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Abstract: An efficient method for detecting the end of a count of a linear feedback shift register (LFSR)
is presented. We show how this detector can be used to extend a maximum-length LFSR sequence by
a number of states up to one less than the degree of the polynomial. In addition, a new algorithm is
proposed to encode binary sequence values into their corresponding LFSR sequence states. Based on
this algorithm and an alternative second method, two novel programmable, full-range, high-speed
LFSR counter designs are proposed. The time complexity of the conversion algorithms ranges from
quadratic to exponential time in the degree of the underlying polynomial. The proposed counter
solutions are fully synchronous and can be implemented with standard cells, enabling easy portability
across technologies. As the levels of logic are independent of the counter size, high scalability is
facilitated. For evaluation, all the designs, including the recreated state-of-the-art solution, have been
implemented on an FPGA, and also simulated targeting TSMC’s N3 CMOS process node for a wide
range of counter sizes. The results confirm the superiority of the proposed solutions over the state of
the art in terms of frequency, area and power efficiency as the counter is scaled up.

Keywords: LFSR; linear feedback shift register; programmable; divide-by-n; synchronous; counter;
encoding; end of count; full range; state extension

1. Introduction

The linear feedback shift register (LFSR) is a truly wondrous construct: it consists of a
very simple hardware structure yet adheres to very powerful mathematical properties. This
is the reason why the LFSR has been adopted in many applications such as pseudo-random
number generation [1], circuit testing [2,3], error detection and correction [4,5], and the
implementation of fast counters for various applications [6,7].

The motivation behind this paper is to demonstrate how the LFSR can be used as an
efficient counter with an adjustable start count supplied as a binary value during runtime.
Once the counter setup procedure is completed, shifts can be performed on the LFSR to
count down each time an event occurs, for instance. The zero state is automatically detected,
signalled, and used to reload the start count. In addition to the start count programmability,
fully synchronous circuit solutions are presented that are implementable in a standard-cell
CMOS process and that dispense with any timing exceptions. These requirements are essential
for facile portability across a wide range of technologies, without the need to specify or adapt
physical timing constraints beyond what is needed for any synchronous design.

Besides their deployment as event counters or general-purpose timers, a prime use
case for such a programmable counter would be a clock divider circuit, where a high input
frequency is divided down to a slower clock frequency. For this purpose, the counter could
be used to keep track of the duration that the synthesised clock is in its high- and low-
voltage state. In this type of deployment, the circuit can be regarded as a hardware timer,
since the counter would be decrementing in each clock cycle and periodically signalling the
zero state. For the counter itself, it is not important to abide by a strict binary sequence of
states with decrements of one. However, it is essential that the desired period is adhered to
and that the counter can be operated at a high input clock frequency. The LFSR is the perfect
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candidate for this task. As will be seen, it lends itself to high clock frequency operation due
to its structure.

Simple shifts on the register lead to the traversal of a sequence of states. The difficulty
lies in determining the corresponding LFSR start state that is the desired number of shift
operations away from the zero state. There are two very straightforward and opposite
schemes: either a memory could be used to carry out the conversion at the expense
of resources, or if time is not of concern, it is possible to simply shift the register the
desired number of times in the opposite direction from the zero state until the state is
obtained [6,8]. Methods exist in between, which trade off memory and time, such as using
the principle of superposition [9,10].

In what follows, two hardware circuits will be proposed to realise programmable
counter circuits based on the LFSR. The difference between the circuits is the time they
require to reconfigure to a new period. One circuit uses the principle of superposition.
While this method has been used in the software domain [9,10], any previously published
work on hardware realisation is not known to the author. The mathematical foundation for
the algorithm is laid and it is shown how it can be efficiently implemented in hardware
such that high clock frequencies are achieved.

A second proposed circuit uses a novel algorithm that is a modification of the previ-
ously described iterative shifting technique. The potentially long runtime due to the size of
the state space is not of concern for all applications and deployments; area efficiency and
frequency may be more important. However, there is another looming problem: how to
count the number of shifts performed? Using an ordinary binary counter to keep track of
the number of shifts may not be feasible if its carry propagation delay exceeds the required
clock period. After all, this may be the reason why an LFSR is employed.

The frequency issue can be mitigated if the system allows for frequency scaling. In
this way, the conversion step could be run at a lower clock frequency. Or it may be that
the system exhibits several clock domains that would allow for the conversion step to be
performed in a slow clock domain. If only one clock domain with a fixed clock frequency
is available, it would be possible to use a multi-cycle path technique to enable the use of
a binary counter. However, this will require additional specifications to guide synthesis
tools. In the following, new techniques are presented that avoid aforementioned clocking
schemes and use only a single fast clock without the need of any multi-cycle paths. The new
modified iterative algorithm is based on the combined use of three fast LFSRs to dispense
with the requirement of a binary counter and thus boost clock frequency and also achieve
high scalability.

The key contributions of this paper are as follows:

• A new and fast (one gate delay) method for detecting the end of count (EOC) for
LFSR counters is presented, which is a prerequisite for the proposed programmable
LFSR counters.

• Based on the new EOC detector circuit, a new method is presented showing how
an LFSR sequence can be extended by a number of states up to one less than the
degree of the underlying polynomial. This will be useful for the construction of
full–range LFSR counters.

• A new modified iterative algorithm is presented to encode binary values into their
corresponding state in an LFSR sequence using three LFSRs at its core so that no binary
counter is required. Based on this algorithm a novel full-range programmable syn-
chronous LFSR counter circuit with only standard digital design elements is proposed.

• An alternative existing recursive algorithm for converting binary sequence states
into corresponding LFSR states has been mathematically derived and, based on it,
an additional new programmable synchronous LFSR counter circuit is proposed
that is also implementable with only standard cells. Converting binary values
into their corresponding LFSR sequence states forms one part of the overall pro-
grammable counter circuit. While the recursive conversion algorithm has been
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previously used in the SW domain, it may be the first time a hardware realisation
of the algorithm is proposed.

• Simulations of all programmable counter circuits targeting TSMC’s (Hsinchu, Taiwan)
N3 technology node and also AMD (Santa Clara, CA, USA) FPGAs have been con-
ducted and results are presented. Included in the comparison is also a state-of-the-art
counter [11] that has been recreated to target the same flows and technologies for a
fair comparison.

Previous work is discussed in Section 2. The LFSR and basic governing principles
are laid out in Section 3. In Section 4, a general overview of the programmable counter
operation is given. A new high-speed EOC detector circuit is presented in Section 5. In
Section 6, it is shown how an LFSR counter can be extended to support the full range of
a power of two possible periods using the new EOC detector method. The derivation of
the algorithm that uses the principle of superposition and the resulting programmable
LFSR counter circuit are presented in Section 7. The new iteration-based algorithm and
its hardware circuit is proposed in Section 8. Then, in Section 9, the results of the two
programmable LFSR counter circuits are compared with the state-of-the-art solution for
FPGA and ASIC deployment. Section 10 presents the conclusions.

2. Previous Programmable Counters

Programmable counters, which are also referred to as programmable divide-by-N
counters in the context of frequency synthesizers, issue a pulse every N clock cycles. Thus,
they generate an output frequency of fout = fin/N. These counters typically consist of
three components: a plain counter [12,13], an end of count (EOC) detector, and a reload
mechanism. One such counter design was presented by Chang and Wu [14]. Their design
uses an asynchronous ripple counter of width w to count down repeatedly from N to 1,
where 2 ≤ N ≤ 2w − 1. The speed critical logic of the EOC detection and the reload
mechanism have been spread out over three clock cycles for increased operating frequency,
but at the expense of usable counter periods. The design has been further improved by Lee
and Park [15] and Kuo and Wu [16]. In a more recent work [17], Som et al. showed how the
operating speed of the EOC detector can be further improved by using even more clock
cycles for the detection phase, but by sacrificing a crucial counter range up to N = 4. Based
on a modified D flip–flop, Wang et al. [18] present a method to achieve a full modulus
range, while maintaining a 50% duty cycle. Research efforts are also directed towards
finding solutions to improve the speed of the EOC detection logic using technologies such
as pseudo-NMOS [19].

