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Abstract: For daily motion recognition, each researcher builds their own method to recognize their
own specific target actions. However, for other types of target motions, they cannot use their method
to recognize other kinds of motions because the features of their target motions that they extracted
cannot be extracted from other kinds of motions. Therefore, we wanted to develop a general method
that can be used in most kinds of motions. From our observations, we found that a meaningful
motion is combined with some basic motions. Therefore, we could recognize basic motions and then
combine them to recognize a target motion. First, we simply defined the basic motions according
to the sensor’s basic sensing directions. Second, we used k-nearest neighbors (KNN) and dynamic
time warping (DTW) to recognize different categories of basic motions. Then, we gave each basic
motion a specific number to represent it, and finally, used continuous dynamic programming (CDP)
to recognize a target motion by the sequence of basic motions we collected. In our experiment on
our basic motions, the accuracy of all of the basic motions is higher than 80%, so the recognition
of basic motions is reliable. Then, we performed an experiment for recognizing the target motions.
The results of recognizing the target motions were not good, the average accuracy being only 65.9%,
and we still have to improve our system. However, we also compared our system with recognizing
motions by using another general recognition method, KNN. And the average accuracy of using
KNN to recognize motions was 53.4%. As this result shows, our method still obtains better results in
recognizing different kinds of motions than using KNN.

Keywords: recognize motions; basic motions

1. Introduction

The recognition of daily motions holds increasing importance in the assessment of
activities of daily living (ADLs), providing valuable insights into the quantity and quality
of physical activity. Extensive research has been conducted in this domain, employing
various methodologies and sensor technologies. For instance, Jeong et al. [1] utilized
accelerometers for classifying daily postures and movements. Parate et al. [2] leveraged
inertial sensors to identify smoking gestures, a method also applicable to analogous motions
like eating. Totty et al. [3] combined muscle and inertial sensors for classifying ADLs, and
Tang et al. [4] focused on hand motion recognition using muscle sensors.

Despite these advancements, a limitation persists in the specificity of each method
to particular types of motions. For example, a technique effective in walking recognition
may not be suitable for recognizing smoking or eating gestures, and vice versa. This
segmentation in methodology underscores the need for a more universal approach to
motion recognition.

Addressing these challenges, our research introduces a novel, comprehensive method
for motion recognition. This method is grounded in the decomposition of complex activ-
ities into basic actions, enabling precise identification and categorization. Our approach
simplifies the integration of new task actions by merely requiring the sequence of their
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basic actions. Furthermore, it robustly accommodates variations in motion execution across
different individuals, ensuring reliable recognition regardless of execution length or style.

Our research aims to develop a generalized method capable of recognizing a wide
array of motions, encompassing everyday activities such as drinking water, smoking,
opening doors, and eating with chopsticks. As illustrated in Figure 1, we observed that
complex motions are typically composed of smaller, discrete movements. By deconstructing
motions into their fundamental components and analyzing these smaller segments, we
propose a novel approach for comprehensive activity recognition. To illustrate, consider
the act of opening a door. If you want to open a door, you have to reach out your hand first,
and then hold the doorknob, then turn the doorknob, and finally, open the door. Therefore,
we could use the small pieces of the motions, such as reaching out our hand, moving
our hand to the right or left, withdrawing our hands back, or spreading or holding some
objects, making a fist, and so on. And then, combine these small motions to achieve activity
recognition. For example, if we see the sequence of reaching out, holding some object, and
turning the object, by this sequences of small motions, we can know that the person is
opening a door. By using this basic idea, we could recognize most kinds of motions.

Figure 1. Observation that the action of opening a door can be decomposed into a sequence of
basic actions.

To facilitate this, we initially define a set of basic motions aligned with the axes of
our sensors. For example, using a three-axis accelerometer, we can define six fundamental
motions corresponding to the sensor’s detection capabilities. The process then involves
segmenting the most probable parts of these basic motions from continuous sensor data.
We employ a thresholding technique for this segmentation, based on the premise that
physical motions generate detectable energy or movement, manifesting as higher sensor
values. Finally, to accurately classify these segmented basic motions, we utilize two distinct
recognition methods: k-nearest neighbors (KNN) [5] for muscle sensor data, and dynamic
time warping (DTW) for accelerometer and gyroscope data. This dual-method approach
enables precise identification of the varied basic motions, laying the groundwork for our
system’s ability to recognize complex activities. Our research contributes a flexible, scalable,
and accurate framework for recognizing a broad spectrum of daily activities. Then, when
we obtain the basic motions, we have to combine the sequence of them. Here, we will first
give each basic motion which we defined specific numbers to represent them. When we
obtain the sequence of basic motions, we will transform the sequence of basic motions into
a simple number list according to the numbers that we give. Then, we will use continuous
dynamic programming (CDP) to recognize what kind of target motion is combined with
these basic motions.

