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Abstract: Large Language Models achieve state of art performances on a broad variety of Natural
Language Processing tasks. In the pervasive IoT era, their deployment on edge devices is more
compelling than ever. However, their gigantic model footprint has hindered on-device learning
applications which enable AI models to continuously learn and adapt to changes over time. Back-
propagation, in use by the majority of deep learning frameworks, is computationally intensive and
requires storing intermediate activations into memory to cope with the model’s weights update.
Recently, “Forward-only algorithms” have been proposed since they are biologically plausible
alternatives. By applying more “forward” passes, this class of algorithms can achieve memory
reductions with respect to more naive forward-only approaches and by removing the need to store
intermediate activations. This comes at the expense of increased computational complexity. This
paper considered three Large Language Model: DistilBERT, GPT-3 Small and AlexaTM. It investigated
quantitatively any improvements about memory usage and computational complexity brought by
known approaches named PEPITA and MEMPEPITA with respect to backpropagation. For low
number of tokens in context, and depending on the model, PEPITA increases marginally or reduces
substantially arithmetic operations. On the other hand, for large number of tokens in context, PEPITA
reduces computational complexity by 30% to 50%. MEMPEPITA increases PEPITA’s complexity by
one third. About memory, PEPITA and backpropagation, require a comparable amount of memory
to store activations, while MEMPEPITA reduces it by 50% to 94% with the benefits being more
evident for architectures with a long sequence of blocks. In various real case scenarios, MEMPEPITA’s
memory reduction was essential for meeting the tight memory requirements of 128 MB equipped
edge consumer devices, which are commonly available as smartphone and industrial application
multi processors.

Keywords: on-device learning; backpropagation; forward learning; PEPITA; MEMPEPITA; Large
Language Models; Natural Language Processing

1. Introduction

Since its introduction in 2017 [1], the Transformer architecture has revolutionized
the field of Natural Language Processing (NLP) achieving unprecedented accuracy over
a plethora of complex tasks such as translation [2], question answering [3], sentiment
analysis [4,5], text classification [6], textual entailment [7] and summarization [8]. With the
staggering growth of IoT devices, the deployment of such powerful models to the edge
has become more challenging than ever. Nevertheless, it is known from theory [9] that the
performance of a transformer-based language model scales as a power law with respect
to the number of parameters. For this reason, recent years have featured a trend towards
ever-increasing model footprint resulting in the notorious 175-billion parameters GPT-
3 [10]. The consequent high memory requirements and heavy computational workloads
are incompatible with micro-controllers (MCUs) and sensors embedded assets, which are
severely resource-constrained. In order to mitigate such issue, a broad line of research [11]
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has focused on reducing the computational complexity and memory usage running the
inference by applying known techniques such as pruning [12,13], quantization [12,14]
and knowledge distillation [15]. However, enabling only model’s inference on the device
is not enough. The performance of the AI models, in fact, deteriorates as time passes
since the last training cycle; phenomenon known as concept drift [16], hence mandates
model’s parameter updates from time to time. The prominent field of on-device learning
(ODL) [17] allows for machine learning (ML) models deployed on edge devices to adapt
to the continuously changing data statistics, which are collected by the sensors, and per-
forming model’s parameter training. This paper explores the application of novel learning
methods, PEPITA and MEMPEPITA, to Transformer-based Large Language Models (LLMs)
for ODL on edge devices. It quantitatively analyzes the improvements brought by these
methods in reducing computational complexity and memory usage compared to tradi-
tional backpropagation (BP), especially in resource-constrained environments. The memory
and complexity performance of BP, PEPITA and MEMPEPITA on state-of-the-art models
like GPT-3 Small, DistilBERT, and AlexaTM is evaluated and reported. The suitability of
these training methods is also investigated in real-world edge devices, considering the
constraints of memory and processing power. This work is organized as follows: Section 2
sets the research question that will be addressed in the subsequent sections; Section 3
reports the background literature on Transformers and Large Language Models to this day;
Section 4 review relevant and related works in the known literature; Section 5 proposes the
PEPITA [18] training procedure applied to the Transformer architecture; Section 6 refers to
the method proposed in Section 5, and quantitatively analyze different learning algorithms
on DistilBERT [19], GPT-3 Small [10] and AlexaTM [20], reporting as well the results of
the analysis; Section 7 discusses and compares BP [21], PEPITA and MEMPEPITA [22]
application to Large Language Models on the basis of the 6 results; Section 8 provides total
RAM usage and latency estimations, based on candidate microprocessors, and comments
the applicability to consumer edge devices; Section 9 concludes the paper and proposes
further and future developments.

