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Abstract: The continuous advancement of electronic technology has led to the gradual integration of au-
tomated intelligent devices into various aspects of human life. Motion gesture-based human–computer
interaction systems offer abundant information, user-friendly functionalities, and visual cues. Sur-
face electromyography (sEMG) signals enable the decoding of muscle movements, facilitating the
realization of corresponding control functions. Considering the inherent instability and minuscule
nature of sEMG signals, this thesis proposes the integration of a dynamic time regularization algo-
rithm to enhance gesture recognition detection accuracy and real-time system performance. The
application of the dynamic time warping algorithm allows the fusion of three sEMG signals, enabling
for the calculation of similarity between the sample and the model. This process facilitates gesture
recognition and ensures effective communication between individuals and the 3D printed prosthesis.
Utilizing this algorithm, the best feature model was generated by amalgamating six types of gesture
classification model. A total of 600 training and evaluation experiments were performed, with each
movement recognized 100 times. The experimental tests demonstrate that the accuracy of gesture
recognition and prosthetic limb control using the temporal dynamic regularization algorithm achieves
an impressive 93.75%, surpassing the performance of the traditional threshold control switch.

Keywords: anthropomorphic prosthetic arm; dynamic time warping algorithm; feature extraction;
gesture recognition; surface electromyography signal

1. Introduction

With the rapid development of artificial intelligence technology, the number of in-
telligent machines and devices in people’s daily lives has gradually increased. Every
smart machine and device possesses the capability to perform various routine tasks and
offers multiple interaction methods, from industrial production to traditional fields such
as military, medical, and service. It is anticipated that human–computer interactions will
become increasingly prevalent in the future. Unlike traditional human–computer com-
munication methods, human–computer communication based on bioelectric signals can
control external mechanical devices such as intelligent machines, robots, mice, airplanes,
and virtual animations. Therefore, the process of decoding human bioelectric signals to
discern their corresponding behavioral intentions has emerged as a prominent research
area within human–computer communication.

Currently, three commonly used human bioelectric signals are electroencephalography
(EEG), electromyography (EMG), and electroneurography (ENG) [1]. Among these, ENG
necessitates craniotomy and the subsequent implantation of corresponding sensors into
the brain, constituting a complicated process that inflicts significant damage to the human
body. Moreover, the surgery and care associated with ENG require the expertise of medical
professionals, making this acquisition method unsuitable for daily operational use. EEG,
on the other hand, exhibits weak and unstable signal quality, rendering it susceptible to
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external environmental interference. As a result, it remains in the research stage with
limited practical implementation. Surface electromyography (sEMG), employing surface
wet or dry electrodes affixed directly to the skin’s surface above corresponding muscle
groups, offers a non-invasive alternative with relatively stable signals [2]. The mechanism
behind sEMG generation involves the recognition of bioelectrical signals originating from
the nervous system, which controls muscle movements on the surface of the human body.
Typically, the nervous system employs specific neurons to regulate muscle activity, giving
rise to a diverse range of muscle movements on the body’s surface. Consequently, various
electromyography signals are emitted by these distinct muscle units.

sEMG comprises the summation of excitation potentials received by neurons when
conveying signals that contain information about a person’s intention to move to the
corresponding motor muscle. It effectively reflects neural information pertinent to potential
movements, signifying that decoding sEMG can discern intentions related to human
body manipulation. This feature aligns with one of the fundamental functions of HCI
interface design, which involves acquiring intentions to manipulate human behaviors and
designing devices accordingly to facilitate external movements based on these behavioral
intentions [3]. The controllability and compatibility with human behavior further enhance
the appeal of EMG, leading to its frequent utilization in clinical rehabilitation for prosthetic
drive and Human–Computer Interaction (HCI) applications, particularly in the field of
gesture recognition.

Gesture recognition has emerged as a critical area of research in the field of biomedical
engineering and artificial intelligence. The ability to accurately and efficiently interpret human
hand gestures has numerous applications, ranging from prosthetic control to human–computer
interaction. In recent years, there has been a growing interest in developing noninvasive
wearable sensor systems for hand gesture recognition, which offer advantages in terms of
comfort, flexibility, and ease of use.

Marinelli et al. [4] discuss the progress made in biomedical engineering, particularly
focusing on the application of gesture recognition techniques. Their research highlights the
significance of integrating biomedically inspired algorithms and wearable technology for
enhanced accuracy and precision in recognizing hand gestures.

