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Abstract: Series-cascaded microgrids (SCMGs) indeed provide control flexibility and high-voltage
synthesis capabilities. However, the power distribution in SCMGs based on distributed generation
(DG) sources stays understudied. This paper proposes an SCMG topology using non-dispatchable
DG sources and battery energy storage, with an integrated power-routing control. The objective
is to address power distribution limitations and stabilize SCMG output voltages under varying
conditions. A case study validates the control methodology, considering zero irradiation levels
for photovoltaic (PV) and maximum power sharing. The battery modules play a crucial role by
providing power, voltage support, and maintaining capacitor voltage at a reference value of a PV-
integrated module. This is achieved through a third harmonic current injection in the fundamental
frequency current, coupled with proportional power distribution using a third harmonic power
signal. The effectiveness of the proposed SCMG topology and control is demonstrated through
MATLAB/Simulink and hardware-in-loop analyses (Typhoon HIL). The results present an extended
power distribution between series-cascaded DG sources-based units while ensuring stable SCMG
output voltages, even in adverse conditions like PV module intermittency. Future work aims to
extend the proposed topology to a ring/delta-connection SCMG, where third harmonic current aids
power distribution among SCMG legs and between series-cascaded DG sources-based units.

Keywords: non-dispatchable; third harmonic current; integrated control; series-cascaded microgrid

1. Introduction

Microgrids (MGs) have gained popularity as a solution for coordinating and ag-
gregating distributed generation (DG) sources, both in stand-alone and grid-integrated
configurations. MGs can be categorized based on their configuration into two main types:
paralleled and series-cascaded microgrids (SCMGs). While parallel MGs have undergone
thorough research [1,2], their inherent requirement for parallel connected DG units to oper-
ate at the MG’s rated voltage necessitates intermediate conversion stages with substantial
input-to-output voltage boost ratios. This condition has the potential to escalate system
costs and diminish overall MG efficiency. In this regard, one promising configuration is
the SCMG, which allows for series-connected (SC) low-voltage DG sources to attain higher
voltage levels and better utilization without the need for DC/DC boost converters in order
to reduce cost while offering more control flexibility [3].

Initially designed for multilevel converters [4], cascaded converters have been subse-
quently extended for MG applications [5–8], named as SCMG [9]. In Figure 1a, each DG
unit forms an MG system (MGN) with increased voltage levels through a series converter.
Notably, the cascaded type has proven to be particularly practical in applications such as PV
grid-connected systems [5] and battery management [6,10]. The SCMGs control methods
can be applied to multilevel converter topologies, providing voltage and frequency support
to the grid.
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Figure 1. (a) DG-based series-cascaded microgrid topology. (b) Ring/delta connection of SCMGs. 
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nization and power-sharing issues can limit their application in MGs, affecting stability 
and AC-side support [7]. In the literature, the limitations of SCMG configurations using 
different DG sources-based modules have been discussed. One proposed solution utilizes 
a high-voltage DC link by connecting DC-DC converters with non-dispatchable DG 
sources (ND-DGs), and inverting the output using a DC-AC H-bridge [11]. Another to-
pology cascades multiple H-bridges on an AC port to connect series-connected ND-DGs 
modules [12]. Maharjan et al. [6] studied an energy storage system in SC configuration. In 
[7], the focus was on dispatchable generation sources (D-DGs), ensuring a similar dis-
placement power factor (df) among DG modules was vital for autonomous SCMG opera-
tion, achieved through inverse df droop control. However, this system is limited to induc-
tive-resistive loads. Alternative control techniques, for instance, power factor angle con-
trol [13] and f-P/Q control [9] for D-DGs, achieved proportional power distribution and 
voltage synchronization for both resistive-capacitive and inductive loads. Hierarchical 
control approaches [14] maintain frequency and voltage regulation in SC energy storage 
and SCMG systems. A distributed control methodology that uses inverse droop at the 
local controller and standard droop at the central controller to manage power for SCMG 
energy storage systems in both grid-connected and islanded modes was developed in [15]. 
Distributed control systems based on communication enable power sharing among cas-
caded ND-DGs modules [16]. Li et al. [17] proposed a communication-dependent SC volt-
age and current-controlled MG for grid-tied operation. Decentralized control methods 
[18–21] considered D-DGs modules for power sharing. 

Complex control strategies are essential for SCMG systems to attain performance 
goals such as grid synchronization, AC output voltage regulation, maximum point track-
ing (MPPT), power sharing, and grid voltage support, regardless of the topology used in 
[19]. The cascaded DG-based modules pose challenges due to shared current. The D-DGs 
offer complete controllability and stable voltage, as presented in [22], while ND-DGs that 
operate with limited load current require centralized control strategies. The power shar-
ing among multiple DG sources-based modules connected in series is a primary concern 
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Employing the DG modules of SCMG in grid-tied mode offers benefits, but synchro-
nization and power-sharing issues can limit their application in MGs, affecting stability
and AC-side support [7]. In the literature, the limitations of SCMG configurations using
different DG sources-based modules have been discussed. One proposed solution utilizes a
high-voltage DC link by connecting DC-DC converters with non-dispatchable DG sources
(ND-DGs), and inverting the output using a DC-AC H-bridge [11]. Another topology
cascades multiple H-bridges on an AC port to connect series-connected ND-DGs mod-
ules [12]. Maharjan et al. [6] studied an energy storage system in SC configuration. In [7],
the focus was on dispatchable generation sources (D-DGs), ensuring a similar displace-
ment power factor (df ) among DG modules was vital for autonomous SCMG operation,
achieved through inverse df droop control. However, this system is limited to inductive-
resistive loads. Alternative control techniques, for instance, power factor angle control [13]
and f -P/Q control [9] for D-DGs, achieved proportional power distribution and voltage
synchronization for both resistive-capacitive and inductive loads. Hierarchical control ap-
proaches [14] maintain frequency and voltage regulation in SC energy storage and SCMG
systems. A distributed control methodology that uses inverse droop at the local controller
and standard droop at the central controller to manage power for SCMG energy storage
systems in both grid-connected and islanded modes was developed in [15]. Distributed
control systems based on communication enable power sharing among cascaded ND-DGs
modules [16]. Li et al. [17] proposed a communication-dependent SC voltage and current-
controlled MG for grid-tied operation. Decentralized control methods [18–21] considered
D-DGs modules for power sharing.

