
Citation: Zhu, X.; Jia, Z.; Pang, X.;

Zhao, S. Joint Optimization of Task

Caching and Computation Offloading

for Multiuser Multitasking in Mobile

Edge Computing. Electronics 2024, 13,

389. https://doi.org/10.3390/

electronics13020389

Academic Editors: Sahraoui Dhelim,

Nyothiri Aung and Tao Zhu

Received: 12 December 2023

Revised: 11 January 2024

Accepted: 13 January 2024

Published: 17 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Joint Optimization of Task Caching and Computation Offloading
for Multiuser Multitasking in Mobile Edge Computing
Xintong Zhu, Zongpu Jia, Xiaoyan Pang and Shan Zhao *

School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China;
212109020009@home.hpu.edu.cn (X.Z.)
* Correspondence: zhaoshan@hpu.edu.cn

Abstract: Mobile edge computing extends the capabilities of the cloud to the edge to meet the
latency performance required by new types of applications. Task caching reduces network energy
consumption by caching task applications and associated databases in advance on edge devices.
However, determining an effective caching strategy is crucial since users generate numerous repetitive
tasks, but edge devices and storage resources are limited. We aimed to address the problem of highly
coupled decision variables in dynamic task caching and computational offloading for multiuser
multitasking in mobile edge computing systems. This paper presents a joint computation and
caching framework with the aim of minimizing delays and energy expenditure for mobile users and
transforming the problem into a form of reinforcement learning. Based on this, an improved deep
reinforcement learning algorithm, P-DDPG, is proposed to achieve efficient computation offloading
and task caching decisions for mobile users. The algorithm integrates a deep and deterministic
policy grading and a prioritized empirical replay mechanism to reduce system costs. The simulations
show that the designed algorithm performs better in terms of task latencies and lower computing
power consumption.

Keywords: deep reinforcement learning; task caching; computational offloading; mobile edge computing

1. Introduction

The emergence of more compute-intensive mobile applications has put great pressure
on current mobile network transmission [1]. Excessive latency and insufficient bandwidth
are the problems that mobile edge computing (MEC), a novel computing paradigm, aims
to address. It involves transferring computing and storage resources from mobile devices
to the network edge, which is closer to the mobile user in terms of analyzing and generat-
ing knowledge. This approach overcomes the limitations of terminal capacity, lowering
transmission latency and overhead and improving the quality of service (QoS) [2].

The success of computation offloading in MEC is heavily reliant on the efficient man-
agement of the limited computing, communication resources, and energy in the MEC
system. Equipping MEC servers with base stations (BS) enables direct communication be-
tween devices to meet user demands for computing power, thereby reducing data transfer
delays and battery power consumption [3]. However, MEC servers have limited computa-
tional resources, which still makes it difficult to meet the needs of users in terms of latency
and energy consumption in communication environments with unstable transmission rates.
Therefore, task caching techniques have been proposed. The limited cache space of MEC
servers also affects users’ offloading strategies and efficient processing of tasks. It is vital
that the required services are properly cached on the MEC servers. Additionally, the mis-
match between the computational and caching resources of MECs can further exacerbate
the resource wastage at the edge, and collaboration is needed to make the best use of
resources [4].

Electronics 2024, 13, 389. https://doi.org/10.3390/electronics13020389 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13020389
https://doi.org/10.3390/electronics13020389
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13020389
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13020389?type=check_update&version=3


Electronics 2024, 13, 389 2 of 18

With the development of artificial intelligence, combining MEC networks with deep
reinforcement learning (DRL) can work efficiently in non-linear and dynamic environ-
ments [5]. Through interactive learning from repeated experiences in a given environment,
DRL can achieve long-term goals without prior knowledge and utilize its unique potential
to dynamically select strategies in time-varying systems [6]. It solves optimization problems
that are difficult to handle by traditional machine learning methods. And ultimately, it
outputs the best long-term results. Deep deterministic policy gradients (DDPG) is a DRL
algorithm for continuous action space [7]. It utilizes action-value functions to optimize
policies, uses an auxiliary deterministic policy network for action selection, and improves
the stability of the algorithm using empirical replay and goal networks. Compared to the
conventional DRL algorithm, the DDPG algorithm utilizes a hybrid of policy-based and
value-based techniques, and it performs better in dealing with the reinforcement learning
problem in the continuous action space. By combining multiple algorithms, it can fully
exploit the advantages of the deep neural network and is more suitable for solving the
high-dimensional task offloading and allocation problem, especially when dealing with
large-scale scenarios.

This study examines the challenge of jointly optimizing task caching and computation
offloading in MEC systems with limited resources and multiple users and tasks. Initially, we
formulate an optimization problem by developing a framework that integrates computation
and caching. Subsequently, we focus on minimizing the execution delay and energy
consumption of tasks performed by mobile users, taking into account both computation
and caching aspects. Finally, we transform the formulated problem into a reinforcement
learning problem and utilize the P-DDPG algorithm to attain the best decision regarding
computation offloading and task caching. The key contributions of this study are as follows:

1. A new framework is designed for task caching and computation offloading in dynamic
MEC environments by handling large-scale user requests under resource constraints.
The combined optimization challenge of offloading computations and caching tasks
is framed as a mixed-integer non-linear programming (MINLP) issue to reduce the
system’s average delay and power usage.

2. A P-DDPG algorithm is suggested for the combined optimization challenge of task
caching and computational offloading, aiming to identify the most effective strategies
for caching and offloading. Integrating the priority experience replay (PER) system
disrupts the link between training experiences and enhances the accessibility of
the experience replay buffer, thus boosting both the efficiency of training and the
consistency of outcomes.

The subsequent sections of this document are structured in this manner: Section 2 out-
lines the associated research, Section 3 introduces the system model and problem formula-
tion, Section 4 details the P-DDPG algorithm, Section 5 performs simulation experiments
and analysis, and 6 provides the conclusion of this paper.

2. Related Work

Compute offloading aims to reduce compute, cache, and communication loads, effec-
tively reducing latency and power consumption for compute-intensive tasks [8]. Mobile
edge caching is a widely used internet technique that is a new method for alleviating
network traffic by avoiding unnecessary, redundant processing during data transmis-
sion. Therefore, it improves the utilization of network resources and effectively reduces
computational latency, energy consumption, and bandwidth costs.

The researchers in [9] investigated the problem of delay minimization in multiuser
time division multiple access MEC offloading systems, which minimizes the weighted sum
of all mobile device latency through the cooperation of cloud computing and MEC. The
researchers in [10] encouraged a heuristic sub-optimal cache placement to implement an
optimal caching policy using the branch bounding method to minimize communication
and computation weights as well as energy consumption. In articles [11–13], data caching
and computation offloading are jointly considered, and caching is employed to store



Electronics 2024, 13, 389 3 of 18

computation results of frequently used tasks, which helps to avoid the overheads associated
with repetitive processing, provide better quality of service to users, and reduce data
transmission. The authors in [14] proposed a method based on a long-term short-term
memory (LSTM) network-based approach to predict the prevalence of tasks and, based on
this approach, the joint optimality task unload decisions, compute resource allocation, and
cache decisions to maximize long-term gains.

The study proposes task caching and computation offloading for static users in dis-
tributed MEC networks. However, static caching policies cannot maintain the high reusabil-
ity of cached data as users’ demands for computation tasks change dynamically over
time [15]. Several studies have been conducted using DRL in MEC to solve complex opti-
mization problems and delay-sensitive problems in time-varying systems. This involves
addressing computational load and task caching and combines reinforcement learning with
deep convolutional neural networks to improve algorithmic performance through caching
and offloading tasks. DQN is a deep Q-network algorithm that employs a deep neural
network to estimate the value function of an action [16]. Through continuous training
and optimization of the network, an optimal action strategy can be derived, resulting in
improved cumulative returns. The researchers in [17] used the DQN algorithm to pro-
vide an in-depth consideration of the system latency and computational cost of the edge
server. The decision is made to minimize system latency and ensure that the total com-
putational cost remains within the vehicle’s budget. The authors in [18] recommended a
multi-intelligence DQN algorithm based on predictive popularity. The algorithm optimizes
computational offloading, resource allocation, and cache placement by reducing the overall
delay in offloading and network resource utilization. The authors in [19] considered the
computational offloading issues into optimization issues in terms of effort and time, and
the optimal cost strategy is found using deep Q-network algorithms in reinforcement
learning. Traditional DRL-based mechanisms can accomplish offloading, but their perfor-
mance during training is not satisfactory. DDQN is an augmented learning algorithm that
efficiently approximates the Q-value function using deep neural networks [20]. It requires
no prior knowledge of network dynamics and can be used instead of DQN to learn optimal
computational offload policies. The training speed is increased, and good performance is
achieved by avoiding overestimation of the algorithm. The authors in [21] explored the
combined enhancement of service caching, resource distribution, and partial computation
offloading in MEC systems, utilizing the DDQN method amidst demand unpredictability.
The goal is to reduce the aggregate weighted cost of delay and energy expenses. The
authors in [22] introduced a DDQN offloading algorithm aimed at improving the task’s
offloading decision-making process. The algorithm is designed to reduce the overall delay
and waiting period for mobile vehicle tasks, enhancing the management of computationally
demanding tasks for dynamic and effective offloading choices. In their work, the authors
in [23] suggested a DDPG-based algorithm, taking into account computation offloading,
service caching, and resource distribution, to reduce task burden on mobile users by jointly
exploiting the ES’s computational and caching capabilities. Through the incorporation
of the DDPG algorithm, the researchers in [7] developed a combined computational and
caching system aimed at reducing energy expenses in telematics situations needing mobile
network assistance from network providers.

