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Abstract: Micro-Doppler signature represents the micromotion state of a target, and it is used in
target recognition and classification technology. The micro-Doppler frequency appears as a transition
of the Doppler frequency due to the rotation and vibration of an object. Thus, tracking and classifying
targets with high recognition accuracy is possible. However, it is difficult to distinguish the types
of targets when subdividing targets with the same micromotion or classifying different targets with
similar velocities. In this study, we address the problem of classification of three different targets with
similar speeds and segmentation of the same type of targets. A novel signature extraction procedure
is developed to automatically recognize drone, bird, and human targets by exploiting the different
micro-Doppler signatures exhibited by each target. The developed algorithm is based on a novel
adaptation of the spectral kurtosis technique of the radar echoes reflected by the three target types.
Further, image-embedding layers are used to classify the spectral kurtosis of objects with the same
micromotion. We apply a ResNet34 deep neural network to micro-Doppler images to analyze its
performance in classifying objects performing micro-movements on the collected bistatic radar data.
The results demonstrate that the proposed method accurately differentiates the three targets and
effectively classifies multiple targets with the same micromotion.

Keywords: micro-Doppler; ResNet34; spectral kurtosis; image embedding; target classification

1. Introduction

Recently, target detection using commercial broadcast signals and research on passive
radar systems have been actively conducted [1–3]. For commercial broadcasting and
communication purposes, the signal transmitted from a transmitter can be reflected by
hitting a moving target, and a passive radar system estimates the position and speed of the
target using the target reflection signal [4].

To increase the accuracy of target detection and tracking, interference signals, such as
clutter, should be removed to facilitate the detection of weak target signals [1]. However,
existing passive-sensor-based position and speed measurements have limitations in target
recognition. To overcome this problem, research on the parameters that represent additional
target characteristics is required.

The received echo signal after hitting the target has the Doppler effect, in which the
frequency changes according to the relative speed of the moving target. In addition to
the distance movement, the target object undergoes micromotions such as vibration and
rotation, and the micro-Doppler effect occurs due to these micromotions. This micro-
Doppler signal has unique characteristics depending on the target micromotions and has
drawn much interest in estimating micromotion parameters and target recognition in the
civilian and military fields.

Micro-Doppler can be represented as a micro-Doppler image on the time-frequency
axis using short-time Fourier transform (STFT), which confines the radar reflection signal
according to time to an arbitrary area, performs Fourier transform and repeats it through
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a time delay [5]. The micro-Doppler image is expressed as a sinusoidal wave with the
micromotion frequency and initial phase. It can be used to discover unique features of
the target, such as the instantaneous motion changes over time of the parts of the target,
including motors and wings, and the period of the target’s motion. In radar signal analysis,
the target’s speed change along the radar’s line of sight can be represented in a two-
dimensional time-frequency domain. This approach involves analyzing micro-Doppler
features within this domain and identifying them through their associated frequencies.
However, it is difficult to distinguish between the types of targets when subdividing those
with the same micromotion or classifying different targets with similar velocities. Therefore,
to obtain high classification performance, it is necessary to effectively extract feature vectors
based on the micro-Doppler signals of each target and use them for classification.

In this study, to identify objects with different micro-movements, we modeled micro-
Doppler signals according to the rotational motion of drone blades, birds’ flapping wings,
and pedestrians’ walking behavior. Micro-Doppler signatures prove instrumental in clas-
sifying each target in scenarios where drones and birds exhibit similar flight heights and
speeds. Additionally, slow-moving drones or birds may introduce interference signals
when the detection target is a person, necessitating their classification. To address this,
we extracted the spectral kurtosis from the micro-Doppler images of these three targets as
a feature vector. Spectral kurtosis, a statistical feature, effectively reveals non-stationary
and/or non-Gaussian behavior in the frequency domain [6]. It assumes very low values
in stationary Gaussian signals and dramatically increases when the non-stationary and
non-Gaussian behavior of the signal is in the frequency domain. This characteristic has
been used to classify payloads of unmanned aerial vehicles (UAV) [7–9].

We used the spectral kurtosis characteristics to obtain the spectral kurtosis values of the
micro-Doppler images of three targets: drones, birds, and pedestrians. The kurtosis results
indicated that the frequencies with high kurtosis values differed for each target. A signature
for classifying the three targets was identified by adopting image embedding in the spectral
kurtosis image. This image embedding technique is advantageous in segmenting targets
exhibiting identical micromotions and classifying targets moving at similar speeds. The
embedding layer facilitates more precise extraction and analysis of signals and objects from
the raw feature vectors by converting the high-dimensional input feature vector and sparse
data matrix into two dense sub-matrices [10]. Our approach, thus, significantly improves
recognition accuracy by refining the identification of unique signatures within the spectral
kurtosis images for each target class.