Complex control strategies are essential for SCMG systems to attain performance
goals such as grid synchronization, AC output voltage regulation, maximum point tracking
(MPPT), power sharing, and grid voltage support, regardless of the topology used in [19].
The cascaded DG-based modules pose challenges due to shared current. The D-DGs offer
complete controllability and stable voltage, as presented in [22], while ND-DGs that operate
with limited load current require centralized control strategies. The power sharing among
multiple DG sources-based modules connected in series is a primary concern in SCMGs and
especially with various combinations of DG sources-based modules. In the literature, the
SCMG structure is based on different combinations of D-DGs and ND-DGs modules; mean-
while, some configurations integrated with energy storage systems working as smoothers
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in series/parallel to DG modules have been analyzed [7,9,11–19,21,23–25]. The existing
literature on SCMGs lacks adequate exploration of power distribution dynamics between
cascaded ND-DGs (PV) and energy storage systems. Particularly, the involvement of
battery modules in extended power-sharing to tackle intermittent PV generation remains
under-addressed, especially during worst-case scenarios. Despite SCMGs’ presence, previ-
ous studies have explored different power-sharing techniques for CHB-based PV systems
to mitigate uneven power distribution.

Power-routing control methods in cascaded PV systems utilize fundamental voltage
reconstruction as developed in [12,24–26], and third harmonic voltage injection is presented
in [27,28]. Although fundamental voltage reconstruction distributes the active component
of each DG-based module’s output voltage proportionally to its DC-side input power, it
has a limited power distribution range. To overcome this limitation, third harmonic voltage
injection was introduced, improving DC voltage utilization by increasing modulation.
However, this method primarily focuses on phase-leg balancing and does not account for
unbalanced phase-leg voltages due to module failures or intermittent renewables. In the
literature, centralized and decentralized power distribution techniques are discussed for a
limited power-sharing range in grid-connected SCMGs.

Considering the constraints mentioned earlier in SCMGs, such as the practical combi-
nations of DG-based modules and power-sharing limitations arising from the intermittent
nature of ND-DGs [29–31], this paper introduces a multi-power carriers-based integrated
power distribution control approach. The aim is to overcome power-sharing limitations
and provide voltage support in SCMGs featuring ND-DGs and storage systems. To attain
an extended power-sharing range, a third harmonic current is injected into the fundamental
frequency current. In an SCMG structure (Figure 1a), this third harmonic current appears
in the grid current. However, in the extended ring/delta connection of SMGs, the third
harmonic current will circulate within the system (icir(i3rd)) rather than flowing towards
the grid (Figure 1b). The injected third harmonic current will perform power-sharing
with the PV integrated module from the battery based over a third harmonic power while
stabilizing its capacitor voltage to the reference value. This, combined with proportional
power distribution between the modules, means that the power-sharing control range is
significantly increased while maintaining the output voltages of the cascaded DG sources-
based modules. A case study is conducted to validate this through MATLAB/Simulink and
Typhoon HIL, considering a maximum power distribution range and zero PV irradiation.
Battery modules ensure grid stability and provide necessary power and voltage support in
absence of PV power generation.

Section 2 introduces the generic SCMG schematic and the specific SCMG topology
studied in this paper, along with their operating principles. In Section 3, a comprehensive
analysis of the proposed multi-power carriers-based integrated control methodology is
provided. The validity of the proposed SCMG and its control methodology are examined
through simulation and emulation in Section 4. Finally, the future work is outlined in
Section 5, and the conclusions are summarized in Section 6.

2. DG-Based Series-Cascaded Microgrid

The schematic of the DG sources-based SCMG is depicted in Figure 1a. Unlike the
conventional two-stage DG-based module interface, the DG source is in direct connection
to the DC/AC LV interfacing converter. This generates a lower output AC voltage for each
module, which is not in a suitable range for MG integration. However, combining SCMGs’
AC output voltages provides essential frequency and voltage support to the grid.

The SCMG consists of N series-connected DG-based modules (MGN), where each
module constitutes an H-bridge and a DG source on the DC-side. The ig and vg are grid
current and voltage, respectively; IDCi and VDCi are the DC-link current and voltage of
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ith (i = 1, 2, . . ., N) module, respectively; vHi is the output voltage of the ith module. In
grid-connected mode, the active and reactive power of the ith DG source-based module are:

Pi = Re

(
viejδi

(
vMGejδMG − vgejδg∣∣Zline

∣∣ejθline

)∗)
(1)

Qi = Im

(
viejδi

(
vMGejδMG − vgejδg∣∣Zline

∣∣ejθline

)∗)
(2)

where δg is the grid phase angle. vi and δi are the voltage amplitude and phase angle of
the ith DG-based module, respectively. vMG and δMG are the voltage amplitude and phase
angle at point of common coupling between MGN and the utility grid, respectively. θline is
the circuit’s impedance angle. For a medium/high voltage network, the line impedance is
mainly inductive. The voltage at point of common coupling vMG is as follows:

vMGejδMG =
N

∑
i=1

vHiejδHi (3)

Hence, the power transfer attributes of the ith MG unit are as follows:

Pi =
vi

|Zline|

(
vg sin

(
δi − δg

)
−

N

∑
j=1

vj sin
(
δi − δj

))
(4)