A fully synchronous solution was proposed by Abdel-Hafeez et al. [11,20,21]. The
counter increments repeatedly from 0 to N − 1, where 2 ≤ N ≤ 2w − 1. It uses a novel
pipelined counter architecture using state look-ahead logic and dispenses with the disad-
vantages of the aforementioned asynchronous designs, such as a growing ripple delay and
the accumulation of jitter as the counter is scaled up in width. The critical path of this
architecture lies in the EOC detection, which grows in complexity as the counter width
increases. It is suggested to spread the detection over several clock cycles to counter this
effect; however, this will further restrict the usable counter periods at the crucial end of
the range as with some of the asynchronous counter designs. The design also requires the
specification and consideration of multi-cycle paths for the calculation of the comparator
value. Even though the motivation for this work is to provide a full-range synchronous
solution that forgoes any timing exception, the design by Abdel–Hafeez et al. is considered,
to the author’s best knowledge, to be the closest state of the art and has been recreated for
a fair comparison.

Programmable prescalers constitute a different type of frequency divider using an asyn-
chronous structure. The architecture uses a cascade of (two/three) divider cells [22,23], which
results in a modulus N ranging between 2w and 2w+1 − 1. Lin et al. propose a varia-
tion [24] based on (one/two) divider cells achieving a full range, such that 1 ≤ N ≤ 2w.
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Yet another widely used architecture, known as the pulse swallow frequency di-
vider [16,25–30], is based on a combination of a dual-modulus prescaler (divides by P or
P+ 1) [31,32], a programmable counter (divide-by-N), and a swallow counter (divide-by-S).
The achieved output frequency can be specified as fout = fin/(NP + S).

Counters based on the LFSR are widely used as event counters [6,8]. From an initial
state they increment with every event occurrence, but, for subsequent processing, the
final count value needs to be converted into an ordinary binary sequence value. An
LFSR architecture with automatic decoding in hardware, trading off time and memory,
was proposed by Morrison et al. [33]. For reduced decoding complexity, the LFSR has
been partitioned into a cascade of smaller LFSRs with ripple–carry blocks in between.
Bae et al. [7] present a counter design based on a prescaled counter architecture [34,35]; an
LFSR is used for the low-order bits and an ordinary binary counter clocked at a lower
frequency is used for the high-order bits. With a new state extension scheme, the counter
achieves a near-constant counting rate independent of the counter size. To decode the LFSR
state of the counter into its binary counterpart, the authors suggest the employment of a
look-up table (LUT).

In summary, when it comes to programmable counters or frequency dividers, there are
several challenges that need to be addressed. Asynchronous designs are widely employed
in the field of frequency dividers, but they suffer from several shortcomings such as a
growing ripple delay or the accumulation of jitter [36] as the counter width increases. The
programmable range of these counters is typically rather small; in the surveyed literature,
for instance, the widest reported counter implementation comprises only 18 bits [22]. There
is, in fact, a trade-off that needs to be made between supporting a high input frequency, and
a wide programmable range; these are opposing requests [37]. Programmable prescalers
typically do not offer the full modulus range. Furthermore, many of the proposed counters
rely on specific logic families and are not easily portable across technologies. When it comes
to the ripple counters or the synchronous counter solution, there is also the speed critical
EOC detector element, which impedes scalability. Engineering efforts have been spent
on mitigating the impact of the EOC detector on the achieved operating frequency, but
this comes typically at the expense of the crucial counter modulus range. Previous LFSR
counter solutions are mainly used as event counters and do not offer programmability.
The motivation for this research work is to provide counter solutions that satisfy the
following constraints:

• Programmability;
• Full modulus range;
• High frequency support;
• Scalable (to at least 32 bits);
• Synchronous design;
• Implementable with standard cells;
• Portability across technologies;
• No timing exceptions.

Except for the synchronous design [11], none of the previous solutions comes close to
satisfying the requirements. The proposed two designs in this paper are programmable
LFSR counters that perform the opposite operation of the previously described LFSR
counter designs, namely the conversion of a binary sequence state into a corresponding
LFSR sequence state. Any previously published work on such hardware counter architec-
tures is not known to the author. The presented designs may, therefore, be the first of their
kind. Moreover, all the above listed constraints are met.

3. LFSR

An example of a 4–bit LFSR in Galois configuration is shown in Figure 1.
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C3 C2 C1 C0

Figure 1. Linear feedback shift register with underlying polynomial p(x) = x4 + x3 + 1 over GF(2)
in Galois configuration.

The underlying characteristic polynomial that prescribes the structure of the shift
register in this example is p(x) = x4 + x3 + 1 over the finite field GF(2). As shifts are
performed on the register, it traverses the states, as illustrated in Table 1. The initial state s0
has been chosen to be of the form [0..01], which will be very convenient, as will be seen.
It can be seen that the polynomial generates a maximum-length shift register sequence,
as all 24 − 1 non-zero states are included. Polynomials which fulfil the maximum-length
property are known as primitive and it can be shown that such polynomials exist for every
degree of polynomial [1,6].

Table 1. LFSR states for polynomial p(x) = x4 + x3 + 1.

State State State

s0 0001 s5 1011 s10 1010

s1 0010 s6 1111 s11 1101

s2 0100 s7 0111 s12 0011

s3 1000 s8 1110 s13 0110

s4 1001 s9 0101 s14 1100

The polynomial in the example contains only a single non-zero term apart from the
leading and constant term; therefore, it requires only a single two-input XOR gate and
four flip–flops due to its degree, making it particularly suitable for high clock speeds.
Such hardware-friendly trinomials can be primitive, as in this example; however, there
does not exist a primitive trinomial for every polynomial degree. In these cases, primitive
polynomials with more than three terms can be selected, or trinomials with a shorter period
can be employed. Alternatively, higher degree trinomials could be used that satisfy the
required period constraints.

For a characteristic polynomial

p(x) = xw + pw−1xw−1 + · · ·+ p1x + p0

of degree w, the state transformation matrix of the LFSR can be constructed as

F =


pw−1 1 0 . . . 0
pw−2 0 1 . . . 0

...
...

...
. . .

...
p1 0 0 . . . 1
p0 0 0 . . . 0

.

It follows that a single shift on the register with initial state si can be expressed as

sT
i+1 = FsT

i . (1)

An interesting property of LFSRs is that their operation is reversible as long as the
characteristic polynomial has a constant term of one. The constant term of one is a prereq-
uisite as otherwise the value of the most-significant register bit would not be recoverable
after a performed shift due to loss of information. An alternative explanation is that matrix
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F would not be invertible if p0 = 0. To obtain the LFSR operating in reverse, the horizontal
arrows in Figure 1 simply need to be inverted, as shown in Figure 2.

C0 C1 C2 C3

Figure 2. Linear feedback shift register with underlying polynomial q(x) = x4 + x + 1 over GF(2) in
Galois configuration.

As shifts are performed on this reversed LFSR, it traverses through the same cycle
of states as shown in Table 1; however, this time in opposite order. The characteristic
polynomial of this LFSR is q(x) = x4 + x + 1 and the relationship between p(x) and q(x) is
given by q(x) = xw p( 1

x ). In other words, q(x) is the reciprocal polynomial of p(x). In what
follows, only characteristic polynomials with constant term p0 = 1 are considered.