However, there is less research on caching and offloading of multitasks in dynamic
edge environments and changing resource states. Therefore, this paper looks at efficiently
solving the online offloading issue for multitasks in time-varying systems with joint task
caching to reduce redundant computations and transmissions between mobile equipment
and MEC servers. During task execution, multiple mobile devices can share the compu-
tation and results to achieve the optimal policy. The proposed P-DDPG algorithm uses
the accumulated training experience to guide the retraining, which greatly accelerates the
learning process of executing different offloading tasks, enhances the effectiveness of the
offloading policy, and reduces the overhead of the decision-making process.



Electronics 2024, 13, 389 4 of 18

3. System Model and Problem Formulation

The text is a description of a multiuser, multitask MEC system, which is a cache-and-
offload model. Definitions of the symbols used in the system are given in Table 1.

Table 1. Symbol definition.

Symbol Definition

M Number of users.

K Number of tasks.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 18 
 

 

and MEC servers. During task execution, multiple mobile devices can share the 
computation and results to achieve the optimal policy. The proposed P-DDPG algorithm 
uses the accumulated training experience to guide the retraining, which greatly 
accelerates the learning process of executing different offloading tasks, enhances the 
effectiveness of the offloading policy, and reduces the overhead of the decision-making 
process. 

3. System Model and Problem Formulation 
The text is a description of a multiuser, multitask MEC system, which is a cache-and-

offload model. Definitions of the symbols used in the system are given in Table 1. 

Table 1. Symbol definition. 

Symbol Definition 

M  Number of users. 

K  Number of tasks. 

,i tϒ  Upstream transmission rate of users. 

ip  Transmission power of users. 

tP  Total data upstream rate. 

Β  Wireless transmission bandwidth. 

loc
if  The number of CPU cycles per user time. 

,i jv  The amount of data downloaded by tasks for offloading. 

,i jb  CPU cycles needed for task execution. 

,i jτ  Task deadline. 

.i jd  Task offloading decision. 

.i jc  Caching decision of tasks. 

moF  Total computing resources of MEC. 

coF  Cache size of MEC. 

2σ  Background noise power. 

nς  Energy coefficient of mobile devices. 

2h  Channel gain. 

E
iα  Weight of energy consumption. 

T
iβ  Weight of time consumption. 

,
loc
i jΤ  Execution time of tasks offloaded locally. 

,
e
i jT  Execution time of tasks offloaded to MEC. 

,
loc
i jE  Energy consumption of tasks offloaded locally. 

,
edge
i jΕ  Energy consumption of tasks executed on MEC. 

,i jE  Total energy consumption for task completion. 

i,t Upstream transmission rate of users.

pi Transmission power of users.

Pt Total data upstream rate.

B Wireless transmission bandwidth.

f loc
i The number of CPU cycles per user time.

vi,j The amount of data downloaded by tasks for offloading.

bi,j CPU cycles needed for task execution.

τi,j Task deadline.

di,j Task offloading decision.

ci,j Caching decision of tasks.

Fmo Total computing resources of MEC.

Fco Cache size of MEC.

σ2 Background noise power.

ςn Energy coefficient of mobile devices.

h2 Channel gain.

αE
i Weight of energy consumption.

βT
i Weight of time consumption.

Tloc
i,j Execution time of tasks offloaded locally.

Te
i,j Execution time of tasks offloaded to MEC.

Eloc
i,j Energy consumption of tasks offloaded locally.

Eedge
i,j Energy consumption of tasks executed on MEC.

Ei,j Total energy consumption for task completion.

Ti,j Total delay for task completion.

Si,j Total computing cost for task completion.

3.1. Network Model

Figure 1 shows the MEC system model, which comprises a MEC server and M mobile
users, each containing k tasks. Users have a wireless connection to the MEC, while the MEC
server has a fiber optic connection to the cloud server. The base station is directly connected
to the MEC server to provide computing services and store data for user devices such as
mobile phones and virtual realities (VRs) devices [24]. The specific system operation is as
follows: the set of users is M = {1, 2, . . . , M}, and the set of tasks is K = {1, 2, . . . , K}. The
system can be completed in a sequence of time slots of the same length τ,τ = {1, 2, . . . , t}.
At the start of each period, each mobile user starts request tasks, and each user’s need
for a computational task can be expressed in the form of a tuple

{
vi,j, bi,j, τi,j

}
, where vi,j

indicates whether the user has completed the offloading task, bi,j indicates the number of
CPU cycles that can be executed per unit time, and τi,j denotes the deadline. Each task
must satisfy the implementation delay and power consumption requirements and must be
completed before the end of the current time slot. Each user completes the task through
distributed computing, i.e., each user can process in parallel on multiple devices at the



Electronics 2024, 13, 389 5 of 18

same time; some tasks can be processed locally, and others are computed and processed
by MECs.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 18 
 

 

,i jT  Total delay for task completion. 

,i jS  Total computing cost for task completion. 

3.1. Network Model 
Figure 1 shows the MEC system model, which comprises a MEC server and M mobile 

users, each containing k tasks. Users have a wireless connection to the MEC, while the 
MEC server has a fiber optic connection to the cloud server. The base station is directly 
connected to the MEC server to provide computing services and store data for user 
devices such as mobile phones and virtual realities (VRs) devices [24]. The specific system 
operation is as follows: the set of users is { }1,2,...,M M=  , and the set of tasks is 

{ }1,2,...,KK = . The system can be completed in a sequence of time slots of the same length
τ , { }1, 2,..., tτ = . At the start of each period, each mobile user starts request tasks, and each 

user’s need for a computational task can be expressed in the form of a tuple{ }, , ,, ,i j i j i jv b τ , 
where ,i jv  indicates whether the user has completed the offloading task, ,i jb  indicates 
the number of CPU cycles that can be executed per unit time, and ,i jτ   denotes the 
deadline. Each task must satisfy the implementation delay and power consumption 
requirements and must be completed before the end of the current time slot. Each user 
completes the task through distributed computing, i.e., each user can process in parallel 
on multiple devices at the same time; some tasks can be processed locally, and others are 
computed and processed by MECs. 

 
Figure 1. System model of MEC network. 

3.2. Communication Model 
Assuming that the user and the edge device are communicating via orthogonal 

frequency division multiple access (OFDMA) [25], the total bandwidth required by all the 
users is B   MHz. To maximize the utilization of the wireless bandwidth, orthogonal 
bandwidths B  are allocated to each user based on the effect of the bandwidth on the 
system overhead. This prevents interference between two users on orthogonal channels. 
Thus, the communication rate between users and the MEC is given by Shannon’s formula: 

2
,

, 2 2log 1 i i t
i t

p h
σ

 
ϒ = Β +  

 
, (1) 

  

Figure 1. System model of MEC network.

3.2. Communication Model

Assuming that the user and the edge device are communicating via orthogonal fre-
quency division multiple access (OFDMA) [25], the total bandwidth required by all the
users is B MHz. To maximize the utilization of the wireless bandwidth, orthogonal band-
widths B are allocated to each user based on the effect of the bandwidth on the system
overhead. This prevents interference between two users on orthogonal channels. Thus, the
communication rate between users and the MEC is given by Shannon’s formula:

Electronics 2024, 13, x FOR PEER REVIEW 4 of 18 
 

 

and MEC servers. During task execution, multiple mobile devices can share the 
computation and results to achieve the optimal policy. The proposed P-DDPG algorithm 
uses the accumulated training experience to guide the retraining, which greatly 
accelerates the learning process of executing different offloading tasks, enhances the 
effectiveness of the offloading policy, and reduces the overhead of the decision-making 
process. 

