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Abstract: Electronic speckle pattern interferometry (ESPI) is widely used in fields such as materials
science, biomedical research, surface morphology analysis, and optical component inspection because
of its high measurement accuracy, broad frequency range, and ease of measurement. Phase extraction
is a critical stage in ESPI. However, conventional phase extraction methods exhibit problems such as
low accuracy, slow processing speed, and poor generalization. With the continuous development
of deep learning in image processing, the application of deep learning in phase extraction from
electronic speckle interferometry images has become a critical topic of research. This paper reviews
the principles and characteristics of ESPI and comprehensively analyzes the phase extraction processes
for fringe patterns and wrapped phase maps. The application, advantages, and limitations of deep
learning techniques in filtering, fringe skeleton line extraction, and phase unwrapping algorithms
are discussed based on the representation of measurement results. Finally, this paper provides a
perspective on future trends, such as the construction of physical models for electronic speckle
interferometry, improvement and optimization of deep learning models, and quantitative evaluation
of phase extraction quality, in this field.

Keywords: electronic speckle pattern interferometry (ESPI); phase extraction; deep learning; fringe
pattern; wrapped phase maps

1. Introduction

Electronic speckle pattern interferometry (ESPI) is a nondestructive optical measure-
ment technique known for its simplicity, high speed, large field of view, excellent anti-
interference performance, and suitability for dynamic measurements [1–4]. ESPI has numer-
ous research applications in fields such as industry and engineering, including strain [5,6],
displacement [7,8], vibration measurements [9,10], and material defect detection [11,12].
Phase information can be extracted by analyzing the interference fringe image, and the
measured physical quantities, such as displacement and deformation, are closely related to
the phase. As a result, one challenge in ESPI is the accurate extraction of phase information
from interference fringe images for the analysis of the measured physical phenomena.
Therefore, the difficulty, accuracy, generalization, and extraction speed of phase extraction
methods are crucial for this technology.

Typically, image sensors and human eyes perceive and record the intensity distri-
bution of light field through the photoelectric conversion effect. Because the frequency
of a light wave being much larger than the sampling frequency, it is impossible to di-
rectly perceive and record the phase information of a light field. Fortunately, the phase
delay changes the intensity distribution as the light field propagates. Consequently, the
corresponding phase distribution can be deduced from the recorded light field intensity
distribution, and the physical quantity to be measured can then be calculated through the
phase transformation [13]. This process is known as phase extraction.
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Current methods for phase extraction in ESPI can be categorized into two types,
namely classical phase extraction methods, which are represented by techniques such as
phase shifting [14] and carrier methods [15], and emerging data-driven methods based
on deep learning. Phase shifting methods consider the known phase differences between
multiple frames of fringe patterns, whereas carrier methods consider the frequency spec-
trum distribution characteristics of fringe patterns to extract phase information. Classical
phase extraction methods have been widely used in industrial engineering, providing rich
phase information and enabling economical and efficient noncontact full-field measure-
ments. However, these methods involve complex and cumbersome steps requiring manual
parameter tuning. Furthermore, dealing with noise, background interference, and phase
discontinuities remains challenging. These challenges necessitate researchers to investigate
novel methods for addressing these problems.

Deep learning network models, with convolutional neural networks (CNN) as a
representative, have demonstrated the capability to extract complex features and patterns
from images and achieved satisfying results in computer vision, data image processing, and
related fields [16]. Some scholars have introduced deep learning into ESPI phase extraction
and achieved notable results [17].

Because of the differences in measurement methods, the measurement results of ESPI
technology typically manifest as ESPI fringe patterns or ESPI-wrapped phase maps. Deep
learning methods are increasingly being used in both these results. This paper provides an
overview of the fundamental principles and image characteristics of ESPI, emphasizing the
application of existing deep learning methods in these two distinct measurement results.
In addition, this paper compares the performance of various deep learning methods and
highlights their advantages in addressing the challenges faced by conventional methods.
Furthermore, the limitations of existing methods are detailed, and a prospective analysis of
the development trends, covering aspects such as the construction of physical models for
ESPI, improvement and optimization of deep learning models, and quantitative evaluation
of phase extraction quality, is presented. This paper provided valuable insights for the
advancement of phase extraction in ESPI.

The main contributions of this paper are as follows:

(1) The application of the existing deep learning methods for phase extraction in the field
of ESPI is comprehensively analyzed and summarized. By comparing the performance
of different methods and the potential advantages of deep learning compared with
traditional methods, this paper provides readers with a comprehensive understanding
and evaluation of this topic.

(2) The development prospects of deep learning methods for phase extraction in the
field of ESPI are explored. This paper discusses the possible challenges of current
deep learning methods in ESPI phase extraction, and it proposes directions for future
improvement and development to provide a reference for researchers.

(3) This paper provides knowledge and guidance for scholars who want to use deep
learning methods to measure ESPI strain and displacement in the future.