2. The Research Question

The application of ODL to LLMs deployed on edge devices represents the major
challenge, given the computational complexity and high memory requirements of the BP
algorithm when applied. PEPITA and MEMPEPITA represent compelling alternatives to
BP, since they perform Forward-only passes. They remove the complexity associated to the
backward pass and MEMPEPITA does not need to store the activations. The quantitative
analysis [22] showed that PEPITA did not bring any advantages in terms of memory
usage w.r.t. BP, while it introduced additional complexity. MEMPEPITA, instead, was
capable of drastically reducing intermediate activations storage by introducing only a
third more computational complexity. Unfortunately, such an analysis did not include the
Transformer architecture which is the backbone of today’s LLMs. Therefore, to progress in
this respect, the question this paper set and tries to answer is: “How much would PEPITA
and MEMPEPITA improve the peak memory and computational complexity w.r.t. BP-
trained models when applied to Transformer-based LLMs processing?”. The contributions,
this paper proposes, can be summarized as follows:

• Formulation of PEPITA learning rule for transformers.
• Quantitative analysis of computational complexity and memory needs of PEPITA

and MEMPEPITA in contrast with BP on state of the art LLMs such as GPT-3 Small,
DistilBERT and AlexaTM.

• Study on the applicability, in terms of memory and latency constraints, of PEPITA and
MEMPEPITA on existing hardware for enabling on-device learning of LLMs on edge
consumer devices.
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3. Background
Transformers and Large Language Models

When it comes to training a NLP model, the scarcity of task-specific labeled data has
prompted researchers to leverage the vast unlabeled text corpora [23,24]. Initial approaches
consisted in using, inside a specific model trained on a specific task, word embeddings
that were previously trained in an unsupervised fashion [25]. Yet, knowledge that extends
beyond the single word, such as high-level semantics, is not transferred to the final model.
More sophisticated techniques [26] involve using the hidden representations of models
trained on the unlabeled text collection as auxiliary features for the final model, requiring
additional parameters and structural modifications. Eventually, the most effective paradigm
has been proven to be training the model on the unlabeled text corpora (pre-training) and,
in a second phase, training (fine-tuning) the same model on the final task starting from the
previously trained parameters. Ref. [27] used for the first time unsupervised pre-training
with the Transformer architecture and achieving SOTA results on a broad variety of NLP
datasets. During the fine-tuning of the transformer, a last task-specific linear output layer
was introduced and structured inputs were converted into a processable ordered sequence
accordingly to the task. By marginally modifying the model architecture, knowledge
acquired during pre-training was much exploited. This approach was vastly adopted and
currently became the de-facto standard adopted by the NLP community.

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (1)

Its success is due to the Transformer capability to capture longer-range linguistic
relations, as opposed to LSTM [28], and due to the attention mechanism modeled in (1)
where Q, K and V are matrices of size nctx× dk with nctx being the number of tokens in
context. As it was first proposed [1], the transformer consisted in an encoder and decoder
block and was used for machine translation. The main difference between the encoder and
the decoder is that the former has got a bidirectional attention mechanism, while the latter
features unidirectional attention (i.e., a token only attends to previous tokens). Most of later
works used, depending on the considered task, only one of the two components, namely
encoder-only (e.g., BERT [29]) and decoder-only (e.g., GPT [27]) models. Recent research,
however, suggests that an encoder-decoder model, such as the 20 billions-parameters (20 B)
AlexaTM [20], can achieve similar or higher performance w.r.t. decoder-only model (e.g.,
540 B PaLM [30] or 175 B GPT-3 [10]) using far less parameters. In the academic litera-
ture, there is significant interest in the applications of LLMs at the edge [31], particularly
in the context of mobile technologies [32,33]. Different techniques [34,35] have been ex-
perimented for compressing LLMs for inference optimization including DistilGPT2 and
DistilBERT [19], MobileBERT [36] and TinyBERT [37]. The size of the context window
nctx is a major issue for efficient inference, as the complexity of the attention mechanism
grows as O(n2

ctx). Ref. [38] proposes a dilated attention which reduces the complexity
to linear, while preserving model expressivity. On the other hand, ref. [39] considers an
efficient attention mechanism obtained by leveraging the associative property of matrix
multiplication, reducing complexity to linear.