3. System Model and Problem Formulation 
The text is a description of a multiuser, multitask MEC system, which is a cache-and-

offload model. Definitions of the symbols used in the system are given in Table 1. 

Table 1. Symbol definition. 

Symbol Definition 

M  Number of users. 

K  Number of tasks. 

,i tϒ  Upstream transmission rate of users. 

ip  Transmission power of users. 

tP  Total data upstream rate. 

Β  Wireless transmission bandwidth. 

loc
if  The number of CPU cycles per user time. 

,i jv  The amount of data downloaded by tasks for offloading. 

,i jb  CPU cycles needed for task execution. 

,i jτ  Task deadline. 

.i jd  Task offloading decision. 

.i jc  Caching decision of tasks. 

moF  Total computing resources of MEC. 

coF  Cache size of MEC. 

2σ  Background noise power. 

nς  Energy coefficient of mobile devices. 

2h  Channel gain. 

E
iα  Weight of energy consumption. 

T
iβ  Weight of time consumption. 

,
loc
i jΤ  Execution time of tasks offloaded locally. 

,
e
i jT  Execution time of tasks offloaded to MEC. 

,
loc
i jE  Energy consumption of tasks offloaded locally. 

,
edge
i jΕ  Energy consumption of tasks executed on MEC. 

,i jE  Total energy consumption for task completion. 

i,t = B log2

(
1 +

pih2
i,t

σ2

)
, (1)

3.3. Computation Model

In order to make sure that the results are complete, it is assumed that user-generated
tasks can be computed sequentially, either locally or solely by the MEC server. Let a
variable di,j denote the computational offloading decision variable for user i, di.j ∈ {0, 1}.
Specifically, if di,j = 0, the ith user chooses local execution; if di,j = 1, the ith user offloads
the task to the MEC server over the wireless connection. The computational offloading of
all users is represented by the binary variable d =

{
d1,1, d1,2, d1,3, . . . , di,j

}
.

1. Local computation model;

During local execution, user M executes the computational task on their own CPU.
f loc
i denotes the computational power of the ith user in CPU cycles per second. Then, the

execution delay depends on each one’s computational power, so the local computation
time of the task is:

Tloc
i,j =

bi,j

f loc
i

, (2)

Assuming that all mobile equipment has the same computing capacity, the energy
consumption required for the computation process is expressed as:

Eloc
i,j = ςnbi,j

(
f loc
i

)2
, (3)



Electronics 2024, 13, 389 6 of 18

where the energy coefficient ςn = 10−27[26,27] of the mobile device is determined by the
slice structure.

2. MEC offloading model;

The MEC server mainly performs three steps: data transmission, task processing, and
receiving the result to execute the task. When di,j = 1, the ith user must first access the BS in
the area via the wireless network and transmit the data to the MEC server. After this, the
MEC server assigns computing resources to execute the task and returns the task execution
result to the mobile. Therefore, the transmission and task execution delay of mobile user i
in time slot t is as follows:

To f f
i,j =

vi,j

Electronics 2024, 13, x FOR PEER REVIEW 4 of 18 
 

 

and MEC servers. During task execution, multiple mobile devices can share the 
computation and results to achieve the optimal policy. The proposed P-DDPG algorithm 
uses the accumulated training experience to guide the retraining, which greatly 
accelerates the learning process of executing different offloading tasks, enhances the 
effectiveness of the offloading policy, and reduces the overhead of the decision-making 
process. 

3. System Model and Problem Formulation 
The text is a description of a multiuser, multitask MEC system, which is a cache-and-

offload model. Definitions of the symbols used in the system are given in Table 1. 

Table 1. Symbol definition. 

Symbol Definition 

M  Number of users. 

K  Number of tasks. 

,i tϒ  Upstream transmission rate of users. 

ip  Transmission power of users. 

tP  Total data upstream rate. 

Β  Wireless transmission bandwidth. 

loc
if  The number of CPU cycles per user time. 

,i jv  The amount of data downloaded by tasks for offloading. 

,i jb  CPU cycles needed for task execution. 

,i jτ  Task deadline. 

.i jd  Task offloading decision. 

.i jc  Caching decision of tasks. 

moF  Total computing resources of MEC. 

coF  Cache size of MEC. 

2σ  Background noise power. 

nς  Energy coefficient of mobile devices. 

2h  Channel gain. 

E
iα  Weight of energy consumption. 

T
iβ  Weight of time consumption. 

,
loc
i jΤ  Execution time of tasks offloaded locally. 

,
e
i jT  Execution time of tasks offloaded to MEC. 

,
loc
i jE  Energy consumption of tasks offloaded locally. 

,
edge
i jΕ  Energy consumption of tasks executed on MEC. 

,i jE  Total energy consumption for task completion. 

i,t
, (4)

Texec
i,j =

bi,j

f edge
i

, (5)

The full delay and energy consumed by the mobile user i when trying to perform a
task on the MEC server can be expressed as follows:

Tedge
i,j =

vi,j

Electronics 2024, 13, x FOR PEER REVIEW 4 of 18 
 

 

and MEC servers. During task execution, multiple mobile devices can share the 
computation and results to achieve the optimal policy. The proposed P-DDPG algorithm 
uses the accumulated training experience to guide the retraining, which greatly 
accelerates the learning process of executing different offloading tasks, enhances the 
effectiveness of the offloading policy, and reduces the overhead of the decision-making 
process. 

3. System Model and Problem Formulation 
The text is a description of a multiuser, multitask MEC system, which is a cache-and-

offload model. Definitions of the symbols used in the system are given in Table 1. 

Table 1. Symbol definition. 

Symbol Definition 

M  Number of users. 

K  Number of tasks. 

,i tϒ  Upstream transmission rate of users. 

ip  Transmission power of users. 

tP  Total data upstream rate. 

Β  Wireless transmission bandwidth. 

loc
if  The number of CPU cycles per user time. 

,i jv  The amount of data downloaded by tasks for offloading. 

,i jb  CPU cycles needed for task execution. 

,i jτ  Task deadline. 

.i jd  Task offloading decision. 

.i jc  Caching decision of tasks. 

moF  Total computing resources of MEC. 

coF  Cache size of MEC. 

2σ  Background noise power. 

nς  Energy coefficient of mobile devices. 

2h  Channel gain. 

E
iα  Weight of energy consumption. 

T
iβ  Weight of time consumption. 

,
loc
i jΤ  Execution time of tasks offloaded locally. 

,
e
i jT  Execution time of tasks offloaded to MEC. 

,
loc
i jE  Energy consumption of tasks offloaded locally. 

,
edge
i jΕ  Energy consumption of tasks executed on MEC. 

,i jE  Total energy consumption for task completion. 

i,t
+

bi,j

f edge
i

, (6)

Eedge
i,j = Eo f f

i,j =
pivi,j

Electronics 2024, 13, x FOR PEER REVIEW 4 of 18 
 

 

and MEC servers. During task execution, multiple mobile devices can share the 
computation and results to achieve the optimal policy. The proposed P-DDPG algorithm 
uses the accumulated training experience to guide the retraining, which greatly 
accelerates the learning process of executing different offloading tasks, enhances the 
effectiveness of the offloading policy, and reduces the overhead of the decision-making 
process. 

3. System Model and Problem Formulation 
The text is a description of a multiuser, multitask MEC system, which is a cache-and-

offload model. Definitions of the symbols used in the system are given in Table 1. 

Table 1. Symbol definition. 

Symbol Definition 

M  Number of users. 

K  Number of tasks. 

,i tϒ  Upstream transmission rate of users. 

ip  Transmission power of users. 

tP  Total data upstream rate. 

Β  Wireless transmission bandwidth. 

loc
if  The number of CPU cycles per user time. 

,i jv  The amount of data downloaded by tasks for offloading. 

,i jb  CPU cycles needed for task execution. 

,i jτ  Task deadline. 

.i jd  Task offloading decision. 

.i jc  Caching decision of tasks. 

moF  Total computing resources of MEC. 

coF  Cache size of MEC. 

2σ  Background noise power. 

nς  Energy coefficient of mobile devices. 

2h  Channel gain. 

E
iα  Weight of energy consumption. 

T
iβ  Weight of time consumption. 

,
loc
i jΤ  Execution time of tasks offloaded locally. 

,
e
i jT  Execution time of tasks offloaded to MEC. 