Qi =
vi

|Zline|

(
N

∑
j=1

vj cos
(
δi − δj

)
− vg cos

(
δi − δg

))
(5)

As per Figure 1a, the dynamic characteristics of SCMG are as follows:

dig

dt
=

1
L

(
N

∑
i=1

VHFi − Rig − vg

)
(6)

According to phasor theory and by ignoring the equivalent resistance R, we obtain
the following:

N

∑
i=1

VHFi =
N

∑
i=1

kiVDCi = Vg + jωLIg (7)

where ω is the grids’ angular frequency; VHFi is the phasor form of vHFi (fundamental
component); ki represents the control signal of each module; and Vg and Ig are the phasor
forms of vg and ig, respectively. The SCMGs’ equivalent AC circuit is shown in Figure 2a
and the phasor diagram in Figure 2b, where the voltage component of inductance L is
significantly smaller compared to the grid voltage, allowing for δ to approximate zero.
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The current of all series MGN units (Figure 2a) is inherently equal and cannot be
varied individually. Thus, the operating voltage of each MG unit must be in direct relation
to its power rating to ensure proportional power-sharing between them.

vo_i ∝ Pmax_i (8)

where vo_i is a reference or nominal operating voltage of ith unit and Pmax_i is the rated or
maximum power of ith unit. While the nominal operating voltage of each MG is set based
on (8), the sum voltages of SCMGs must be equal to user-level voltage.

vo_1 + vo_2 + . . . + vo_N = vMG (9)

At maximum load operating condition, Equation (9) becomes:

vo_1imax_1 + vo_2imax_2 + . . . + vo_N imax_N = vMGimax_MG (10)

Pmax_1 + Pmax_2 + . . . + Pmax_N = PT_AC (11)

where PT_AC is the total active rated power output of SCMG. As power is fed to a relatively
stable voltage grid, the power control can be achieved indirectly by regulating output
current ig using Equation (1) and Figure 2a,b. If the power factor will be 1, the output
reference current could be as follows:

i′g_re f =
PT

vg sin
(
δi − δg

) (12)

2.1. Proposed Non-Dispatchable DGs and Energy Storage-based Series-Cascaded Microgrid

The proposed SCMG includes MG1 with PV followed by a set of battery-based mod-
ules. The MG2 and MG3 will serve as stabilizers, supplying necessary grid support via
power distribution control. This accounts for varying operating conditions resulting from
intermittent PV behavior. However, due to the power distribution control limitations
mentioned in Section 1, the battery modules can only deliver a proportion of power, of
which a solution is proposed in Section 3.

2.2. Operating Principle

In the unipolar PWM-based 7-level SCMG, the output voltage is a sum of 3-level
module voltages (Equation (9)). From Equations (9)–(11), the proposed SCMG structure
can present the following operations:

1. PPV > PAC, (PPV → |PAC|+ |PB|), batteries charging, Figure 3a.
2. PAC disconnected, (PPV → |PB|), batteries charging, Figure 3b.
3. PB = 0, (PPV → |PAC|), PV supplying power to grid, Figure 3c.
4. PPV = 0, (|PAC| → |PB|), batteries charging, Figure 3d.
5. PPV < PAC, (PPV + PB → |PAC|), batteries discharging, Figure 3e.
6. PPV = 0, (PB → |PAC|), batteries discharging, Figure 3f.

In the SCMG literature, solutions are presented for low/high PV irradiation levels.
However, no solution is provided for operating condition 6, where PV panels are unable
to supply grid power while preserving module output AC voltage levels (2N + 1) and
system stability. To address this, a solution is shown in Figure 4, introducing a multi-power
carriers-based integrated power-routing control. This approach extends the power-sharing
range and includes third harmonic power-dependent proportional power-sharing, detailed
in the next section.
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3. Proposed Multi-Power Carriers-Based Integrated Control Methodology

The integrated control methodology consists of multiple components, including a
current control loop based on third harmonic current injection and a multi-power carriers-
based power distribution loop between DG sources- modules. Notably, the fundamental
principle extends seamlessly to a higher number of DG sources-based SC modules, con-
tinually enhancing the power-sharing capabilities among the cascaded units. The role of
a current control loop is to ensure the regulation of grid current. The power distribution
control enhances the power-sharing range while reducing the number of voltage control
loops by implementing a third harmonic power-dependent proportional power-sharing
mechanism between SC-DG sources-based modules. The control structure of the SCMG is
presented in Figure 4 and the block diagram of DG-units-based SCMG is shown in Figure 5.
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3.1. Third Harmonic Current-Injected Current Control Loop

Examining Figure 4 and Equation (11) reveals the total power’s reliance on the sum
of cascaded modules’ powers. Nevertheless, an unbalanced active power in DG modules
arises if control solely centers on the fundamental frequency current. This occurs because
MG1, which is solely capacitor-integrated, lacks a generation source, hindering active
power delivery. Thus, to attain power distribution across MGN units and enable total
active power transfer, the third harmonic current is devoted to being a power carrier. So,
the fundamental frequency current can be calculated from Equation (13).