The contributions of this research are itemized below:

1. A two-stage recognition method was established that uses the inertial measurement
unit (IMU) and electromyography (EMG) to identify basic actions and uses the se-
quence of basic actions to identify long actions.

2. The method of recognizing long actions by decomposing them into basic operations
simplifies the addition of new actions and only requires the sequence of their basic
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actions. It ensures recognition of actions despite variations in execution length across
different individuals.

2. Related Work

In the past, there has been a lot of research on recognizing motions, which can be
categorized into research on wearable sensors and ambient sensors. Various wearable
sensors have been studied, such as inertial sensors [2,6], myoelectric sensors [7–11], bending
sensors [12,13], and ambient sensors [14,15]. Using sensors for motion recognition generally
involves steps including sensor data collection, preprocessing and feature extraction, and
classification recognition. A comparison with related work is shown in Table 1.

Table 1. Comparison of related work.

Sensors Research Target Features Algorithm

Our system IMU, EMG Daily activities Basic motions DTW, KNN, CDP

Ref. [2] IMU Smoking and similar motions Find start and end features RF, CRF

Ref. [3] IMU, EMG Category of daily motions Statistics features (mean,
SMA, RMS) KNN

Ref. [4] EMG Hand motion Multi-channel concordance
correlation feature Cascaded-structure classifier

Ref. [14] Smart home Daily activities Based on which kinds of
sensors

Dynamic sensor event
segmentation algorithm

Ref. [16] Acoustic sensor Speech/text retrieval CDP value CDP, RIFCDP

In terms of using the accelerometer to recognize motions, Ref. [1] used a three-axis
accelerometer to classify the user’s posture and movement to evaluate a person’s activity
quantity and ability. They used the accelerometer to recognize emergent situations such
as falling during daily life. They used the differential signal vector magnitude (DSVM) to
calculate the activity volume in daily life to recognize emergent situations such as falling
and the state of activity. They could classify many kinds of daily motions. However, they
only used an accelerometer to classify the user’s posture and movement, they could not
recognize more details about a person’s gesture to detect more kinds of motions.

Ref. [2] used inertial sensors to recognize smoking gestures. They first used quaternion
to calculate an arm trajectory and extracted features according to smoking gestures. Then,
they used random forest (RF) to recognize smoking gestures and used a probabilistic model,
condition random field (CRF), to analyze the sequence of smoking sessions. Their method
could be used in other similar kinds of motions because the features they extracted are
only for these kinds of motions, for example, they extracted the trajectory of the smoking
gesture. However, for other kinds of motions, they have to re-collect or re-observe the
motion data to extract some motion’s representative features.

Daily action recognition is often used in health testing or rehabilitation. The research
by Wan et al. [14] implemented extensive sensor networks in smart home environments.
This method bases recognition on the location of sensor activation, with different activities
inferred from the specific area of the sensor’s installation. For instance, the activation of a
sensor in the kitchen suggests activities like cooking or washing. While this approach effec-
tively detects a variety of daily motions through sensors allocated to different household
areas, it requires the extensive installation of sensors throughout the home. Additionally,
this method is constrained to indoor environments, unable to track motions when users
are outside.

In addition, for gesture recognition, many studies have used muscle sensors to detect
user gestures. The study in [17] addresses the problem of noisy EMG signals and reviews
the performance of various methods for analyzing EMG signals. Multisensory-integration-
based EMG pattern recognition techniques have been developed. Although EMG signals
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can provide extensive information about muscle movements, their amplitude is often
influenced by various uncontrollable factors, such as electromyographic crosstalk, as
mentioned in Ref. [18]. This can lead to misunderstandings about muscle activity, thereby
affecting the accuracy of motion prediction. Ref. [19] addressed the segmentation issue of
surface electromyography (sEMG) signals, proposing a standard protocol for segmenting
and averaging muscle activations in cyclic movements.

Ref. [3] utilized a multimodal commercial sensor device incorporating sEMG sensors,
an accelerometer, and a gyroscope to assess the feasibility of classifying categories of daily
living activities as defined by the Functional Arm Activity Behavioral Observation System
(FAABOS). KNN was employed to predict the FAABOS task categories. The inputs for KNN
included the signal magnitude area (SMA) and mean values extracted from the acceleration
and angular rate of change data, and root-mean-square (RMS) values computed from
the sEMG data. This study utilized the same sensor device as ours. A straightforward
experiment was conducted to determine which statistical features were more effective for
use in KNN for classifying daily motions. However, their focus was solely on extracting
statistical features to evaluate their system; they did not endeavor to recognize gestures or
the forearm’s trajectory.