Similarly, Tchantchane et al. [5] provide an extensive review of hand gesture recogni-
tion systems that utilize noninvasive wearable sensors. Their analysis includes an exami-
nation of various sensor types, such as accelerometers, gyroscopes, and flex sensors, and
their effectiveness in capturing fine-grained hand movements. The authors also discuss the
challenges associated with noise reduction, feature extraction, and classification algorithms,
offering valuable insights for future research in the field.

Furthermore, Chen et al. [6] contribute to this field by presenting a comprehensive
review of myoelectric control for prosthetic hand manipulation. Their work delves into
the advancements in electromyography-based gesture recognition, where muscle signals
are harnessed to control prostheses. The paper discusses signal processing techniques,
pattern recognition algorithms, and the integration of tactile feedback, shedding light on
the possibilities and limitations of myoelectric control in prosthetic technology.

In recent years, researchers have dedicated considerable efforts to the investigation of
pattern recognition and the strategic mechanisms governing their control [7]. Substantial
progress has been achieved, leading to an impressive 95% recognition rate for over ten
intricate movements of the forearm and hand [8].

Powar and Chemmangat [9] also address the issue of wrist variation in the pattern
recognition of myoelectric hand prostheses control. Their work focuses on the utilization
of dynamic time warping (DTW), a technique that aligns muscle signal patterns by con-
sidering temporal variations. By employing DTW, the researchers effectively reduce the
impact of wrist variation, leading to improved classification accuracy and robustness in
myoelectric control.

Furthermore, Powar and Chemmangat [10,11] investigate the use of dynamic time
warping to alleviate the effect of force variation in the myoelectric control of hand prosthe-



Electronics 2024, 13, 454 3 of 17

ses. By employing DTW to align muscle signal patterns affected by varying force levels,
the researchers demonstrate enhanced classification accuracy and improved control per-
formance. Their findings provide valuable insights into mitigating the impact of force
variation, contributing to the development of more reliable and adaptable myoelectric
control systems.

In a different approach, Jabbari, Khushaba, and Nazarpour [12] propose a combined
dynamic time warping and spatiotemporal attention approach for myoelectric control. By
integrating these two techniques, the researchers aim to enhance the classification accuracy
and reliability of gesture recognition systems. Their study highlights the potential benefits
of incorporating attention mechanisms in myoelectric control, improving the ability to
identify and focus on relevant muscle signal patterns.

Therefore, this paper presents the development of an “active training” method, en-
abling patients with hand dysfunction to engage in more effective rehabilitation training
through the integration of anthropomorphic prosthetic hand technology. The proposed
method empowers patients to execute simple gestures by consciously controlling the pros-
thetic arm, thereby facilitating improved recovery outcomes. By harnessing sEMG signals
as control inputs for the mechanical prosthesis, this approach assists individuals with dis-
abilities in resolving fundamental daily life challenges and even offers them the potential
for basic work capabilities.

2. Hardware Design of Anthropomorphic Prosthetic Arm and sEMG-Based
Control System

Our anthropomorphic prosthetic arm is constructed using AutoCAD 2022 software
for 3D modeling, followed by direct 3D printing. The final configuration of the prosthetic
arm, resulting from several model modifications, is depicted in Figure 1a. CR-PLA, a key
material employed in 3D stereo printing, demonstrates excellent properties, such as high
tensile strength, minimal shrinkage, softness, high hardness, smoothness, and ultra-low
mechanical weight. These attributes enable the optimal operation of the manipulator. To
control the fingers and wrist, servos are utilized as the driving mechanism, as they offer
precise control through PWM (Pulse Width Modulation), rendering the control process
highly convenient and user-friendly. Specifically, the KS-3518 digital servo, a waterproof
model, is chosen for this application, ensuring compliance with the design requirements of
this system.

The assembly of the servos for the prosthetic arm is illustrated in Figure 1b. This
arm incorporates a total of six digital servos, with one dedicated to controlling the wrist
rotation and the remaining five individually responsible for finger movements. The control
mechanism relies on servo rotation and traction wire ropes to enable finger bending and
straightening. The steel wire selected for this purpose boasts a maximum bearing capacity
of 25 kg, far exceeding the required specifications.

sEMG signals possess distinct characteristics that warrant attention in the application
of this thesis:

(1) sEMG signals are inherently weak physiological electrical signals [2]. Typically,
healthy individuals exhibit sEMG amplitudes ranging between 100 and 5000 µV, with peak
values rarely exceeding 6000 µV, which generally remain within the noise level. During
muscle relaxation, sEMG signals may reach amplitudes of 20–30 µV, while muscle contrac-
tion can elevate them to 60–300 µV. However, in hemiplegic patients, these amplitudes tend
to be lower than 350 µV, rendering them more susceptible to external disturbances [2].