Wl = Wl − η ∇zlL aT
l−1 (2)

4. Related Works
4.1. On-Device Learning

Compared to inference, training is by far more compute and memory intensive and
therefore the major challenge to address in consumer devices. The training procedure of
Neural Networks (NNs), in fact, relies on BP [21] which is memory-bounded [40]. This is
due to the storage of NN’s activations, resulting in slow and energy-consuming operations.
Activations are mathematically required to compute the weight update as shown in (2),
where η is the learning rate, ∇zlL is the gradient of the loss function w.r.t. the pre-activations
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of the l-th layer zl and al−1 the activations of the previous layer. For Convolutional Neural
Networks (CNNs), a reduction of the number of trainable parameters does not affect total
memory footprint since the activations footprint dominates [41]. Consequently, the field
of ODL has focused on leveraging transfer learning by updating on-device only selected
weights/layers of a pre-trained NN, with the scope of storing into memory only the
corresponding activations. Since model’s biases update does not depend on the activations,
TinyTL [41] proposed to update only the former and, to compensate the loss in model
capacity, introduced a memory-efficient bias module. It provided 7.3–12.9x memory savings,
with the same accuracy of fine-tuning full models. MCUNetV3 [42] is the state of the art for
ODL application to Visual Wake Words [43] within 256 KiB SRAM. It introduced several
innovations such as Quantization-Aware Scaling (QAS), which controlled the quantization
error during the training, and Sparse Update, to skip less important layers and sub-tensors.
This approach pushed BP-based ODL to the limits of its efficiency. Unfortunately, ODL
applied to Transformers topologies is still at its early stage, due to the daunting size of
such models, and only few works have been published. Like TinyTL, BitFit [44] is a
sparse-fine-tuning approach where only the bias terms are being modified. For small
to medium training data, it achieved results which were competitive to fine-tuning the
entire model, while for larger datasets it was competitive only with other sparse-fine-
tuning methods. Ref. [45] proposed a training procedure for BERT-like models which
diminished the memory consumption of activation maps by updating selectively only
certain parameters. It reduced fine-tuning time of DistilBERT by 30% on CoLA dataset [46]
and the time spent on memory operations by 47%, while achieving comparable accuracy.
Ref. [47] did Transformers training with 4-bit integer with a specific Hadamard quantizer
that suppresses activations’ outliers and by leveraging the structural sparsity of gradients
through bit splitting and score sampling techniques.

4.2. Alternatives to Back-Propagation

It is known that the human brain does not learn using BP [48,49]. The research commu-
nity, therefore, has started investigating plausible alternatives for credit assignment [50,51],
namely how much each weight would contribute to the loss function. Forward-Forward
(FF) [52] and PEPITA credit assignment algorithms addressed the biological implausible
aspects of BP by performing Forward-only passes, to remove the “weight transport” [53],
the “update-locking” [54,55] and the “freezing activation” [56] problem. Ref. [22] proposed
MEMPEPITA, a memory efficient version of PEPITA which reduced on average one third
of the total RAM w.r.t. BP, and costing a third more complexity. By the same work, the
computational complexity and memory usage of FF, PEPITA and MEMPEPITA were stud-
ied on the MLCommons-Tiny benchmarks [57]. The quantitative analysis revealed that
PEPITA incremented computational complexity, while maintaining same peak memory
usage as BP. On the other hand, FF and MEMPEPITA reduced activations memory by
even ∼3x. During inference, however, FF introduced considerable computational overhead
that grew linearly with the number of classes. This makes FF unsuitable for LLMs as the
vocabulary is composed by thousands of tokens. On the other hand, MEMPEPITA followed
the same inference procedure of BP, proposing itself as a candidate for NLP applications.
A comparison of the learning procedures is reported in Table 1.

Wℓ = Wℓ − η(aℓ − aerr
ℓ )(aerr

ℓ−1)
T (3)

4.2.1. PEPITA

PEPITA [18] relies on two forward passes per each input sample. The first pass, named
standard pass, calculates the error of the model with respect to the data labels. As the
output and input dimensions are generally different, the error is projected onto the input
through a fixed random matrix F, with zero mean and small standard deviation. The
second pass, named modulated, transforms the input using the error calculated by the
standard pass and computes the corresponding activations. The difference between the
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activations of the two passes is then used to update the weights according to Equation (3).
The weights of the last layer can be updated by the error at the output layer. It has also been
experimentally analyzed that the convergence rate of PEPITA is lower than BP. However,
this gap is narrowed when pre-mirroring technique [58] is adopted.

