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Abstract: Distracted human driver detection is an important feature that should be included in most
levels of autonomous cars, because most of these are still under development. Hereby, this paper
proposes an architecture to perform this task in a fast and accurate way, with a full declaration of its
details. The proposed architecture is mainly based on the MobileNet transfer learning model as a
backbone feature extractor, then the extracted features are averaged by using a global average pooling
layer, and then the outputs are fed into a combination of fully connected layers to identify the driver
case. Also, the stochastic gradient descent (SGD) is selected as an optimizer, and the categorical
cross-entropy is the loss function through the training process. This architecture is performed on the
State-Farm dataset after performing data augmentation by using shifting, rotation, and zooming. The
architecture can achieve a validation accuracy of 89.63%, a validation recall of 88.8%, a validation
precision of 90.7%, a validation f1-score of 89.8%, a validation loss of 0.3652, and a prediction time of
about 0.01 seconds per image. The conclusion demonstrates the efficiency of the proposed architecture
with respect to most of the related work.

Keywords: Distracted Human Driver Detection; Autonomous Cars; MobileNet Model; State-Farm
Dataset

1. Introduction

Traffic accidents frequently lead to injuries, the impairment of physical capabilities,
and even fatalities. Every day, hundreds of humans lose their lives in traffic accidents,
which have become increasingly prevalent due to driving distractions such as using a cell
phone and interacting with passengers. The World Health Organization estimates that
traffic accidents result in up to 50 million injuries and 1.35 million deaths every year, with
an average of 64 deaths every day [1]. Furthermore, distractions while driving account for
over 80% of all car accidents [2]. With this, global technological efforts are being directed
toward devising viable solutions to meet safety requirements. Thus, the task of driving is
increasingly being redirected towards autonomous driving systems to decrease reliance on
human drivers. However, the existing technology for the autonomous system is not yet
sufficiently advanced to operate without human interaction, so human attention to the road
and the behavior of the autonomous system is still required. Therefore, the capacities of a
human driver to monitor and remain alert continue to be essential during the operation of
the autonomous driving system [3–6].

Autonomous vehicles are those that can drive themselves without the need for human
involvement. In self-driving automobiles, the level of autonomy refers to how much the car
can accomplish on its own and how much the human driver must be involved. There are
many societies (e.g., The Society of Automotive Engineers (SAE), the International Organi-
zation of Motor Vehicle Manufacturers (OICA), the German Federal Highway Research
Institute (BASt), and the US National Highway Traffic Safety Administration (NHTSA))
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that classify driving automation into six categories (as shown in Table 1), ranging from 0
(completely manual) to 5 (completely autonomous) [7–9].

Table 1. Descriptions of the levels of autonomous driving systems.

Level Name Autonomous System Human Driver

0 No driving
automation

The car as a whole does not have any autonomous
functions

The human driver is in
full control of all elements

of driving

1 Driver
Assistance

The car features a single automated system for driver
assistance, including steering or accelerating

The human driver must
continue to monitor the
road and take control of

the car at all times

2
Partial
driving

automation

The car has two or more automated driver assistance
systems, such as steering and accelerating. Under some
situations, the car can manage both steering and speed

The human driver must
remain alert and ready to

take action

3
Conditional

driving
automation

The car can monitor its surroundings and make smart
judgments by itself, such as passing another vehicle.

Under some conditions, the car can drive itself

The human driver must
remain attentive and take
control if the system fails

or faces a scenario it
cannot manage

4 High driving
automation

Under normal situations, the car can drive itself
without human assistance. The car can perform all

driving activities and scenarios within its operational
design domain, which is a set region or scenario in

which the car may drive safely and lawfully

The human driver is not
required to pay attention
or take over, but can still
drive manually if wanted

5 Full Driving
Automation

A car can drive itself in any situation, with no
boundaries or constraints. The car can handle every
driving duty or scenario, wherever and at any time,

without human intervention or supervision

The human driver is
entirely optional and can
just sit in the passenger

seat

Based on the various levels of autonomous driving systems, human driver attention is
required from level zero to level three. So, distracted driver detection is required to increase
the safety of the autonomous driving task, especially from level zero to level three.