Ref. [4] used a multi-channel surface electromyography sensor to recognize some
hand motions. They extracted the multi-channel concordance correlation features which
investigate the agreement between two signals. Then, they used a cascaded-structure
classifier to recognize hand motions. The first step of the cascaded-structure classifier used
energy ratio features to classify several separable groups. As the result of the first step,
the similar features of hand motions were classified together. To separate each group of
hand motions clearly, in the next step they used the concordance correlation features to
recognize hand motions. They used a cascaded-structure classifier to improve the results of
the classification and the features they extracted were really meaningful for the gestures.

The study in [9] introduces a novel real-time hand gesture recognition method using
sEMG to decode motor unit activities for various motor tasks. The method involves
segmenting EMG signals into motion-related segments and applying a convolution kernel
compensation algorithm for real-time global EMG decomposition. This technique was
tested on high-density EMG data from eleven non-disabled participants performing twelve
hand gestures. However, the reliance on high-density EMG data could also limit its
practicality in everyday applications due to the need for specialized equipment and setup.
Ref. [20] demonstrated the feasibility of a surgical instrument signaling (SIS) gesture
recognition system using sEMG signals acquired from a Myo armband, aimed at developing
processing routines for remote or robotic surgical applications, though it currently only
recognizes shorter movements.

There are applications of myoelectric sensors for motion capture using deep learning
algorithms for recognition [21–24]. The recognition rate for short actions is very high, while
long actions require more data training and the computational cost becomes higher. In
Ref. [25], inspired by the significant successes of deep learning in image processing, the
researchers treated raw sEMG signals as images and constructed a convolutional neural
network (ConvNet) model. This approach of converting sEMG signals into images offers a
novel perspective and methodology for understanding and processing EMG signals. In
Ref. [26], they adopted a strategy of fusing global and local features to enhance dynamic
gesture recognition rates by extracting both types of features from sEMG signals to improve
gesture classification performance. In further research, addressing scenarios with limited
data or the need to adapt to evolving tasks, the study in [27] developed a method capable
of inferring the required outputs with only a few training examples, significantly easing
the training burden and enhancing the practicality of the approach.

In terms of segmentation and recognition, Ref. [16] used their method CDP to au-
tomatically segment and recognize speech or text words. This method is really helpful
for motion recognition because segmentation is one of the difficult problems for motion
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recognition. If we could use this method to automatically segment and recognize motions,
it would help us solve the problem with motion segmentation and recognition.

In our system, electromyography sensors are utilized to recognize the user’s gestures,
accelerometers to detect the movement of the user’s forearm, and gyroscopes to assess
forearm rotation. These motions are referred to as ’basic motions’, which are invariably
performed during the execution of a target motion. These basic motions are then employed
as the defining features of our target motion. Finally, we combine them to achieve complete
motion recognition. Due to the comprehensive nature of the basic motions’ features, no
information about the user’s forearm movements or gestures is lost, enabling us to detect a
wide variety of motions by amalgamating the recognition results from each sensor. Given
that our system’s motion features are based on basic motions, to recognize a new or
undefined motion, one only needs to collect the basic motions associated with this new
type. This approach obviates the need for time-consuming observation and collection of
specific motion features.

3. Model

The organization of this paper is as follows. The research encompasses four parts,
as illustrated in Figure 2. The first is the collection model, where we collect sensor data
from the device, detailed in Section 4.3. Subsequently, these data undergo preprocessing
on the computer. The second part is the segmentation model, elaborated on in Section 4.4,
where preprocessed data are segmented to isolate basic motion components. In this model,
accelerometer, gyroscope, and EMG data are used separately to segment various types
of basic motions. The third part is the recognition model, the details of which will be
explained in Sections 4.5 and 5. We aim to recognize the segmented parts obtained in the
second model to identify the specific basic motions. In this model, two recognition methods
are employed for identifying basic motions: KNN for hand status motions and DTW for
both movement and rotation motions. The final part is the combination model, detailed
in Section 6. Upon obtaining the sequence of basic motions from the above models, we
combine them to recognize the target motion. In this model, each basic motion is assigned
a specific number for representation, followed by inputting the sequence into CDP to
recognize our target motions.

Figure 2. System flow.

4. System Architecture

The system architecture is depicted in Figure 3. Initially, input data are collected,
followed by preprocessing of the raw data to facilitate easier segmentation. Subsequently, a
predetermined threshold is applied to segment candidates of basic motion parts. Thereafter,
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KNN is employed to classify the segments, thereby recognizing the hand status in basic
motions. For recognizing the arm’s movement and rotation as basic motions, DTW is
utilized. In the final step, each basic motion in the sequence is assigned a specific numerical
representation, and CDP is used to recognize the target motion.

Figure 3. System architecture.