Table 1. Summary of the learning procedures.

Learning Methods BP PEP MPE

Forward pass 1 2 3

Backward pass 1 0 0

Weight update 1 1 1

Activations all all current
PEP stands for PEPITA and MPE for MEMPEPITA. MPE need to store only activation buffers for current layers,
while BP and PEP for all the layers in the topology.

4.2.2. MEMPEPITA

Because PEPITA required to store the activations computed in the standard pass to
calculate (aℓ − aerr

ℓ ) in the modulated pass, it has the same memory costs of BP. To avoid
this, MEMPEPITA added a second standard pass performed in parallel to the modulated
pass, to recompute the activations needed for weight update. Nevertheless, it introduced
additional computation workload.

5. Pepita Applied to Transformers

The steps implemented in the original PEPITA learning procedure are shown in the
Algorithm 1 table, where σℓ indicates the non-linearity of the layer ℓ. For transformers, it is
not trivial to define an error projection matrix since input and output dimensions are not
fixed, while vary depending on the length of the input sequence of tokens. In encoder-only
and decoder-only architectures the number of tokens at the output is the same as at the
input, a one-to-one correspondence. Therefore, the error has already the same dimension
as the input and no error projection matrix multiplication is needed. In an encoder-decoder
architecture, this is true only for the input to the decoder, while the input to the encoder
has different dimensions.

Tenc
err = Attention(Tenc, Tdec

err , Tdec
err ) (4)

This paper suggests to apply an attention mechanism on the one-hot encoded tokens
of the encoder input (before being multiplied for the embedding matrix, each token is
represented as a one-hot encoded vector with length equal to the vocabulary size) and the
error tokens at the end of the decoder to project the error, as illustrated in Equation (4).
Depending on the task, the error could be calculated for each token in the sequence, e.g.,
Causal Language Modeling (CLM), or only for some of them, e.g., Masked Language
Modeling (MLM). In the latter scenario, the error is defined at the tokens not considered to
be simply zero and to adopt the same projection procedure described previously.
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Algorithm 1: PEPITA
Given: Features(x) and label(target)

Standard Pass
a0 = x
for ℓ = 1, ..., L do

aℓ = σℓ(Wℓaℓ−1)
end for
e = aL − target
Modulated pass
aerr

0 = x + Fe
for ℓ = 1, ..., L − 1 do

aerr
ℓ = σℓ(Wℓaerr

ℓ−1)
if ℓ < L then

Weight update
Wℓ = Wℓ − (aℓ − aerr

ℓ ) · (aerr
ℓ−1)

T

end if
end for
WL = WL − e · (aerr

L−1)
T

6. Quantitative Analysis

The following sub-sections describe the metrics adopted for memory and computa-
tional complexity profiling, they describe the procedure implemented for the quantitative
analysis and report the results obtained.

6.1. Memory and Computational Complexity

The objective of this analysis is to determine the memory usage and computational
complexity of BP, PEPITA and MEMPEPITA ODL procedure applied to the Transformer-
based LLMs. The peak memory usage is defined as the memory required by the device
to run the training workload and it includes three main contributions: model parameters,
activations and the scratch buffer to store the intermediate computations at run time. In
this analysis, the latter will not be considered since it highly depends on the low-level
implementation of the algorithm and the underlying hardware which executes it. Model
parameters are also not being included as they do not vary across the learning algorithm,
which set the purpose of the analysis as comparative. Furthermore, due to the enormous
model size of LLMs, the parameters are stored in main memory and subject of multiple
read/write write during training. Techniques for sparse-fine-tuning, which reduce the
number of trainable parameters, are orthogonal to this work. For the previous reasons,
the memory contribution on which our analysis will focus are the activations. In order to
measure the computational complexity, two main metrics have been involved. Multiply and
accumulates (MACCs) is a well-known metric, as the most intensive part of computations
in ML consists of matrix multiplications. In a transformer, however, there are layers whose
computation does not match them. To account for the latter, the more general floating-
point operations (FLOPs) are also utilized. Following the same assumption used in [59],
each mathematical operation (e.g., exponentiation, division, etc) is considered a FLOP,
independently from the hardware implementation; therefore, one MACC corresponds to
two FLOPs. The computational complexity estimation procedure adopts the conventions
and the results discussed in [60].