Each state of an LFSR sequence that is generated by a polynomial p(x), where p0 = 1,
has not only a unique successor, but also a unique predecessor as can be easily deduced.
The uniqueness of successors sT

i+1 can be readily seen from (1), while the uniqueness of
predecessors sT

i−1 is determined through sT
i−1 = F−1sT

i (it is guaranteed that F is invertible
due to p0 = 1). With the selection of s0 = [0..01] as the initial LFSR state, the uniqueness
properties prescribe that the obtained sequence of states will repeat after a certain number
of shifts. As long as this period is greater than the maximal count that is to be supported,
the characteristic polynomial is suitable for operation. For example, if counter states up to
s14 are to be supported, the period needs to be at least 15.

Furthermore, if the LFSR is continuously shifted from its initial state s0 = [0..01],
the single one on the right-hand side will slide across to the left-hand side until state
sw−1 = [10..0] is reached. In Table 1, this subsequence starts with state s0 and ends with
state s3. This is the maximal number of shifts required after which a one will appear at the
most significant bit position of the shift register. The number of shifts equals one less than
the degree w of the characteristic polynomial (w − 1), since the degree prescribes the length
of the shift register. Starting from any other state, fewer shifts will be needed. As can be
easily seen, after each of these shifts, the least significant bit position of the shift register
equals zero (states s1 to s3).

The state that follows [10..0] always corresponds to the trailing coefficients of the
characteristic polynomial, for the only one that gets shifted out feeds back at exactly the tap
positions according to the polynomial. Specifically, this state can be indicated as

sw = [pw−1 pw−2 . . . p0].

In the example, the state corresponds to sw = s4. It can be seen that the least significant
bit of this state is always one since p0 = 1. In summary, for sequences generated by
polynomials with p0 = 1, the maximal number of consecutive states where the least
significant bit is zero, equals one less than the degree w of the polynomial, and these states
directly follow state s0 = [0..01].

4. Programmable Counter Overview

This section gives a brief description of the operation of the synchronous pro-
grammable counter. The top-level schematic of the counter with all its inputs and
outputs is shown in Figure 3. It serves as the basis for the different implementations
proposed in the following sections.

clk
rst

inp
sw

out

Figure 3. Programmable counter top-level schematic.
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At its core, each counter architecture accommodates an LFSR sized to w bits, as shown
in the example in Figure 1. To enable the counter operation, input sw needs to be pulsed for
a single clock cycle and, in the following w clock cycles, the desired binary counter value
b needs to be fed into input inp, starting from the least significant bit. Subsequently, the
counter undergoes a conversion phase in which the binary sequence value b is encoded
internally into a corresponding LFSR sequence state sb. Once complete, the counter starts
continuously decrementing from state sb to s0. Each time state s0 is reached, a pulse is
output on out. Should the counter be configured with b = 0, a pulse is issued in every
clock cycle, i.e., out stays always high. Thus, the counter supports the full range where
0 ≤ b ≤ 2w − 1. The operation of the counter can be stopped by pulsing sw again.

In the described deployment, the counter is decrementing in each clock cycle, and the
overall circuit can thus be considered a timer. In general, however, it is possible to synchronise
the decrement operation with the occurrence of specific other events. The circuit can thus be
used for a variety of applications that are not limited to measuring time durations.

5. Fast End of Count Detection

A crucial element in realising high-speed LFSR counters is an efficient method for de-
tecting the end of count (EOC). The EOC detection for programmable counters in previous
works does not scale with the counter width, and thus, becomes the speed limiting element.
Methods for speed recovery typically spread the detection over several clock cycles at
the expense of usable counter periods. In the following, a method for LFSR counters is
presented that allows for high scalability without sacrificing speed or counter range.

The proposed LFSR counters in this paper decrement continuously from an automati-
cally converted state sb down to s0. Each time the zero state s0 is encountered, the counter
needs to be reloaded with sb. Additionally, the conversion algorithm described in Section 8
requires the detection of state s0. The proposed circuit for detecting the zero state is shown
in Figure 4.

≫

RSR
w

w

1

FFm

FFz

1
out

en

sw−1

LFSR[0]
rst_eoc

LFSR[0]
RSR[0]

mode

muxm

z

Figure 4. End of count (EOC) detection logic (also referred to as zero-detection logic) for the proposed
recursive and iterative counter circuit implementations.

The multiplexer inputs are addressed from left to right starting with 0. It is assumed
that an LFSR of width w (an example is shown in Figure 1) is at use in conjunction with
the EOC detection logic. The EOC detection works in one of two modes as determined
by the state of flip flop FFm, which is controlled by muxm. Mode 0 (FFm = 0) is used as
long as b < w. In this case, the zero state s0 is simply detected through the least significant
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bit of the LFSR (LFSR[0]). It is known that the state s0 is reached when LFSR[0] = 1, for
LFSR[0] = 0 for any state si, where w > i > 0, as detailed in Section 3.

Mode 1 (FFm = 1) is used in cases where b ≥ w. In this mode, the zero state is detected
after w − 1 consecutive zeros have been observed at the least significant bit of the LFSR.
This works for the longest sequence of zeros is observed as states sw−1 to s1 are traversed.
The detection of the sequence of zeros is accomplished with shift register RSR. Each time
a one is encountered at the least significant bit position of the LFSR, shift register RSR is
reset to state sw−1 = [10 . . . 0]. In all other cases, a shift is performed on RSR moving the
one closer towards its least significant bit. Once RSR[0] = 1, it must be that LFSR = s0.
Therefore, in mode 1, the zero state s0 is detected through a one on RSR[0]. The operation
of the zero-detection logic in mode 1 is visualised in the state diagram shown in Figure 5.

clk
LFSR 4 2 1 C 6 3 D A 5 E 7 F B 9 8 4 2 1 C

RSR 4 2 1 8 4 2 8 4 8 4 8 4 2 1 8

z
out

Figure 5. Timing diagram showing how the state extension is achieved for a 4–bit wide LFSR counter
using the proposed EOC detector circuit in mode 1. The counter period in this example has been
set up to 16 (b = 15). It can be seen that LFSR state 0x1 always appears in two consecutive clock
cycles. The first occurrence corresponds to s0, whereas the second one refers to s15, which is identical
to s0 due to the LFSR sequence wrapping around. The EOC detector correctly identifies only the first
occurrence as a zero.

Signal rst_eoc can be used to reset RSR for initialisation and can be driven by a one-
hot-state machine flip–flop of the programmable counter. The wide multiplexer disappears
if the OR gate is connected to set/reset the register bits of RSR and the AND gate is also
superfluous since the inverted signal of en (driven by a flip–flop) can be directly connected
to the reset of FFz. Signal muxm can directly drive the enabling of FFm . Overall, the EOC
detector can be realised with a single level of logic.

6. State Extension

The maximum-length sequence of an LFSR does not include the state with all bits
equal to zero. Nonetheless, the proposed LFSR counters achieve periods of length 2w. The
method behind this state extension is illustrated using the polynomial and its corresponding
states from the example in Table 1. If binary value b = 15 (equivalent to a period of length
16) is converted into its corresponding LFSR state, the encoding procedures that will be
presented in the following sections simply lead to state s0 since the sequence wraps around
after state s14. Then, by using LFSR state s0 for the counting procedure, it is necessary to
distinguish between a period length of 1 and 16, which both map onto s0. The distinction
is achieved through the mode of the zero detection circuit. Recall that the zero detection
mode is equal to 0 for b < w, and 1 otherwise.