(2) The low-frequency characteristics of sEMG signals are influenced by various
factors [13]. An effective approach to studying these characteristics is the bipolar model
proposed by the Center for Neuromuscular Research at Boston University. This model
partitions the sEMG frequency spectrum from 20 to 500 Hz and constrains the power
spectra maxima to the range of 30 Hz to 300 Hz, providing a more accurate representation
of the muscle’s low-frequency state. Typically, since the frequency of the electronic signals
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from the epidermis is usually around 1 kHz, this is used as a baseline when collecting
this information.

(3) The sEMG can be approximated as a Gaussian with zero mean value, exhibiting
symmetry, and it behaves as a white noise process composed of numerous sinusoids.

(4) sEMG represents a muscle voltage signal, where frequency and amplitude posi-
tively correlate with muscle tension, usually displaying a reliable linear relationship. This
signal offers valuable insights into muscle relaxation and contraction.

(5) Different muscle exercises result in distinguishable changes in time-domain,
frequency-domain eigenwaveforms, and amplitude-spectral-domain frequency characteris-
tic curves. Surprisingly, these changes demonstrate significant spectral similarity, indicating
certain regularities in EMG signal frequencies across muscle blocks, both within the same
type of exercise and across different exercises [14].

(6) The collection of EMG signals exhibits considerable variations as individuals’ age,
gender, and physical condition change. Even among similar individuals, harvesting results
may differ significantly due to variations in environmental factors, physical characteristics,
and muscle fatigue states.
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As per the human physiology above, muscle movements need to be stimulated repeat-
edly to generate EMG signals since they are alternating electrical signals. The acquisition
of EMG signals is susceptible to external environmental and physiological influences, with
the natural thermal noise of the circuit being the most significant external factor. More-
over, the distribution of electromagnetic fields alters with human activities, impacting the
acquisition of EMG signals, particularly when the power supply frequency (industrial
frequency interference) is present. Therefore, the precise selection of acquisition equipment
is paramount for obtaining accurate EMG signals [15].

Currently, two types of EMG signal detection devices are available on the market:
invasive and non-invasive. Invasive devices typically use needle electrodes. The process
involves the precise placement of different electrodes at varying depths, necessitating the
expertise of a healthcare professional. Once inserted, the needle electrodes must be securely
fixed and not move freely, with continuous monitoring by medical personnel. On the
other hand, non-invasive devices utilize wet and dry electrodes for surface acquisition,
which can be employed multiple times. These non-invasive devices offer straightforward
operation and do not require professional supervision, making them more user-friendly.
During acquisition, the skin surface at the measuring location is cleaned and disinfected,
and then the non-invasive electrodes are applied to obtain the electromyographic signals.
This method outperforms needle electrodes, as it ensures a non-invasive, cost-effective,
repeatable, and user-friendly process. Since this approach captures muscle signals from the
skin’s surface without direct muscle contact, it is susceptible to interference from external
factors. Although needle electrodes are more accurate than dry electrodes in terms of signal
accuracy, dry electrodes are simpler and easier to use and have been able to surface the
signal acquisition needs of EMG-related studies.

This system primarily utilizes muscle signals from the arm muscles of the upper
limb. As different arm movements elicit distinct muscle responses, a direct correlation
exists between movement and muscle activity. To optimize the classification model, the
placement of the dry electrode armband must be determined based on the specific type
of movement requiring classification. It is essential to position the dry electrode armband
in the region with the strongest muscle activity to minimize error rates and enhance
recognition accuracy. After conducting several experimental tests, it was concluded that a
three-electrode configuration for the armband yields the best results. The resulting sEMG
armband is depicted in Figure 2b.
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3. sEMG Signal Acquisition and Processing