6.2. Methodology

To compare BP, PEPITA and MEMPEPITA, LLMs named DistilBERT, GPT-3 Small
and AlexaTM were chosen, as they represent respectively encoder-only, decoder-only
and encoder-decoder architecture. The quantitative details for each them are reported
in Table 2. To estimate computational complexity, as described in [60], the transformer’s
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topology was decomposed into five main blocks: Embedding Layer (EL), Attention Block
(AB), Feed-Forward Network (FFN), Layer Normalization and Softmax (LNS). For each of
them, MACCs and FLOPs were computed for the forward pass, the backward pass and
the weights update. The total complexity is the sum of the complexity of the operations
required by the blocks. Then, the workload of a certain learning procedure was estimated
by adding all the macro operations involved in it as described in Table 1. Regarding the
memory, activations for BP and PEPITA were calculated as the sum of the activations of all
layers. In the case of MEMPEPITA, instead, the activations were the maximum value of the
sum of the activation buffers of two consecutive layers and of the largest activation buffer
between these two layers. Activations have been considered to be integer 8bits numbers
(INT8) and have been measured in Megabytes (MB). As the input to the models has not a
fixed dimension, the analysis has been conducted on values of nctx, the number of tokens in
the input context, between 1 to 2048. For AlexaTM, there are two distinct token sequences,
which are in input, respectively, to the encoder and to the decoder. The nctx relative to the
encoder is assumed to be fixed and equal to 100, while the nctx of the decoder can vary
between 1 and 2048. Varying the encoder nctx, instead of the decoder’s one, does not affect
the final results. For the analysis, a batch size of 1 has been considered. With increasing
batch sizes, complexity and activations would scale linearly. The complexity and memory
calculations are available in the github repository [61]. For further details concerning the
complexity estimation procedure, refer to [60].

Table 2. Description of models analysed.

Model Enc Dec # of Heads dmodel # of Parameters

GPT-3 Small 0 12 12 768 125 M

distilBERT 6 0 12 768 66 M

AlexaTM 46 32 32 4096 19.75 B
Enc and Dec indicate respectively the number of encoder and decoder layers. dmodel is the length of the
embeddings.

6.3. Results

The results are reported in Figure 1. Plotted trends are consistent throughout the
three different models. For low values of nctx, MEMPEPITA is the most complex in terms
of MACCs and FLOPs, followed by PEPITA and BP which share similar values. About
Distilbert, PEPITA is more complex than BP for nctx less than ∼680, about MACCs, and
∼280, about FLOPs. Considering GPT-3 Small, PEPITA is more complex than BP for nctx
less than ∼600, regarding MACCs, while BP FLOPs are always greater than PEPITA’s.
About AlexaTM, BP achieves higher complexity than PEPITA in both MACCs and FLOPs.
For mid values of nctx MEMPEPITA is the most complex followed by BP and PEPITA,
while for higher values BP exceeds substantially MEMPEPITA. In particular, BP exceeds
MEMPEPITA for nctx greater than: 1340 for MACCs and 1170 for FLOPs in DistilBERT; 1260
for MACCs and 1070 for FLOPs in GPT-3 Small; 2969 for MACCs and 1344 for FLOPs in
AlexaTM. From Figure 1 about MACCs and FLOPs, BP has a higher second derivative w.r.t.
nctx when compared to PEPITA and MEMPEPITA which seem to share the same complexity.
About memory, for the three models, BP requires the largest amount of activations with
PEPITA falling slightly behind. On the other hand, MEMPEPITA requires significantly less
memory than BP and PEPITA. The percentage variations in the memory and computational
complexity of PEPITA and MEMPEPITA w.r.t. BP for different values of nctx and for the
different models are reported in Table 3. MEMPEPITA reduces the activations memory,
depending on nctx, from 51% to 59% on DistilBERT, from 62% to 67% on GPT-3 Small
and by 94% on AlexaTM. Memory reductions by PEPITA are marginal for low values
of nctx and they increase with larger values up to 16% for nctx = 2048. Computational
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complexity is increased by PEPITA and MEMPEPITA for low number of tokens in context
and it reduces abruptly with growing values of nctx. In DistilBERT and GPT-3 Small, when
nctx = 2048 PEPITA reduces overall computational workload by 50% and MEMPEPITA by
approximately one third. In AlexaTM, PEPITA reduces MACCs by 14% and FLOPs by 30%,
while MEMPEPITA increases MACCs by 14% and reduces FLOPs by 6%. Also PEPITA
accounts for approximately a third less MACCs/FLOPs compared to MEMPEPITA.