Moreover, we utilized the ResNet34 technique [11,12], a deep-learning algorithm, for
classifying the three targets using spectral kurtosis. ResNet34 contains iterative convo-
lutional layers and residual connection structures known as ‘shortcuts’. These shortcuts
significantly simplify network complexity and enhance the accuracy of recognition tasks.
These shortcuts address the vanishing gradient problem, allowing more profound and prac-
tical learning. Additionally, comparing the classification performance of the AlexNet [13],
VGGNet16 [14], GoogLeNet [15], and ResNet34 algorithms with micro-Doppler images, the
ResNet34 algorithm showed the best performance of approximately 90% [16]. This indicates
that ResNet34 can efficiently learn complex features and handle feature representations at
various levels without being hampered by network depth. Therefore, this attribute of the
ResNet34 algorithm is used to distinguish between targets with subtle differences in their
micro-Doppler signatures for precise classification. By including ResNet34 in our classi-
fication system, we can identify more complex patterns in spectral kurtosis images, thus
strengthening the efficacy and reliability of the proposed approach in target classification.

The remainder of this paper is organized as follows. Section 2 describes signal model-
ing according to the target type. Section 3 introduces spectral kurtosis, a micro-Doppler
feature vector, and presents image embedding for effective extraction. The subsequent
section describes the application of ResNet, a deep-learning algorithm for target classifica-
tion. Section 5 analyzes the target classification performance of the ResNet34 deep-learning
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algorithm through experiments. Finally, Section 6 concludes the paper with suggestions for
future work.

2. Micromotion Modeling

The geometry of the rotational motion of the drone blade is illustrated in Figure 1. It
is assumed that the distance between the transmitter and the drone blade is equal to that
between the receiver and the drone blade. The coordinates of the transmitter are fixed
at the origin (x0, y0, z0 = 0), and if the receiver is placed on the same plane separated by
BL on the X-axis, the position of the receiver is (BL, 0, 0).
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Four blades rotate around the Z-axis at rotational speed θ. H is the height of the Z-axis
of the blade, D is the distance from the transmitter-receiver line to the farthest blade, and

Wd is the width of the drone. The position vector of each rotor
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Each of these rotors serves as the center of two-blades upon which the blades rotate.
Based on the rotor positions in Figure 1, the range profiles of two rotating blades are
presented in Figure 2. Each rotor has two blades rotating around a fixed point, creating
a bistatic angle with the receiver and transmitter. The figure shows the Doppler effects
caused by the blade tip and the blade’s range profile with reference to the transmitter
and receiver. The range between the transmitter-to-blade-tip is given by Rtx_tipnm and
the receiver-blade-tip by Rrx_tipnm for each m-th blade equipped at the n-th rotor (for
m = 1, 2 and n = 1, · · · , 4). The angle between the Rtx_tipnm and the Rrx_tipnm is bistatic
angle and represented as βtip in Figure 2. βtip is formed by the blade tip while rotating
through 0 to 2π around the rotor’s fixed position. Similarly, Rtx_Fixedn and Rrx_Fixedn are
the corresponding ranges of a transmitter-to-rotor fixed position and rotor-to-receiver, with
bistatic angle β. The scattered signal causes an additional modulation due to the rotating
blades, and thus the angular frequency ωsc is the combination of the Doppler component
fd due to linear motion and the micro-Doppler fmd due to the blade rotation. Therefore, as
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described in [17], we can obtain ωsc = 2π fdt + 2π fmdt. Here, the general Doppler equation
for the bistatic arrangement is given by

fd = 2V
λ cos

(
β
2

)
cos(δ),

δ = π − β/2
(5)

where V is the velocity of the drone,
[
cos

(
β
2

)
cos(δ)

]
is the coefficient term of the bistatic

geometry, and λ is the wavelength of the scattered signal.
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The micro-Doppler equation fmd is obtained by rotating blade. The blade’s yaw angle
variation is determined by the rotation rate, the blade length Lb, and the initial angle given
by θ0. When the blade rotates at a constant rotation rate Ω over time t, a yaw angle is
formed by (Ωt + θ0) and the velocity is caused by the blade tip. The velocity of the blade
tip Vtip is a function of the Doppler effect and is expressed by