4.1. Device

For our sensor device, we utilize an armband called Myo, developed by the Canadian
company Thalmic Labs in 2013. It is equipped with two types of sensors: muscle sensors
and an IMU sensor. Myo features eight muscle sensors, as illustrated in Figure 4. The
muscle sensors are capable of detecting whether the user’s hand is exerting force, thereby
enabling the detection of the user’s gestures. The IMU sensor provides three types of
inertial raw data: accelerometer, gyroscope, and quaternion data. This device will be used
to detect the user’s arm movement, rotation, and gestures using the different sensors.

Figure 4. Sensor placement for Myo. (The yellow numbers represent 8 pairs of EMG sensors).

4.2. Definition of Basic Motions

In this section, we delineate the framework for basic motion classification within our
study. Our methodology involves the categorization of motions into three distinct types,
each aligned with a specific sensor modality: accelerometer, gyroscope, and muscle sensors.
The accelerometer’s output is instrumental in monitoring the translational movements
of the user’s forearm. Concurrently, the gyroscope data are pivotal for assessing the
forearm’s rotational dynamics. Finally, the integration of muscle sensor data is crucial for
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the accurate interpretation of the user’s gestural expressions. This tripartite approach forms
the foundational basis for our motion detection and analysis system.

In the context of forearm movement, we have established definitions based on the
directional output of the accelerometer, as illustrated in Figure 5. Specifically, the ‘forward’
and ‘backward’ basic motions correlate with the accelerometer’s y-axis. Correspondingly,
the ‘move to left’ and ‘move to right’ motions are associated with the x-axis of the sensor.
Finally, the ‘move up’ and ‘move down’ motions are defined in relation to the z-axis of
the accelerometer. This structured approach allows for precise motion categorization and
enhanced interpretability of accelerometer data.

Figure 5. Movement of forearm.

For rotation of the forearm, we also define the basic motion according to the gyroscope
sensing direction, as shown in Figure 6. “Raise Up” and “Put Down” correspond to
gyroscope x sensing direction. “Turn to Left” and “Turn to Right” are for the y-axis. “Arm
In” and “Arm Out” are for the z-axis.

Figure 6. Rotation of forearm.

And for the status of the hand, we simply define five kinds of gestures, as Figure 7
shows: “hand out”, “fist”, “hand in”, “open hand”, and “hold object”.
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Figure 7. Status of hand.

4.3. Data Collection and Preprocessing

In the data collection phase, Bluetooth 4.0 was employed for communication with the
Myo armband, utilizing a specific Bluetooth adapter compatible with Windows. The sensor
data acquisition from Myo was facilitated through their Python API.

Once the sensor data were obtained, it was essential to preprocess these raw data to
simplify the subsequent segmentation process. Given that thresholding would be applied
to demarcate the basic motion segments, it was necessary to transform the data from each
sensor into a one-dimensional format, thereby easing the segmentation of basic motions.

For the accelerometer and gyroscope data, a three-axis synthesis was performed using
the formula outlined in Formula (1). This synthesis process effectively represents the user’s
movement and rotation; an increase in the synthesized values of the accelerometer or gyro-
scope data is indicative of the user initiating arm movement or rotation. Consequently, this
provides a viable means to segment forearm movement and rotation through thresholding
these synthesized values.

Regarding the EMG data, the root-mean-square (RMS) method, as depicted in
Formula (2), was utilized to synthesize the sensor data. The RMS value of the EMG
data reflects the extent of forearm exertion. As such, a higher RMS value corresponds to
greater force exerted by the user’s hand, thus enabling the effective segmentation of the
exertion phase of the user’s hand.

syn_acc =
√

x2 + y2 + z2 (1)

syn_acc refers to the three-axis synthesis of the accelerometer.

syn_emg =

√
∑8

i=1 x2
i

8
(2)

syn_emg refers to the three-axis synthesis of EMG.

4.4. Segmenting Basic Motions

The primary objective of our research is to identify basic motions that form the foun-
dation of most complex movements. This includes all forms of movement, rotation, and
hand force exertion. As discussed in the preceding section, we hypothesize that threshold-
based segmentation can effectively isolate each candidate of basic motions. Thresholding
segmentation, a straightforward method, involves segmenting data based on a predefined
threshold value. As illustrated in Figure 8, data exceeding this threshold is segmented and
extracted. Accordingly, we apply this thresholding technique for the segmentation of basic
motions. For the EMG data, we employ the RMS of the raw data to segment basic motions
associated with the user’s gestures, as previously mentioned. The optimal threshold for
the RMS of the EMG data was determined through experimental trials, aimed at achieving
effective gesture segmentation. In the case of IMU data, we utilize the root sum square of
the raw data for segmenting basic motions related to the user’s forearm. The thresholds for
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the accelerometer and gyroscope data were similarly established through experimentation,
with the goal of finding the most effective values for segmenting each type of sensor data.