∇xL = ∇sL


s1 · (1 − s1) . . . −sn · s1

...
. . .

...

−s1 · sn . . . sn · (1 − sn)

 (5)

Figure 1. Computational and Memory complexity of the three LLMs analysed. Subfigures (a–i) depict
respectively the MACCs, FLOPs and activations’ footprint of DistilBert, GPT-3 Small and AlexaTM
when trained with BP, PEP and MPEP.
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Table 3. Variations w.r.t. BP.

Model DistilBERT GPT-3 Small AlexaTM

Metric MACCs FLOPs ACT MACCs FLOPs ACT MACCs FLOPs ACT

nctx PEP MPE PEP MPE PEP MPE PEP MPE PEP MPE PEP MPE PEP MPE PEP MPE PEP MPE

32 17% 56% 3% 37% -0.3% −51% 15% 52% −0.5% 33% −0.3% −62% −2% 31% −20% 7% −0.2% −94%

128 16% 55% 2% 36% −1% −52% 13% 51% −1% 32% −1% −62% −1% 32% −20% 6% −0.2% −94%

512 6% 42% −5% 26% −4% −54% 3% 38% −8% 22% −4% −63% −1% 31% −21% 5% −0.6% −94%

2048 −48% −29% −50% −32% −16% −59% −50% −32% −53% −36% −16% −67% −14% 14% −30% −6% −2.5% −94%

PEP stands for PEPITA, MPE stands for MEMPEPITA, ACT stands for ACTIVATIONS.

7. Discussion

Section 6 explained that forward learning algorithms are capable to reduce activations
memory and complexity for large number of tokens in context. This is due to the BP’s
complexity that grows as O(n3

ctx), while PEPITA’s and MEMPEPITA’s as O(n2
ctx). An

ablation study was conducted on the simulations and revealed that the different growth
rates are due to the backward pass of the gradient associated to the softmax function
in the Attention block, which requires n3

ctxh MACCs with h number of heads. More

in details, given a vector x =
[

x1 x2 . . . xnctx

]
and indicating its softmax as s =[

s1 s2 . . . snctx

]
, the backward pass is formulated by (5) and its complexity is n2

ctx

MACCs. In the attention layer, this operation is performed for each of the nctx tokens
and for each head; hence, resulting in the complexity previously discussed. Furthermore,
PEPITA’s lower FLOPs complexity w.r.t. to BP for low values of nctx hints at a computational
imbalance between the forward and the backward pass. The main reason for this difference
is the differentiation procedures involved at some layers. The ones that contribute the most
are the derivative at the layernorm layer and at the attention block. Such disparity does not
emerge from the sole analysis of MACCs, as most of the computations considered are not
traceable to matrix multiplications. MEMPEPITA consistently showed to be approximately
one third more complex than PEPITA. As illustrated in Table 1, indeed, the former requires
three forward passes and one weight update, while the latter only two forward passes and
one weight update. MEMPEPITA’s ability to save activations memory footprint compared
to BP and PEPITA, seems to perform similarly in the DistilBERT and GPT-3 Small scenarios
achieving about two thirds reductions, whereas in the case of AlexaTM they amount to
the staggering value of 94%. This corresponds to a trend already mentioned in [22]. With
the growing number of layers MEMPEPITA’s reductions are emphasized as its activations
memory requirements remain practically unaffected, while the ones of BP and PEPITA
increase accordingly. As a matter of fact, DistilBERT and GPT-3 Small are characterized by
the same number of encoder/decoder blocks, i.e., 12, while AlexaTM has got far more, i.e.,
46 encoder blocks and 32 decoder blocks.