Vtip = 2πLbcos(Ωt + θ0). (6)

In this case, the phase function of the blade can be obtained by

Φ(t) = −2π

λ

Lb
2

cos
(

β

2

)
cos (δ)cos(Ωt + θ0). (7)

A detailed derivation of the Doppler equation and phase function is in [17,18].
As shown in Figure 2, the initial angle θ0 is assumed to lie at the origin, and this

made the initial angle to be zero, leaving only the blade rotation rate Ωt. We use the Bessel
function of the first kind to obtain the micro-Doppler frequency of each blade. This is
achieved by differentiating phase function Φ(t) for time t.

fmd =
1

2π

d
dt

Φ(t) (8)

=
1

2π

d
dt

(
−2π

λ

Lb
2

cos
(

β

2

)
cos (δ)cos(Ωt + θ0)

)
(9)

fmd_max =
Vtip

λ
cos

(
β

2

)
cos(δ) (10)

Based on the described geometry of Figures 1 and 2, the bistatic angle made by
the blade tip βtip is used in the Doppler equation; hence, the micro-Doppler equation is

obtained by fmd =
Vtip

λ cos
(

βtip
2

)
cos(δ).
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The wing motion model of a bird is shown in Figure 3. With the origin of the XYZ-plane
as the body of the bird, the two blue circles represent the scattering points caused by micro-
movements when the bird flaps its wings. The upper part of the wing (upper arm) has a
length of L1, and the lower part of the wing (lower arm) has a length of L2; the wing flapping
has a motion frequency f f lap. The movement periods of birds and their micro-movements
over time can be expressed as follows [5]:


ψ1
x1

y1
z1

(t) =


40cos

(
2π f f lapt

)
+ 15

0
L1cos ψ1(t)

y1(t)tan ψ1(t)

, (11)


ψ2
ϕ2
x2

y2
z2

(t) =



30cos
(

2π f f lapt
)
+ 40

20cos
(

2π f f lapt
)

−(y2(t)− y1(t))·tan(ϕ2(t)/cos(ψ1(t)− ψ2(t)))
L1cos ψ1(t) + L2cos ϕ2(t)·cos(ψ1(t)− ψ2(t))

z1(t) + (y2(t)− y1(t))·tan(ψ1(t)− ψ2(t))


(12)

where ψ1 is the angle of the upper arm, ψ2 is the angle of the lower arm with respect to the
upper arm, and ϕ2 is the angle of change in the axis of the lower arm.
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Figure 3. Kinematic model of a flying bird.

Figure 4 shows the micromotion model of a pedestrian when the XYZ-plane’s origin is
centered on the human spine and pelvis [12]. The model simulates the micro-movement of
body parts during human walking; it is divided into the head, shoulders, elbows, knees,
ankles, and other body parts, marked by a circle. When a person walks at speed of VR, the
length of the walking cycle Rc and cycle duration Tc can be obtained as follows:

Rc = 1.346 ×
√

VR, (13)

Tc = Rc/VR. (14)

When a pedestrian walks, the change in the micromotion TrF/B due to the backward
and forward movements of the legs can be expressed by Equation (15). In Equation (16),
aF/B is the angular velocity for the back-and-forth motion, ϕF/B of Equation (17) is the
change angle with respect to the X-axis, and tR of Equation (18) is the time normalized to
the duration of one step.

TrF/B = aF/Bsin(2π(2tR + 2ϕF/B)) (15)



Electronics 2024, 13, 376 6 of 17

aF/B =

{
−0.084VR(VR − 1)

−0.021
(VR < 0.5)
(VR > 0.5)

(16)

ϕF/B = 0.768 − 0.752TC (17)

tR = t/TC (18)

In addition, the forward/backward/left/right/torsion rotational movements of
the pelvis that occur to make the back-and-forth movement of the leg are shown
in Equations (19)–(21). Equations (22)–(24) represent the angular velocity of the
forward/backward/left/right/torsion rotational movements of the parts constituting
the target, such as the motors and wings.