,
loc
i jE  Energy consumption of tasks offloaded locally. 

,
edge
i jΕ  Energy consumption of tasks executed on MEC. 

,i jE  Total energy consumption for task completion. 

i,j
, (7)

The computing power of the MEC server is allocated to the user in proportion to
the computing power of the mobile device. Meanwhile, because the size of the results is
much smaller than the size of the input data, the delay in the transmission of the results is
negligible [18,21].

3.4. Caching Model

In a multiuser MEC scenario, the same type of mobile users will repeatedly execute the
same tasks within a short period, so task caching techniques are needed to enhance the ser-
vice efficiency of computing devices. Equipping the MEC server with a limited cache space
to cache the raw counts and codes of all applications can lead to better data sharing and
computation during task execution and reduce task latency and user energy consumption.

The caching mechanism during task computation is as follows: each mobile user
needs to offload and complete the task on the edge server; the MEC server first gives all
the relevant information of the task, such as relevant code, task request, and computation
information. Then, the MEC server can decide which task to cache; if the task is not cached,
the application and relevant code will be offloaded; if the task is cached, the programmer
will execute the computation task and return the result. Finally, the optimal caching policy
will be found for the task to be cached.

Let the binary variable ci,j ∈ {0, 1} represent the caching decision of mobile user i
for task j. ci,j = 0 indicates that task j of user i is not cached, while ci,j = 1 indicates that
task j of user i has been cached by the MEC server. Thus, the caching decision profile
C =

{
c1,1, c1,2, . . . , ci,j

}
can be obtained. If the input data of task j is already cached in

the MEC server when task j is computed, the corresponding data can be used in the next
time slot, and the task can be executed entirely on the server. In this way, cached tasks do
not need to be unloaded, there will be no latency in the system, there will be no energy
cost incurred by the user in transferring task-specific data to the server, and the user’s
experience will be significantly improved. However, since the MEC server has limited



Electronics 2024, 13, 389 7 of 18

storage capacity and cannot cache all tasks, the caching decision variables for tasks must
satisfy the following constraints.

N

∑
i=1

M

∑
j=1

ci,jvi,j ≤ Fco , ∀t ∈ τ , (8)

3.5. Problem Formulation

Since tasks that need to be offloaded are delay-sensitive and energy-consuming, the
aim of this research is to develop optimal caching policies and offloading policies for all
users’ tasks that minimize the weighted and users’ delay and energy consumption. The
computational delay and energy consumption for completing task j is expressed as:

Ti,j = ci,jTexec
i,j + (1− ci,j)[(1− di,j)Tloc

i,j + di,jT
edge
i,j ] , (9)

Ei,j = (1− ci,j)[(1− di,j)Eloc
i,j + di,jE

edge
i,j ] , (10)

Finally, combining the offloading and caching decision, the cost of the t time slot MEC
system is obtained as:

Si,j = αE
i Ei,j + βt

i Ti,j, (11)

where the parameters αE
i and βT

i represent the weights between energy and delay consump-
tion, and their values reflect how much the system favors energy and delay. Thus, the
problem can be formulated as:

P : min
D,C

M

∑
i=1

K

∑
j=1

αE
i Ei,j + βt

i Ti,j, (12a)

s.t. C1 :
M

∑
i=1

K

∑
j=1

di,jγi ≤ Pt, (12b)

C2 :
M

∑
i=1

K

∑
j=1

di,j f edge
i ≤ Fmo , (12c)

C3 :
M

∑
i=1

K

∑
j=1

ci,jvi,j ≤ Fco , (12d)

C4 : Ti,j ≤ τi,j, (12e)

C5 : di,j ≤ ci,j, (12f)

C6 : di,j ∈ {0, 1}, (12g)

C7 : ci,j ∈ {0, 1}, (12h)

Constraint C1 ensures that the allocated resources for all users do not exceed the
available bandwidth. Constraint C2 states that the computed tasks must not exceed the
maximum capacity of the MEC server’s computational resources. Constraint C3 is a
response to Equation (8), and it indicates that the full number of cached tasks must not
exceed the storage capacity of the MEC server. Constraint C4 requires each user to complete
their task within the current time slot. Constraint C5 prevents local computations from
being cached on the MEC server. Constraints C6 and C7 ensure that decisions to offload
and cache tasks are binary variables.

To find the minimum objective function P, it is important to make the optimal caching
decisions C and offloading decisions D for each time slot. Since the values of C and D are
binary, the action and state spaces of different user decisions will grow exponentially with
the increase in the number of feasible sequences and tasks. This problem is non-convex
and is NP-hard [5]. Furthermore, a noteworthy correlation exists between the task caching



Electronics 2024, 13, 389 8 of 18

strategy and the computational offloading strategy, which poses a challenge in achieving
an optimal solution to the given problem. In this case, it is challenging for traditional
decision-making algorithms, such as decentralized and heuristic algorithms, to find the
optimization objective in a specific time frame. A feasible approach to efficiently solve the
caching and offloading decision-making problem is to design a DRL method.

4. P-DDPG Algorithm

The optimization question is modeled as a Markov decision process (MDP) [28], which
defines the state space, action space, and rewards. The proposed algorithm, P-DDPG,
aims to minimize latency and energy consumption by finding the optimal caching and
offloading scheme.

4.1. Formulation of the Problem with DRL
4.1.1. State Space

The system state space s(t) is the basis for intelligence agents to make decisions and
assess long-term benefits, reflecting the intelligence agent’s perception of the environment,
including task data size, cache capacity, and computation. The state s(t) of the system in
time slot t is defined as follows:

s(t) =
{

X1,1(t), X1,2(t), . . . , Xi,j(t), I1,1(t), I1,2(t), . . . , Ii,j(t), Y1,1(t), Y1,2(t), . . . , Yi,j(t)
}

, (13)

where X(t) denotes the amount of computation for all tasks, I(t) denotes the data size of
the task, and Y(t) denotes the MEC cache capacity required by the task.

4.1.2. Action Space

For the observed environmental states, the intelligent body will generate a better
caching strategy for the task and an offload policy for computer tasks. Thus, the problem
to be solved in the action space is where to offload the task and whether to cache the task
or not. The action a(t) in time slot t is denoted as:

a(t) =
{

d1,1(t), d1,2(t), . . . , di,j(t), c1,1(t), c1,2(t), . . . , ci,j(t)
}

, (14)

where D =
{

d1,1, d1,2, . . . , di,j
}

denotes the offloading decision and C =
{

c1,1, c1,2, . . . , ci,j
}

denotes the caching decision.

4.1.3. Reward

The reward function R(s(t), a(t)) is a feedback identification for the intelligence to act
and react to changes in the environment, and in DRL, it usually maximizes the long-term
benefits of the MEC system. Therefore, the reward is determined by calculating the objective
function P. Throughout the process, the intelligent body selects actions and continuously
updates its strategy with higher rewards by calculating the expected rewards to reduce the
cost of long-term actions. Negative values maximized according to the objective function
P are used as rewards, and when rewards are accumulated to a maximum value, the task
cost is reduced. Therefore, for a given state and action, the following equation describes
the relationship between the reward and P’s objective function:

r(t) = R(s(t), a(t)) = − 1
N

M

∑
i=1

K

∑
j=1

αE
i Ei,j + βt

i Ti,j, (15)

4.2. P-DDPG Algorithm Design

MEC is a dynamic system with high real-time requirements, and the DDPG algorithm
adopts a combination of policy-based and value-based approaches, which obtains good
results in solving continuous problems and has a faster convergence speed and higher
performance. However, its efficiency needs to be further improved as the use of the
experience replay mechanism is randomly selected from the experience base, and an



Electronics 2024, 13, 389 9 of 18

appropriate strategy is not selected for the best experience to learn. Therefore, the P-DDPG
algorithm seeks optimal caching and offloading by introducing the PER mechanism.

Figure 2 displays the framework of the P-DDPG algorithm. The framework mainly
includes the environment, actor network, critic network, and experience pool modules.
The intelligent body obtains experience from the environment and stores it in the pool of
experience for learning in the future. In the training process, the PER mechanism breaks the
dependence on the training experience, enhances the influence of past relevant experience
on the current state decision, and prevents the neural network from premature fitting.
Additionally, adding random Gaussian distributed behavioral noise (Ornstein-Uhlenbeck
process) [29] output to the actor network is a mean reversion process that makes the
network more exploratory and prevents local optima.

1 
 

 

Figure 2. P-DDPG algorithm framework.