Figure 5 shows a timing diagram for the operation of one of the proposed counters
using a period length of 16. When the end of the sequence is detected with signal z going
high, it can be seen that, in the following clock cycle, the LFSR counter is reloaded with
s0 = 0x1 and RSR is reset to 0x8. Because the zero detection circuit is operated in mode 1,
z lowers to 0 since it mimics, in this mode, the LSB of RSR. From state s0, the sequence
wraps to s14 = 0xC and decrements all the way to s0, at which point z goes high again due
to the LSB of RSR finally becoming one. In this way, a period length of 16 is achieved using
an LFSR of degree four.

With the described technique, a maximum-length LFSR sequence can be extended by
a maximum of w − 1 states. Extending beyond one state, however, will require an increase
in the width of the binary value b. For completeness, it needs to be noted that, alternatively,
longer periods can also be obtained by increasing the width of the LFSR counter. If no more
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than w − 1 additional states are required, however, the proposed state extension in this
section is preferred since it comes with no additional cost.

7. Recursive LFSR Encoding

An algorithm to encode binary values into their corresponding LFSR state using
the principle of superposition has been previously used in the software domain [9,10].
In Section 7.1, this algorithm is mathematically derived using a different approach. An
efficient hardware implementation is proposed in Section 7.2, where a first programmable
LFSR counter is also obtained.

7.1. The Recursive Algorithm

To illustrate the operating principle of the algorithm, generator polynomial p(x) =
x4 + x3 + 1 of degree w = 4 is selected as an example and the corresponding states
tabulated in Table 2 are considered.

Table 2. LFSR states used for encoding binary values using the principle of superposition.

s3 s2 s1 s0
Initial State = = = =

1000 0100 0010 0001

After 1 step 1001 1000 0100 0010 = s1
After 2 steps 1011 1001 1000 0100 = s2
After 4 steps 0111 1111 1011 1001 = s4
After 8 steps 1101 1010 0101 1110 = s8

The first row contains all the possible initial states of the LFSR with only a single bit
set. The particular states are s0 to sw−1. Within each column, the states that follow the
initial state after 2i steps in the LFSR sequence are shown, where 0 ≤ i ≤ w − 1. The values
within a row can be easily calculated from the rightmost state, as going from right to left in
the table is equivalent to single shift operations on the LFSR. A state s2i in the rightmost
column can be obtained recursively from values in the previous row using the principle of
superposition. With the LFSR transformation matrix F and the fact that any LFSR state can
be decomposed into a linear combination of the initial states s0 to sw−1, the state s2i can be
expressed as

sT
2i = F2i−1

sT
2i−1

= F2i−1
w−1

∑
j=0

(sjsT
2i−1)sT

j

=
w−1

∑
j=0

(sjsT
2i−1)F2i−1

sT
j

=
w−1

∑
j=0

(sjsT
2i−1)sT

2i−1+j.

Thus, s2i is a linear combination of the states s2i−1 to s2i−1+w−1, which are just the states
of the previous row. The elements of s2i−1 , which are expressed as sjsT

2i−1 , indicate which
states are part of the linear combination. An alternative way to express this is

sT
2i = [sT

2i−1+w−1, sT
2i−1+w−2, . . . , sT

2i−1 ]sT
2i−1

= F2i−1
sT

2i−1 . (2)
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As an example, to obtain state s8, state s8/2 = s4 = [1001] needs to be considered. Its
elements indicate that s8 can be calculated as

s8 = s7 + s4 = [0111] + [1001] = [1110].

To encode a binary counter value b into its corresponding LFSR state sb with the help
of the derived relationships, the following transformation is used:

sT
b = FbsT

0 .

As b is decomposed into its powers of two

b =
w−1

∑
i=0

bi2i,

it follows that

sT
b = F∑w−1

i=0 bi2i
sT

0 = Fbw−12w−1
. . . Fb121

Fb020
sT

0 . (3)

The expression can be evaluated by first obtaining Fbj2j
s0 for the smallest j, where bj = 1.

As previously described, Fbj2j
is just a composition of the states [s2j+w−1, s2j+w−2, . . . , s2j ],

which correspond to a row in Table 2. The obtained value can then be multiplied with the
next transformation matrix in line, until all non–zero coefficients of b have been processed.

As an example, s12 is to be calculated using the algorithm derived. Since 12 can be
decomposed into powers of two as 12 = 4 + 8, it follows that

sT
12 = F8F4sT

0

= F8[sT
7 , sT

6 , sT
5 , sT

4 ]s
T
0

= F8sT
4

= [sT
11, sT

10, sT
9 , sT

8 ]s
T
4

= sT
11 + sT

8

= [1101]T + [1110]T

= [0011]T .

7.2. The Recursive Circuit

An implementation of a programmable LFSR counter based on the encoding algorithm
derived in Section 7.1 is presented in this section. The top–level counter schematic is shown
in Figure 3 and described in Section 4. It is assumed that a generator polynomial p(x) of
degree w = deg(p) with a non-zero constant term has been selected such that its period
length supports the desired maximal counter value. Upon the activation of the counter (via
sw), the binary counter value b needs to be presented bit by bit at the input inp so that it
can be shifted into a shift register SR1, which is depicted in Figure 6.

Subsequently, the counter will perform a setup procedure in which the binary counter
value is converted into the corresponding LFSR state sb. Once this is complete, the counter
will continuously be loaded with sb and count down to s0, until sw is pulsed again for
deactivation. Whenever the counter reaches s0, this is signalled at the output with out
going high.

The core part of the counter circuitry is shown in Figure 7.
This is to be used in conjunction with the fast EOC detection circuit from Figure 4, which

is described in more detail in Section 5. Where single-bit and multi-bit signals are combined in
a logic gate in circuit diagrams, the logic gate is to be widened to match the size of the multi-bit
signal, and the single-bit signal is to be replicated for each bit position. Symbol ≫ denotes
a right shift on an ordinary shift register and a forward shift on an LFSR where the state is
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advanced from si to si+1. In contrast, symbol ≪ denotes a backward shift on an LFSR where
state si decrements to state si−1. It should be noted that many of the multiplexers in the drawn
circuits can be absorbed into flip–flop clock enable and set/reset logic.

SR0

SR1

SR2

SR3

SR0_in

SR1_in

SR2_in

SR3_in

SR0[0]

SR1[0]

SR2[0]

SR3[0]

Figure 6. Auxiliary shift registers of width w used by both the recursive and the iterative counter
circuit implementations.

REG0 RSR0

≫

w

w

w

LFSR
w

w

≪ ≫

w

s2i

0 s0

mux0

mux1 mux2

RSR0[0]SR1[0]

Figure 7. Programmable LFSR counter based on the recursive conversion algorithm.

The LFSR is the main component in the circuit, and it is wired to the generator
polynomial p(x) and also to the reciprocal polynomial of p(x). It can, therefore, shift
forward and backward, as also indicated by the settings of the upstream multiplexer.
For the conversion phase, the LFSR is initially loaded with state s1 corresponding to the
rightmost state in row 2 of Table 2. In consecutive clock cycles, the LFSR is shifting forward,
traversing the entries in the table from right to left. Once the leftmost state of a row is
reached, the rightmost state from the next row is loaded. The proposed method to calculate
the rightmost states (s2i ) is presented later.

The matrix–vector multiplications in (3) are accomplished through register REG0 and
the loadable shift register RSR0. Initially, REG0 is reset to 0, while RSR0 is loaded with
s0. As RSR0 shifts to the right, its least significant bit, together with the least significant
bit of SR1 (which holds a value bi), is used to determine which columns of the matrix,
and thus, which states of the LFSR, need to be accumulated inside REG0. The final
value of the product is saved into RSR0 for the next multiplication to be performed, if a
subsequent one is to be scheduled. Once the entire expression (3) has been evaluated, the
conversion is complete, and the result sb is held in RSR0. From this moment on, LFSR can
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be loaded with this value and the count down procedure can start by operating the LFSR
in backward mode.