Once the preparatory work was completed, the voluntary subjects were informed of
the testing process before data collection. During the data collection phase, the subjects
were instructed to sit on a stool with their arms hanging in the air. Participants followed
computer instructions to perform the relevant operations. Each test comprised three parts:
first, a relaxation state lasting 5 s in a semi-handshake position; second, the performance of
a specific movement as indicated by the computer, also lasting 5 s; and, finally, returning to
the initial state, identical to the first part. Each set involved six gesture movements. All
participants underwent 20 sets of data collection. Between each data set, sufficient resting
time was allotted to prevent testers’ hands from experiencing fatigue or muscle exhaustion.
This resting interval is essential as prolonged hand movements can impact muscle behavior
and relaxation, consequently affecting the accuracy of data collection. The study included
six types of hand movements: fist clenching, “OK” gesture, “Like” gesture, wrist turning
left, hand open, and wrist turning right. Gesture diagrams can be found in Figure 3.
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The complexity of raw sEMG signals can lead to significant errors if solely relied
upon for recognition [16]. To ensure accuracy in signal pattern recognition detection,
it is necessary to process and analyze the raw sEMG signals collected by these sensors.
The signal pre-processing section involves a signal amplification and filtering circuit, as
illustrated in Figure 4. The pre-processing circuit serves two essential purposes: firstly,
it amplifies the sEMG signal to the required voltage level (V) for subsequent A/D data
acquisition and signal processing; secondly, it enhances the signal filtering process to
effectively eliminate interference from industrial frequency signals, DC bias phenomena,
and extract the active signal. The main circuit amplification, combined with secondary
circuit amplification, achieves an overall amplification of approximately 1000 times. Motion
artifacts and electrical noise from the cable are eliminated using a fourth-order Butterworth
high-pass filter (f = 10 Hz), while a band-pass filter (fL = 10 Hz, fH = 500 Hz) is employed
to remove high-frequency noise, such as electrode noise at the skin tissues. The industrial
frequency noise at 50 Hz is effectively eliminated through trap processing. Additionally,
the zero-regulator circuit ensures system input and output balance, effectively reducing the
system’s zero deviation.
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After signal preprocessing, the crucial step is to extract the start and end points of the
valid data. To ensure real-time functionality, a combination of the threshold comparison
method and the moving average method (Figure 5) was chosen for improved monitoring
of active regions. By employing a fixed sliding window in the moving average method, the
average energy of the current region was obtained, which offers a better understanding
of its state. This allows for the segmentation of gesture movements from sEMG signals,
facilitating the subsequent identification of valid gestures. When the muscle is not actively
engaged, the sEMG signal exhibits slight amplitude changes due to individual differences
in muscle fiber properties, resulting in minor fluctuations in energy. Conversely, during
effective muscle actions, the amplitude changes in the sEMG signal are more pronounced,
with significantly larger variations compared to the non-active state [17]. Leveraging the
energy method, effective action segments within different sEMG signals can be rapidly
identified, leading to enhanced judgment accuracy. The combination of sliding average and
energy signal analysis allows for convenient, efficient, and swift signal data segmentation.
To facilitate the analysis of energy signals with substantial frequency gradient changes, a
sliding window segmentation approach is employed, enabling more intuitive analysis.
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In myoelectric pattern recognition algorithms, the extraction and identification of
original myoelectric signal features represent the most crucial and essential processing
step throughout muscle feature pattern recognition technology. Currently, the mainstream
application of myoelectric signal feature recognition algorithms can be broadly categorized
into three groups: time-domain methods, frequency-domain methods, and time-frequency
domain methods [18]. Time-domain features have the advantage of direct and reliable
extraction from the original sEMG signal data, enabling straightforward extraction from
time series data sets without necessitating additional data conversion or processing by
the system [19]. Hence, this method offers simplicity, ease of system design and imple-
mentation, as well as efficiency in system calculation, resulting in a relatively light system
workload. On the other hand, frequency domain feature data require Fourier transform
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calculations, which can lead to poorer real-time performance and less stable data. Further-
more, due to the inherent abstraction of frequency domain features, adjustments of time
series parameters within specific ranges are often needed to obtain more information. In
such cases, time series features are preferred, and several common time series features can
be employed, such as root mean square, waveform width, average of certain integration
values, certain value generalization, time past zero crossing coefficient, slope sign variation,
and average amplitude rate of change. These features significantly simplify the processing
process and enhance the efficiency of various tasks. In this paper, mean amplitude variation,
the first burst of amplitude, mean absolute value, root mean square, and standard deviation
were used as feature extraction methods for comparative study.

Average amplitude change uses an averaged wavelength, and it can be formulated as
follows [20]:

Average amplitude change =
1
N

N−1

∑
i=1

|xi+1 − xi| (1)

For the amplitude of the first burst, the raw EMG signal was squared and then passed
through a moving average FIR filter with a Hamming window function. And the low fre-
quency components of the EMG signal are filtered and the maximum value of the first burst
is used as the feature. In this study, the Hamming open window function uses a window
size of 32 ms. A modified mean absolute value was used for comparison; the algorithm
uses the weighted window function donated by wi for MAV feature extraction [20]. MAV
feature calculated as follows [20]:

Mean absolute value = 1
N

1
∑

i=1
wi|xi|;

wi =

{
1, i f 0.25N ≤ i ≤ 0.75N

0.5, otherwise

(2)