Specifically, the intelligent body obtains the current state s(t), completes the action
a(t) = µ(s(t); θµ) + Nt, and computes the reward r(t) according to Equation (15), after which
it accesses the next state s(t + 1) through parameters θµ and random noise Nt of the current
policy network. In the experience buffer D, the intelligent body stores the strategy µ, the
value function Qµ(s(t), a(t)), and the transition information (s(t), a(t), r(t), s(t + 1)). Then,
N transition messages are randomly selected in D, and their parameters are trained. An
estimate of the value function of the action is obtained from Bellman’s equation describing
the definition of the value function:

Qµ(s(t), a(t)) = E
[
r(s(t), a(t)) + γQµ

(
s(t + 1); θQ

)]
, (16)

The PER mechanism is used in D to construct the experience correlation function and
select the most appropriate learning experience at different time steps. The core principle of
the PER mechanism is to measure the importance of each state transition. The correlation
of TD error can be taken as an evaluation standard for the priority of the experience. It
presents the measurements that the intelligent body has learned from past experiences to
update the estimated action value function Qµ(s(t), a(t)). The TD error can be used as an



Electronics 2024, 13, 389 10 of 18

evaluation criterion for experience priority. The TD error is, therefore, calculated in the
following way:

δi = r(s(t), a(t)) + γQ′
(

s(t + 1), µ′
(

s(t + 1); θµ′
)

; θQ′
)
−Q(s(t), a(t); θQ), (17)

where δi specifies the degree of preferential learning, and the higher the δi, the stronger
the correlation is, so there is still much to be done to improve prediction accuracy. At each
step in the learning process, the TD error is calculated for all samples, and the sampling
probability is calculated based on their experience:

P(i) =
Hψ1

i

∑k Hψ1
k

, (18)

where the parameter ψ1 controls the degree of priority ordering, and when ψ1 = 0, it
indicates uniform sampling.

A low TD error has a probability of repetition, and the sampling probability acts as a
near-random factor in the chosen empirical process to prevent premature adaptation of the
neural network. Excessive replay of the TD error with higher priority can lead to a decrease
in sample diversity and a change in the frequency of state accesses, potentially causing the
neural network to oscillate or diverge during training. Therefore, importance sampling
is employed to correct the weights so that the true results in the relevant states can be
obtained while acting as a high value. The importance sampling is calculated as follows:

ωi = (
1
D
· 1

p(i)
)

ψ2

, (19)

When ψ2 = 1, it compensates for non-uniform probabilities. The use of importance
sampling reduces the error and order of magnitude of the strategy gradient and uses more
efficient experiences for learning to improve efficiency.

In each iteration, the target actor and the target critic network are combined using Cal-
culation (21), the computed output is given to the main critic network, and the parameters
of the online critic neural network are updated by minimizing the mean squared error loss
function to minimize the loss function L

(
θQ), which can be expressed as:

L
(

θQ
)
=

1
N

(
Y(t)−Q

(
s(t), a(t); θQ

))2
, (20)

Y(t) = r(t) + γQ′
(

s(t + 1), µ′
(

s(t + 1); θµ′
)

; θQ′
)

, (21)

where N is the number of experiences used for learning. After that, the actor network is
updated using the sampling strategy gradient:

∇θµ J(µ) =
1
N
∇aQ

(
s(t), a(t); θQ

)
· ∇θµ µ(s(t); θµ), (22)

Finally, in order to improve the stability of the training, a soft update method is used
instead of replicating the parameters θQ and θµ to update the target network parameters.

θµ′ ← τθµ + (1− τ)θµ′ , (23)

θQ′ ← τθQ + (1− τ)θQ′ , (24)

where τ ∈ [0, 1] is used to determine the extent of updating.
Algorithm 1 displays the pseudocode of the P-DDPG algorithm. Firstly, the initializa-

tion environment is simulated, and in each time slot, the agent generates new states and
rewards according to the current state s(t) and the current policy by generating the corre-
sponding actions. Then, the intelligent body transmits the tuple (s(t), a(t), r(t), s(t + 1))



Electronics 2024, 13, 389 11 of 18

based on the samples and stores it in the priority experience playback buffer. A small batch
I is formed based on the most relevant experiences sampled from the priority experience
pool D. Subsequently, the selection probabilities of these experiences are updated based
on the TD error, the priorities of the experiences are updated, and finally, the network
parameters are updated using these experiences.

Algorithm 1: P-DDPG algorithm

Initialize the priority experience playback buffer D, the minimum batch size N, the TD error sample size Ntd, the number of
training times K, the iteration time slot T, and the weight control parameters ψ1 and ψ2.
Randomly initialize the weights θQ and θµ, discount factor λ, and update factor T of the main Q network and target Q network.
Initialize the weight parameters θµ′ ← θµ , θQ′ ← θQ of the target network.
1: Initialize the main and target networks.
2: For episode = 1, 2, · · · , M do.
3: Randomly generate and receive initialized observation states s(t).
4: Add random noise Nt for action exploration.
5: For t = 1, 2, · · · , T do.
6: The agent observes the state s(t) and selects actions according to the current strategy and noise Nt.
7: Calculate the instant reward r(t), and obtain the next immediate state after executing the action.
8: Based on the sampling probability in Equation (18), store (s(t), a(t), r(t), s(t + 1)) and add it to the priority experience

playback buffer D.
9: Form a small batch I by sampling the most relevant experiences from the priority experience pool D.
10: Calculate the weight of the importance sample ωi = ( 1

D ·
1

p(i) )
ψ2 .

11: Calculate the target Q value Y(t) = r(t) + γQ′
(

s(t + 1), µ′
(

s(t + 1); θµ′
)

; θQ′
)

.
12: Calculate the sampling probability of the TD error update experience from Equation (17).
13: Update the priority of the experience Pi ← |δi| .
14: Update the θQ of the critical network according to the loss function Equation (20).
15: Update the weights of the actor network parameters θµ according to the strategy gradient strategy Equation (22).
16: Update the target network parameters according to Equations (23) and (24).
17: End for
18: End for

Four neural networks contribute significantly to the time complexity of Algorithm 1.
The training algorithm can be considered to consist mainly of an actor network, a critic
network, and a priority experience replay buffer. The actor and critic networks of each
agent are processed by two DNNs to form the goal and evaluation networks. Consequently,
the time complexity can be described as shown below [30].

2×
I

∑
ι=0

nactor,ιnactor,ι+1+2×
L

∑
l=0

ncritic,lncritic,l+1 = O

(
I

∑
ι=0

nactor,ιnactor,ι+1+
L

∑
l=0

ncritic,lncritic,l+1

)
, (25)

where, I and L represent the number of fully connected layers for actor and critic DNN
networks, respectively, nactor,ι and ncritic,l denote the number of units corresponding to the
fully connected layers.

5. Performance Evaluation
5.1. Experimental Setup

A MEC system consisting of six cameras distributed at different angles and positions is
considered to build a simulation environment for task caching and computational offload-
ing. The system is linked to the BS via a wireless channel, and it has both computational
and storage capabilities. The main task of the camera is to capture the video information
and pre-process the data, analyze and track the video using AI techniques and models,
identify the targets, and generate reports. The more information and data are collected,
the more computation and processing are required. The cameras are randomly distributed
in a 200 m × 200 m radius, and the BS has a coverage radius of dm = 200 m in the center
of the area [11]. The offloaded data of each mobile user are uniformly distributed within
(0,30) MB, and considering the heterogeneous computing power of the cameras, the CPU
frequency of each user is randomly assigned as {0.8, 0.9, . . ., 1.5} GHz, and the number of



Electronics 2024, 13, 389 12 of 18

cycles of the task execution CPU is bi,j = 500 Cycles/bit [31]. The cache size of the MEC
server is Fco = 600 MB, the computational resources of the MEC server are Fmo = 30 MHz,
and the available channel bandwidth is 20 MHz [23,32,33]. The experiments were devel-
oped using TensorFlow 2.0, a Python 3.7 simulator for the AMD Ryzen processor. In the
P-DDPG algorithm, the same four-layer fully connected neural network is used as the
critic and actor networks. The first and second hidden layers use 256 and 128 neurons,
respectively, and the learning rate for the critic network and actor network is 0.0001 and
0.001, respectively [34,35]. During the network training, the experience playback buffer
size was set to 50,000, the minimum number of batch sampled experiences was 128, the
soft update was 0.001, and the deduction factor was 0.99 [36]. Table 2 shows the specific
settings quoted above to simulate the real environment.

Table 2. Simulation Parameters.