The distracted driver detection task has a lot of challenges. Firstly, the task needs
an accurate and robust algorithm to detect the various behaviors of a driver and identify
each one accurately. Secondly, due to the high speeds of cars, the algorithm must be
fast in the detection process to reduce the response time for the overall system [10,11].
For these challenges, the MobileNet model is selected to perform the task through this
paper, because this model has a small number of parameters compared to other transfer
learning models (e.g., VGG and ResNet). In other words, the time needed to generate a
prediction using the MobileNet model is significantly shorter compared to the extensive
computation required by the other transfer learning architectures, as mentioned in previous
work [12–14]. In addition, the proposed work is performed on the State-Farm dataset (as
shown in Table 2) [15], which contains ten distraction classes for various drivers, to obtain
a robust, fast, and accurate model.

1.1. Related Work

In this section, the related work for the detection of a distracted human driver is
broadly reviewed, and previous works that have already studied for distracted driver
detection using the MobileNet architecture and the State-Farm data are employed. In
addition, the details and the results of each paper are demonstrated in Table 3 and compared
with the result of our proposed architecture that outperforms those of most previous works.

Generally, there are three main techniques to handle real-life problems such as the
distracted human driver detection: (1) RGB-based techniques: the methods that use the
color information from a camera to analyze the driver’s behavior [16,17]; (2) RGB + depth-
based technique: the methods that use both the color and the depth information from a
camera to analyze the driver’s behavior [18]; (3) RGB + Depth + InfraRed-based technique:
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the methods that use the color, depth, and infrared information from a camera to analyze
the driver’s behavior [19–21].

Table 2. State-Farm distracted driver detection dataset specifications.

Class Label Image Number

C0 Safe driving 2489
C1 Texting with right hand 2267
C2 Talking on the phone with right hand 2317
C3 Texting with left hand 2346
C4 Talking on the phone with left hand 2326
C5 Operating the radio 2312
C6 Drinking 2325
C7 Reaching behind 2002
C8 Hair and makeup 1911
C9 Talking to passenger 2129

The presented paper focused on the RGB-based technique, due to four reasons: (1) Uni-
versality and availability: RGB cameras are standard in most devices, making this method
more accessible and cost-effective for widespread implementation. Unlike depth or infrared
sensors, RGB cameras are ubiquitous in smartphones and standard car equipment; (2) Suf-
ficient detail for many applications: RGB data often provide enough visual information
to detect various forms of driver distraction, such as looking away from the road, using a
phone, or falling asleep. The color and texture details captured in RGB images are usually
sufficient for these purposes; (3) Computational efficiency: processing RGB data typically
requires less computational power compared to methods that also involve depth or infrared
data. This makes the RGB-based method more suitable for real-time applications where
rapid processing is crucial; and finally (4) Broader research and development: there is a
wealth of research and development in the field of computer vision using RGB data, leading
to more advanced and refined algorithms for distraction detection.

Furthermore, as autonomous driving systems need a fast response and accurate
results, the presented paper focuses on the related work which was established based on
the MobileNet model and evaluated using the State-Farm dataset, such as in [12–14].

In [12], the MobileNetV2 is used by the authors to present a CNN-based methodology
for detecting and determining the cause of distracted driving. MobileNetV2 is used as the
backbone network in the model, with a global average pooling layer, a dropout layer, and a
fully connected layer added on top. The model is also evaluated using several metrics such
as accuracy, precision, recall, F1-score, and the confusion matrix. According to the study,
the suggested MobileNetV2 model has the greatest accuracy of 98.12% and the lowest loss
of 0.0937 across all models. According to the paper, MobileNetV2 is the ideal solution for
resource-constrained devices like mobile and embedded vision applications. According to
the study, the suggested model can identify driver attention and offer real-time feedback to
avert accidents.