PT_AC =
1
2

VM IM (13)

where VM and IM are vg and ig amplitudes, respectively. Before delving into the third har-
monic current-injection approach, grasping common- and differential-mode quantities is
essential. In series-cascaded configurations, the common-mode power embodies the shared
power among modules, representing the collective average power that the fundamental fre-
quency current regulates, subsequently channeling to the grid. In contrast, the differential-
mode power denotes the power variance between adjacent series-cascaded modules. This
component is module specific, dedicated by voltage disparities. The differential-mode
power serves as the conduit for power or information exchange across modules. Managing
the differential-mode power is pivotal for realizing targeted module power distribution,
overall system stability, and efficiency preservation. This understanding underpins the
efficacy of the subsequent third harmonic current-injection methodology. With this un-
derstanding, the SCMG structure injects the third harmonic current into the fundamental
frequency current. This serves as a power carrier, enabling efficient control and distribution
of differential-mode power across SCMG-DGs while offering grid voltage support. Follow-
ing this injection, the fundamental line current flowing through the series-cascaded DG
units can be:

iline = iF sin(ωt + θv + φ1) + i3rd sin(3ωt + 3θv + φ3) (14)

where iF and φ1 are the amplitude and angle of fundamental line current, respectively.
Here, ω is the line frequency and θv assumes the phase angle. i3rd and φ3 are the amplitude
and angle of the third harmonic current, respectively. Moreover, the injection of third
harmonic current will induce the third harmonic voltage in a cluster voltage (vcl).

vcl = vF sin(ωt + θv + δ1) + v3rd sin(3ωt + 3θv + δ3) (15)

To manage differential-mode power via third harmonic current injection, it is noted
that if the sum of third harmonic voltages in-phase with the third harmonic current is
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zero, it facilitates module-to-module power exchange without altering the third harmonic
current or affecting grid power exchange.

Precise control of the third harmonic current amplitude is essential to achieving
equilibrium between the grid current peak amplitude and the AC-side voltage delivery
limit of each DG unit. Analyzing third harmonic current amplitude necessitates recognizing
that, in SCMGs for proportional power-sharing, the module’s active power (PAC_N) is a
function of its AC voltage VAC_N and current iAC. Additionally, each module’s active power
output aligns with its DC power. Hence, a proportional power-sharing factor (kN) is defined
as a ratio of desired module active power output to total the active power output (PT_AC)
of SCMG:

PAC_N = kN × PT_AC (16)

Each module’s maximum AC-side voltage delivery limit, studied by its available DC
voltage, is denoted as VACMax_N|VF+V3rd |. This limit encompasses fundamental (VF) and
third harmonic voltage components (V3rd), determined via relation:

VACMax_N|VF+V3rd | ≤ VDC_N (17)

Here, VDC_N signifies the DC-side voltage of each module. Equation (17) highlights
that the total DC-side voltage (VT_DC) should be equal to or exceed the sum of maximum
AC-side voltage delivery limits, incorporating in-phase and quadrature control voltage
components denoted as VCN. The relation is as follows:

VT_DC ≥
3

∑
N=1

VACMax_N|VF+V3rd | + VCN (18)

Initially, common-mode and differential-mode power distributions adjust via fun-
damental voltage manipulation. However, if residual differential power remains, third
harmonic current is introduced for its transfer. The key objective is to inject an optimal
third harmonic current within the system limits specified in Equation (18). As power
distribution hinges on the third harmonic current, adherence to maximum system current
limit is vital. This peak limit, based on the RMS value, designates third harmonic current
as i3rd_RMS, maximum MG current limit (RMS) as iAC_RMS, and fundamental frequency
current as iF_RMS.

i3rd_RMS + iF_RMS ≤ iAC_RMS (19)

Furthermore, active power distribution relies on a chosen output voltage amplitude,
given the shared current in each DG unit. While SCMG module voltage magnitudes differ
from MG’s rated voltage, voltage phase synchronization among modules is crucial for
effective power sharing. Third harmonic current inclusion aids this voltage phase alignment
within series-cascaded modules. Thus, to optimize operation, each DG unit’s active power
encompasses fundamental and third harmonic current. The module’s maximum power,
constrained by maximum output power, is defined as;

PACMax_N|VF+V3rd | =
PACNom_N|VF+V3rd |

PT_ACNom
PT_AC (20)

where PACMax_N|VF+V3rd | is the maximum AC-side power of each module, PACNom_N|VF+V3rd |
is the nominal AC-side power of each module, and PT_ACNom is the nominal output power
of SCMG. However, all the series-cascaded units share the same current; so, Equation (20)
can be described to obtain the maximum AC-side voltage of each module:

VACMax_N|VF+V3rd | =
VACNom_N|VF+V3rd |

VT_ACNom
VT_AC (21)

By considering the system parameter limitations as defined in Equations (18)–(21),
the amplitude of the third harmonic current could be adjusted. If the amplitude of i3rd
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would be much higher, then it would exceed the constraint defined in Equation (17),
which means that a larger proportion of the grid current is allocated to third harmonic
component. Conversely, the decrease in the amplitude of i3rd would exceed the AC-side
voltage delivery limit. Hence, the amplitude of third harmonic current can be controlled
to achieve power distribution while considering maximum voltage limits and current
constraints in the SCMG structure. Considering these conditions, the third harmonic
current-injection constraints could be defined as:

iAC_Max − iF ≥ i3rd
VACMax_1|VF_1+V3rd_1| ≤ VAC_1

VACMax_2|VF_2+V3rd_2| ≤ VAC_2

VACMax_3|VF_3+V3rd_3| ≤ VAC_3

where i3rd > 0 (22)

Comparing grid reference current ig_ref, with grid current ig, two PR controllers govern
the process. The PR-1 is tuned at fundamental frequency, while PR-2 is tuned at three times
the fundamental frequency, regulating third harmonic current. PR controllers are preferred
over PI controllers as they can track sinusoidal references without steady-state errors. The
output control command of current loop is then multiplied by each module’s kN-factor
within an integrated loop, as determined by DC-side voltage. It eases third harmonic power
based proportional power-sharing between cascaded modules. The estimation process for
kN-factor is elaborated in subsequent sub-section.