2. Production of ESPI Images

Speckle was initially regarded as a common optical phenomenon. However, in holog-
raphy, speckles considerably affect the quality of holographic images Therefore, in holog-
raphy, speckles are considered noise, and reduction of speckle interference is a critical
topic of research. In 1966, Ennos [18] discovered that randomly distributed speckles can
be used as information carriers, including information on light intensity and phase. Since
then, people have conducted considerable research on speckle measurement technology. In
ESPI, a charge-coupled device is used to record speckle images, which are processed on a
computer. Speckle is a noncontact full-field optical measurement method. This technology
overcomes the limitations of previous optical measurement technology applications and
is a speckle interferometric measurement method implemented by electronics and digital
methods. This method has high accuracy, rapid response, and full-field noncontact.
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Currently, the ESPI technology measurement system consists of several key compo-
nents, including lasers, CCD cameras, computers, image acquisition cards, and some optical
elements. Figure 1 displays a typical ESPI measurement optical path, where M represents a
reflective prism, and BS1 and BS2 are spectral prisms. The laser beam is categorized into a
measurement beam and a reference beam after passing through spectral prism BS1, and the
measurement beam is irradiated onto the measured object. After passing through the beam
expander, the measurement beam interferes with the reference beam after passing through
reflective prism BS2, and the CCD camera records interference fringes, transfers the image
information to the computer for processing, and displays the test results in real time.
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Figure 1. A typical ESPI measurement optical path.

The recorded speckle information before and after object deformation is expressed
as follows:

I1 = I0 + Ir + 2
√

I0 Ircosθ (1)

I2 = I0 + Ir + 2
√

I0 Ircos(θ + ϕ) (2)

where I1 and I2 represent the intensity of the speckle field before and after deformation,
respectively; I0 and Ir represent the intensity of the two coherent beams, respectively;
θ is the phase difference in the speckle field on the object plane; ϕ is the change inphase
difference caused by object deformation. The relationship between ϕ and deformation
displacement W is as follows:

ϕ =
2π

λ
W (3)
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By subtracting the light intensity of the speckle pattern before and after the deforma-
tion of the measured object, as follows:

∆I = I1 − I2 = 4
√

I0 Irsin
2θ + ϕ

2
sin

ϕ

2
(4)

With the change in the value of ϕ, the light intensity difference ∆I also changes, which
allows us to observe fringe information that is not visible in a certain light field intensity,
resulting in alternating bright and dark fringe images.

The measurement results of ESPI are usually the ESPI fringe pattern derived from
the formula and the ESPI-wrapped phase map obtained by installing a phase shifter on
the reference optical path and using a stepwise phase shift. As displayed in Figure 2,
both contain considerable noise, and the ESPI fringe pattern presents a black and white,
alternating light and dark fringe structure, with the density and direction of the fringes
reflecting the phase difference changes on the object surface. The ESPI-wrapped phase map
limits the phase information to the range [−π, π] and displays it in grayscale or pseudo-
color. The physical quantity to be measured is directly related to the phase distribution
information of both. Therefore, studying advanced electronic speckle interferometry phase
extraction methods is critical for quickly and accurately analyzing the measured physical
quantity from the ESPI fringe pattern or wrapped phase map and has become a critical
topic of research in current ESPI.
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Figure 2. Two measurement results of ESPI technology ((a) ESPI fringe pattern and (b) ESPI-wrapped
phase map).

3. Application of Deep Learning in the Phase Extraction of ESPI Fringe Patterns

The fringe centerline method is a classic phase extraction method for ESPI fringe
patterns. Compared with other phase extraction methods, such as Fourier transform and
wavelet transform, the fringe centerline method is the most direct phase extraction method
based on a single fringe pattern. In this method, first, the fringe pattern is filtered for noise
removal, the skeleton line of the ESPI fringe pattern is extracted, the series of skeleton
lines is identified, and the phase values at the location of the skeleton lines are obtained.
Finally, a specific algorithm was used to interpolate the identified skeleton lines to obtain
full-field phase information. Figure 3 displays the steps of the method. The following
sections explain the application of deep learning in this method.
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3.1. Application of Deep Learning in ESPI Fringe Pattern Filtering

The ESPI fringe pattern obtained from actual measurement contains considerable
speckle noise. Therefore, prior to extracting the phase, the first step is to perform filtering
processing. According to the various densities of fringes, the ESPI fringe pattern can be
categorized into low-density fringe pattern, high-density fringe pattern, variable-density
fringe pattern, and discontinuous fringe pattern. Conventional fringe pattern filtering
methods include the sine and cosine mean method, the window Fourier transform method,
and the two-dimensional wavelet transform method [20]. These methods are classified
according to various objects. In the actual processing process, the following problems
are persistent:



Electronics 2024, 13, 418 6 of 24

(1) Slow processing speed, rendering handling multiple frames simultaneously impossible.
(2) Suboptimal denoising effect on complex images, such as high- and variable-density

ESPI fringe patterns.
(3) Poor generalization, necessitating repeated fine-tuning for various objects, and lack of

a general model.
(4) Substantial computational parameters.

To address the problems of slow speed and the inability to process multiple frames
simultaneously in conventional filtering methods, in 2019, Hao et al. from Tianjin Univer-
sity were inspired by the FFD-Net model [21] and introduced it into ESPI fringe pattern
denoising [22]. This method can process 50 images simultaneously and requires only 8 s
for processing, but the speed of the method is slow.