8. Applicability to Consumer Edge Devices

Over the last decade, supervised deep learning has proliferated across consumer edge
devices, such as embedded and mobile processors, making them one of the preferred
targets for supervised AI model deployment [62,63]. To investigate the applicability of
ODL workloads to consumer edge devices, the memory and latency constraints for such
consumer hardware shall be met. To quantify the memory requirements, activations are
added to the model’s parameters and both are assumed to be integer 8 bits (INT8). To
compute latency, MACCs associated to a certain training procedure, are multiplied by
the cycles needed to run each MACC and by the processor’s frequency. FLOPs have
not been taken into account, as MACCs are dominant and represent the most compute-
intensive part of the workload. The analysis is performed for nctx = 1024, which are
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approximately 800 words (equivalent to a five-minutes conversation) and a batch size of 1.
More specifically, latency was calculated on DistilBERT and GPT-3 Small using the specifics
of the ARM1176JZF-S processor featured by Raspberry Pi 1 and on AlexaTM considering
Snapdragon 8 Gen 2 processor. The ARM1176JZF-S processor is operating at 700 MHz and
is reported to spend 1 cycles per single precision MACC. This convention will be adopted,
even if parameters and activations have been considered to be quantized INT8. On the
other hand, Snapdragon 8 Gen 2 supports four CPU clusters, for a total of 8 cores (ARM
Cortex-X3 3.2 GHz, 2 ARM Cortex-A715 2.8 GHz, 2 ARM Cortex-A710 2.8 GHz and 3 ARM
Cortex-A510 2 GHz), making the latency estimation non-trivial. For computing the latency,
it is assumed that the every core can perform simultaneously 1 MACC per cycle, resulting
in 8 MACCs per cycle. The reference frequency corresponds to the lowest one, i.e., 2 GHz.
In Figure 2, the results of the latency estimation are reported in minutes. About DistilBERT,
PEPITA spends 7 min to perform a single weight update on one sample, while BP 8 min
and MEMPEPITA 9.5 min. Similarly, in GPT-3 Small PEPITA takes 13 min compared to
15.5 and 17.5 min used by BP and MEMPEPITA respectively. For AlexaTM, PEPITA spends
32.5 min, BP 34 and MEMPEPITA 43.5. The latency proportions between the learning
procedures reflect the trends already identified during the computational complexity
analysis, being latency linearly proportional to the latter. In the case of very large models
such as AlexaTM, however, the additional latency introduced by MEMPEPITA w.r.t. BP
can be as much as 10 min, which in some scenarios can be a limiting factor. However,
considering that memory access operations were not taken into account, MEMPEPITA’s
ability to avoid activations storage could lead to better performances. Regarding RAM,
Figure 3 reports the memory footprint of the different learning procedures on the three
LLMs evidencing the parameters’ and the activations’ contributions. For DistilBERT and
GPT-3 Small, MEMPEPITA’s activations reductions are critical to fit the Meta Training and
Inference Accelerator (MTIA) [64] on-chip RAM requirements (128 MB). For AlexaTM,
due to the large number of parameters (19.75 billions), activations savings introduced by
MEMPEPITA do not affect total memory footprint as much as in the previous cases. All
three training procedures fit the 24 GB Snapdragon 8 Gen 2 SDRAM.

Figure 2. Latency estimation on the three LLMs.

Figure 3. Memory footprint estimation on the three LLMs.
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9. Conclusions and Future Works

This paper compared memory and computational complexity for “Forward-only” ODL
learning workloads on three different Transformer models and against BP. For low number
of tokens in context, PEPITA increases marginally or reduces substantially, depending on
the model, arithmetic operations. On the other hand, for large number of tokens in context,
PEPITA reduces drastically the computational complexity by 30% to 50%. MEMPEPITA
increases consistently PEPITA’s complexity by one third. About memory, PEPITA and BP
require a similar amount of activations memory, while MEMPEPITA reduces it by 50% to
94% with its effect being more predominant for architectures with a long sequence of blocks.
The study on the applicability on existing hardware shows that MEMPEPITA’s activations
reductions result to be critical for fitting the tight memory requirements of edge devices.

Future work will be aimed to prove implementations of PEPITA and MEMPEPITA
on Transformers and will analyze its accuracy on different NLP datasets. PEPITA is not
capable to support learning for NN topologies with more than three to fours layers [65].
Hence, the underlying learning mechanism of PEPITA should be closely inspected and
appropriate adjustments to the algorithm should be made to improve applicability to deep
NN. Also orthogonal memory reduction methods, like quantization and pruning shall be
further investigated for PEPITA. The time-intensive nature of parameter update operations
in LLMs remains a substantial challenge, especially when considering applications on
consumer devices. Consequently, it is essential to investigate methods to decrease the
duration of these updates and the associated memory consumption.
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