3.2. Determining kN-Factor for Third Harmonic Power-Dependent Proportional
Power Distribution

Fundamental proportional power sharing is an existing technique, addressing power
distribution among cascaded modules with limited power-routing range. It allocates
the active component of each module’s output voltage in line with its DC-side input
power. To enhance the power-sharing range, this paper employs third harmonic power for
proportional sharing between series-cascaded modules. To attain this power distribution,
this section calculates each module’s active power capability relative to fundamental power
capacity by first determining the kN-factor. For every module (N = 1, 2, 3), kN-factor
equates its DC-side power to total DC-side power, ensuring AC-side active power output’s
proportionality to DC-side power.

kN =
PDCN

PDC_Total
(23)

The kN-factor is then multiplied by total active power output PT_AC to determine the
fundamental proportional power of Nth module relative to its power capacity and total
active output power. It is important to ensure that sum of all kN-factors is equal to 1,
indicating a balanced power distribution.

k1 + k2 + . . . + kN = 1 (24)

Considering the above condition, the kN-factor is utilized for fundamental power
distribution between modules, where each module’s active power ratio is proportional to
its DC-side power. After fundamental proportional power-sharing, the remaining power is
compensated through third harmonic power, which can be determined by subtracting the
fundamental power PF_N from active power output of each module.

P3rd_N = PAC_N − PF_N (25)

As the kN-factor is introduced in Equation (16), for the proportional power-sharing of
each module, the fundamental power-sharing of each module can be defined via funda-
mental ratio:

PF_N = βPAC_N (26)
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In the above equation, the β is a proportional power-sharing factor for the fundamental
frequency. By utilizing Equations (25) and (26), the function for the remaining third
harmonic power-sharing capability of each module can be realized:

P3rd_N = (1 − β)PAC_N (27)

Due to the series connection of modules and series current flow, the third harmonic
power-sharing capability of each module defined in Equation (27) can be represented in
voltages in Equation (28); here, according to Equations (16), (17) and (23), the AC-side
active power of each module is linked with the DC-side voltage of a specific module. So, if
the factor 1-β is positive in Equation (27), the module could have the capability to share
power with other modules and vice versa.

V3rd_N = (1 − β)VDC_N (28)

The calculated proportional distributed power through kN-factor for each module is
integrated with the multi-power carriers-based power distribution methodology, which is
explained in the subsequent sub-section.

3.3. Multi-Power Carriers-Based Power Distribution

To enhance DC-side voltage utilization during power exchange in modules, power
distribution involves adjusting the reference for each module. In series clusters with varying
module powers, the average DC-link voltage remains constant, but individual module
voltages differ. Traditional control methods lack the ability to implement power distribution
via third harmonic current injection in fundamental frequency current. In the proposed
multi-power carrier-based power distribution methodology, the third harmonic current
is considered a carrier for power distribution among the modules. The third harmonic
current is the component of circulating current in the ring/delta structure (Figure 1b),
which does not appear in the grid current and voltage. However, in a series-cascaded
system, it will appear in the output voltage and current as mentioned in the mathematical
analysis in previous sections. Moreover, due to the injection of the third harmonic current
in the fundamental frequency current, the output power of each module constitutes the
fundamental and third harmonic power. However, due to the proposed integrated control
approach, the total third harmonic power of all the modules would be zero.

The principle of multi-carrier-based power distribution control is to deliver the re-
quired power support from the battery modules to PV-based modules through third har-
monic power distribution. To achieve power distribution among modules, the total third
harmonic power is regulated by controlling the actual DC-link voltage VDC1 of MG1 to
match the reference value, along with the power shared from battery modules. Stabilizing
VDC1 at the reference value involves comparing it with VDC1_ref to generate an error signal
fed into a PI controller, minimizing the deviation between actual and reference capacitor
voltages. The PI controllers’ output is added to the required third harmonic power from
MG1, induced through battery modules. This creates a third harmonic signal that, when
multiplied, allows for the total third harmonic power distribution signal to resonate at the
third harmonic frequency, shown in Figure 5.

The optimal proportional power for power distribution of each series-cascaded DG-
based module can be obtained from Equation (19). Due to the addition of a third harmonic
component, the total power of N modules can be represented as:

PN_total = PF_total + P3rd_total =
N

∑
i=1

PF_N +
N

∑
i=1

P3rd_N (29)
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Based on Equations (14), (15) and (29), the total average power of N modules can be
represented as:

PN_avg =
1
T

T∫
0

(PF_total + P3rd_total)dt (30)

So, according to Equations (14) and (15), Equation (30) can become the following:

PN_avg =
1
T

T∫
0

[
{vF sin(ωt + δ1_F)iF sin(ωt + φ1_F)}+
{v3rd sin(3ωt + δ3)i3rd sin(3ωt + φ3)}

]
dt (31)

Referring to trigonometric identities, Equation (31) becomes the following:

PN_avg =
1
T


vFiF

2

T∫
0
{cos(δ1_F − φ1_F)− cos(2ωt + δ1_F + φ1_F)}dt

+ v3rdi3rd
2

T∫
0
{cos(δ3 − φ3)− cos(6ωt + δ3 + φ3)}dt

 (32)

So, by solving the above equation, the instantaneous power of N modules can
be obtained:

PN_inst =
vFiF
2T

[
T cos(δ1_F − φ1_F)− 1

2ω

{ sin(2ωT + δ1_F + φ1_F)
− sin(δ1_F + φ1_F)

}]
+ v3rdi3rd

2T

[
T cos(δ3 − φ3)− 1

6ω

{
sin(6ωT + δ3 + φ3)− sin(δ3 + φ3)

}] (33)

After this, the total third harmonic voltage VB_3rd is applied to the integrated control
where it is superimposed on the duty cycle signal V*com to form the final duty cycle signal
of a module for unipolar phase-shifted PWM. The superimposition of VB_3rd for integrated
control is explained in the next sub-section.

3.4. Integrated Control Approach

The integrated control approach offers the capability to superimpose the VB_3rd for
power distribution among the modules. The advantage of this superimposition is that it
makes the sum of the third harmonic power distribution between the modules equivalent
to zero.