In 2020, Lin et al. [23] from Shandong University addressed the challenge of poor de-
noising performance of conventional methods for ESPI fringe patterns with high variation
in density. They introduced the FPD–CNN network, which considerably outperformed
the conventional windowed Fourier transform (WFT) method and coherence enhancing
diffusion (CED) method, achieving the peak-signal-to-noise ratio (PSNR), the mean of
structural similarity index (SSIM), and the mean absolute error (MAS) metrics of 27.88 (dB),
0.972, and 7.642, respectively, at a processing speed of just 0.57 s (Figure 4). The FPD–CNN
method provides superior denoising performance for fringe patterns with varying densities.
In 2022, Wang et al. [24] from Shenyang Aerospace University incorporated the squeeze
and excitation (SE) attention mechanism into the DnCNN denoising model, introducing
the AD-CNN network for ESPI fringe pattern denoising. This method achieved a PSNR
of 20.1532 (dB) on a self-made dataset, surpassing the performance of the classic denois-
ing model DnCNN and the WFF method, which achieved PSNR values of 17.0934 and
17.0068 dB, respectively.
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Figure 4. Comparison of denoising high-variation density fringe patterns obtained using
various methods [23]. (a) Noise-free image. (b) Noisy image. (c) WFF method. (d) CED method.
(e) FPD-CNN method.

To improve the generalization ability of the model, in 2022, Xu et al. from Tianjin
University [25] constructed an MDD-Net network model using a skip connection method
to filter various types of ESPI fringe patterns. The team applied this method to the mea-
surement of the out-of-plane displacement of thermal changes in PCB boards, and its
measurement accuracy can reach the nanometer level. This method outperforms existing
SOOPDE, WFF, and BL-Hilbert-L2 methods in terms of detail protection, speckle reduction,
and shape preservation under various types of density fringes. MDD-Net outperforms the
FFD-Net proposed in reference [22] in discontinuous density fringe filtering denoising, the
former having an SNR of 40.6 and SSIM of 0.991, which are superior to the latter’s SNR of
38.387 and SSIM of 0.965, indicating its superior generalization ability. Figure 5 displays
the specific filtering effect.
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Figure 5. Comparison experiments of ESPI fringe pattern filtering (a–e), respectively represent low-
density, high-density, variable-density, greatly variable density, and discontinuous fringe samples.
(a0–e0), (a1–e1), (a2–e2), (a3–e3), (a4–e4), and (a5–e5) are the true labels of the simulated ESPI fringe
patterns, SOOPDE, WFF, BL-Hilbert-L2, FDD-Net, and MDD-Net methods, respectively) [25].
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This research achieved considerable success in terms of generalization and accuracy,
but increased the model parameter size and reduced the processing speed. To solve this
problem, in 2022, Gurrola-Ramos et al. from the Mathematics Research Center, Guanajuato,
Mexico, proposed a lightweight residual dense network based on the U-Net structure (LR-
DUNet) [26]. This network reduced the number of parameters using grouped convolution
and density convolution modules. The number of parameters in this method was only
4.21 M, and the processing speed reached 0.00665 s. This method has excellent denois-
ing performance, with a PSNR of 40.1427 dB. Figure 6 displays the specific structure of
this network.
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Table 1 compares the denoising performance indicators for each model, where the
“Parameters” values of the FFD-Net and MDD-Net model were converted from the litera-
ture [22,26], respectively. The conversion formula is 1 M = 1024 K.

MAE =
1
m∑m

i=1

∣∣∣yi − y
′
i

∣∣∣ (5)

MSE =
1
m∑m

i=1

(
yi − y

′
i)

2 (6)

PSNR = 10log10

(
MAX I)

2

MSE
= 20log10

MAX I√
MSE

(7)

SSIM =

(
2µxµy + c1

)(
σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (8)

RMSE =

√
1
m∑m

i=1

(
yi − y′i)

2 (9)

In the above formula, m is the number of samples in the dataset, and yi and y′i prime
represent the true value and predicted value of the ith sample, respectively. MAX I is the
maximum value of the image point color; if each sample point is represented by 8 bits, then
it is 255. µx and µy represent the mean values of images X and Y, respectively. σx and σy
represent the variances of images X and Y, respectively. σXY represents the covariance of
images X and Y. c1 and c2 are constants.
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Table 1. Comparison of denoising performance indicators for each model [21,23–26].

Performance
Indicators FFD-Net [21] AD-CNN [24] FPD-CNN [23] MDD-Net [25] LRDUNet [26]

PSNR (dB) 35.2269 25.0397 27.88 / 40.1427
SSIM 0.9932 0.9487 0.972 0.991 0.9980
MAE 0.0117 / 0.0135 / 0.0067

Parameters (M) 0.475 / 1.86 1.445 4.21
Running time (s) 0.024 0.0469 0.57 0.041 0.00665

Note: 1. The above data are the experimental results under their respective data sets. 2. The calculation formula
for evaluation indicators is as follows:

The existing deep learning ESPI fringe pattern denoising methods require large models
with poor generalization to different types of fringe patterns. Therefore, future development
requires adaptability, high accuracy, and small model parameters.