Figure 8. Thresholding segmentation.

4.5. Recognition of Basic Motions of Gesture: K-Nearest Neighbors

Following the segmentation phase, the focus shifts to the recognition of hand gestures.
This process leverages the data from muscle sensors, which are each associated with specific
muscle pairs. Different gestures activate varying combinations of these muscle pairs.

The KNN [28] algorithm serves as a relatively straightforward method for classification.
The initial step involves training the KNN model by providing it with feature data and
corresponding labels. During the testing phase, feature data are input into the KNN
model, which then computes the distances between the input features and the training
data. The classification result is determined based on the k-nearest neighbors in relation
to the test data, effectively categorizing the gesture. The operational mechanism of the
KNN algorithm is visually represented in Figure 9, providing an illustrative overview of its
functionality in gesture recognition. Among the three closest points to the green dot, there
are more red triangles, so we will classify them into the same category as the red triangles.

The KNN algorithm is characterized by its inherent simplicity and effectiveness,
serving as a robust method for classification tasks. The process involves minimal complexity
in training, which entails feeding the model with feature data and corresponding labels.
Upon the introduction of new data, KNN demonstrates its adaptability, recalibrating itself
to accommodate updated information. This feature makes it exceptionally suitable for
dynamic applications where data are continuously evolving.

Figure 9. Operational mechanism of the KNN algorithm.

Consequently, we can input features from each sensor into the KNN model, as de-
lineated in Formula (3). The rationale behind this approach is that the inputted features
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effectively represent the activity of each muscle pair engaged by the user. In essence, the
inputs to the KNN model are representations of the user’s gestures. This expectation is
predicated on the assumption that the correlation between specific muscle activations and
corresponding gestures will be effectively captured and classified by the KNN model.

[RMSsensor0 , RMSsensor1 , RMSsensor2 , RMSsensor3 ,

RMSsensor4 , RMSsensor5 , RMSsensor6 , RMSsensor7 ]
(3)

5. Recognition of Basic Motions of Forearm Movement and Rotation: Dynamic
Time Warping

In the context of recognizing forearm movement and rotation, the directional proper-
ties of sensor values become particularly pertinent. The waveform patterns of sensor data
are significantly representative of the arm’s movement and rotation dynamics.

DTW [29] calculates the distance between reference data and test data. If the distance
becomes smaller, it means the reference data waveform is more similar to the test data
waveform. Figure 10 shows a schematic diagram of DTW.

Figure 10. Schematic diagram of DTW calculating the distance between reference data and test data.

Hence, the application of DTW is proposed for identifying the basic motion that most
closely aligns with the segmented part. This approach is predicated on the ability of DTW
to discern patterns and similarities in time-series data.

DTW is distinguished by its remarkable ability to measure the similarity between two
temporal sequences, even when these sequences vary in speed. This attribute of DTW
lends it remarkable flexibility, vital for tasks requiring precise temporal alignment and
sequence comparison. Furthermore, DTW’s robustness against local distortions stands out,
enabling it to efficiently process sequences that exhibit slight variations or contain noise.
This resilience makes DTW a reliable tool for analyzing complex time-series data.

It is pertinent to note that both accelerometer and gyroscope data are inherently three-
dimensional, encompassing the x, y, and z axes. Consequently, the input for the DTW
algorithm comprises a sequence of three-dimensional data points. This multidimensional
aspect of the data input is crucial for accurately capturing the complex dynamics of move-
ment and rotation. The specific formulation and structure of this three-dimensional DTW
input are detailed in Formula (4), which explains the methodology for transforming raw
sensor data into a suitable format for effective motion analysis.

[[x0, y0, z0], [x1, y1, z1], ......, [xn, yn, zn]] (4)
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6. Combining Basic Motions

After the identification of basic motions, the next critical step is their sequential
combination. Given that the real-time sequence length of basic motions may vary from that
of the training data, we employ DTW, previously introduced, to address these discrepancies
in sequence length during the recognition of the target motion.

To effectively utilize DTW, a sequence of numerical values is required. However, at
this stage, what we have are tags or labels representing basic motions. Thus, it becomes
necessary to assign specific numerical representations to each basic motion. Considering
the distinct nature of the three types of basic motions, we represent a basic motion as a three-
dimensional data point. This representation includes the status of the hand, the movement
of the forearm, and the rotation of the forearm. The structure of this representation is
illustrated in Figure 11.

For example, as shown in Figure 12, the basic motion ‘raise up’, which pertains to
a type of forearm rotation, is classified as the first type in the rotation category of basic
motions. Therefore, it is represented numerically as [0, 0, 1]. This numerical coding system
is consistently applied to all basic motions, following a standardized rule for representation,
ensuring uniformity and precision in the encoding process.