Root mean square modeled as amplitude-modulated Gaussian random process, which
relates to constant force and non-fatiguing contraction [20]. Root mean square feature
expressed by

Root mean square =

√√√√ 1
N

N

∑
i=1

x2
i (3)

standard deviation =

√√√√ 1
N − 1

N

∑
i−1

(
xi −

1
N

n

∑
i=1

xi

)2

(4)

Using the time-domain method, features can be efficiently extracted. The underlying
principle of this method is to vary the length and width of the window signal to obtain a
more accurate average energy measurement. Through analyzing complex sEMG signals,
features can be extracted more effectively, enabling a better understanding of their nature.
Figure 6a displays a set of raw sEMG data acquired during a specific “Like” gesture, while
Figure 6b illustrates the raw data plot after processing the data plot of the item (a) in
the legend with the feature extraction operation. The horizontal axis corresponds to the
sequence number after the window moves, and the scatter on the plot represents the
corresponding feature value at the end of the feature extraction operation. It is evident from
the analysis of Figure 6 that noticeable differences exist both in the trend of the changes
in eigenvalues and their actual magnitudes. Therefore, when extracting or processing the
eigen-signal data, a careful consideration of these changes is crucial for a more accurate
analysis of the original signal data. Extracting the features of the original signal simplifies
the computer’s analysis and the comparison of data features, facilitating the more effective
identification of the feature data.
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4. DTW Algorithm Implementation

Dynamic Time Warping (DTW) is employed to determine the difference between two
time periods based on the nearest neighbor principle, thus enabling the better identifica-
tion of their commonalities [21]. However, due to inherent disparities between the time
periods of the two languages, achieving a perfect match remains challenging [22,23]. In
linguistic and acoustic technologies, the storing and transmitting of linguistic informa-
tion are influenced by spatial and temporal variations, leading to differences in speech
tones and rhythms among individuals. For instance, changes in the tone and rhythm of
speech by various speakers result in variations in tone and rhythm during speech. Fur-
thermore, the speed and frequency of pronunciation may differ between two phonemes
within the same word. In these intricate scenarios, traditional Euler distance tables do
not consider the dynamic changes in speed within the time series, potentially leading to
significant errors.

The DTW algorithm finds extensive application, primarily in template matching [24].
Initially, it was employed in speech recognition tasks, such as in language learning software,
to assess pronunciation accuracy. Over time, its utility has extended to include sensor
motion recognition, biological information matching, data mining, information retrieval,
and various other domains.

4.1. DTW Algorithm Implementation

The signals collected in this experiment were discrete time series signals. For the dif-
ferent actions performed by the subjects, the corresponding muscle action signal sequences
do not differ much in terms of the intensity and frequency of the muscle movements
and the temporal rhythm of the muscle actions. This signal characteristic ensures that it
can be stabilized within the time-frequency range of the same type of muscle movement
through strict control. The DTW algorithm can be used to achieve the direct identification
and analysis of these discrete sEMG signal sequences in the human body, avoiding the
problem of failing to identify the signal sequences due to the inconsistency of the length
and intensity of the feature sequences at a certain stage, and greatly improving the overall
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accuracy of the recognition and detection of EMG signals [25,26]. Therefore, in this study,
the DTW algorithm is used to realize the automatic identification of feature sequences and
generate accurate signal value sequences [26].

Let the total number of action frames in the reference template R be denoted as M,
where Ri = {r1, r2, ..., rm, ..., rM}, and each rm represents the action feature vector of the
mth frame, with each component being a three-dimensional vector. Similarly, let the test
template T be an N-dimensional vector represented as Tj = {t1, t2, ..., tn, ..., tN}, where j = 1,
2, 3. It is worth noting that while the lengths of M and N can vary, their dimension values
must remain consistent. To calculate the frame matching distance between the reference
template and the test template for each dimension vector, we employ Equation (5).

di(tn, rm) = |tn − rm|, i = 1, 2, 3 (5)

Figure 7 depicts a two-dimensional Cartesian coordinate system, where the horizontal
axis N is the test sample axis and the vertical axis M is the reference sample axis. The integer
coordinate points in the figure represent the intersection between the coordinates of each
reference sample and the coordinates of the previous reference sample. The DTW algorithm
uses these coordinate grid points to find the optimal and shortest path for each completed
operation. This path must be chosen from the bottom left to the top right corner, because
there can be no reversal of the order of actions between the trajectories of each action. The
grid points along the path are in order: (t1, r1)...(tN, rM). To ensure that each point stays
within an acceptable range, the slope magnitude is constrained between 0.5 and 2, and the
set threshold is not exceeded for each point to reach the final (n, m) position. The preceding
point could only be (n − 1, m), (n − 1, m − 1), or (n − 1, m − 2). By calculating Di(tN, rM),
the shortest interval between the eigenvectors of each dimension can be determined, as
expressed in Equation (6). Moreover, this formula leads to (7), representing the shortest
interval DTW between the feature vectors of the third dimension in each dimension.