3.2. Application of Deep Learning in the Fringe Skeleton Extraction Method

After filtering, the fringe skeleton lines should be extracted. The quality of skeleton
line extraction directly affects the accuracy of phase extraction. The conventional fringe
skeleton line is based on image binarization technology, which performs morphological
operations and connectivity analysis on binarized images to extract fringe skeleton lines.
Early representative skeleton extraction methods included a binarization threshold refine-
ment algorithm [27], stripe peak tracking method [28], and binary graph method based
on two-dimensional derivative symbols [19]. Subsequent studies have considered the
characteristics of stripe direction and proposed new stripe skeleton line extraction methods,
such as the coupled gradient vector flow field method [29], direction-coupled gradient
vector flow field extraction method [30], anisotropic gradient vector flow field extraction
method [31], and gradient vector field of variational image segmentation solution [32].
The conventional fringe skeleton line extraction method considers the image features and
directionality of fringes, but has the following problems:

(1) Low accuracy, poor generalization, slow extraction speed, and inability to process
multiple frames simultaneously.

(2) Poor extraction of damaged fringe patterns.

Deep learning has a higher tolerance to structural changes and requires less prior
knowledge of the input image structure than conventional methods. Therefore, this method
is used for extracting fringe skeleton lines. According to the processing methods, this
method can be divided into image segmentation tasks and image generation tasks.

For (1), in 2019, Li et al. at Tianjin University proposed using the U-Net network for
ESPI fringe skeleton line extraction [33]. This method treats skeleton line extraction as
an image segmentation task from the background, successfully achieving skeleton line
extraction. The method achieved an accuracy of 0.91 and a processing speed of 0.5 FPS and
can extract different types of fringe skeleton lines with excellent generalization. However,
this method performs poorly on fringe patterns with low contrast and considerable speckle
noise. In 2022, the team improved on previous work by introducing the Channel-wise
Cross Fusion Transformer into the U-Net network [34], which solved the problem of low
accuracy. This method achieved an accuracy of 0.9878 and simultaneously performed phase
extraction on the extracted fringe skeleton lines. Compared with conventional methods,
the phase obtained by this method is smoother, and the performance regarding evaluation
metrics is better, with an SSIM of 0.908 and root mean square error (RMSE) of 0.003.
However, this method did not mention the average time for fringe extraction. Figure 7
displays a comparison of phase extraction results of various methods in the literature [34].
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For problem (2), Liu et al. from Tianjin University proposed the M-Net network in
2020, which is an image segmentation task [35]. This method was used to analyze the
experimental results obtained from the dynamic measurement of the thermal deformation
of ceramic plates under strong light. Compared with conventional gradient vector field
(VID-GVF) based on variational image decomposition [32] and U-Net [33] networks, M-Net
achieved a superior extraction effect on the skeleton broken or missing stripes and can
automatically fill in the damaged and broken parts. In terms of evaluation indicators, the
accuracy, recall rate, and AUC score of the M-Net network were 0.959, 0.680, and 0.968,
respectively, which were higher than those of VID-GVF (0.911, 0.531, and 0.735) and U-Net
(0.952, 0.582, and 0.949). Figure 8 displays the specific experimental results, with red boxes
representing damaged fringes.

At Hebei University of Technology, Wang et al. [36] considered skeleton line extraction
as an image generation task. In the literature [36], Wang et al. used Pix2pix cGan [37] as a
skeleton line extraction network, which can extract stripe skeleton lines and solve problem
(1). This method is fast, reaching 11.7 FPS and an accuracy of 0.9704. Table 2 exhibits the
comparison of the performance of five methods for extracting skeleton lines.

Acc =
TP + TN

TP + TN + FP + FN
(10)

Sensitivity =
TP

(TP + FN)
(11)

Speci f icity =
TN

(FP + TN)
(12)

Recall =
TP

TP + FN
(13)

Precision =
TP

TP + FP
(14)
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F1 = 2× Precision× Recall
Precision + Recall

(15)
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Figure 8. Comparison of skeleton line extraction methods under thermal deformation of ceramic
plates [35]. (a–e) Extracted skeleton lines using the measured fringe pattern and ideal skele-
ton line. (a-1–a-6) Input test images. (b-1–b-6) Ideal skeletons corresponding to the test images.
(c-1–c-6) VID-GVF extraction method. (d-1–d-6) U-net extraction method. (e-1–e-6) M-Net extraction
method. Red boxes represent damaged fringes.
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Table 2. Comparison of the performance of five methods for extracting skeleton lines [32–36].

Methods Acc Sensitivity Specificity F1 CC Running Time(s)

D-GVF [32] / / / / 0.9775 /
U-net [33] 0.9133 0.6884 0.8621 0.6254 0.9408 0.5

CTrans U-net [34] 0.9878 0.8890 0.9887 0.8881 0.9905 /
M-Net [35] 0.9571 0.7412 0.9411 0.7411 0.9521 /

Pix2pix cGan [36] 0.9704 / / 0.8174 0.8633 11.7
Note: The above data are the experimental results under their respective data sets. The calculation formula for
evaluation indicators is as follows:

True Positive (TP): the number of samples that are actually positive and correctly
predicted as positive.

True Negative (TN): the number of samples that are actually negative and correctly
predicted as negative.

False Positive (FP): the number of samples that are actually negative but incorrectly
predicted as positive.

False Negative (FN): the number of samples that are actually positive but incorrectly
predicted as negative.