RoF/B = −arF/B(1 − sin(2π(2tR − 0.1))) (19)

RoL/R =



−ar L
R

(
1 − cos

(
2π

(
10tR

3

)))
−ar L

R

(
1 + cos

(
2π

(
10(tR−0.15)

7

)))
−ar L

R

(
1 + cos

(
2π

(
10(tR−0.5)

3

)))
−ar L

R

(
1 − cos

(
2π

(
10(tR−0.65)

7

)))
(0 ≤ tR < 0.15)

(0.15 ≤ tR < 0.5)

(0.5 ≤ tR < 0.65)

(0.65 ≤ tR < 1)

(20)

RoTor = −arTorcos(2πtR) (21)

arF/B =

{
−8VR(VR − 1)

2
(VR < 0.5)
(VR > 0.5)

(22)

arL/R = 1.66VR (23)

arTor = 4VR (24)
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3. Spectral Kurtosis-Based Target Classification
3.1. Spectral Kurtosis

The targets such as drones, birds, and pedestrians have different micromotions, they
can be expected to have differing micro-Doppler characteristics depending on the target
type. The micro-Doppler attributes of the three targets are obtained using the spectral
kurtosis of the micro-Doppler image obtained using the signals theoretically modeled for
the micromotion of the three targets described in Section 2.

Based on the collected reflection signal, a micro-Doppler image is obtained by applying
an STFT:

STFT(ν, k) =
N−1

∑
n=0

s(n)w∗(n − k)e−
j2πνn

N , k = 0, · · · , K − 1 (25)
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where w(·) is the smoothing window function with length K used in the STFT, N is the
length of the signal, and it is assumed that K is smaller than N. ν ∈ [−1/2, 1/2 ] represents
the normalized frequency. Specifically, the time window length K is chosen based on
the target’s speed. In the case of drones [7,8], the STFT window length is determined by
dividing the total signal sample size by a factor of 16. Under the assumption that the
movement speeds of birds and pedestrians are comparable to those of drones, we apply
the same factor.

Spectral kurtosis can extract and observe additional information regarding non-
Gaussian signals that would not be revealed when computing the classic power spectral
density. Additionally, computing the kurtosis for each frequency contained in the signal
emphasizes the non-stationarity of the signal and allows the location of signal transients in
the frequency domain. For Gaussian and stationary signals, the spectral kurtosis assumes
low values, whereas higher values correspond to non-stationarity. Therefore, spectral
kurtosis is a statistical tool [6] used with power spectral density to identify nonstationary
and/or non-Gaussian frequency components [7].

A simple definition of the spectral kurtosis is provided using the normalized fourth-
order moment of the STFT magnitude. Spectral kurtosis Ψ(ν) is proportional to the ratio
between the fourth-order moment of its STFT and the square modulus of the second-order
moment of its STFT, namely

Ψ(ν) =

1
K

K−1
∑

k=0
|STFT(ν, k)|4

1
K

(
K−1
∑

k=0
|STFT(ν, k)|2

)2 − 2. (26)

Figure 5 shows the spectral kurtosis of the micro-Doppler images according to the
rotation of drone blades, bird wings flapping, and pedestrians’ walking behavior. The
frequencies with high kurtosis values and amplitudes differ for each target from the spectral
kurtosis results for the three targets. However, the differences may be indistinguishable for
precise classification; thus, additional steps are required to classify the three targets reliably.
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In this study, an embedding function was applied to the obtained spectral kurtosis im-
ages to improve the classification performance for each target. The details of the embedding
function are presented in the following section.

3.2. Feature Extraction Using an Embedding Function

Targets with different micromotions can be accurately classified using the spectral kur-
tosis feature. However, classifying targets is challenging if they are of the same type and dif-
fer in speed or size. To overcome this difficulty, we added an embedding layer to the kurto-
sis feature image to distinguish targets with the same micromotion into detailed categories.
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Different embedding layers of each high-dimensional input feature vector and sparse
data matrix in two dense low-rank matrices can lead to good recognition accuracy. To
obtain the signal u and the target v of the primitive feature vectors in the embedding
space, the following steps are performed: Let P ∈ Rm×k represent the signal embedding
matrix and Q ∈ Rn×k represent the target embedding matrix, where k represents the
embedding dimension. The signal latent vector pi and target latent vector qj are then
computed as in [10].

pi = PTui (27)

qj = QTvj (28)

To illustrate the concepts discussed above, the rating matrix R is first decomposed into
two low-rank matrices, P (the signal latent matrix) and Q (the target latent matrix) satisfying
R ≈ PQT . To find the matrices, we used an embedding loss function that minimizes the
difference between the actual and approximate values defined by [18].

LEM = min
P,Q

 ∑
(i,j)∈Rknown

(
rij − piqT

j

)2
 (29)

The feature vector in the embedding space is obtained and thus each target could
be classified through the embedding layer using the spectral kurtosis image obtained
according to each micromotion as an input.

