s travel time is the shortest, and no collisions
occurred, ultimately finding the destination. To further verify the effectiveness of the
newly added trajectory point evaluation function in the original DWA evaluation function,
experiments were conducted before and after the addition of the trajectory point evaluation
function when α = 0.06, β = 0.20, and γ = 0.25. The results are shown in Figures 13 and 14.
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of θ = 2; (c) results of θ = 3.
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(b) results of θ = 2; (c) results of θ = 3.

Table 2. Comparison of Simulation Experiment Data for θ Parameter Analysis.

θ Time (s) Obstacle
Collision

Reach
Destination

Map 1
1 15.33 No Yes
2 11.51 No Yes
3 21.19 Yes Yes

Map 2
1 19.27 Yes Yes
2 11.89 No Yes
3 No data Yes No
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As can be seen from Table 2 and Figures 13 and 14, the improved DWA algorithm,
which adds a new trajectory point evaluation function to the original evaluation functions
of the DWA algorithm, has a smoother path and shorter navigation time compared to
before the improvement, with an average reduction of 6%.

4.1.3. Simulation Experiment of Fusion Algorithm

To verify the local dynamic obstacle avoidance ability of the fusion algorithm, 1–4 obstacles
were added to the 30 × 30 grid map constructed in the previous section. New obstacles
were represented by gray squares, the triangle represented the starting point, the circle
represented the end point, and the obstacle avoidance of the mobile robot was observed.

Figure 15 shows the running situation of the mobile robot using the fusion algorithm
proposed in this article and the Reference [24] fusion algorithm when 1–4 obstacles were
added. Table 3 lists the parameters of the DWA algorithm, and Table 4 compares the
simulation experimental data of the fusion algorithm proposed in this article and the
Reference [24] fusion algorithm under different random obstacle numbers.

Table 3. DWA algorithm parameter settings.

Parameter Value

vmax/(m/s) 1
ωmax/(rad/s) 2π

av/(m/s) 0.03
aω/(rad/s) π/24

avmax /(m/s2) 0.4
aωmax /(rad/s2) 5π

∆t/s 0.1

Table 4. Comparison of fusion algorithm simulation experimental data.

Obstacle Algorithm Travel Time Length Angle Collision

One
obstacle

This article 199.66 s 29.52 m 216◦ no
Reference [24] 209.89 s 29.49 m 243◦ yes

Two
obstacles

This article 201.06 s 29.67 m 248◦ no
Reference [24] 214.43 s 29.63 m 275◦ no

Three
obstacles

This article 204.71 s 29.97 m 281◦ no
Reference [24] 218.39 s 29.68 m 308◦ no

Four
obstacles

This article 206.49 s 30.36 m 309◦ no
Reference [24] 222.01 s 29.74 m 332◦ no
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Figure 15. Comparison between the fusion algorithm in Reference [24] and the simulation path
of the fusion algorithm in this article after adding obstacles: (a) comparison of paths between
Reference [24] and this article when randomly adding an obstacle; (b) comparison of paths between
Reference [24] and this article when randomly adding two obstacles; (c) comparison of paths between
Reference [24] and this article when randomly adding three obstacles; (d) comparison of paths
between Reference [24] and this article when randomly adding four obstacles.

The simulation results in Table 4 show that the path length traveled by the algorithm
in Reference [24] is slightly shorter, and with the addition of obstacles one by one, the
path length does not increase significantly. However, when an obstacle is added, there
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is occasional collision during travel, and the travel time is longer. Although the fusion
algorithm in this article has a slightly longer path after adding obstacles, its turn angle
is smaller than that of the algorithm in literature [24], resulting in an average travel time
reduction of 6.1% compared to the algorithm in literature [24] without collision. This
indicates that the fusion algorithm in this article has better path search performance and
can quickly plan the adequate travel path in the presence of random obstacles, ensuring
better safety for the robot.

4.2. Real Experiment Verification

In order to verify the global path planning and dynamic obstacle avoidance effect of
the fusion algorithm in a real environment, a Blue Whale Xiaoqiang XQ-5 mobile robot was
selected as an experimental platform for experimental verification. The physical structure
and experimental site of the robot are shown in Figure 16. The hardware infrastructure on
the robot includes a host with a basic configuration of Intel I7 4560U, 64 GB of solid-state
hard drive, 8 GB of memory, a pre-installed remote control, and an Ubuntu 16.04 operating
system. The host also includes two drive motors, a 1080p USB camera, a lidar, two
ultrasonic sensors, a bottom drive board, and a 9-axis sensor with mpu9250. To facilitate
the debugging of the robot, on the premise of ensuring that the robot and the local remote
control end are in a unified local area network, a VNC Server 6.7 remote desktop software
is installed on the local PC end to enable remote control of the robot. The kinematics
parameters of the robot are shown in Table 5.
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Table 5. Robot kinematic parameters.

Coordinate Axis vmax/(m·s−1) ωmax/(rad·s−1) Sampling Time/(s)

X 0.4 π/6 0.3
Y 0.4 π/6 0.3

Open the VNC remote control software on the local PC end, input the IP address of
the robot’s current local area network to connect, start Gazebo, open the Rviz visualization
tool, and open a new terminal on the local end, input “rosrun teleop_twist_keyboard
teleop_twist_keyboard.py” to opens the keyboard control node, controls the mobile robot
through the keyboard for SLAM mapping, and uses the map_ The save function package
saves the map and exports the experimental site map as shown in Figure 17.
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4.2.1. Experimental Verification of Adaptive A-Star Algorithm Navigation

In the experiment, the robot’s navigation is completely autonomous, which is deter-
mined by the fusion algorithm of this article. The robot’s navigation is controlled by a PID
controller based on the path calculated by the algorithm. A position feedback mechanism
based on the odometer is used, which accurately measures the robot’s displacement through
the encoder and feeds this information back to the controller for precise path tracking.