Existing deep learning methods have fewer applications in fringe skeleton line ex-
traction, partly because the physical model for filtering denoising is more explicit, and
more mature CNN models have been devised in other image processing fields, which can
be directly imported into ESPI denoising. Most deep learning-based fringe skeleton line
extraction methods add structural components in the encoder and decoder paths to adapt
to ESPI fringe processing. Compared with the following methods, the previous method
still requires specific algorithms for skeleton line extraction after filtering denoising, which
increases the difficulty of fringe skeleton line extraction. Therefore, directly extracting
fringe skeleton lines from the original fringe image without preprocessing could be the
focus of research in the future.

3.3. Application of Deep Learning in the Interpolation Algorithm

The extracted fringe skeleton lines are discrete sampling points. To obtain the phase
information of the entire field, an interpolation algorithm is required to predict the unsam-
pled phase distribution of the entire field. Classic interpolation algorithms include bilinear
interpolation [38], nearest neighbor interpolation [39], C spline interpolation [40], and
interpolation methods based on the heat conduction theory [31]. Although these methods
are simple and fast, they exhibit the following problems:

(1) The interpolation result is not sufficiently accurate, and the resulting phase is not
sufficiently smooth.

(2) The quality requirements for the skeleton line are high.
(3) Interpolation speed is slow.

Currently, the phase extraction interpolation algorithm for ESPI fringe patterns still
relies on neural networks or simple machine learning methods, as the previous method
displays in image format, whereas the subsequent one is related to mathematical methods.

In 2007, Tang et al. at Tianjin University first proposed using a BP neural network
for fringe skeleton line interpolation [41]. Figure 9 displays the results, which reveal
that the phase information obtained by the network is smoother. However, this method
requires specialized partial differential equation methods for preprocessing and lacks
specific evaluation metrics to quantify the interpolation results. Determining the true phase
accuracy obtained from the interpolated image alone is impossible.
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Figure 9. Interpolation results of different methods [41] (a–c) white striped skeleton line, C spline
interpolation method ‘s result, and BPNN method’s result).

In 2011, Wang et al. from North China University of Technology proposed the radial
basis function (RBF) neural network interpolation method, which solves the problem
of high-quality requirements for skeleton lines and can obtain excellent results even for
severely fractured skeleton lines [42]. However, similar to [41], specific quantitative metrics
for evaluating the phase information obtained after interpolation were not provided. In
addition, this method did not fully leverage the experimental data information from ESPI
fringe patterns.

In 2020, Chen from Tianjin University proposed using hierarchical recurrent neural net-
works for interpolation processing, which solved the problem of slow processing speed [19].
In the thermal deformation experiment of steel plates under high-intensity laser irradiation,
this method could perform interpolation operations on the fringe patterns obtained from
dynamic measurements in only 4 s, which considerably lowered the 25 s required in the
conventional method. Compared with the BP neural network method, the processing time
of both methods was identical, but the phase information of the previous method was
smoother. Figure 10 displays the specific interpolation results.
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pattern from C-spline interpolation, a BP neural network, and reference [19], respectively.



Electronics 2024, 13, 418 14 of 24

Currently, interpolation algorithms have not been improved considerably, and the
existing literature lacks quantitative evaluation metrics for phase information after in-
terpolation. In this paper, because the evaluation of phase information only based on
the smoothness of the image was inadequate, other evaluation metrics were required for
quantification, For example, comparing the phase information after interpolation of clas-
sic methods with that based on neural network interpolation, calculating SSIM or RMSE
between the two can make the performance comparison between methods more specific.

4. Application of Deep Learning in Phase Extraction of the ESPI-Wrapped
Phase Image

Figure 11 displays the phase extraction method based on wrapped phase maps. The
wrapped phase map is obtained using phase shifting, is then filtered and denoised, and
finally unwrapped to obtain the final full-field phase information. The following sec-
tions describe the application of deep learning in the phase extraction of ESPI-wrapped
phase maps.
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4.1. Application of Deep Learning in the Phase Shift Method

According to the different methods of changing the phase difference, the classical
phase shift method can be divided into the time phase shift and spatial phase shift method.
The time phase shift method changes the phase shift amount on the time series to measure
the deformation of the object and obtain deformation information. The spatial phase
shift method obtains phase information by applying various phase shifts at one time.
According to the different phase shift amounts, the three-step phase shift method [43], four-
step phase shift method [44], five-step phase shift method [45], and so on have emerged
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successively. Their main difference is in the number of interferometric images used and the
measurement accuracy. This article is focused on the most commonly used four-step phase
shift algorithm. The four-step phase shift method collects four speckle patterns before
and after object deformation, with a phase shift of 90◦ for each time in the speckle pattern
collection. The intensity distribution of the four speckle interference patterns collected by
the CCD can be expressed as follows:

I1(x, y) = A(x, y) + B(x, y)cos[ϕ(x, y)]
I2(x, y) = A(x, y) + B(x, y)cos[ϕ(x, y) + π/2]

I3(x, y) = A(x, y) + B(x, y)cos[ϕ(x, y) + π]
I4(x, y) = A(x, y) + B(x, y)cos[ϕ(x, y) + 3π/2]

(16)

Solving the above equations simultaneously, we can obtain the following phase of the
optical field:

ϕ(x) = arctan
I4(X, Y)− I2(X, Y)
I1(X, Y)− I3(X, Y)

(17)

Improved four-step phase shift methods such as 4 + 2 [46] and 4 + 1 time phase shift
techniques [47] have since emerged.