Di(tN , rM) = min

{
Di(tn−1, rm) + di(tn, rm), Di(tn−1, rm−1)+

2di(tn, rm), Di(tn−1, rm−2) + di(tn, rm)

}
, i = 1, 2, 3 (6)

D(tN , rM) =
3

∑
i=1

D2
i (tN , rM) (7)
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Utilizing the DTW algorithm, it is possible to locate and match the signals in the sEMG
signal sequence that are related to a specific action and obtain results that are very close
to the actual situation. In addition, the DTW algorithm can also reduce the accuracy error
caused by the inaccurate measurement angle because the dry electrode sensor surrounds
the upper arm to collect multi-dimensional information in this system.

4.2. Template Creation

The primary objective of creating gesture templates is to enhance the effective recog-
nition rate of gestures and mitigate the adverse effects of visual deviations, positional
differences, and individual variations. Throughout the template creation process, various
organizational differences, such as activities and structures in the skin tissue, are taken into
consideration. To construct an effective model, data are initially extracted from training
samples during the training phase, and their average length is estimated. Subsequently,
the effective part of the signal sequence is identified, and samples with similar lengths are
selected and averaged for training, determining the optimal sample length.

For each training movement, eight samples with the smallest difference in length
from the average movement length are selected. These samples are then used to match
other movements, ensuring that the largest, smallest, or lowest movement sample can be
found. Employing the DTW search algorithm, the most matching time series points are
filtered from the seven movement samples and averaged to create an initial template for
each exercise movement. This approach allows for a better reference for and comparison of
different movements, leading to more effective training outcomes.

Finally, the prototype of the final templates for the six movements is obtained through
a weighted average of the initial models for these six movements. In the experimental tests,
only one template was utilized.

5. System Validation Experiments and Analysis

The real-time image acquisition and analysis of three-channel sEMG signal sources
were designed and implemented based on the aforementioned technical concepts and
steps. To thoroughly evaluate the system’s performance, a function test experiment was
conducted using the dry electrode armband. This armband consists of three sEMG sensor
components and three dry electrode arm patches, facilitating the continuous and interval-
based collection of sEMG signals during rapid and continuous arm muscle movements.
The test program involved six fundamental gestures: fist clenching, “OK” gesture, “Like”
gesture, wrist turning left, hand open, and wrist turning right.

The wireless Bluetooth module in the armband enables the automatic network trans-
mission of acquired sEMG signal data to the host computer and server. To ensure compre-
hensive, accurate, and complete action recognition and data acquisition, the original data
for each action are collected separately. Additionally, the armband is designed to prevent
position changes and minimize interference from external factors during data acquisition.
Thus, users do not need to remove the armband after collecting all relevant data on hand
movements. Figure 8 displays the graphical representation of the sEMG signal from the
host computer.

From Figure 8, it can be seen that the system can accurately capture the sEMG signals
of the human body and quickly and accurately reflect and show the size of the process of
changes in the strength of human muscle power and the process of human muscle power
outbreaks and contractions, but also accurately reflect and show the size of the significant
differences in the degree of changes in the robustness and strength of the muscle power of
different areas of expertise.
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5.1. Endpoint Detection Results

Figure 9 presents the amplified sEMG signal of a series of consecutive movements
of fist clenching. The graph depicts a dotted line representing a specific threshold. This
threshold varies among individuals due to the diversity in human muscle fiber organization.
Therefore, each person calculates the moving average and standard deviation of the signal
based on the dynamic range and noise level of their own sEMG signal. Subsequently,
they adjust an appropriate threshold based on the standard deviation and an adjustable
coefficient. Movements exceeding this threshold’s continuity are considered valid. Through
comparative analysis with the threshold signal T, it is evident that valid action points can
be accurately extracted from the entire time series signal. The difference is significantly
greater compared to the action state without the threshold [27]. This successful endpoint
detection attests to the effectiveness of the proposed method in accurately identifying
valid movements.
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The data listed in Table 1 present the correct rates in the above six types of action
endpoint detection experiments. By analyzing Table 1, it can be seen that the sliding average
energy method can reach an almost 100% correct rate for the accurate extraction method of
effective active segments that come to complete the detection of the action, so the use of
this method is fully and directly applicable to the detection of effective action segments to
realize the accurate extraction of signal segments.
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Table 1. Correct rates of endpoint detection experiments.