4. Deep Neural Network Algorithm

Artificial neural networks are widely used in various fields because of their excellent
performance in image classification and recognition [11]. A convolutional neural network is
a multilayer feedforward neural network with a complicated structure, good fault tolerance,
and self-learning capabilities. It addresses problems in complex environments and with
unclear backgrounds. ResNet [11,12] is the most commonly used among the several
convolutional neural network algorithms because of its excellent classification performance.
It has a structure in which 3 × 3 convolutional layers are iterated.

Five versions of ResNet are recognized, depending on the number of layers: ResNet-18,
ResNet-34, ResNet-50, ResNet-101, and ResNet-152. As the number of layers increases,
the amount of calculation and the number of parameters increases, but the performance
can be enhanced in terms of accuracy or test error. The top five validation errors of a
single model result on the ImageNet set were approximately 5.6% for ResNet34, 5.25% for
ResNet50, 4.6% for ResNet101, and 4.49% for ResNet152 [11]. When the image classification
performances of ResNet34 and ResNet101 algorithms are compared, the error rate of the
ResNet101 algorithm is better than 1%. Regarding computation, the ResNet34 algorithm
has floating point operations per second of 3.6× 109, and the ResNet101 algorithm has more
than double, 7.6 × 109 [11]. Therefore, the ResNet34 algorithm provides a good trade-off
between performance and complexity.

Figure 6 shows the shortcut structure of the network used in the ResNet algorithm.
This structure is pivotal to the algorithm’s function: In the ResNet34 algorithm, after the
input data traverses 16 shortcut structures, the algorithm can accurately determine the
data’s classification. Each shortcut, characterized by identity mappings, effectively passes
the input value directly without modifying it through convolutional layers. This unique
approach enhances the algorithm’s ability to preserve essential information from the input
while processing it through the network, ultimately leading to the final classification of
the input data. The weight layer in the network is responsible for convolution, a critical
feature extraction and learning process. The activation function used is the rectified
linear unit (ReLU), which is crucial in preventing performance degradation, a common
issue in deep networks. H(x) is the actual expected output of a particular layer, and x is
the input. Traditional neural networks aim to approximate H(x) directly, but ResNet
learns in the direction where H(x) becomes 0. This is achieved by learning the residual,
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F(x) = H(x)− x. The unique approach, termed residual learning, simplifies optimizing
the network’s parameters and addresses problems like vanishing and exploding gradients.
The identity mappings in shortcut connections can improve the recognition accuracy while
reducing the network complexity.
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5. Classification Experiments

The following section shows the performance of the proposed target classification
algorithm for drones, birds, and pedestrians using spectral kurtosis, using the ResNet34 as
described in Section 4.

5.1. Experimental Environments

The drone, bird, and human datasets used for classification are measurement signal
data collected in various signal-to-noise-ratio environments for target detection, identi-
fication, and tracking. These datasets are publicly available data provided by [19–21].
Tables 1 and 2 present the types and details of the drones and bird targets. For the pedes-
trian target, data from subjects with various characteristics, such as age, gender, and height,
were used. Of these datasets, 70% were used as training data and 30% as test data. Further,
the Adam optimizer [11] was used for the weight-updating process: the number of epochs
was 100, and the mini-batch size was 64.

Table 1. Details of the drone databases.

Drone Type Dimension (cm) Range (m)

Bepop 38 × 33 × 3.6 50
AR 61 × 61 × 12.7 50

Table 2. Details of the bird flapping databases.

Bird Type Flap Angle (rad) Velocity (m/s)

Chukar 2.5 1.2
Pigeon 1.57 1.5

5.2. Performance Evaluation Metrics

A confusion matrix is a N × N matrix used to evaluate the performance of a classifi-
cation model, where N represents the number of target classes. This matrix compares the
actual target value with the value predicted by the machine learning model. This provides
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a visual indicator of the accuracy and error of the classification model. Figure 7 shows
a confusion matrix for multi-class model classification with N classes. The results for
good/incorrect classification for each class are collected as a confusion matrix C :=

(
cij
)
,

where cij is the number of data points, where actual class i is estimated by class j. The
actual class is the actual value, the estimated class is the expected value, TP and TN are the
parts where the actual value is correctly predicted, and FP and FN indicate the parts where
the actual and expected values differ. Each term is explained as follows:

1. TP (true positive): accurate classification of the category of interest
2. TN (true negative): accurate classification of items not in the category of interest
3. FP (false positive): misclassification of noninterest categories as interest categories
4. FN (false negative): incorrect classification of a category of interest as not a category

of interest.
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Based on these four pieces of information, three measures can be determined: accuracy,
precision, and recall. Accuracy is the percentage of correctly classified data out of the total
data, indicating the accuracy of the model classification. The precision indicates the number
of correctly predicted cases that correctly classify the category of interest. This metric
allowed the determination of the reliability of the model. Recall is a measure compared to
precision. It refers to the number of data predicted for a category of interest using a model
from the actual number of data. The metrics can be calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, (30)

Precision =
TP

TP + FP
, (31)

Recall =
TP

TP + FN
. (32)

The F1 score is a performance metric used in machine learning to evaluate the pre-
dictive ability of an AI model concerning each class. It is the harmonic mean of precision
and recall, effectively balancing the two when both are considered equally important.
The F1 score ranges from 0.0 to 1.0, with a score closer to 1.0 indicating better model per-
formance. While a model with an F1 score of 0.7 or higher is often considered suitable
the threshold for a ‘suitable’ score can vary widely based on the specific application and
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requirements. In contexts where the cost of false positives and false negatives is high, a
higher F1 score would be necessary.

F1 score = 2 × Precision × Recall
Precision + Recall

(33)

5.3. Classification Experiments
5.3.1. Experiment 1: Three-Class Classification of Different Micromotion Targets

This subsection presents the classification capabilities of the algorithm discussed
in Section 4, which is designed to classify different targets based on their unique micro-
Doppler signatures. To analyze the performance of the proposed technique, we augmented
the ResNet34 algorithm with an image-embedding layer that processes the spectral kurtosis
calculated using Equation (26) for drone, bird, and pedestrian targets.

Figure 8 shows the spectral kurtosis results of the target as a drone, bird, and human
measurement data for classification. Similar to the spectral kurtosis of the simulation data
in Figure 5, the spectral kurtosis results for the three subjects can be seen to be different for
each subject. However, since the simulation data shown in Figure 5 are modeled signals
in an environment where an ideal bistatic configuration is assumed, the difference from
the results in Figure 8 is expected to be caused by bistatic distortion due to the bistatic
radar configuration.
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Figure 8. Spectral kurtosis of targets (measurement data): (a) drone, (b) bird, (c) human.

Figure 9 shows the classification results in a confusion matrix, where the actual and
predicted class matches for each target type are indicated in red, and the misclassifications
are shown in blue. This visualization confirms that the algorithm achieves a high classifi-
cation accuracy, averaging 98% across all target types. In contrast, instances of incorrect
classification are rare, representing approximately 1.5% of the cases.
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Figure 10 shows the accuracy, precision, and recall, which are the measures of the
algorithm performance calculated using Equations (30)–(32), respectively. In the perfor-
mance graph, blue represents accuracy, orange indicates precision, and gray corresponds
to recall. With accuracy and precision exceeding 98% for each of the three targets and a
recall above 97%, the ResNet model of the proposed method demonstrates commendable
classification performance.
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Figure 10. Target classification performance of Experiment 1.

The performance of the target classification for drones, birds, and humans using the
F1 score metric using a bar graph is shown in Figure 11. The model exhibits high F1 scores
across all categories. Specifically, humans have an F1 score of approximately 0.9948, drones
register around 0.9825, and birds score about 0.9772. Each score is notably high, underscor-
ing the model’s effectiveness and reliability in differentiating these targets.
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Additionally, we calculated four indices to compare the classification performance of
the existing and proposed techniques and show them in Table 3. The existing technique
adopted spectral kurtosis with micro-Doppler images but does not apply an embedding
layer. The spectral kurtosis-based methods, encompassing both approaches with and with-
out the embedding layer, outperform the micro-Doppler image-based technique across all
four metrics. Spectral kurtosis requires more straightforward input data than conventional
deep-learning models that rely on micro-Doppler imagery. This distinction enhances the
classification of the three entities by filtering out shared features in micro-Doppler images.

A specific observation is that traditional micro-Doppler imaging techniques achieved
a classification accuracy of only 85% for drones and birds. As both drones and birds are
inherently similar in size and movement patterns, it is challenging to distinguish using the
micro-Doppler image. However, the spectral kurtosis technique performed well for both
objectives, achieving an accuracy of 94%. In particular, the proposed ResNet algorithm
is integrated with the embedding layer and provides excellent classification results for
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pedestrians, drones, and birds. Considering the F1 score, which is a crucial indicator of
model reliability, the score of the existing algorithm is around 0.9. On the other hand, the
proposed model incorporating the embedding layer boasts a score of 0.98. These results
demonstrate its superiority as a near-optimal target classification algorithm.