From a mathematical perspective, the classical phase shifting method involves adding
a known phase shift under various conditions to increase the number of equations, ren-
dering the number of equations greater than or equal to the unknowns, and subsequently
solving for the phase value. When using conventional phase shifting methods for phase
extraction, selecting an appropriate method based on the differences in processing objects
and acquisition speed is necessary. In practice, the following problems are observed:

(1) Conventional phase shifting requires the use of multiple images for phase extrac-
tion, whereas phase extraction based on a single fringe pattern exhibits lower ac-
curacy. Balancing the two to achieve higher phase accuracy using fewer images
remains challenging.

(2) The process of time phase shifting requires the acquisition of multiple images, which
requires considerable time and limits dynamic measurement.

In 2019, at the Nanjing University of Science and Technology, Feng et al. first demon-
strated that deep neural networks can be trained to perform fringe analysis [48]. This study
proposed a two-stage convolutional neural network. In the first network, the background
intensity information in the fringe pattern was removed, and the output of the second
network was the numerator and denominator of the arctangent function, as shown in
Equation (17). Finally, the phase was calculated based on the output of network using the
arctangent function. In this method, the phase was extracted using a single fringe pattern,
and conventional phase shifting methods were combined to solve problem (1). The average
absolute error of phase extraction using this method, Fourier transform (FT), and WFT was
0.087, 20, and 0.19 rad, respectively. Thus, the phase extraction accuracy improved consid-
erably. However, this method requires the calculation of numerous accurate intermediate
data from experimental data before training.

To solve problem (2), Zhang et al., at Shenzhen University, proposed a training strategy
for phase shifting networks (PSNs) in 2021 [49]. The input of the method is a single
frame of built-in interferogram, whereas the output comprises multiple phase shifting
interferograms. This simulates the process of acquiring multiple images in conventional
phase shifting. The speed of this method is only 65 ms, which is faster than the 160 ms
of classic four-step phase shifting and slightly lower than the 30 ms of the single-frame
interferogram phase extraction method. However, in terms of phase extraction RMSE, this
method is only 0.11 rad, which is considerably lower than the 0.51 rad of the single-frame
interferogram phase extraction method and close to the 0.09 rad of the classic four-step
phase shifting. Figure 12 displays the specific method of reference [49].
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4.2. Application of Deep Learning in ESPI-Wrapped Phase Image Filtering

The result obtained using the phase shifting method is an ESPI-wrapped phase map.
The phase of the wrapped phase map is typically in the range [−π, π] and contains con-
siderable noise. Therefore, filtering should be performed before applying the unwrapping
algorithm to obtain the full-field phase. Compared with ESPI fringe filtering, the filtering of
ESPI-wrapped phase maps mainly deals with noise and false phase jumps. Classic filtering
methods include the module 2π filtering method and the window Fourier filtering method
based on convex optimization [19], but the following problems exist:

When severe noise is present in the ESPI-wrapped phase map, it leads to numerous false
phase jumps. Conventional methods encounter challenges in handling false phase jumps
during the denoising process, resulting in inaccurate unwrapping of denoised results.

(1) Conventional filtering methods are time-consuming and require considerable parame-
ter calculation.

(2) Conventional methods have poor denoising capabilities for high-density and unevenly
distributed phase maps.

To solve problem (1), Yan et al. from Shanghai University and Nanyang Technological
University in Singapore used CNN to denoise the numerator and denominator of the
noisy arctan function and subsequently obtain a clear wrapped phase map using the
denoised numerator and denominator [50]. This method can remove noise levels with
an SNR of −4 dB at a speed of only 8.4 s. Furthermore, using this method to denoise the
wrapped phase map for phase extraction, the RMSE increased with the increase in the
phase frequency but was less than 0.055 rad. Figure 13 displays the specific method.
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To solve problem (2), in 2021, Tianjin University’s Li et al. introduced the DBDNet
denoising network from other image denoising fields into the field of ESPI-wrapped phase
map denoising [51]. The input of this network is the noisy wrapped phase map and
the denoised phase map is the output, which theoretically reduces network parameters.
Compared with conventional denoising methods OCPDE, WFLPF, and deep learning
method FFD-Net, this method had a PSNR of 20.5648, which is significantly higher than the
values of the previous three methods, 14.0865, 12.7554, and 17.3057, respectively. However,
the method does not mention specific network calculation parameters. In subsequent work,
the team improved and proposed a new network DBDNet2 in 2022 to solve problem (3) [52].
In ablation experiments, the denoising effect quantitative indexes (PSNR and SSIM) of this
method were 19.1034 and 0.9078, respectively, which were higher than DBDNet’s 18.8819
and 0.8984, respectively. Table 3 summaries the ESPI package phase map-filtering methods
based on deep learning.

Table 3. Comparison of ESPI package phase map filtering methods based on deep learning [50–52].

Research Studies Method Proposed Solution Advantages Disadvantages

Yao et al. [50] Improved ResNet Solves the problem of
false phase jumps.

Excellent noise reduction
performance; solves the

problem of false
phase jumps.

The model calculation
parameters are too large.