Parameter Value

M 5
K 3
fi {0.8, 0.9, . . ., 1.5} GHz

bi,j 500 Cycles/bit
vi,j (0,40) MB
Fmo 30 GHz
B 20 MHz

dm 200 m
Pi 100 mW
σ2 −100 dBm
N 128
aQ 0.0001
aµ 0.001
γ 0.99
ε 0.001

To assess the effectiveness of the P-DDPG algorithm, this paper compares its perfor-
mance using the following techniques:

1. Local calculation (PCL): Each user doing the job performs it on the local CPU without
offloading to the edge.

2. Random cache and computation offload (RCAO): The ratio between the caching and
the offloading of tasks to the computer is randomized for each time slot of the MEC
server until the capacity of the cache is reached.

3. DDQN: The selection and evaluation of actions are achieved through the use of
different value functions, and tasks are cached and offloaded in an optimal ratio to
achieve the lowest possible latency and power consumption.

5.2. Experimental Results and Analysis
5.2.1. Convergence Performance

Figure 3 compares the convergence performance of the P-DDPG and DDQN algo-
rithms with respect to the average reward. They both use similar neural networks and can
improve the performance of the system in terms of the MEC task caching and offloading.
In the DDQN algorithm, discrete actions are mapped to continuous actions for perfor-
mance, and an ε-greedy policy is used for action selection. In the experimental results,
both algorithms converge, but there are large fluctuations in the initial phase because the
reinforcement learning process is random, and the intelligent agent is in the exploration
phase with low rewards. Increasing the number of training epochs, the intelligent agent
enters the experience learning phase and has more time to explore the best strategy. As a
result, the algorithms converge faster, and the reward values become stable. The P-DDPG
and DDQN algorithms converge after about 250 and 360 training epochs, respectively.
The P-DDPG algorithm converges to values of around -110, while the DDQN algorithm



Electronics 2024, 13, 389 13 of 18

converges to values of around −220. The system cost is inversely proportional to the
reward. The P-DDPG algorithm consistently outperforms the DDQN algorithm in terms of
the policies learned in different scenarios, indicating that the discarded action space affects
performance. For the continuous control problem, the strategies of P-DDPG explore the
action space more efficiently than those of DDQN. This demonstrates that the P-DDPG
algorithm has faster convergence and better performance.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 3. Comparison of convergence between the P-DDPG algorithm and DDQN algorithm. 

5.2.2. Performance Comparison 
Figures 4 and 5 show how the algorithms perform for different numbers of users. As 

the number of users grows from 4 to 12, the system latency and energy consumption of 
each algorithm increase. However, the system latency of the P-DDPG algorithm grows 
slower and is lower than the latency of the other algorithms. This indicates that, for a small 
number of users, different algorithms do not significantly impact the average task 
completion latency. As the number of users increases, offloading and computing more 
tasks result in larger system latency. Meanwhile, the server needs to reduce the 
computational resources allocated to each user, which leads to an increase in energy costs. 
The P-DDPG algorithm considers each task’s computation to determine a caching and 
offloading policy that maintains low energy consumption even with few users. By 
implementing distributed decision-making across users, the P-DDPG algorithm 
significantly reduces the average system overhead and outperforms other benchmark 
algorithms. 

 
Figure 4. Average system cost for different numbers of users. 

Figure 3. Comparison of convergence between the P-DDPG algorithm and DDQN algorithm.

5.2.2. Performance Comparison

Figures 4 and 5 show how the algorithms perform for different numbers of users. As
the number of users grows from 4 to 12, the system latency and energy consumption of
each algorithm increase. However, the system latency of the P-DDPG algorithm grows
slower and is lower than the latency of the other algorithms. This indicates that, for a
small number of users, different algorithms do not significantly impact the average task
completion latency. As the number of users increases, offloading and computing more tasks
result in larger system latency. Meanwhile, the server needs to reduce the computational
resources allocated to each user, which leads to an increase in energy costs. The P-DDPG
algorithm considers each task’s computation to determine a caching and offloading policy
that maintains low energy consumption even with few users. By implementing distributed
decision-making across users, the P-DDPG algorithm significantly reduces the average
system overhead and outperforms other benchmark algorithms.



Electronics 2024, 13, 389 14 of 18

Electronics 2024, 13, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 3. Comparison of convergence between the P-DDPG algorithm and DDQN algorithm. 

5.2.2. Performance Comparison 
Figures 4 and 5 show how the algorithms perform for different numbers of users. As 

the number of users grows from 4 to 12, the system latency and energy consumption of 
each algorithm increase. However, the system latency of the P-DDPG algorithm grows 
slower and is lower than the latency of the other algorithms. This indicates that, for a small 
number of users, different algorithms do not significantly impact the average task 
completion latency. As the number of users increases, offloading and computing more 
tasks result in larger system latency. Meanwhile, the server needs to reduce the 
computational resources allocated to each user, which leads to an increase in energy costs. 
The P-DDPG algorithm considers each task’s computation to determine a caching and 
offloading policy that maintains low energy consumption even with few users. By 
implementing distributed decision-making across users, the P-DDPG algorithm 
significantly reduces the average system overhead and outperforms other benchmark 
algorithms. 

 
Figure 4. Average system cost for different numbers of users. 
Figure 4. Average system cost for different numbers of users.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 5. The average latency for different numbers of users. 

Figure 6 demonstrates the impact of the computing power of the MEC server on the 
performance of the system. The system cost of the PCL remains constant because no MEC 
resources are used. The RCAO algorithm’s strategy of randomly selecting each task leads 
to relatively poor performance due to its low computational complexity and strong 
randomness. Both the P-DDPG algorithm and the DDQN algorithm improve system 
performance, but as the MEC computational power increases, the performance advantage 
of the P-DDPG algorithm becomes more evident. The P-DDPG algorithm makes fuller use 
of the MEC resources and adaptively optimizes the offloading patterns, whereas the 
DDQN algorithm uses a very large action space because of the need to reduce the system 
cost, which makes the algorithm more complex. As a result, the P-DDPG algorithm 
consistently consumes less energy than the other three algorithms. Figure 7 shows the 
effect of average task data size on system cost. When the average task data size increases 
from 10 MB to 50 MB, more delays need to be handled, which leads to an increase in 
system cost. The DDQN algorithm requires more latency and energy to handle continuous 
actions. The P-DDPG algorithm can offload the tasks to the right location based on the 
characteristics of the task by learning the most valuable lessons. This enhances the 
efficiency of the edge nodes, which in turn improves the efficiency of caching and 
offloading tasks at the edge. 

 

Figure 5. The average latency for different numbers of users.

Figure 6 demonstrates the impact of the computing power of the MEC server on
the performance of the system. The system cost of the PCL remains constant because
no MEC resources are used. The RCAO algorithm’s strategy of randomly selecting each
task leads to relatively poor performance due to its low computational complexity and
strong randomness. Both the P-DDPG algorithm and the DDQN algorithm improve system
performance, but as the MEC computational power increases, the performance advantage
of the P-DDPG algorithm becomes more evident. The P-DDPG algorithm makes fuller use
of the MEC resources and adaptively optimizes the offloading patterns, whereas the DDQN
algorithm uses a very large action space because of the need to reduce the system cost,
which makes the algorithm more complex. As a result, the P-DDPG algorithm consistently
consumes less energy than the other three algorithms. Figure 7 shows the effect of average
task data size on system cost. When the average task data size increases from 10 MB to
50 MB, more delays need to be handled, which leads to an increase in system cost. The
DDQN algorithm requires more latency and energy to handle continuous actions. The
P-DDPG algorithm can offload the tasks to the right location based on the characteristics
of the task by learning the most valuable lessons. This enhances the efficiency of the edge
nodes, which in turn improves the efficiency of caching and offloading tasks at the edge.



Electronics 2024, 13, 389 15 of 18

Electronics 2024, 13, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 5. The average latency for different numbers of users. 

Figure 6 demonstrates the impact of the computing power of the MEC server on the 
performance of the system. The system cost of the PCL remains constant because no MEC 
resources are used. The RCAO algorithm’s strategy of randomly selecting each task leads 
to relatively poor performance due to its low computational complexity and strong 
randomness. Both the P-DDPG algorithm and the DDQN algorithm improve system 
performance, but as the MEC computational power increases, the performance advantage 
of the P-DDPG algorithm becomes more evident. The P-DDPG algorithm makes fuller use 
of the MEC resources and adaptively optimizes the offloading patterns, whereas the 
DDQN algorithm uses a very large action space because of the need to reduce the system 
cost, which makes the algorithm more complex. As a result, the P-DDPG algorithm 
consistently consumes less energy than the other three algorithms. Figure 7 shows the 
effect of average task data size on system cost. When the average task data size increases 
from 10 MB to 50 MB, more delays need to be handled, which leads to an increase in 
system cost. The DDQN algorithm requires more latency and energy to handle continuous 
actions. The P-DDPG algorithm can offload the tasks to the right location based on the 
characteristics of the task by learning the most valuable lessons. This enhances the 
efficiency of the edge nodes, which in turn improves the efficiency of caching and 
offloading tasks at the edge. 