Name of Action The Correct Rates of Specific Endpoint Detection Experiments

Fist clenching 100%

Hand open 98%

Wrist turning left 100%

Wrist turning right 100%

“OK” gesture 95%

“Like” gesture 99%

5.2. Gesture Recognition Results

The results of comparing and matching the test action samples with the six reference
action samples, as well as analyzing the action data within the reference test templates
database, are presented in Table 2. The diagonal entries in the table represent the DTW
distance when the sixth reference action is correctly identified as the reference action, while
other entries indicate the DTW distance when the action is incorrectly identified as another
reference action.

Table 2. DTW distance between test action samples and the reference action samples.

The Reference Action Samples

Fist Clenching Hand Open Wrist
Turning Left

Wrist Turning
Right

“OK”
Gesture

“Like”
Gesture

Te
st

ac
ti

on
sa

m
pl

es

Fist clenching 0.5767 2.7212 5.8764 4.0173 3.7256 1.0267

Hand open 2.9619 0.3422 8.1769 1.3936 0.9659 3.5469

Wrist turning left 4.2567 4.9024 0.3991 4.9974 5.8322 5.8123

Wrist turning right 3.8415 2.7456 7.1393 0.5639 6.0234 6.0982

“OK” gesture 2.3628 0.8623 6.5863 5.8823 0.4215 2.8612

“Like” gesture 0.9622 3.2151 5.9633 6.2508 4.3367 0.5216

From an analysis of Table 2, it is evident that the action distance for recognizing the
correct hand gestures is significantly smaller than the action distance for recognizing other
hand gestures, differing by at least an order of magnitude. This finding demonstrates a high
similarity in gesture information between individuals performing the same hand actions.
Consequently, a well-designed and produced hand gesture recognition template facili-
tates the accurate recognition of hand movement information across different individuals.
Moreover, this emphasizes the feasibility of utilizing the DTW algorithm for recognizing,
processing, and analyzing correct gesture signals derived from EMG signals.

The final recognition results are represented by the confusion matrix, and the corre-
sponding recognition rates are shown in Table 3. Each column in the confusion matrix
presents the predicted attribution category of the data, with the total instances in each col-
umn matching the total instances of all data in the predicted attribution category. Similarly,
each row in the matrix corresponds to the total number of instances of real hand movement
data in the respective hand category. The diagonal entries in the matrix indicate correct
hand recognition results for the specific gestures. From the analysis of the experimental
data, it is evident that the overall recognition rate for hand gestures remains high, reaching
approximately 93.752%. Moreover, individual action gestures exhibit excellent recognition
rates, particularly for the fist clenching and hand open postures, both achieving a perfect
100% recognition rate. However, the “OK” gesture’s recognition rate remains relatively
lower and is sometimes misidentified as a hand open gesture. Among the six gestures, the
fist clenching and hand open gestures demonstrate the most distinct characteristics.
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Table 3. Confusion matrix for different gesture recognition.

The Predicted Action

Accuracy/%Fist
Clenching Hand Open Wrist Turning

Left
Wrist Turning

Right
“OK”

Gesture
“Like”

Gesture

Tu
re

ac
ti

on

Fist clenching 32 0 0 0 0 0 100.00

Hand open 0 32 0 0 0 0 100.00

Wrist turning left 0 2 29 0 0 1 90.63

Wrist turning right 0 0 0 30 1 2 93.75

“OK” gesture 1 3 1 0 27 0 84.38

“Like” gesture 2 0 0 0 0 30 93.75

Overall recognition
rates/% 93.752%

By analyzing the initial movement templates of the six movements with the six test
movement templates that can be freely extracted, the DTW distance of each movement can
be calculated, in which the distance of the fist clenching is the largest and the distance of
the hand open is the smallest, and the order of the templates of these test movements is a
fist clenching, hand open, wrist turning left, wrist turning right, “OK” gesture, and “Like”
gesture. From the comparison of the test data, it can be seen more clearly that the DTW
movement distance deviation of all the original samples tested is minimized only when
their movement distances are all the same as their initial template movement distances [17].
This confirms the high feasibility of using the DTW algorithm to directly analyze the EMG
signal movement distances for muscle action recognition, which is fully capable of realizing
the rapid and automatic recognition calculation and the fast and accurate judgment of any
two muscle actions that are the same or similar to each other, and improves the accuracy of
muscle action recognition and judgment results by making templates. The test results are
shown in Figure 10.
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5.3. Prosthetic Arm Control Experiment

This experiment only involves the acquisition of human surface EMG and adopts the
design of dry electrodes, so the instruments and equipment used will not cause any harm
to the human body. The design and implementation of the experiment were approved
by the Ethics Committee and all ethical materials were available. The experiment did not
involve any specific group of research participants, and they were all school teachers and
students. The testing experiment involved a total of 30 individuals, comprising both male
and female participants, who were in good health. All the participants volunteered for
the test and signed confidentiality agreements. To ensure the universal adaptability of the
collected data to the created template, only healthy individuals without physical defects
were selected as testers. Table 4 provides information about the participants involved in
the study.