The movements are divided into three categories: status of hand, movement of forearm,
and rotation of forearm, and three dimensions are established for action label encoding.

Figure 11. Action label encoding of basic motions.

Status of hand (1–5) contains five actions: fist, hand in, hand out, open hand, hold object.
Movement of forearm (1–6) contains six actions: backward, forward, move to up,

move to down, move to left, move to right.
Rotation of forearm (1–6) contains six actions: raise up, put down, turn right, turn left,

arm in, arm out.

Figure 12. A door-opening action is decomposed into five basic actions according to Figure 11. Raise
up label encoding is [0, 0, 1], forward label encoding is [0, 1, 0], hold object label encoding is [4, 0, 0],
turn left label encoding is [0, 0, 4], backward label encoding is [0, 2, 0].

Upon obtaining the real-time sequence of basic motions, we proceed to transform this
sequence into specific numerical values that correspond to the predefined basic motions.
This transformation enables the input of both the sequence of basic motions and the training
data into the DTW algorithm for recognition purposes.
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However, an issue arises when utilizing DTW to amalgamate these basic motions into
a target motion. We observed that the initial basic motion performed by an individual often
deviates from the first basic motion in the training dataset. This discrepancy is due to the
likelihood of executing an unrelated basic motion prior to commencing the target motion,
as illustrated in Figure 13. Such a variance can lead to significant errors in the DTW output,
given that DTW relies on accurately identifying the start and end points of the motion. This
challenge necessitates a refined approach to ensure the effective utilization of DTW in our
motion recognition system.

Figure 13. Observation of combining basic motions.

In response to the aforementioned challenge, we propose the application of CDP for
the integration of basic motions. CDP, essentially a continuous variant of DTW, is adept at
identifying the most similar segments within continuous data streams when compared to
reference data. This capability makes CDP particularly suitable for our requirements.

The operational mechanism of CDP within our system is graphically represented in
Figure 14. In this schematic diagram, the y-axis represents the input of reference data,
while the x-axis corresponds to the test data input. By leveraging CDP, we anticipate
overcoming the previously mentioned issue of misalignment between the initial basic
motion in real-time data and the corresponding segment in the training data. CDP’s ability
to continuously analyze and match data segments holds significant potential for enhancing
the accuracy and reliability of our motion recognition system.

Figure 14. Example of CDP as used in our system.

7. Experiment

In this section, we will introduce our experiment environment and setting, then there
is an experiment for basic motions which we defined, because before recognizing target
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motions, we have to ensure that the accuracy of basic motions is high enough for them to
be reliable features of target motions. In the end, we evaluate our system by comparing our
method to recognize target motions with using KNN to recognize target motions.

7.1. Experiment Setting

For the experiment setting, we asked five subjects to help us collect basic motion
training data. All the subjects were members of our laboratory. There are 17 kinds of basic
motions. First, we demonstrated all the kinds of basic motions to each subject to let them
understand how they should collect the training data. Next, we asked them to perform
each kind of basic motion 10 times to save as text files to build our basic motions database.

After collecting all the subject’s data, each kind of basic motion had 50 training data.
If there were 50 training data for each basic motion, and for the movement and rotation of
basic motions, our recognition method, DTW, needs too much time for computations; so, if
there are too many training data, the system cannot perform the real basic motions result of
the target motion, letting the target motion combine with some inaccurate basic motions.
To solve these problems, we decided to use 20 training data for each basic motion to be our
basic motions database. We then used 30 data for verification.

After constructing the basic motions database, we asked another three subjects in
our laboratory to collect the training data of our target motions, drinking, opening a door,
opening a drawer, and punching. The collection procedure was the same as the above
procedure: we asked each subject to perform each target motion 10 times to build our
target motions database. The special part of our target motions training data was the
sequence of basic motions. For example, if we wanted to collect the training data of a target
motion, like opening a door, we asked the subject to open a door to collect the training data,
obtaining the sequence of basic motions like [‘forward’, ‘open hand’, ‘hold object’, ‘turn
right’, ‘backward’]. And the sequence of basic motions would be our training data, not the
real sensor data.

However, to compare our system with other methods, this time we saved the original
sensor raw data as text files to input to other recognition methods to evaluate our system,
and we also saved the sequence of basic motions that we acquired from the target motion
as text files to build our system’s target motions training data.

7.2. Evaluating Basic Motions

Now, we talk about the evaluation of the basic motions to ensure that the accuracy
of basic motions is high enough to be the reliable features of target motions. We used
leave-one-out cross-validation to evaluate our basic motions. For the basic motions of
forearm movement and rotation, we used DTW to evaluate the result as mentioned in
the previous section. And for the basic motions of hand status we used KNN to evaluate
the result.