 Figure 6. Average system cost with varying processing power.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 18 
 

 

Figure 6. Average system cost with varying processing power. 

 
Figure 7. Average system cost for varying average task data sizes. 

Figure 8 represents the effect of cache capacity on the performance of various caching 
schemes to further validate the effectiveness of the P-DDPG algorithm. The results show 
that as the cache capacity increases, the system cost decreases because a larger cache 
capacity can store more data and files so that the requested task has a higher hit rate on 
the MEC, which, in turn, reduces the cost of computing the task for the user. The RCAO 
algorithm adopts a random caching decision, which causes a larger proportion of popular 
files to be cached, leading to a higher retrieval cost compared to the DDQN algorithm and, 
thus, an increase in the system cost. The scheme proposed by the P-DDPG algorithm 
makes full use of the user’s cache capacity, improves the cache utilization, and selects the 
operation with the highest return to reduce the computation by adaptively optimizing the 
offloading pattern, thereby reducing the system cost. Thus, better performance can be 
achieved by efficiently utilizing cache resources.  

 
Figure 8. Average system cost for a range of cache sizes. 

  

Figure 7. Average system cost for varying average task data sizes.

Figure 8 represents the effect of cache capacity on the performance of various caching
schemes to further validate the effectiveness of the P-DDPG algorithm. The results show
that as the cache capacity increases, the system cost decreases because a larger cache
capacity can store more data and files so that the requested task has a higher hit rate on
the MEC, which, in turn, reduces the cost of computing the task for the user. The RCAO
algorithm adopts a random caching decision, which causes a larger proportion of popular
files to be cached, leading to a higher retrieval cost compared to the DDQN algorithm
and, thus, an increase in the system cost. The scheme proposed by the P-DDPG algorithm
makes full use of the user’s cache capacity, improves the cache utilization, and selects the
operation with the highest return to reduce the computation by adaptively optimizing
the offloading pattern, thereby reducing the system cost. Thus, better performance can be
achieved by efficiently utilizing cache resources.



Electronics 2024, 13, 389 16 of 18

Electronics 2024, 13, x FOR PEER REVIEW 16 of 18 
 

 

Figure 6. Average system cost with varying processing power. 

 
Figure 7. Average system cost for varying average task data sizes. 

Figure 8 represents the effect of cache capacity on the performance of various caching 
schemes to further validate the effectiveness of the P-DDPG algorithm. The results show 
that as the cache capacity increases, the system cost decreases because a larger cache 
capacity can store more data and files so that the requested task has a higher hit rate on 
the MEC, which, in turn, reduces the cost of computing the task for the user. The RCAO 
algorithm adopts a random caching decision, which causes a larger proportion of popular 
files to be cached, leading to a higher retrieval cost compared to the DDQN algorithm and, 
thus, an increase in the system cost. The scheme proposed by the P-DDPG algorithm 
makes full use of the user’s cache capacity, improves the cache utilization, and selects the 
operation with the highest return to reduce the computation by adaptively optimizing the 
offloading pattern, thereby reducing the system cost. Thus, better performance can be 
achieved by efficiently utilizing cache resources.  

 
Figure 8. Average system cost for a range of cache sizes. 

  

Figure 8. Average system cost for a range of cache sizes.

6. Conclusions

This paper addresses the joint problem of optimizing task caching and offloading
for multiuser multitasking in MEC systems. Considering the storage and computation
resource constraints of dynamic edge environments in the system, the user’s mobility,
and the change in resource states during multitasking offloading, a joint computation
and caching framework was developed. This framework utilizes caching to assist in the
reduction of redundant computations and transmissions between the mobile device and
the MEC server. Then, the P-DDPG algorithm is designed to seek the optimal caching and
offloading modes, improve the training stability of the algorithm, accelerate the training
speed, and quickly obtain the optimal offloading strategy. This is achieved by introducing
the PER and importance sampling mechanisms instead of the traditional experience replay
caching and stochastic gradient descent methods. In future work, we plan to expand to
multiple MEC servers, increasing the collaboration between task caches and balancing
network overheads while improving the hit rate of tasks.

Author Contributions: Conceptualization, Z.J., X.Z., X.P. and S.Z.; methodology, Z.J., X.Z., X.P. and
S.Z.; software, X.Z. and Z.J.; validation, X.Z., X.P. and S.Z.; formal analysis, X.Z.; investigation, Z.J.
and X.Z.; resources, Z.J. and X.Z.; writing—original draft preparation, Z.J.; writing—review and
editing, Z.J. and X.Z.; visualization, Z.J.; supervision, Z.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China Youth
Fund (62202145).

Data Availability Statement: Dataset available on request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Choi, Y.; Lim, Y. Edge Caching Based on Deep Reinforcement Learning in Vehicular Networks. In Proceedings of the 2022 IEEE

4th Eurasia Conference on IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, 28–30 October 2022; pp. 57–59.
2. Kiani, A.; Ansari, N. Edge Computing Aware NOMA for 5G Networks. IEEE Internet Things J. 2018, 5, 1299–1306. [CrossRef]
3. Tran, T.X.; Pompili, D. Joint Task Offloading and Resource Allocation for Multi-Server Mobile-Edge Computing Networks. IEEE

Trans. Veh. Technol. 2019, 68, 856–868. [CrossRef]
4. Bi, S.; Huang, L.; Zhang, Y.J.A. Joint Optimization of Service Caching Placement and Computation Offloading in Mobile Edge

Computing Systems. IEEE Trans. Wirel. Commun. 2020, 19, 4947–4963. [CrossRef]
5. Wu, Z.; Yan, D. Deep reinforcement learning-based computation offloading for 5G vehicle-aware multi-access edge computing

network. China Commun. 2021, 18, 26–41. [CrossRef]

https://doi.org/10.1109/JIOT.2018.2796542
https://doi.org/10.1109/TVT.2018.2881191
https://doi.org/10.1109/TWC.2020.2988386
https://doi.org/10.23919/JCC.2021.11.003


Electronics 2024, 13, 389 17 of 18

6. Khurshid, T.; Ahmed, W.; Rehan, M.; Ahmad, R.; Alam, M.M.; Radwan, A. A DRL Strategy for Optimal Resource Allocation
Along With 3D Trajectory Dynamics in UAV-MEC Network. IEEE Access 2023, 11, 54664–54678. [CrossRef]

7. Kong, X.; Duan, G.; Hou, M.; Shen, G.; Wang, H.; Yan, X.; Collotta, M. Deep Reinforcement Learning-Based Energy-Efficient Edge
Computing for Internet of Vehicles. IEEE Trans. Ind. Inform. 2022, 18, 6308–6316. [CrossRef]

8. Xu, Z.; Zhou, L.; Dai, H.; Liang, W.; Zhou, W.; Zhou, P.; Xu, W.; Wu, G. Energy-Aware Collaborative Service Caching in a
5G-Enabled MEC With Uncertain Payoffs. IEEE Trans. Commun. 2022, 70, 1058–1071. [CrossRef]

9. Ren, J.; Yu, G.; He, Y.; Li, G.Y. Collaborative Cloud and Edge Computing for Latency Minimization. IEEE Trans. Veh. Technol. 2019,
68, 5031–5044. [CrossRef]

10. Dai, H.; Wen, H.; Xing, H.; Ding, Z. Joint Cache Placement and NOMA-Based Task Offloading for Multi-User Mobile Edge
Computing. In Proceedings of the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 20–23 June
2023; pp. 1–7.