Table 3. Performance of the classification methods.

Classification Methods Drones Birds Human

ResNet using micro-Doppler
image [16]

Accuracy (%) 90.9 90.9 93.7
Precision (%) 85.3 87.7 90.9

Recall (%) 87.8 84.6 90.9
F1-score 0.8653 0.8612 0.909

ResNet using spectral kurtosis
(w/o Embedding) [12]

Accuracy (%) 95.7 95.8 97.9
Precision (%) 93.5 93.8 96.8

Recall (%) 93.5 93.5 97.2
F1-score 0.935 0.9365 0.97

ResNet using spectral kurtosis
(with Embedding)

Accuracy (%) 98.8 98.5 99.7
Precision (%) 98.3 98.2 99.0

Recall (%) 98.19 97.28 100
F1-score 0.9825 0.9772 0.9948

5.3.2. Experiment 2: Five-Class Classification of Different and Same Micromotion Targets

In this section, we evaluate the performance of the classification algorithm with the same
micromotion into four classes: two types of drones and two types of birds (Tables 1 and 2).
The experiment result shows that the proposed method classified five-class targets correctly
as drone 1, drone 2, bird 1, bird 2, and pedestrian.

Figure 12 shows the confusion matrix for target classification. The classification
performance between the actual class of each subject, matching with the predicted class,
averaged 93%. When the actual and expected classes did not match, the probability of
incorrectly predicting drones 1 and 2 was 6.27% and 3.89%, respectively, more significant
than the probability of misclassifying micro-movements as other birds or pedestrians.
Nevertheless, the probability of adequately classifying each drone is approximately 94%.
However, the classification performance for birds was slightly degraded. Although the two
types of birds have different flight heights and wing flapping angles, their body sizes and
flight speeds are similar, resulting in a probability of misclassification higher than that of
drones or pedestrians. In the case of pedestrians, compared with drones and bird targets,
there are many micro-Doppler signals according to body movements, resulting in distinct
features and better classification performance using deep learning.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 18 
 

 

F1-score 0.935 0.9365 0.97 

ResNet using spectral kurtosis 
(with Embedding) 

Accuracy (%) 98.8 98.5 99.7 
Precision (%) 98.3 98.2 99.0 

Recall (%) 98.19 97.28 100 
F1-score 0.9825 0.9772 0.9948 

A specific observation is that traditional micro-Doppler imaging techniques achieved 
a classification accuracy of only 85% for drones and birds. As both drones and birds are 
inherently similar in size and movement patterns, it is challenging to distinguish using 
the micro-Doppler image. However, the spectral kurtosis technique performed well for 
both objectives, achieving an accuracy of 94%. In particular, the proposed ResNet algo-
rithm is integrated with the embedding layer and provides excellent classification results 
for pedestrians, drones, and birds. Considering the F1 score, which is a crucial indicator 
of model reliability, the score of the existing algorithm is around 0.9. On the other hand, 
the proposed model incorporating the embedding layer boasts a score of 0.98. These re-
sults demonstrate its superiority as a near-optimal target classification algorithm. 

5.3.2. Experiment 2: Five-Class Classification of Different and Same Micromotion Targets 
In this section, we evaluate the performance of the classification algorithm with the 

same micromotion into four classes: two types of drones and two types of birds (Tables 1 
and 2). The experiment result shows that the proposed method classified five-class targets 
correctly as drone 1, drone 2, bird 1, bird 2, and pedestrian. 

Figure 12 shows the confusion matrix for target classification. The classification per-
formance between the actual class of each subject, matching with the predicted class, av-
eraged 93%. When the actual and expected classes did not match, the probability of incor-
rectly predicting drones 1 and 2 was 6.27% and 3.89%, respectively, more significant than 
the probability of misclassifying micro-movements as other birds or pedestrians. Never-
theless, the probability of adequately classifying each drone is approximately 94%. How-
ever, the classification performance for birds was slightly degraded. Although the two 
types of birds have different flight heights and wing flapping angles, their body sizes and 
flight speeds are similar, resulting in a probability of misclassification higher than that of 
drones or pedestrians. In the case of pedestrians, compared with drones and bird targets, 
there are many micro-Doppler signals according to body movements, resulting in distinct 
features and better classification performance using deep learning. 