Li et al. [51] DBDNet

Solves the problem of
phase denoising for large

model calculation
parameters and

high-density and
high-speckle noise.

Small number of model
parameters; strong ability to

recognize details.

Poor ability to obtain
more comprehensive
phase information.

Li et al. [52] DBDNet2

Solves the problem of
poor denoising ability for

high-density noise
uneven phase maps.

Excellent denoising
performance and strong
feature extraction ability.

May not be versatile.

Conventional ESPI image filtering methods and deep learning-based filtering methods
have achieved considerable success, with their own advantages and disadvantages. Table 4
is a comparison of both methods.

Table 4. Conventional and deep learning-based filtering methods.

Method Advantages Disadvantages

Conventional filtering
method

The physical model has strong
interpretability; it does not
require a large amount of
training data; and some

algorithms are relatively simple.

Rely on accurate physical models;
sensitive to parameter

adjustments; unable to handle
multiple objects simultaneously.

Filtering method based
on deep learning

Strong adaptability; no
parameter tuning is required
after network training; batch

processing is possible.

The demand for a large amount of
labeled data; poor interpretability.

Thus, conventional ESPI image filtering methods exhibit considerable advantages in
physical model interpretability and algorithm simplicity, whereas deep learning methods
have advantages in adaptability and handling complex relationships. Therefore, for datasets
in various application scenarios, appropriate methods should be selected according to
the needs.
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4.3. Application of Deep Learning in the Phase Unwrapping Algorithm

The phase distribution obtained after the phase shifting process is typically encap-
sulated in an arctangent function, as shown in Formula (17). This phase distribution is
wrapped, that is, the phase value only changes within the range [−π, π]. This is a dis-
continuous phase distribution that does not match the true phase distribution. To obtain
continuous and meaningful phase information, a phase unwrapping operation is required.
Phase unwrapping is the process of unfolding the wrapped speckle phase into a continuous
phase distribution to eliminate the periodic accumulation of phases, rendering the phase
continuous and meaningful throughout the domain.

Currently, phase unwrapping methods based on deep learning can be classified into
two categories, namely image segmentation-based methods and one-step direct unwrap-
ping methods. “Segmentation” denotes determining the addition of two unknown integral
multiples at each pixel in the wrapped phase to recover the true phase. One-step direct
unwrapping methods learn the feature mapping between the wrapped phase map and the
unwrapped image through convolutional networks.

4.3.1. Unwrapping Algorithm Based on Image Segmentation

In some cases, phase unwrapping is considered an image segmentation task. In 2018,
G.E. Spoorthi et al. [53] of the Indian Institute of Technology proposed the deep learn-
ing phase unwrapping framework PhaseNet. Compared with the unwrap function in
MATLAB and the quality-guided phase unwrap method (QGPU), PhaseNet has a phase
MSE of 2 and a time cost of 0.18 s at an SNR of 0 dB, which is considerably better than
the values obtained by the unwrap function (11 and 24 s for phase MSE and time cost,
respectively) and QGPU (17 and 0.05 s, respectively). However, this method requires
post-processing steps and can only unwrap phases within the range −36 to +36 radi-
ans. In 2020, the team proposed PhaseNet2.0, which increased the unwrapping range to
100 radians and eliminated the necessity for post-processing in PhaseNet [54]. Compared to
QGPU, MATLAB unwrap function, least square phase unwrapping (LSPU), and calibrated
least square phase unwrapping (CLSPU) methods, PhaseNet2.0 unwraps phases more
smoothly on the image, with root mean square of 2.5%, which is significantly better than the
values of 178.2%, 85.6%, 24.3%, and 26.3%, respectively, obtained by the former methods.
Figure 14 displays the specific unwrapping effect.
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of the proposed method at SNR = −4 dB compared to (d) quality-guided phase unwrap-
ping (QGPU), (e) MATLAB’s unwrap function, (f) least square phase unwrapping (LSPU), and
(g) calibrated least square phase unwrapping (CLSPU).

Similarly, considering phase unwrapping as an image segmentation task, in 2019,
Zhang et al. from Hangzhou Dianzi University used an extended DeepLabV3+ network
as the backbone to solve the problem of conventional methods being prone to failure in
high-noise datasets [55]. Using a Gaussian white noise dataset for phase unwrapping,
the RMSE of this method is 1.2325, demonstrating considerably superior unwrapping
performance compared with the conventional path-following method with an RMSE of
19.7591. In 2019, Zhang et al. from Shenyang Institute of Automation of the Chinese
Academy of Sciences and the School of Optical Sciences of the University of Arizona in
the United States combined CNN denoising network and CNN segmentation network to
improve performance [56]. The RMSE of this method is only 0.0027, and the processing
speed of the GPU is 0.22 s, which is significantly better than 6.5202 and 19.53 s of the branch
cutting algorithm, and 6.2683 and 330.44 s of the QGPU method, respectively.