The experimental results pertaining to the basic motions of forearm movement are
presented in Table 2. It is evident from the data that all movement-related basic motions
achieved an accuracy exceeding 90%. Similarly, the results for basic motions of forearm
rotation, as shown in Table 3, also demonstrate high accuracy for each categorized basic
motion. Furthermore, the results for gesture-related basic motions, detailed in Table 4,
indicate that the accuracy of these motions surpassed 80% in our experiments.

From these findings, it can be inferred that the recognition accuracy of basic motions
is substantial. This high degree of accuracy validates the use of these basic motions as
reliable features for the recognition of target motions in our system. The consistency of high
accuracy across different types of basic motions underscores the robustness of our approach
and its potential applicability in accurately identifying a diverse range of target motions.
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Table 2. Basic motions of forearm movement.

Real
Predict

Backward Forward Move_Down Move_to_Left Move_to_Right Move_Up

Backward 29 0 0 0 1 0
Forward 2 28 0 0 0 0

Move_Up 0 1 28 1 0 0
Move_Down 0 0 1 29 0 0
Move_to_Left 0 0 0 0 30 0

Move_to_Right 0 0 0 0 0 30

Accuracy 96.7% 93.3% 93.3% 96.7% 100% 100%

Average accuracy: 96.7%. Standard deviation: 3.

Table 3. Basic motions of forearm rotation.

Real
Predict Raise_Up Put_Down Turn_Right Turn_Left Arm_In Arm_Out

Raise_Up 30 0 0 0 0 0
Put_Down 0 30 0 0 0 0
Turn_Right 0 0 30 0 0 0
Turn_Left 0 0 0 30 0 0
Arm_In 1 0 0 0 29 0

Arm_Out 0 1 0 0 0 29

Accuracy 100% 100% 100% 100% 96.7% 96.7%
Average accuracy: 98.9. Standard deviation: 1.7.

Table 4. Basic motions of hand status.

Real
Predict Fist Hand_In Hand_Out Open_Hand Hold_Object

Fist 28 1 0 0 1
Hand_In 0 30 0 0 0

Hand_Out 0 0 28 2 0
Open_Hand 0 0 4 24 2
Hold_Object 2 0 1 1 27

Accuracy 93.3% 100% 93.3% 80% 90%
Average accuracy: 91.3%. Standard deviation: 7.3.

7.3. Evaluating Target Motions

In this section, we aim to assess the efficacy of our system through experiments involv-
ing four distinct target motions: drinking, opening a door, opening a drawer, and punching.
For this evaluation, we employed the leave-one-out validation technique, ensuring that
the test and training data consisted of sequences of basic motion tags. As outlined in the
preceding section, these tags were transformed into specific numerical values to serve as
inputs for CDP.

The target motions were then recognized using CDP. Additionally, to provide a com-
parative analysis of our system’s performance, we also utilized the KNN method for
recognition. KNN was selected as a comparative benchmark due to its ability to extract
simple statistical features for recognizing a broad range of motions, unlike many specialized
recognition methods. This comparison aims to highlight the versatility and effectiveness of
our approach in contrast to more conventional methods.

In line with the findings from the study by [3], the optimal statistical features for KNN
were identified as the mean values of the accelerometer and gyroscope data, along with
the root mean square (RMS) of the EMG data. Consequently, we incorporated these three
statistical features into the KNN model for our comparative evaluation. This approach is ex-
pected to provide a comprehensive assessment of our system’s performance in recognizing
diverse target motions, thereby validating the effectiveness of our methodology.
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The results of applying our method to recognize target motions are presented in
Table 5. The data reveal that the accuracy for the ‘drinking’ motion was 76.7%, ‘open_door’
achieved 46.7%, ‘open_drawer’ reached 53.3%, and ‘punch’ attained an accuracy of 86.7%.
Notably, the results for ‘open_door’ and ‘open_drawer’ were less satisfactory. We attribute
this to three primary factors.

Table 5. Experiment of recognizing motions by combining basic motions.

Real
Predict Drinking Open_Door Open_Drawer Punch

Drinking 23 0 2 5
Open_Door 4 14 6 6

Open_Drawer 0 1 16 13
Punch 2 2 0 26

Accuracy 76.7% 46.7% 53.3% 86.7%
Average accuracy: 65.9%. Standard deviation: 18.9.

Firstly, the specific numerical representations assigned to each basic motion may have
contributed to the lower accuracy. In the context of CDP with sensor data, each value has
inherent meaning and is indicative of the motion’s sensitivity to the sensor. However, the
numerical inputs in our method lack such meaningful relationships, potentially leading to
significant errors in CDP’s output.