Run “map_server” function pack to read the map, start the chassis control node, post
topics, and open the Rviz visualization interface to select target points. Experimental
verification of path planning is conducted on the traditional A-star algorithm and the
adaptive A-star algorithm, respectively. Figure 18 shows a comparison of navigation
experimental paths between two algorithms, with a white triangle as the starting point and
a white circle as the target point, and Table 6 compares the average experimental data from
repeating the experiment five times with the traditional A-star algorithm and the adaptive
A-star algorithm.
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Figure 18. Navigation Effect of traditional A-star algorithm and adaptive A-star algorithm: (a) tradi-
tional A-star algorithm navigation experiment; (b) adaptive A-star algorithm navigation experiment.

From the comparison of navigation data in Table 6, it can be seen that the traditional
A-star algorithm has many corners and large turning angles, and the path is relatively long
and not smooth. By repeating the experiment five times and compared to the traditional
A-star algorithm, the adaptive A-star algorithm average reduces the path length by 22%,
the number of turns by 43.1%, the steering angle by 35.7%, and the driving time by 23.7%,
verifying the effectiveness of the proposed adaptive A-star algorithm.
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Table 6. Comparison of navigation data between A-star algorithm and adaptive A-star algorithm.

Length Turning Point Turning Angle Travel Time

Traditional
A-star

15.39 m 10 415.8◦ 51.7 s
14.91 m 9 370.9◦ 46.1 s
15.46 m 10 416.2◦ 51.9 s
16.38 m 11 433.5◦ 53.6 s
16.26 m 11 431.6◦ 53.2 s

Average data 15.68 m 10.2 413.6◦ 51.3 s

Adaptive A-star

12.65 m 6 274.9◦ 40.6 s
11.54 m 5 250.8◦ 37.0 s
12.45 m 6 269.3◦ 39.8 s
12.52 m 6 271.1◦ 40.1 s
11.99 m 6 262.9◦ 38.5 s

Average data 12.23 m 5.8 265.8◦ 39.2 s

4.2.2. Experimental Verification of Fusion Algorithm Navigation

Based on the above experiments, while ensuring that the starting point and target
point remain unchanged, add an unknown obstacle on the planned path, as shown in
Figure 19. Additionally, establish a Gazebo simulation environment in the ROS system to
simulate the experimental site map settings as closely as possible and verify the feasibility
of the simulation and actual experiment in real time. Start the fusion algorithm, and the
results are shown in Figure 20.
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From Figure 20, it can be seen that the fusion algorithm can automatically plan new
paths to avoid unknown obstacles and achieve dynamic obstacle avoidance while ensuring
that the re-planned path is close to the static optimal path of the adaptive A-star algorithm.

5. Discussion

This algorithm effectively improves the shortcomings of the A-star algorithm, reduces
the number of traversal nodes and running time, shortens the path length and turning
points, and improves running efficiency. Moreover, it integrates with the improved DWA
algorithm to achieve autonomous obstacle avoidance navigation for mobile robots. How-
ever, the application scope of this algorithm has limitations; that is, the fusion algorithm
in this article is only suitable for path planning of AGVs in factory environments, and its
application in small space home environments, such as sweeping robots, is not effective.
Because in a factory environment, due to the relatively spacious space and constant envi-
ronment, algorithms can accurately locate and navigate using prior map information. In
smaller home environments, due to the small and complex space, the robot moves relatively
slowly, and the length of the path planned each time is not very large, making it difficult
to reflect the effect of the improved algorithm in this paper on optimizing navigation effi-
ciency. Moreover, the algorithm in this paper does not take into account the avoidance of
dynamic obstacles and is not suitable for areas with moving obstacles. Future research can
improve the robot’s perception capabilities by optimizing algorithm parameters, adding
multiple sensors, and including experiments on dynamic obstacle avoidance to broaden
the application range of the algorithm.

6. Conclusions

This article proposes a path planning method that integrates an adaptive A-star al-
gorithm with an improved DWA algorithm to address the issues of the traditional A-star
algorithm, such as excessive node traversal, long search time, unsmooth paths, close prox-
imity to obstacles, and applicability only to static maps. The adaptive A-star algorithm is
based on adaptively weighting the heuristic function of the traditional A-star algorithm
and introducing the Douglas–Pucker thinning algorithm to eliminate redundant points.
Furthermore, a trajectory point evaluation function is added to the evaluation functions
of the DWA algorithm, and the B-spline curve method is introduced for path smoothing
optimization. Finally, the adaptive A-star algorithm and the improved DWA algorithm are
integrated to implement dynamic obstacle avoidance. Through simulation experiments,
the adaptive A-star algorithm reduces the search time by 43.4%, the number of traversed
nodes by 51.8%, the path length by 17.9%, the turning angle by 53.5%, and the number
of turning nodes by 46.7% compared to the traditional A-star algorithm. By comparing
the effects of real experiments, the adaptive A-star algorithm reduces the path length by
22%, the number of turning nodes by 43.1%, and the turning angle by 35.7% compared to
the traditional A-star algorithm. This algorithm effectively improves the shortcomings of
the A-star algorithm, reduces the number of traversed nodes and running time, shortens
the path length and the number of path turning points, and improves the running effi-
ciency. Overall, this article provides a promising and effective solution for enhancing the
navigation efficiency of autonomous mobile robots, which has potential implications for
robotics applications.
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