11. Chen, Z.; Zhou, Z.; Chen, C. Code Caching-Assisted Computation Offloading and Resource Allocation for Multi-User Mobile
Edge Computing. IEEE Trans. Netw. Serv. Manag. 2021, 18, 4517–4530. [CrossRef]

12. Feng, H.; Guo, S.; Yang, L.; Yang, Y. Collaborative Data Caching and Computation Offloading for Multi-Service Mobile Edge
Computing. IEEE Trans. Veh. Technol. 2021, 70, 9408–9422. [CrossRef]

13. Tran, T.X.; Pompili, D. Adaptive Bitrate Video Caching and Processing in Mobile-Edge Computing Networks. IEEE Trans. Mob.
Comput. 2019, 18, 1965–1978. [CrossRef]

14. Shi, W.; Zhou, S.; Niu, Z.; Jiang, M.; Geng, L. Multiuser Co-Inference With Batch Processing Capable Edge Server. IEEE Trans.
Wirel. Commun. 2023, 22, 286–300. [CrossRef]

15. Chen, Z.; Yi, W.; Alam, A.S.; Nallanathan, A. Dynamic Task Software Caching-Assisted Computation Offloading for Multi-Access
Edge Computing. IEEE Trans. Commun. 2022, 70, 6950–6965. [CrossRef]

16. Cheng, M.; Li, J.; Nazarian, S. DRL-cloud: Deep reinforcement learning-based resource provisioning and task scheduling for
cloud service providers. In Proceedings of the 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju,
Republic of Korea, 22–25 January 2018.

17. Hazarika, B.; Singh, K.; Biswas, S.; Li, C.P. DRL-Based Resource Allocation for Computation Offloading in IoV Networks. IEEE
Trans. Ind. Inform. 2022, 18, 8027–8038. [CrossRef]

18. Li, S.; Li, B.; Zhao, W. Joint Optimization of Caching and Computation in Multi-Server NOMA-MEC System via Reinforcement
Learning. IEEE Access 2020, 8, 112762–112771. [CrossRef]

19. Zhu, A.; Guo, S.; Ma, M.; Feng, H.; Liu, B.; Su, X.; Guo, M.; Jiang, Q. Computation Offloading for Workflow in Mobile Edge
Computing Based on Deep Q-Learning. In Proceedings of the 2019 28th Wireless and Optical Communications Conference
(WOCC), Beijing, China, 9–10 May 2019; pp. 1–5.

20. Liu, T.; Zhang, Y.; Zhu, Y.; Tong, W.; Yang, Y. Online Computation Offloading and Resource Scheduling in Mobile-Edge
Computing. IEEE Internet Things J. 2021, 8, 6649–6664. [CrossRef]

21. Wang, L.; Zhang, G. Joint Service Caching, Resource Allocation and Computation Offloading in Three-Tier Cooperative Mobile
Edge Computing System. IEEE Trans. Netw. Sci. Eng. 2023, 10, 3343–3353. [CrossRef]

22. Tang, H.; Wu, H.; Qu, G.; Li, R. Double Deep Q-Network Based Dynamic Framing Offloading in Vehicular Edge Computing.
IEEE Trans. Netw. Sci. Eng. 2023, 10, 1297–1310. [CrossRef]

23. Zhou, H.; Zhang, Z.; Wu, Y.; Dong, M.; Leung, V.C.M. Energy Efficient Joint Computation Offloading and Service Caching
for Mobile Edge Computing: A Deep Reinforcement Learning Approach. IEEE Trans. Green Commun. Netw. 2023, 7, 950–961.
[CrossRef]

24. Wang, Z.; Wu, T.; Zhang, Z.; Zhou, H. A Game theory-based Computation Offloading Method in Cloud-Edge Computing
Networks. In Proceedings of the 2021 International Conference on Computer Communications and Networks (ICCCN), Athens,
Greece, 19–22 July 2021; pp. 1–6.

25. Wu, Y.; Wang, Y.; Zhou, F.; Hu, R.Q. Computation Efficiency Maximization in OFDMA-Based Mobile Edge Computing Networks.
IEEE Commun. Lett. 2020, 24, 159–163. [CrossRef]

26. Fan, W.; Han, J.; Su, Y.; Liu, X.; Wu, F.; Tang, B.; Liu, Y. Joint Task Offloading and Service Caching for Multi-Access Edge
Computing in WiFi-Cellular Heterogeneous Networks. IEEE Trans. Wirel. Commun. 2022, 21, 9653–9667. [CrossRef]

27. Xue, J.; An, Y. Joint Task Offloading and Resource Allocation for Multi-Task Multi-Server NOMA-MEC Networks. IEEE Access
2021, 9, 16152–16163. [CrossRef]

28. Mach, P.; Becvar, Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Commun. Surv. Tutor.
2017, 19, 1628–1656. [CrossRef]

29. Nath, S.; Wu, J. Deep reinforcement learning for dynamic computation offloading and resource allocation in cache-assisted mobile
edge computing systems. Intell. Converg. Netw. 2020, 1, 181–198. [CrossRef]

30. Qiu, C.; Hu, Y.; Chen, Y.; Zeng, B. Deep Deterministic Policy Gradient (DDPG)-Based Energy Harvesting Wireless Communica-
tions. IEEE Internet Things J. 2019, 6, 8577–8588. [CrossRef]

31. Zhang, Z.; Zhouand, H.; Zhao, L.; Leung, V.C.M. Digital Twin Assisted Computation Offloading and Service Caching in Mobile
Edge Computing. In Proceedings of the 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS),
Bologna, Italy, 10–13 July 2022; pp. 1296–1297.

https://doi.org/10.1109/ACCESS.2023.3278591
https://doi.org/10.1109/TII.2022.3155162
https://doi.org/10.1109/TCOMM.2021.3125034
https://doi.org/10.1109/TVT.2019.2904244
https://doi.org/10.1109/TNSM.2021.3103533
https://doi.org/10.1109/TVT.2021.3099303
https://doi.org/10.1109/TMC.2018.2871147
https://doi.org/10.1109/TWC.2022.3192613
https://doi.org/10.1109/TCOMM.2022.3200109
https://doi.org/10.1109/TII.2022.3168292
https://doi.org/10.1109/ACCESS.2020.3002895
https://doi.org/10.1109/JIOT.2021.3051427
https://doi.org/10.1109/TNSE.2023.3259030
https://doi.org/10.1109/TNSE.2022.3172794
https://doi.org/10.1109/TGCN.2022.3186403
https://doi.org/10.1109/LCOMM.2019.2950013
https://doi.org/10.1109/TWC.2022.3178541
https://doi.org/10.1109/ACCESS.2021.3049883
https://doi.org/10.1109/COMST.2017.2682318
https://doi.org/10.23919/ICN.2020.0014
https://doi.org/10.1109/JIOT.2019.2921159


Electronics 2024, 13, 389 18 of 18

32. Zhou, H.; Wang, Z.; Zheng, H.; He, S.; Dong, M. Cost Minimization-Oriented Computation Offloading and Service Caching in
Mobile Cloud-Edge Computing: An A3C-Based Approach. IEEE Trans. Netw. Sci. Eng. 2023, 10, 1326–1338. [CrossRef]

33. Wen, W.; Cui, Y.; Quek, T.Q.S.; Zheng, F.C.; Jin, S. Joint Optimal Software Caching, Computation Offloading and Communications
Resource Allocation for Mobile Edge Computing. IEEE Trans. Veh. Technol. 2020, 69, 7879–7894. [CrossRef]

34. Niu, J.; Zhang, S.; Chi, K.; Shen, G.; Gao, W. Deep learning for online computation offloading and resource allocation in NOMA.
Comput. Netw. 2022, 216, 109238. [CrossRef]

35. He, X.; Lu, H.; Du, M.; Mao, Y.; Wang, K. QoE-Based Task Offloading With Deep Reinforcement Learning in Edge-Enabled
Internet of Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 22, 2252–2261. [CrossRef]

36. Xue, Z.; Liu, C.; Liao, C.; Han, G.; Sheng, Z. Joint Service Caching and Computation Offloading Scheme Based on Deep
Reinforcement Learning in Vehicular Edge Computing Systems. IEEE Trans. Veh. Technol. 2023, 72, 6709–6722. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TNSE.2023.3255544
https://doi.org/10.1109/TVT.2020.2993359
https://doi.org/10.1016/j.comnet.2022.109238
https://doi.org/10.1109/TITS.2020.3016002
https://doi.org/10.1109/TVT.2023.3234336

	Introduction 
	Related Work 
	System Model and Problem Formulation 
	Network Model 
	Communication Model 
	Computation Model 
	Caching Model 
	Problem Formulation 

	P-DDPG Algorithm 
	Formulation of the Problem with DRL 
	State Space 
	Action Space 
	Reward 

	P-DDPG Algorithm Design 

	Performance Evaluation 
	Experimental Setup 
	Experimental Results and Analysis 
	Convergence Performance 
	Performance Comparison 


	Conclusions 
	References