To obtain the rightmost values of Table 2, the circuit shown in Figure 8 is proposed.

REG1

w
RSR1

≫

w

w

s2i

0s1

mux3 mux4

RSR1[0]

w
LFSR

Figure 8. Auxiliary circuit for the recursive counter implementation to calculate the states s2i using
the recursive algorithm itself.

It calculates the values using (2) and works similarly to how the main circuit in Figure 7
is used to perform matrix–vector multiplications. Shift register RSR1 is initially loaded with
the first state s20 = s1 from REG1 through the XOR gate. At the start of the computation,
REG1 is reset to 0 to accumulate the needed values of LFSR according to the least significant
bit of RSR1. After w clock cycles, RSR1 contains state s21 = s2. This procedure is then
continuously repeated until the remaining states s22 to s2w−1 have been produced.

As an example, value b = 9 is to be converted into its corresponding LFSR state s9.
Table 3 shows the contents of the relevant registers in each clock cycle of the conversion.

Table 3. Example counter value conversion for the recursive LFSR counter implementation.

SR1 LFSR REG1 RSR1 REG0 RSR0

1001 s1 = 0010 0000 0010 0000 0001
1001 s2 = 0100 0000 0001 0010 0000
1001 s3 = 1000 0100 0000 0010 0000
1001 s4 = 1001 0100 0000 0010 0000

0100 s2 = 0100 0000 0100 0000 0010
0100 s3 = 1000 0000 0010 0000 0010
0100 s4 = 1001 0000 0001 0000 0010
0100 s5 = 1011 1001 0000 0000 0010

0010 s4 = 1001 0000 1001 0000 0010
0010 s5 = 1011 1001 0100 0000 0010
0010 s6 = 1111 1001 0010 0000 0010
0010 s7 = 0111 1001 0001 0000 0010

0001 s8 = 1110 0000 1110 0000 0010
0001 s9 = 0101 0000 0111 0000 0001
0001 s10 = 1010 0101 0011 0101 0000
0001 s11 = 1101 1111 0001 0101 0000

0000 s1 = 0010 0000 0010 0000 0101

As can be seen, shift register SR1 is initially loaded with value b = 9. After each w = 4
clock cycle, SR1 is shifted by one position, when the processing of its least significant bit
has completed. It can be seen that LFSR is loaded at the start of every w = 4 clock cycles
with the relevant state s2i . In subsequent clock cycles, LFSR is simply advancing its state.
LFSR essentially traverses the states tabulated in Table 2 from right to left and from top
to bottom. The two multiplications that take place in parallel can be observed in register
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pairs, (REG0,RSR0) and (REG1,RSR1). Once all non–zero bits of SR1 have been processed,
the result of the conversion is contained in RSR0. At the end of the conversion, the register
holds state [0101] = s9 as expected.

The state machine of the entire circuit is presented in Figure 9, while the different
control signals are listed in Table 4.

IDLE READ PRE

SETUPPOSTCOUNT

sw SR1[0]

SR0[0]&&SR2[0]

!SR2[0]

sw SR0[0]&&!SR2[0]

Figure 9. State machine for recursive and iterative counter circuit implementation.

Table 4. Control signals for the recursive LFSR counter implementation.

IDLE READ PRE SETUP POST COUNT

SR0_in SR1[0] SR0[0] SR0[0]

SR1_in 1 inp 0

SR2_in 1 0 0

SR3_in SR3[0]

shi f t_0 1 1 1

shi f t_1 sw 1 0 SR0[0] 0 0

shi f t_2 0 inp !SR2[0] SR0[0]&&SR1[0] 0 0

shi f t_3 0 1 0 0 0 0

mux0 1 SR0[0] 3 z?3 : 2

mux1 0 !SR0[0]

mux2 1 !SR1[0]?2 : SR0[0]?0 : 3 2 2

mux3 0 SR0[0] SR0[0]?1 : 2

mux4 1 0 !SR0[0]

muxm SR3[0] = inp 1 1 1 1

mode !SR3[0]

rst_eoc 1 0

en 0 0 0 0 0 1

Empty cells in the table indicate don’t–care values. They help in optimising the logic
but should be otherwise fixed so that power consumption is reduced. For each multiplexer,
the inputs are addressed from left to right starting with 0. The different states of the counter
and the functions of the circuit components are described in more detail in the following:

IDLE: In this state, the counter is inactive and waiting for a pulse on input sw. Once a
pulse is received, the system transitions into the READ state and, at the same
time, a one is shifted into shift register SR1.

READ: This state is executed for a total of w clock cycles. In each clock cycle, a zero
is shifted into SR0 to clear this register, as it may still contain some non-zero
bits from the previous run. An exception is the last clock cycle, in which a one
is shifted into SR0. During this state, the binary counter value b is also read in
serially through inp and shifted into SR1. Each time a one is shifted into SR1, a
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one is also shifted into SR2 to keep track of the present non-zero bits in b. During
power-up, the shift register SR3 is initialised to value w − 1 and is rotated in
each clock cycle of this state. Each time the least significant bit of SR3 is differing
from inp, the mode of the zero-detection logic is updated to the inverted value
of SR3[0]. This procedure is essentially a serial comparison between b and w − 1,
and ensures that the zero-detection mode is programmed to 0 only if b < w, and
otherwise to 1. Shift register RSR1 is cleared by shifting out any one it may store,
and REG1 is reset to s1. After w − 1 clock cycles, the one that was shifted into
SR1 in the IDLE state appears at the least significant bit position and signals the
last clock cycle of the READ phase. For the next clock cycle, the state machine
transitions into the PRE state.

PRE: This state is also executed for a total of w clock cycles and is mainly used to shift
any ones that might have been shifted in the previous phase into SR2, to its least
significant bit positions. The shifting stops should be SR2[0] = 1. Furthermore,
register REG0 is reset to 0, whereas shift register RSR0 is reset to s0. REG1 is kept
at s1 except for the last clock cycle in which it is also reset to 0. RSR1 and LFSR
are both reset to s1 through REG1. The end of the state is reached once a one
appears at the least significant bit of SR0. In the last clock cycle, SR2[0] indicates
whether b is non-zero as in this case SR2[0] = 1, otherwise SR2[0] = 0. Should
b = 0, the conversion phase is complete, as RSR0 has already been reset to the
corresponding state s0. In this case, the next state is POST, otherwise a conversion
is initiated by transitioning into state SETUP. In an alternative implementation,
the PRE phase could also terminate as soon as a one reaches the least significant
bit of SR2, at the expense of more complex control logic.

SETUP: This phase requires a minimum of w + 1 and a maximum of w2 + 1 clock cycles,
depending on the value b that is to be converted. Table 2 is traversed from left
to right and from top to bottom and necessary values accumulate for as long
as there is still an unprocessed non-zero digit of b inside SR1. Each digit in
SR1 corresponds to a row in the table. SR0 is used as in the previous phase to
detect each time w clock cycles have elapsed and a digit of b, and thus, a table
row has been processed. When a row has been processed, LFSR is reloaded
with the next s2i in sequence, REG0 and REG1 are reset back to zero, and RSR0
and RSR1 are loaded with their respective matrix–vector product. Moreover,
a shift is performed on SR1 to move the next bit of b into place. If the bit that
was shifted out was a one, a shift is also performed on SR2, since it keeps track
of the unprocessed ones. In all other clock cycles, REG0 and REG1 accumulate
their partial product, while RSR0 and RSR1 shift right and LFSR advances its
state. Once all non–zero digits of b have been processed, an additional clock
cycle is used in which the corresponding condition SR2[0] = 0 is detected for
transitioning into the POST state. This last clock cycle could also be eliminated,
but it was found that it led to less complex control logic and better timing.