Secondly, the issue may stem from the foundational definitions of basic motions in
our system. While these motions are defined as simple, unidirectional movements, making
them easily recognizable, this simplicity may not adequately capture the complexities of
continuous, multidirectional target motions. As a result, our system might fail to accurately
recognize certain aspects of these more complex movements.

Lastly, the limitations of our experimental device, which is worn only on the forearm,
could have impacted the results. This setup precludes the detection of wrist rotation, a
potentially crucial aspect of certain target motions. The absence of this information might
have adversely affected the accuracy of our system in recognizing these specific motions.

The result of recognizing target motions using KNN is shown in Table 6. It can be seen
that the accuracy of drinking is 80%, open_door is 40%, open_drawer is 36.7%, and punch
is 56.7%.

Table 6. Experiment of recognizing motions using KNN.

Real
Predict Drinking Open_Door Open_Drawer Punch

Drinking 24 3 3 0
Open_Door 12 12 4 2

Open_Drawer 11 8 11 0
Punch 2 9 2 17

Accuracy 80% 40% 36.7% 56.7%
Average accuracy: 53.4%. Standard deviation: 19.8.

Comparing KNN with our system, as shown in Table 7, it is seen that our system
obtains higher accuracy in most target motions, and only the accuracy of drinking is a little
bit lower than the result of KNN. Though the results of our system should be better, by
comparing it with KNN, we can see that our system is better than using some statistical
features in KNN.

Table 7. Results of comparison of our system with KNN.

Methods
Motions Drinking Open_Door Open_Drawer Punch AVG (SD)

Our system 76.7% 46.7% 53.3% 86.7% 65.9% (18.9)
KNN 80% 40% 36.7% 56.7% 53.4% (19.8)
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8. Discussion

Our framework, designed for processing sequences of continuous actions, is marked
by its flexibility and scalability. This feature makes it especially effective in addressing the
complex challenges of movement recognition. Such an approach is highly beneficial in
diverse areas including health monitoring systems, physical therapy and rehabilitation,
and sports training and analysis. The framework’s adaptability to evolving technologies
further enhances its utility in these dynamic sectors.

Upon analyzing the factors contributing to the accuracy of our recognition results, we
identified two primary challenges:

(i) Complexity in extracting fundamental actions: Extracting fundamental actions
from complex, continuous motions is a significant challenge. In contrast to language,
composed of discrete words and semantic blocks that inherently facilitate segmentation,
physical movements are not naturally designed for conveying information. During action
execution, there is no inherent focus on making these movements interpretable, which
results in variability, even in identical movements. This inherent characteristic of actions
adds complexity to the task of isolating fundamental actions from a continuous sequence.

(ii) Transitional movements leading to misclassification: The transitional movements
that occur between basic actions, which are not included in the definitions of basic actions,
frequently result in misclassifications. While these transitions contribute to the fluidity of
movement, they do not conform to the established criteria of basic actions, thereby posing
challenges in the recognition process.

To address these issues, our enhanced method undertakes a deeper analysis of the
differences between basic actions within continuous actions and independent basic actions,
aiming to improve the recognition rate of basic actions in continuous sequences. Moreover,
transitional movements within these sequences are now recognized as a distinct category
of basic actions, further refining our recognition process.

9. Conclusions

Our system employs a two-stage recognition model. Initially, it identifies basic actions,
and subsequently, it utilizes the sequence of these basic actions to determine the target
action. Basic movements have been categorized into three distinct types: forearm transla-
tional movement, forearm rotation, and hand state. To detect these movements, we use
accelerometers for forearm translational movement, gyroscopes for forearm rotation, and
muscle sensors for monitoring the hand state.

For the issue of how to segment the basic motions, we use KNN and DTW to recognize
the basic motions in input data. For the issue of how to combine the sequence of basic
motions, we combine the sequence of each basic motion by converting their specific number
to the input of CDP and using CDP to recognize the target motion.

We propose to decompose a complex continuous action into a sequence of basic actions
in three dimensions: status of hand, movement of forearm, and rotation of forearm. We
build a two-stage framework for recognizing complex continuous actions. First, identify
basic actions. Second, link basic actions to recognize complex continuous actions.

In our experiment, the accuracy of basic motions is good, but the accuracy of target
motions is not very good. However, our system’s accuracy of target motions is better than
using KNN to recognize the target motions.

In the future, we will aim to further analyze the difference between basic actions in
continuous actions and independent basic actions, and improve the recognition rate of
basic actions in continuous actions. In addition, transitional actions in continuous actions
are recognized as a type of basic action. And we should define more fine basic motions to
let our system recognize more detailed motions. Then, we should install a sensor on the
user’s wrist to avoid losing the information on wrist rotation and movement to increase
the accuracy of the target motions.
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