Table 4. Information about the participants.

Sex Total Amount Age Range Weight Range
(kg)

Height Range
(cm)

BMI Range
(kg/m2)

Male 16 20–30 55–95 170–185 20–29

Female 14 20–29 45–65 155–170 18–23

To ensure the validity of the experiment, it is crucial to conduct the tests under normal
conditions and certain preparations must be made beforehand:

(1) Before the test, participants should refrain from engaging in high-intensity train-
ing, such as running or working out, to keep the muscles in the testing area in a re-
laxed state without fatigue. Muscle fatigue could adversely affect the accuracy of the
collected signals.

(2) The surface skin of the muscle to be detected should be sterilized and cleaned
before the test. A standardized cleaning method is employed for all participants to maintain
uniformity in the collected data. Alcohol would be used for removing scurf and sebum and
to cleanse the muscle surface at the beginning of the experiment. This procedure ensures
better contact between the dry electrode armband and the skin, leading to more accurate
muscle data measurements.

(3) Consistency in electrode placement is crucial when using the dry electrode armband.
All electrodes used in the test should be positioned in the exact location on the same arm of
each participant to ensure the measurement data’s uniformity and consistency.

Model validation was conducted in accordance with the specified test requirements.
The experiment involved comparing hand movements to robot movements to assess
recognition accuracy. Successful recognition was determined when the robot’s movements
matched the corresponding hand movements, while a mismatch indicated failure. A total
of 600 experiments were performed, with each movement recognized 100 times. From the
statistical analysis presented in Table 5, it is evident that the clenched-fist and spreading-fist
gestures achieved a remarkable recognition accuracy of 96%, outperforming other hand
gestures. The remaining hand gestures also demonstrated satisfactory recognition rates,
averaging 90%. The higher recognition rates for fist shake and fist spread gestures can
be attributed to the enhanced responsiveness of the selected test muscle regions to these
specific gestures compared to the other movements [19]. Comparing the results of other
studies, Ding et al. [28] used a CNN method for gesture recognition with an average
recognition rate of 78.86%, another scholar used a method based on CNN-LSTM for gesture
recognition with an average recognition rate of 87%, and Huang et al. [29] used an improved
deep forest method for their gesture recognition test with an average recognition accuracy
of 94.14%. There is still room for further enhancement and optimization of the method
proposed in this study.
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Table 5. Confusion matrix for different gesture recognition.

The Action of Prosthetic Arm

Accuracy/%Fist
Clenching Hand Open Wrist

Turning Left
Wrist Turning

Right
“OK”

Gesture
“Like”

Gesture

Th
e

ac
ti

on
of

pa
rt

ic
ip

an
t

Fist clenching 96 0 0 1 0 3 96.00

Hand open 0 96 3 1 0 0 96.00

Wrist turning left 0 5 92 0 1 2 92.00

Wrist turning right 0 0 0 86 1 2 86.00

“OK” gesture 2 7 0 1 89 1 89.00

“Like” gesture 5 0 0 2 0 93 93.00

6. Conclusions

This paper presents the design and implementation of an sEMG gesture recognition
and control system based on the DTW algorithm. The DTW algorithm has been implied to
realize the online recognition of gestures based on sEMG signals. With the DTW algorithm,
the most matching time series points can be filtered and averaged from the movement
samples to obtain an initial template for each practiced movement. This method can help
to better reference and compare different gestures, thus improving the training effect more
effectively. And according to the classification results, the six servos of the prosthetic arm
would be able to complete the gesture action through PWM. The 3D-printed anthropo-
morphic prosthetic arm is relatively lightweight and easy to use for disabled patients. The
demonstrated system has been proven to be a more robust and advanced sEMG gesture
recognition and control system, with potential applications in various fields such as reha-
bilitation, assistive technology, and robotics. The overall results are satisfactory, but further
improvements are needed to enhance the recognition rate of EMG signals and achieve
better generalization for the prosthetic arm.
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