POST: This state lasts only a single clock cycle and is used to preload the LFSR with the
converted value sb that is found inside RSR0. Shift register RSR, that is used as
part of the zero-detection logic, is also reset in this state to sw−1 as the transition
happens into the COUNT state.

COUNT: Once this state is reached, the LFSR is operated in backward mode where it is
continuously counting down. The zero-detection logic signals the occurrence
of state s0. In this case, the LFSR is reloaded with sb from RSR0. The procedure
continues until a pulse is detected on sw, in which case the counter transitions
back into its IDLE state.
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8. Iterative LFSR Encoding

In Section 8.1, a second and new algorithm to encode a binary value b into its corre-
sponding LFSR state sb is presented. The algorithm is a modified version of the iterative
method that avoids the use of slow binary counters to keep track of the number of needed
shifts. Subsequently, in Section 8.2, an efficient hardware implementation of this algorithm
is proposed that leads to a second programmable fast LFSR counter.

8.1. The Iterative Algorithm

A generator polynomial p(x) with a non-zero constant term is selected, such that
the desired maximal counter value is supported by the period of the polynomial. For the
encoding procedure of the counter value, three LFSRs are used in conjunction: LFSR0 is
the main component and is wired to the reciprocal polynomial of p(x), thus, it is always
counting down, whereas LFSR1 and LFSR2 are both wired to p(x) itself to count up.

A binary counter value b, that is to be converted into LFSR state sb, is loaded into an
ordinary shift register SR1. LFSR1 is initialised to state s1 and keeps counting up in its
sequence of states in every step of the algorithm. In contrast, LFSR0 is initialised to state
s0 and keeps counting down. However, whenever LFSR0 reaches the state s0, it is loaded
with the current state of LFSR1. With this rule, LFSR0 starts with its initial state of s0, then
is loaded in the next step with state s1 and counts down to s0, then from s3 to s0, then from
s7 to s0, and so on. Thus, with each reload of LFSR0, the number of steps to reach the zero
state s0 again doubles.

Each time LFSR0 is in its zero state s0, a shift is performed on shift register SR1, such
that its least significant bit is shifted out of the register. This means that each bit bi of
b = ∑w−1

i=0 bi2i is present at the least significant bit position of SR1 for the duration of its
corresponding power of two (2i). Initialising LFSR2 to s0 and incrementing it every time a
one is present at the output of shift register SR1 will ensure that LFSR2 holds state sb in the
end since sb = Fbs0.

An example is illustrated in Table 5, where the binary counter value b = 9 is converted
into its corresponding state s9.

Table 5. Example counter value conversion for the iterative LFSR counter algorithm.

SR1 LFSR0 LFSR1 LFSR2

1001 s0 s1 s0

0100 s1 s2 s1
0100 s0 s3 s1

0010 s3 s4 s1
0010 s2 s5 s1
0010 s1 s6 s1
0010 s0 s7 s1

0001 s7 s8 s1
0001 s6 s9 s2
0001 s5 s10 s3
0001 s4 s11 s4
0001 s3 s12 s5
0001 s2 s13 s6
0001 s1 s14 s7
0001 s0 s0 s8

0000 s0 s1 s9

It can be seen that LFSR1 is counting up in every step, whereas LFSR0 is counting
down sequences from s2i−1 to s0, starting from i = 0. LFSR2 is only advancing at times
when SR1[0] = 1. The conversion finishes when all ones have been consumed from SR1.
Specifically, the algorithm requires 2⌈log2 b+1⌉ steps of processing. In the best case, it requires
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only one step, whereas in the worst case, it requires a total of 2w steps. Once a conversion
is complete, LFSR0 can be loaded with the converted state of LFSR2 and can start counting
down until state s0 has been reached at which point it can be reloaded again.

8.2. The Iterative Circuit

In this subsection, an efficient fast circuit implementation of a programmable LFSR
counter based on the iterative conversion algorithm from Section 8.1 is presented. It is
assumed that a polynomial p(x) with a non-zero constant term and degree w = deg(p) has
been selected. The top-level schematic of the system with its inputs and outputs is shown
in Figure 3 and described in Section 4, while the state machine is depicted in Figure 9.

The core part of the counter is detailed in Figure 10.

LFSR0

LFSR1 LFSR2

≪ ≪

w
≫

w w

mux5

mux6 mux7

s0s1

Figure 10. Programmable LFSR counter based on the iterative conversion algorithm.

The three LFSRs, as described in Section 8.1, are shown. Many of the multiplexers in the
drawn circuit can be absorbed into flip–flop clock enable and set/reset logic. Additionally,
the fast EOC detection logic from Figure 4 is employed to detect whenever the zero state s0
is present in LFSR0. Four needed auxiliary ordinary shift registers, that are not required
to be loadable, are shown in Figure 6. The control signals of the counter are detailed in
Table 6.

Empty cells in the table indicate don’t–care values and help with logic minimisation;
otherwise, they should be fixed so that power is saved. With respect to the control signals,
the inputs for each multiplexer in Figures 4 and 10 are addressed from left to right starting
with 0.

Table 6. Control signals for iterative LFSR counter implementation.

IDLE READ PRE SETUP POST COUNT

SR0_in SR1[0] SR0[0] 1

SR1_in 1 inp 0

SR2_in 1 0 0

SR3_in 0 1

shi f t0 1 1 1

shi f t1 sw 1 0 z 0 0

shi f t2 0 inp !SR2[0] z&&SR1[0] 0 0
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Table 6. Cont.

IDLE READ PRE SETUP POST COUNT

shi f t3 1 0 SR1[0]

mux5 1 z?0:2 1 z?1:2

mux6 0 1

mux7 2 SR1[0]?0:1 1 1

muxm 0 z 0 1

mode 0 SR0[0] SR3[0]

rst_eoc 0 1 0

en 0 0 0 0 0 1

The various states of the system and the functions of the different components are
described in more detail in the following:
IDLE: The system is waiting for a start pulse on the input sw. Once a pulse is observed,

the system shifts a one into SR1 and transitions into state READ.
READ: This state is executed for a total of w clock cycles. In every clock cycle, a zero is

shifted into SR0 and SR3 to clear both of them should they still contain any ones
from the previous run. Also, in every of the w clock cycles, a bit from the binary
counter value b is read in through the input inp and shifted into SR1. Whenever
a one is shifted into SR1, a one is also shifted into SR2 to keep track of the number
of ones inside SR1. In the last clock cycle of this state, the one that was shifted in
the IDLE state into SR1 appears at its least significant bit position and triggers a
transition into state PRE.

PRE: The pre-setup phase lasts for a total of w clock cycles. It is mainly used to shift
any ones inside SR2 to the least significant end of the register. All three LFSRs
are preloaded with their required initial values for the conversion algorithm.
LFSR1 and LFSR2 are directly loaded with s1 and s0, respectively. LFSR0 is
initialised with s0 through LFSR2. The zero-detection mode FFm is reset to
0. Once the one that was shifted in the READ state into SR0 reaches the least
significant bit position of the register, the PRE phase completes. If b = 0, it
follows that SR2[0] = 0 in the last clock cycle of this phase and a transition is
directly made into the POST state, because LFSR2 has already been preloaded
with the converted value s0. In all other cases, SR2[0] = 1, since there will be at
least a single one present in b, and thus, the conversion algorithm needs to be
initiated by transitioning into the SETUP phase next. In the last clock cycle, a
new one is also shifted into SR0.