P3rd_1 + P3rd_2 + . . . + P3rd_N = 0 (34)

According to the condition described in Equation (34), the sum of third harmonic
power distribution between the modules must be equivalent to zero. However, the direction
of the third harmonic current in all the modules is the same. Hence, the sum of third
harmonic voltages must be equivalent to zero, eventually leading to the zero sum of third
harmonic power.

The detailed phasor diagram for fundamental and third harmonic components is
illustrated in Figure 6. The fundamental cluster voltage (vF) and the third harmonic cluster
voltage amplitudes (v3rd) are depicted. In SCMG, when the first module has PV Power,
it could be assumed that all three modules operate at equilibrium. However, if the first
module experiences a disturbance, the power-sharing ratio of the other two modules may
change to overcome this issue. Therefore, the third harmonic current injection enables
effective differential-mode power control, extending the power-sharing range. Orienting
the grid voltage vector vg as the d-axis, and the perpendicular direction as the q-axis, vF_N
is the fundamental voltage vector of the Nth module; VF is the vector of the fundamental
voltage output by inverter; vF_Nd and vF_Nq are the voltage vectors of vF on the d-axis
and q-axis, respectively. Here, the angle δ representing the third harmonic components
angle is three-times the angle θ representing the fundamental components angle. The
phasor diagram reveals that the total third harmonic voltages required by the PV module
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are superimposed in the duty cycle signal of MG1 and half of the total third harmonic
voltages are subtracted from MG2 and MG3. The resultant third harmonic vector (vR_3rd)
is represented in Figure 6b. As the modules distribute active power, the q-component of the
third harmonic resultant vector approaches zero, allowing the power exchange between
modules utilizing differential-mode power.

vR_3rd_d cos δ =
3

∑
N=1

v3rd_Nd cos δN = v3rd_1d cos δ1 + v3rd_2d cos δ2 + . . . + v3rd_Nd cos δn (35)

vR_3rd_q sin δ =
3

∑
N=1

v3rd_Nq sin δN = v3rd_1q sin δ1 + v3rd_2q sin δ2 + . . .+ v3rd_Nq sin δN (36)

The third harmonic resultant vector’s d and q components are defined, so the overall
expression of resultant vector is as follows:

v3rd_1 + v3rd_2 + . . . + v3rd_N =
3

∑
N=1

v3rd_N = vR_3rd (37)

It is clear that to control differential-mode power for power sharing, the sum of third
harmonic voltages in-phase with third harmonic current should be zero, which will lead to
a zero sum of third harmonic power while satisfying the condition in Equation (34).
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4. Validation and Results

To verify the effectiveness and performance of the proposed SCMG structure de-
pending on multi-power carriers-based integrated optimal power distribution control,
simulations were carried out on MATLAB/Simulink platform. The simulation model is
comprised of three MGs in a series-cascaded connection (Figure 3). The related simulation
parameters are listed in Table 1. As mentioned above, the case for operating condition 6 in
Figure 4 is considered for the performance analysis of the developed control methodology.
Further, to examine the power-sharing range of the developed control in order to maintain
the seven-level output voltages, a simulation is carried out for three different cases.

Case #1: Power distribution when VB1 + VB2 > vg_pk

The SCMG system was implemented in this scenario with VDC2 = 165 V for the battery
module voltage in MG2 and VDC3 = 165 V for the battery module voltage in MG3, where
the batteries are in a discharging state in all the cases. The DC-side rated voltage was set
to 405 V for all the cases by stabilizing the MG1 capacitor voltage to a reference value.
Therefore, in this case, the capacitor voltage in MG1 needed to be balanced at VDC1 = 75 V
through multi-power-carriers-based power distribution while ensuring that the SCMG
output step-voltages were maintained at vMG = 405 V.

Figure 7a indicates that the output step-voltages remained stable over time during
MG1’s capacitor voltage balancing, with stable grid current and in-phase with the grid
voltage. The injected third harmonic current is present in the grid current (Figure 7a) as it
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should appear in the single phase according to the control methodology (Figure 5). The
significance of the third harmonic current injection in fundamental frequency current can
be seen in Figure 7b, where it balanced MG1 capacitor voltages at the reference value of
75 V. Finally, from Figure 7c,d, the third harmonic power-dependent proportional power
distribution is validated, where each module delivers active power to the AC-side in
proportion to the DC-side voltage of each module’s kN-factor. It is clearly seen from
Figure 7c,d that the 611.2 W active power is delivered by each module MG2 and MG3,
and the remaining required power of 277.8 W by SCMG is delivered by third harmonic
power sharing, which clearly indicates that the proposed control in Figure 5 is working at
its potential.

Table 1. Parameters for simulation analysis of SCMG.

Parameter Value

Number of SCMG units 3
AC-side voltage (Vrms) 220 V
AC-side rated power 1500 W

Case 1
MG-1 rated capacitor voltage 75 V
MG-2 rated battery voltage 165 V
MG-3 rated battery voltage 165 V

Case 2
MG-1 rated capacitor voltage 135 V
MG-2 rated battery voltage 135 V
MG-3 rated battery voltage 135 V

Case 3
AC-side rated power 2000 W

SM battery rated capacity 30 Ah
Grid side inductance 5 mH

Carrier frequency 10 kHz
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factors. 

Case #2: Power distribution when VB1 + VB2 < vg_pk 
In this case, the SCMG is implemented where battery module voltage in MG2 is con-

sidered at VDC2 = 135 V and the battery module voltage in MG3 is considered at VDC3 = 135 
V. As mentioned in Table 1, in this case, the capacitor voltage in MG3 should be balanced 
at VDC1 = 135 V and the seven-level SCMG units output voltage must be maintained at vMG 
= 405 V over multi-power-carriers-based power distribution.  