 
Figure 12. Confusion matrix of Experiment 2. 

Figure 13 illustrates the measurement parameters of the proposed algorithm, such as 
accuracy, precision, and recall, using the confusion matrix. The classification accuracy 
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Figure 12. Confusion matrix of Experiment 2.



Electronics 2024, 13, 376 14 of 17

Figure 13 illustrates the measurement parameters of the proposed algorithm, such
as accuracy, precision, and recall, using the confusion matrix. The classification accuracy
across the five target classes exhibits good performance, averaging 97%. The orange and
grey graphs symbolize the precision and recall metrics, respectively, which are pivotal
indicators of the algorithm’s reliability.
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Figure 13. Target classification performance of Experiment 2.

When differentiating between two drones, two types of birds, and a pedestrian, the
algorithm achieved an average performance rate of 92%. The precision rate of the bird
classification is close to 90%, but it was marginally lower than the performance rates of the
other target classifications. Remarkably, the classification performance for pedestrians stood
out as near-perfect. This result is assigned to the distinct micro-movements of pedestrians,
which are significantly differentiated from the micromotions of drones or birds.

Figure 14 shows the F1 scores for the five classification type categories. In particular,
the human category achieved an almost perfect F1 score of 0.9948. The drone categories,
Drone1 and Drone2, both recorded high scores of about 0.94. Conversely, Bird1 and Bird2
score around 0.88, slightly lower than the drone and human categories but highlighting the
model’s reliability within the classification spectrum.
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5.3.3. Experiment 3: Three-Class Target Classification under Different SNR Scenarios

In the corresponding section, we analyze the performance of a three-class target
classification under various SNR scenarios. A significant challenge encountered during
Experiments 1 and 2 was the inability to accurately determine the SNR values of the
measurement data, rendering a direct performance assessment impractical under a range of
SNR conditions. Therefore, we utilized artificially simulated data, as theoretically modeled
in Section 2, to effectively evaluate the algorithm’s performance across different SNR levels.
We set the SNR range for the generated data from −20 dB to 10 dB and derived four
performance metrics at 5 dB intervals.
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Figure 15 presents the performance metrics of a classification algorithm for three
different target classes across varying SNR levels. The analysis shows enhanced accuracy,
precision, recall, and F1 scores as SNR increases. Human targets achieve high accuracy
even at lower SNRs, indicating the algorithm’s proficiency in identifying human signatures.
Drone classification remains stable across SNRs, suggesting distinctive drone signatures,
while bird detection improves significantly with higher SNR. The F1 score, a metric com-
bining precision and recall, shows uniform improvement across all classes, and human
target classification performs better over the entire SNR range than the other two targets.
The algorithm thus demonstrates robustness across varying signal qualities.
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Throughout these experiments, we have demonstrated the robustness and effective-
ness of the proposed algorithm for classifying targets based on their micro-Doppler sig-
natures. Including an embedding layer, notably when processing spectral kurtosis, has
markedly improved the classification performance across different and similar micro-
motion targets. The results reiterate the importance of considering the inherent micro-
Doppler characteristics of various entities and the potential of deep learning in enhancing
target classification.
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6. Conclusions

In this study, we addressed the problem of classifying three targets with similar
speeds and segmenting targets of the same type. After extracting the spectral kurtosis as
a micro-Doppler feature, a deep learning technique was used to classify the three targets.
In addition, we proposed an effective classification system that can classify the spectral
kurtosis of objects with the same micromotion by adding an image-embedding layer. Here,
we simulated three-class classifications with targets performing different micromotions
and five-class classifications with two types of targets with the same micromotion. We
analyzed the classification performance of each target using the ResNet34 deep-learning
algorithm. It has an average performance of over 97% in terms of accuracy, precision,
and reproducibility. The F1 score was 0.93, which shows that it outperforms the existing
classification techniques. To enhance the rigor and completeness of our study, we also
included the classification algorithm’s performance across different SNR scenarios across
various SNR scenarios. The performance results show the algorithm’s robustness and
dependability over a spectrum of signal qualities. In the future, we will try to train and
test our method on a much broader class of three targets. We will consider jointly using
estimates of object speed and median radar cross-section with the micro-Doppler data to
improve classification performance. Additionally, we plan to study the parameter settings
by considering the computational cost of the target classification technique and quantify
accuracy as a function of data rate and the geometrical diversity of sensors. By applying this
method to the field of target detection, it is expected that higher accuracy can be obtained
by estimating the position and speed of the target of interest.
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