SETUP: The length of this phase depends on the counter value b that is to be converted
and lasts specifically 2⌈log2 (b+1)⌉ clock cycles. During this state, LFSR1 is ad-
vancing in every clock cycle, whereas LFSR2 is only advancing for as long as
SR1[0] = 1. A one is shifted into SR0 in every clock cycle until it saturates, to
keep track of the shifts that have been performed on LFSR1. In the same way,
SR3 is used to keep track of the number of shifts performed on LFSR2. When-
ever the zero-detection logic signals that LFSR0 has reached s0 (z = 1), a shift
is performed on SR1 to shift out the processed bit and move to the next binary
digit. If a one is shifted out of SR1, a shift is also performed on SR2 to shift out
its corresponding one. At the same time, LFSR0 is reloaded from LFSR1 and the
zero-detection mode is updated with the value of SR0[0], which is high if LFSR1
is in a state si with i ≥ w. Once the least significant bit of SR2 is zero, all ones
inside SR1 have been processed and the setup phase is terminated by switching
to the POST state.
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POST: During the post-setup clock cycle, LFSR0 is preloaded with the converted state
sb that is present in LFSR2. The required zero mode for this LFSR state is held
inside SR3[0] so that FFm is also updated to this value. Lastly, RSR is reset
to sw−1.

COUNT: In this phase, LFSR0 starts counting down starting from sb. Once it reaches state
s0, it gets reloaded with sb from LFSR2 and the counting resumes. Additionally,
output out is pulled high during this time. This phase terminates and a transition
is made back to the IDLE state once a pulse is registered on sw.

9. Results

This section presents and compares FPGA and ASIC implementation details for the
two proposed circuits: the recursive circuit from Section 7 and the iterative circuit from
Section 8. Additionally, the closest state-of-the-art solution [11] has been recreated and
implemented, targeting the same technologies for a direct comparison. For the state-of-
the-art design, it was necessary to specify multi-cycle paths for the subtractor unit as
proposed by the authors. It was found that three clock cycles were sufficient to prevent
these becoming critical paths for the design. Also included in the comparison is an ordinary
binary counter.

All circuits have been built around the interface shown in Figure 3 and simulated
for counter sizes between 2 and 64 bits. For the proposed LFSR–based solutions, for
a given size of counter, a primitive trinomial has been selected whenever existent and,
otherwise, a primitive polynomial with the least number of terms has been used for reduced
hardware complexity. Power numbers have been obtained by setting up the counters with
value b = 0x2A and letting them run for 1 ms. Where counter sizes are smaller, only the
corresponding least significant portion of the counter value is loaded.

Besides the maximal achieved frequency, area, power consumption, and trade-off
parameters such as the ADP (area-delay product) and PDP (power-delay product), the
following metrics are used for evaluation:

• Levels of logic: The maximal number of LUT cells (basic building blocks for logic)
required on any timing path between two sequential cells on the FPGA. The levels of
logic is one factor influencing the lower bound of the achievable frequency.

• FPGA slices: A slice is a resource on an AMD FPGA [38] that is used to implement
sequential or combinatorial circuits. On 7 Series AMD FPGA devices, a slice contains
four six-input LUTs, eight storage elements, carry lookahead logic, and wide-function
multiplexers. The number of required slices indicates the resource utilisation.

• Worst-case conversion clock cycles (latency): For the proposed solutions, there is
an initial configuration phase required to convert the binary period into an LFSR
sequence state before the counting procedure starts. This conversion time depends
on the value that is to be converted. To obtain an upper bound on the latency, the
worst-case scenario is considered.

9.1. FPGA Implementation

All circuit designs have been implemented for each single counter width between 2
and 64 bits targeting an Artix–7 35T FPGA device of speed grade −1 L manufactured by
AMD, Santa Clara, CA, USA, and using the AMD Vivado Design Suite v2022.2.

The required levels of logic for all the circuits are plotted in Figure 11.
It can be seen that, as the counter width increases, the levels of logic also increases for

the binary circuit. The binary counter uses a chain of dedicated fast lookahead carry logic,
whereby the critical path grows linearly with w [38] For every group of four bits, the logic
depth increases by an additional CARRY4 chain element. For the state-of-the-art counter,
the multi-cycle paths of the subtractor have not been included in the calculation of the
logic levels so as not to mask the complexity of the main logic. The design solves the carry
propagation limitation of an ordinary binary counter, but its EOC detection mechanism
grows logarithmically in terms of levels of logic as the counter is scaled up. Nevertheless,
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the instance for w = 64 still requires only three levels of logic to combine all 64 comparator
signals as the FPGA offers six-input LUT cells. In one instance, the tool already defaulted
to using four levels of logic (w = 48). The proposed recursive circuit has been implemented
with a maximum of three levels of logic. The big advantage is that the levels do not increase
further as the logic depth is independent of the counter width. The iterative circuit shows
even better behaviour as several instances of it could be implemented with only two levels
of logic, which means that it should be possible to attain two levels of logic for all instances
due to the independence of the counter size; this could be achieved through an explicit
low-level coding of the state machine.
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Figure 11. Comparison of required number of logic levels for counter implementations on FPGA.
The multi-cycle paths of the state-of-the-art counter have not been included in the number of logic
levels to not mask the core logic.

In Figure 12, the achieved frequencies are plotted for all the designs.
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Figure 12. Comparison of achieved frequency for counter implementations on FPGA.

The proposed circuits achieve frequencies in the range of 400 MHz, while the iterative
circuit shows the best performance overall with an average of 419.3 MHz. The frequency of
the binary counter continually decreases to 256.3 MHz. This comes as no surprise, as the
critical path grows with the size of the counter. Interestingly, the state-of-the-art counter
also continuously decreases in frequency and even underperforms the binary counter in
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many instances. Even though the levels of logic do not exceed four for the considered
counter instances (omitting multi-cycle paths), the performance degradation comes down
to routing complexity. A more guided placement methodology for this counter architecture
might lead to better results.

The resource utilisation in terms of number of FPGA slices is shown in Figure 13.
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Figure 13. Comparison of slice utilisation for counter implementations on FPGA.

The iterative circuit and the binary counter show very similar linear behaviour and,
also, the overall lowest utilisation of all the solutions. The utilisation for the recursive
solution also grows linearly, but at a higher slope. The hardware costs for the proposed
solutions scale linearly with w, because the degree directly prescribes the width of all the
multi-bit registers and the corresponding logic cells in the designs. Due to the matrix
structure of the state-of-the-art design, its hardware resources grow quadratically. For
w ≥ 40, the number of required slices exceeds those of all the other solutions.

The dynamic power consumption can be seen in Figure 14 and is based on simulations
with a clock period of 2.4 ns.
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Figure 14. Comparison of dynamic power consumption for counter implementations on FPGA.
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The tool reports static power only for the entire FPGA device which is, in all cases,
62 mW.

The ADP (area-delay product) and PDP (power-delay product) compound metrics
are shown in Figures 15 and 16, respectively. The area for the ADP is estimated using
the number of slices as reported in Figure 13, and, for the PDP, the dynamic power from
Figure 14 is used. For both metrics, it can be seen that, as the width is scaled up, the iterative
design performs best, followed by the binary counter, the recursive solution, and then the
state of the art.
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Figure 15. Comparison of ADP (area-delay product) for counter implementations on FPGA.
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Figure 16. Comparison of PDP (power-delay product) for counter implementations on FPGA.