In Figure 8a, the seven-level output voltages in-phase with the grid voltage are main-
tained and remain stable over time during the capacitor voltage balancing in MG1 along 
with the stable grid current, which has the presence of injected third harmonic current. 
The results in Figure 8b clearly signify the capacitor voltage stability of MG1 at 135 V at 
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Figure 7. (a) Grid current (ig_pk = 9.64 A) and SCMG modules output step-voltage (405 V) in-
phase with grid voltage (vg_pk = 311 V). (b) Capacitor voltage of MG1 balanced at 75 V. (c,d) Multi-
power-carriers-based proportional power of MG1, MG2, and MG3, respectively, and corres-
ponding KN-factors.
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Case #2: Power distribution when VB1 + VB2 < vg_pk

In this case, the SCMG is implemented where battery module voltage in MG2 is consid-
ered at VDC2 = 135 V and the battery module voltage in MG3 is considered at VDC3 = 135 V.
As mentioned in Table 1, in this case, the capacitor voltage in MG3 should be balanced
at VDC1 = 135 V and the seven-level SCMG units output voltage must be maintained at
vMG = 405 V over multi-power-carriers-based power distribution.

In Figure 8a, the seven-level output voltages in-phase with the grid voltage are main-
tained and remain stable over time during the capacitor voltage balancing in MG1 along
with the stable grid current, which has the presence of injected third harmonic current. The
results in Figure 8b clearly signify the capacitor voltage stability of MG1 at 135 V at 0.5 s,
indicating the stable control of differential-mode power through injected third harmonic
current. The multi-power-carriers-based third harmonic current-injected proportional
power distribution is validated in Figure 8c, where each SCMG module delivers power
in accordance with the kN-factor, which is in proportion with the DC-side voltage of each
module. The active power delivered by MG2 and MG3 is 500 W each, and the remaining
required power of 500 W is compensated by third harmonic power sharing, which indicates
that the proposed control (Figure 5) is working as anticipated.
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factors. 
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2.5 s, this remaining power demand increased to 666.67 W, which was still being compen-
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Figure 8. (a) Grid current (ig_pk = 9.64 A) and SCMG modules output step-voltage (405 V)
in-phase with grid voltage (vg_pk = 311 V). (b) Capacitor voltage of MG1 balanced at 135 V.
(c) Multi-power-carriers-based proportional power of MG1, MG2, and MG3, respectively, and corres-
ponding KN-factors.

Case #3: Abrupt Change in Grid Power Reference

The SCMG system is implemented in this scenario with the same parameters consid-
ered in case 2, as shown in Table 1. However, the grid power reference is abruptly changed
at 2.5 s from 1500 W to 2000 W without increasing the grid voltage to examine the stability
of the developed control. So, the grid current abruptly increased at 2.5 s to maintain to
required active power demand. In this scenario, the SCMGs start to deliver more active
power to the grid with the equivalent ratios of power-sharing with respect to their DC-side
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voltages in order to meet the grid-side power demand while maintaining SCMGs output
step-voltages.

Figure 9a represents the grid current (fundamental plus third harmonic current), which
stabilized in a short time after a sudden increase in grid-side power demand at t = 2.5 s. It
signifies that the developed integrated control (Figure 5) has the capability to work under
various conditions. Figure 9b illustrates that the SCMG modules’ output voltages were
synchronized with the grid voltage while maintaining the seven-level step-voltages even
during the change in power reference condition. Furthermore, the control maintains the
stability of MG1’s capacitor voltage in accordance with its reference voltage at 135 V again
at 4.2 s, even after an abrupt change in grid-side power demand, see Figure 9c. Finally,
Figure 9d confirms that each SCMG module delivers power proportional to its kN-factor
before and after the event of power variation. Before 2.5 s, MG2 delivered 500 W active
power and MG3 delivered 500 W active power, and the remaining power demand of 500 W
by SCMG was remunerated by third harmonic current injection; however, after 2.5 s, this
remaining power demand increased to 666.67 W, which was still being compensated by
our proposed control, as shown in Figure 5.
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Figure 9. (a) Grid current (ig_pk = 9.64 A) before abrupt change in grid power and grid current (ig_pk = 
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output step-voltage (405 V). (c) Capacitor voltage of MG1 balanced at 135 V. (d) Multi-power-carri-
ers-based proportional power of MG1, MG2, and MG3, respectively, and corresponding KN-factors. 
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Figure 9. (a) Grid current (ig_pk = 9.64 A) before abrupt change in grid power and grid current
(ig_pk = 12.84 A) after abrupt change in grid power. (b) Grid voltage (vg_pk = 311 V) and SCMG
modules output step-voltage (405 V). (c) Capacitor voltage of MG1 balanced at 135 V. (d) Multi-
power-carriers-based proportional power of MG1, MG2, and MG3, respectively, and corres-
ponding KN-factors.

Finally, the hardware-in-loop platform (Typhoon HIL) was utilized for validation of
developed control methodology (Figure 5) for power sharing in SCMG with the same
parameters mentioned in Table 1 for simulation validation. Figure 10 shows the Typhoon
HIL set-up for the real-time analysis used to further verify the Simulink analysis.