4.3.2. One-Step Direct Unwrapping Algorithm

Another group of scholars considered the one-step unwrapping method. In 2019, at
the Northwestern Polytechnical University, Wang et al. introduced Residual Block into
the U-Net network and proposed a one-step unwrapping method deep learning phase
unwrapping (DLPU) [57], as displayed in Figure 15. The SSIM of the phase-unwrapped
image and the reference image reached 0.991. In terms of robustness, compared with
the least squares (LS) method and the quality guidance (QG) method, when the true
phase height increased from 5 to 100, the SSIM index of DLPU decreased from 0.99 to
0.80, which was significantly better than those LS and QG methods (down to 0.2). The
maximum error pixel ratio of DLPU is 0.2, which is 3.55 times lower than the ratios of
the LS and QG methods (0.71). Subsequently, at the Beijing University of Technology in
2020, Qin et al. were inspired by VGG, U-Net, and ResNet, and proposed the VUR-Net
method [58]. Xu et al. from Tianjin University [59] considered reducing the computational
burden when improving the accuracy of phase unwrapping and proposed the PU-M-
Net method. This approach effectively reduced speckles during the phase unwrapping
process. On a high-noise dataset, PU-M-Net achieved an SSIM of 0.810 and MSE of 1.673,
outperforming the LS method with 6.870 and 0.562, as well as the QGPU method with 2.585
and 0.771, respectively. Table 5 compares all the deep learning-based unwrapping methods
mentioned above.

Based on the analysis, phase unwrapping methods based on image segmentation
usually use simple networks and require preprocessing or post-processing to obtain reliable
results. However, one-step direct unwrapping methods use more complex networks and
can directly obtain reliable results.

Compared with conventional unwrapping algorithms, deep learning-based unwrap-
ping methods exhibit a strong generalization ability, fast processing speed, and accurate
phase information. However, these methods still require a large-scale dataset. Therefore,
improving the accuracy and feature extraction efficiency of the network as well as reducing
the requirements of the dataset are problems that need to be addressed in the current
research. Addressing dataset requirements while achieving one-step direct unwrapping of
the phase with high accuracy becomes a prominent topic in this field.
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Table 5. Summary of unwrapping methods based on deep learning [53–59].

Researchers Get Phases
Directly SSIM MSE RMSE Advantages Disadvantages

G.E.Spoorthi et al. [53] No / 2 / High accuracy Requires post-processing

G.E.Spoorthi et al. [54] No / / / High accuracy Lack of comparison with
similar methods

Zhang et al. [55] No / 1.5608 1.2325 High accuracy There is a significant error
in high-speckle conditions

Zhang et al. [56] No / / 0.0027 It can identify phase
discontinuity

Requires pre- and
post-processing

Wang et al. [57] Yes 0.991 3.150 / Directly obtain phase
and high accuracy

Limited dynamic range,
and the effect at phase

jump points still needs to
be improved

Qin et al. [58] Yes 0.816 1.737 / Excellent performance Significantly increases
training costs

Xu et al. [59] Yes 0.810 1.673 / High computational
efficiency

Lack of generalization
analysis

Note: The above data are the experimental results under their respective data sets.

5. Summary and Outlook

Compared with conventional methods of phase extraction from electronic speckle
interferometric images, deep learning methods have demonstrated advancements in terms
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of accuracy, processing speed, and generalization. Research in this field is still in its nascent
stages, and several promising avenues warrant in-depth exploration:

(1) Integration of the physical model into the deep learning model.

The generation mechanism of ESPI images is well understood, whereas deep learning
models are considered “black boxes” with challenging internal mechanisms. Integrating
prior knowledge with the mature generation process of ESPI images into deep learning
models for different application scenarios can become a novel research direction for devel-
oping new data-driven deep learning models.

(2) Improvement and optimization of deep learning models.

Most existing deep learning models focus on the classical models such as CNN and
their enhancements. With the continuous development of deep learning technology, novel
models are expected to emerge. In the next phase, investigating the application of various
models to phase extraction in electronic speckle interferometric images is crucial. Moreover,
existing deep learning models are limited to specific steps in the phase extraction process
and lack an end-to-end complete model. Therefore, introducing new deep learning models
and constructing end-to-end phase extraction models will become a prominent research
direction in the future.

(3) Quantitative evaluation of phase extraction quality.

Existing phase extraction methods based on deep learning models are typically applied
to specific steps, such as filtering and fringe skeleton extraction. Evaluation metrics for the
algorithm are confined to these intermediate steps, without focusing on the quality of phase
extraction. This renders the quantitative evaluation and comparative analysis of phase
extraction quality challenging. Therefore, addressing the urgent need for a quantitative
evaluation of phase extraction quality is essential.

(4) Limited practical engineering applications.

At present, the ESPI phase extraction method based on deep learning is in its early
stage of development, and thus is mainly only applied in the laboratory. There are only a
few notable applications of these algorithms outside the laboratory, and there are currently
very few practical applications in the field of industrial engineering. The application of deep
learning methods to ESPI phase extraction has great potential in industrial engineering and
other fields. This application may result in more efficient and accurate phase extraction
methods and provide better support for industrial applications in related fields.

(5) Expanding the dataset.

Currently, limited publicly available ESPI image datasets are available in the industry,
hindering the validation of the practical generalization ability of deep learning models and
impeding meaningful horizontal comparisons between research outcomes. In the next step,
studies should focus on generating ESPI image datasets through numerical simulation and
constructing experimental systems in conjunction with practical application scenarios. A
comprehensive analysis of factors influencing image quality and further dataset expansion
is essential.
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