9.2. ASIC Implementation

All the designs have been simulated targeting TSMC’s N3 process node (N3B)
with a mix of LVT, LVTLL, ULVT, and ULVTLL standard cells using Synopsys Fusion
Compiler version R–2020.09–SP6. A stack of 19 metal layers has been used. The results
are reported for a typical process corner with an operating voltage of 0.65 V and a
temperature of 85 °C. The counter sizes w have been incremented in steps of four bits,
where 4 ≤ w ≤ 64. Only relative numbers are provided, as absolute numbers are subject
to confidentiality restrictions.



Electronics 2024, 13, 405 22 of 28

The plot in Figure 17 shows the maximal achieved frequencies relative to each other.
It can be seen that the lowest frequencies are attained by the binary counter for w > 12.

With the flexibility offered by an ASIC, the routing complexities of the state-of-the-art
design seen on the FPGA are no longer the decisive factor in this comparison. The design
outperforms all other designs for w ≤ 20, but then starts dropping in performance. The
proposed solutions always outperform the state-of-the-art design for w ≥ 24. The iterative
and recursive solutions behave very similar to each other and show a fairly constant speed
as the counter is scaled up.
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Figure 17. Comparison of achieved frequency for counter implementations targeting TSMC N3
CMOS technology.

The total cell areas relative to each other are graphed in Figure 18.
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Figure 18. Comparison of total cell area for counter implementations targeting TSMC N3
CMOS technology.

As is the case with the FPGA implementation, all the proposed solutions and the
binary counter show fairly linear resource requirements. The cell area of the state-of-the-art
solution grows quadratically, as is the case when targeting the FPGA. Overall, the recursive
solution requires the most area (up to w = 64), while the binary counter is the most
economical. The iterative solution lies between the recursive and the binary solutions.
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In Figure 19, the total power consumptions relative to each other are shown.
The state-of-the-art solution is the most power-hungry design, while the binary counter

is shown to be the most economical. Similar to the binary counter, the proposed solutions
show fairly linear behaviour, albeit with a slightly higher slope.

The relative ADP (area-delay product) and PDP (power-delay product) are shown in
Figures 20 and 21, respectively. For both compound metrics, the binary counter shows the
overall best trade-off. In general, the iterative solution shows better behaviour than the
recursive one. Regarding the PDP, the iterative solution is even very closely aligned with
the binary counter. Up to w = 36, the state-of-the-art solution shows a better ADP than the
proposed solutions, but then is outperformed by the iterative design, and with w = 60 also
by the recursive one. For w > 12, the state-of-the-art design exhibits the worst PDP.
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Figure 19. Comparison of total power consumption for counter implementations targeting TSMC
N3 CMOS technology.
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Figure 20. Comparison of ADP (area-delay product) for counter implementations targeting TSMC
N3 CMOS technology.
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Figure 21. Comparison of PDP (power-delay product) for counter implementations targeting TSMC
N3 CMOS technology.

9.3. Programming Considerations

An important aspect for all the counter designs concerns the required time for the
encoding of desired counter values into a format suitable for operation. The big advantage
of the binary counter circuit is that it can directly load a binary counter value and start
counting. The state-of-the-art circuit [11] also does not require any encoding procedure;
however, due to its multi-cycle paths, a few clock cycles are necessary each time a new
counter value is set up. For the proposed LFSR solutions, the counter value needs to be
converted into an LFSR state first. The time required for conversion is calculated as follows:

tconv = tpre + tsetup.

For reduced control logic complexity, tpre has been fixed to be w for the two LFSR
circuits. The minimal conversion time of w clock cycles is achieved for b = 0, because,
in this case, the SETUP phase is skipped. The SETUP time tsetup can be specified for the
recursive circuit as

trecursive = ⌈log2 (b + 1)⌉w + 1

and for the iterative circuit as

titerative = 2⌈log2 (b+1)⌉.

Therefore, the time complexity of the conversion algorithm for the recursive circuit
is quadratic in w, whereas it is exponential for the iterative approach. The worst-case
encoding latencies in terms of number of clock cycles are visualised in Figure 22.

For w = 32 and an operating frequency of 5 GHz, for instance, the iterative approach
would require 859 ms for the worst-case conversion, while it could be accomplished with
the recursive approach in only 211 ns. For either approach, there may be applications for
which these conversion times are acceptable. The worst-case conversion time can also be
reduced by restricting the maximal supported counter value.

A summary of the characteristics for the different counter architectures is shown in
Table 7.

It can be seen that the state-of-the-art design has a restricted counter range, while the
proposed solutions support the full range.
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Figure 22. Comparison of worst-case encoding latencies in terms of clock cycles for
counter implementations.

Table 7. Comparison between different proposed programmable counter implementations.

Counter Binary SOTA * Proposed Proposed
[11] Recursive Iterative

Conv. Time
Min 0 0 w w
Max 0 0 w2 + w + 1 2w + w

Multi-cycle paths No Yes No No

Counter Range
Min 0 2 0 0
Max 2w − 1 2w − 1 2w − 1 2w − 1

* State-of-the-art.

10. Conclusions

A new method for detecting the end of count for LFSR counters has been proposed.
Previous methods for detecting the end of count did not scale with the counter width;
thus, they either limited the maximal frequency or, if the detection was spread over several
clock cycles, limited the usable counter range. Both issues are solved with the new EOC
circuit in conjunction with LFSR sequences. Based on this new EOC detector circuit, it is
shown how maximum-length LFSR sequences can be easily extended by a number of states
up to one less than the degree of the underlying polynomial. A novel iterative algorithm
is proposed to encode a binary sequence value into its corresponding LFSR sequence
state. This algorithm is a modification of the conventional iterative algorithm and uses a
combination of three LFSRs to avoid the requirement of a binary counter to keep track of the
number of shifts. Based on this new algorithm and an existing alternative recursive method,
two novel programmable LFSR counter architectures have been proposed, in which each
can be configured during runtime with a start count supplied as an ordinary binary value.
The counters automatically encode the binary sequence value into the required LFSR state
and, once complete, continuously count down from the start value and issue a signal
each time the zero state is reached. Alternatively, the counters can be easily modified to
decrement with the occurrence of an event rather than in every clock cycle. Applications
are, for instance, clock dividers that need to be run at high clock frequencies.

The new counter designs are based on the LFSR, which requires the start count to be
encoded into a corresponding LFSR state. In the past, different schemes trading off time and
memory have been employed to perform a conversion, for instance, offline and then simply
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supply the converted value to the hardware counter. With the proposed architectures, the
conversion can be accomplished by the hardware itself and even at a higher clock frequency
than the state-of-the-art counter solution can operate when the counter width is scaled up.

All circuits, including the recreated state-of-the-art design [11], have been implemented
on an FPGA and also simulated targeting TSMC’s N3 CMOS process. Some notable
differences have been observed between the FPGA and ASIC implementations. For instance,
the state-of-the-art design degrades in frequency due to routing complexities seen on the
FPGA as the width increases; in many instances, it even underperforms the binary counter.
The same behaviour is not evident for the ASIC implementation due to the relatively high
abundance of routing resources. The routing complexity is also very likely related to the
relatively higher area demand for the state-of-the-art design on the FPGA in comparison
to the ASIC; it may be that the routing complexities effect the logic to be replicated to a
greater extent.

The proposed designs are fully synchronous, can be implemented using standard
cells and dispense of any timing exceptions. Not only are the architectures easily portable
across technologies, but they are also highly scalable as the logic depth is independent of
the counter size. The algorithms behind the circuits enable programmability to a specific
counter value in either quadratic or exponential time. The circuits exhibit very different
properties in terms of speed, resources, and conversion time and, thus, may each be
suitable for a different type of application. Overall, the iterative solution shows the best
performance in terms of frequency, area, and power efficiency. If a faster conversion time is
required, however, the recursive solution can be employed. The state-of-the-art solution is
outperformed as the counter size increases.
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