On the basis of the test set-up shown in Figure 10, Figure 11 presents the real-time
results for the VB1 + VB2 > vg_pk operating condition to verify case #1 examined in the
simulation analysis; we realized that the MG1 capacitor voltage was stabilized at a reference
value with the multi-power-carriers-based proportional power-sharing while seven-level
SCMG output voltage was maintained along with the stable grid current.
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Figure 9. (a) Grid current (ig_pk = 9.64 A) before abrupt change in grid power and grid current (ig_pk = 
12.84 A) after abrupt change in grid power. (b) Grid voltage (vg_pk = 311 V) and SCMG modules 
output step-voltage (405 V). (c) Capacitor voltage of MG1 balanced at 135 V. (d) Multi-power-carri-
ers-based proportional power of MG1, MG2, and MG3, respectively, and corresponding KN-factors. 
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Figure 10. Test set-up for real-time analysis.
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Figure 9. (a) Grid current (ig_pk = 9.64 A) before abrupt change in grid power and grid current (ig_pk = 
12.84 A) after abrupt change in grid power. (b) Grid voltage (vg_pk = 311 V) and SCMG modules 
output step-voltage (405 V). (c) Capacitor voltage of MG1 balanced at 135 V. (d) Multi-power-carri-
ers-based proportional power of MG1, MG2, and MG3, respectively, and corresponding KN-factors. 
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Figure 11. (a) SCMG modules output step-voltage (405 V) in real-time. (b) Grid current (ig_pk = 9.64 A)
in real-time. (c) Balanced capacitor voltage of MG1 balanced at 75 V in real-time. (d–f) Multi-power-
carriers-based proportional power of MG1, MG2, and MG3, respectively.

Similarly, Figure 12 illustrates the real-time results through emulation set-up
(Figure 10) to verify the operating condition of case #2 of the simulation analysis, where
VB1 + VB2 < vg_pk. It was observed that under this condition, the voltage of MG1 capacitor
achieved stabilization through optimal power sharing in the Typhoon HIL set-up as it
attained in Simulink. Additionally, the output voltage of the seven-level SCMG remained
stable, and the grid current was maintained at a steady level. The hardware-in-loop opera-
tion of the developed control methodology for SCMG’s third harmonic current dependent
power sharing, similar to Simulink, confirms the performance of control in the different
operating conditions.
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Figure 12. (a) SCMG modules output step-voltage (405 V) in real-time. (b) Grid current (ig_pk = 9.64 
A) in real-time. (c) Balanced capacitor voltage of MG1 balanced at 135 V in real-time. (d–f) Multi-
power-carriers-based proportional power of MG1, MG2, and MG3. 
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conditions while also considering the PV module followed by a set of battery modules. In 
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tional power demand, the third harmonic current injection coupled with the proportional 
power distribution method was developed. To justify this proposed control methodology, 
case studies were developed in which the battery modules were not only considered to be 
smoother but also capable of delivering the required voltage and power support to the 
MG through third harmonic current injection while considering that the PV module 
power generation capacity is zero. In this methodology, the PV module’s capacitor voltage 
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Figure 12. (a) SCMG modules output step-voltage (405 V) in real-time. (b) Grid current (ig_pk = 9.64 A)
in real-time. (c) Balanced capacitor voltage of MG1 balanced at 135 V in real-time. (d–f) Multi-power-
carriers-based proportional power of MG1, MG2, and MG3.

Previous studies [7,9,18–20] have not examined the SCMG structure for worst-case
conditions while also considering the PV module followed by a set of battery modules. In
this proposed study, a multi-power-carriers-based integrated control is proposed in which
the fundamental power is shared through fundamental current; however, for additional
power demand, the third harmonic current injection coupled with the proportional power
distribution method was developed. To justify this proposed control methodology, case
studies were developed in which the battery modules were not only considered to be
smoother but also capable of delivering the required voltage and power support to the
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MG through third harmonic current injection while considering that the PV module power
generation capacity is zero. In this methodology, the PV module’s capacitor voltage was
not only balanced via third harmonic power-sharing signal; additionally, it delivered the
required power to the microgrid in the absence of PV module power. In case #2, the PV
module power generation capability was zero and the battery modules power capacity
was less than the power demanded by the microgrid; so, the remaining required power
was delivered by the third harmonic current-injection methodology which signifies the
extended power-sharing range of this proposed control.

5. Future Work

For the SCMG in grid-connected mode, the ring/delta-connection of SCMGs will be
established on developed multi-carrier-based integrated control in future work. The power
distribution in series-cascaded topologies is a valuable problem in worse-case scenarios, as
is the one considered in this paper. So, this study will provide valuable insight to overcome
the power distribution concern in series-cascaded topologies. Additionally, the limitation
of the presence of a third harmonic current in the grid current will be resolved due to the
fact that the injected third harmonic current will flow as a circulating current, which will
aid in the power distribution control of ring-connected SCMG legs along with the power
distribution between series-cascaded DG-based modules.

6. Conclusions

In this article, we presented an SCMG topology that integrates ND-DGs and battery
energy storage-based modules. While working in different operating conditions, the
SCMG structure has limited power-sharing capability in the existing literature; so, in this
paper a control methodology with extended power-sharing range has been proposed. A
multi-power-carriers-based integrated control was developed for optimal proportional
power-sharing over a third harmonic power distribution signal in SCMG-DGs with the help
of a third harmonic current injection in the fundamental frequency current of SCMG. The
simulation and emulation analyses have demonstrated the effectiveness of the developed
control methodology, in that the SC modules have achieved proportional power distribution
in various scenarios with the help of kN-factor. They have also demonstrated that the
developed control has the capability to maintain the SCMG output step voltages while
maintaining the module (MG1) capacitor voltages at a reference value and delivering the
power support to the MG during zero irradiation levels of PV, which signifies the extended
power distribution range of the developed control. Case #2 examined the maximum power-
sharing range when the battery modules power capacity is less than the MG requirement
and the PV module cannot deliver the remaining power due to it zero irradiation level.
In this case, the remaining required power by the SCMG was delivered by the third
harmonic power, which clearly signifies the extended power-sharing range of this proposed
control. The practical application of the developed SCMG and its control encompasses the
stable power distribution and flexible integration of ND-DGs and energy storage-based
modules, particularly in environments with intermittent renewable energy. Depending on
the performance of the developed methodology, the SCMG structure can be extended to
include multiple ND-DGs along with the integration of D-DGs in a cascaded connection.
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