Also, the authors of [13] used the MobileNetV2 model through an evaluation com-
parison for the proposed system. According to the study, the suggested system monitors
the driver’s behavior and identifies distractions to inform them. The system employs a
convolutional neural network (CNN) model to categorize driver activity into ten separate
classifications, nine of which include the driver being distracted by other activities and
one being “safe driving”. The device captures photos of the driver’s face and upper torso
using a camera installed on the dashboard. The authors use the MobileNetV2 architecture
as one of the transfer learning models that are used to evaluate the proposed model. The
results state that the MobileNetV2 model achieves the lowest performance of 89.2% as
an accuracy value, the proposed system has the highest accuracy of 93.9%, the DenseNet
obtained an accuracy of 92.4%, and Inception-v3 obtained an accuracy of 90.8%. According
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to the conclusion, by informing drivers in real-time, the device can successfully minimize
road accidents caused by driver distraction. The paper also suggests some future system
improvements, such as adding temporal context to capture the dynamics of driver behavior,
using steering wheel vibrations to provide haptic feedback to drivers, reducing car speed
during distractions to avoid collisions, and addressing other types of distractions, such as
cognitive and auditory distractions.

Furthermore, in [14], the MobileNetV2 is used throughout the research study to make
a comprehensive comparison of the proposed technique. The research offers a system
that detects and alerts inattentive drivers using a deep-learning ensemble model. The
technology also gives advice to drivers to reduce distractions and boost in-car awareness
for greater safety. Throughout the paper, the MobileNetV2 model is used separately, which
achieved an accuracy of 82%. Also, it is combined with other models (e.g., Inception,
VGG16, and ResNet50) in the proposed stacked ensemble technique to increase overall
accuracy (e.g., the MobileNet-Inception variation, which obtained an accuracy of 88%).
The article finds that by notifying drivers in real-time, the technology can successfully
avoid road accidents caused by driver attention. However, the authors highlight the
computational difficulty stemming from the integration of big models.

1.2. The Proposed Contributions

The work proposed in this paper makes the following contributions:

• Demonstrating the relationship between autonomous driving and distracted driver
detection, with a declaration of the challenges through performing the distracted
driver detection task. In addition, a review of the papers that perform this task by
using the MobileNet model and the State-Farm dataset.

• Proposing a deep learning architecture, based on the MobileNet model as a backbone
for the architecture, with a declaration of the specific reasons behind the selection of
this model.

• Making a comparison between the performance of the proposed work with respect
to the previous papers that were performed using the same data and the MobileNet
architecture. This comparison declares that the proposed work outperforms most of
the previous work.

1.3. The Proposed Paper Organization

This paper contains four sections, besides the introduction section (Section 1), that
declare the motivation for this paper, review the related work, and outline the contribution
of the present paper, respectively. In Section 2, namely the methodology section, the authors
demonstrate the architecture of the proposed work, the details of the used data, the way
for the performance evaluation, and the required setups for the architecture training. For
the visualization of the results and the discussion of the performance, the paper contains
Section 3. In Section 4, the limitation and expected future work are demonstrated. Finally,
Section 5 contained the conclusions of this paper.
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Table 3. Comparison between the previous works that use MobileNet architecture with the State-Farm dataset and the proposed work.

Ref. Architecture
Architecture
Details per

Layer

Architecture
Parameters Loss Optimizer Augmentation

Prediction
Time

(Seconds)
Recall (%) Precision (%) F1-Score (%) Loss Accuracy (%)

[12]

•MobileNetV2
•Global aver-

age pooling
•Dropout
•Dense

N
ot

st
at

ed
3.5 × 106

C
at

eg
or

ic
al

cr
os

s-
en

tr
op

y

A
da

m

Rotation,
shifting,
scaling,

flipping, and
brightness

N
ot
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at

ed N
ot

st
at

ed

N
ot

st
at

ed

N
ot

st
at

ed

0.0937 98.12

[13] •MobileNetV2 2,257,984

Horizontal
flipping,
rotation,

zooming, and
shifting

Not stated 89.2

[14]

•MobileNetV2
•Global aver-

age pooling
•Two dense
•Batch normal-

ization
•Dropout

Stated 4,812,490

Horizontal
flipping,
rotation,

zooming, and
shifting

82 83 82 0.5 82

Ours

•MobileNetV1
•Global aver-

age pooling
•Three dense
•Batch normal-

ization
•Three

dropout

Stated 4,939,210 SGD
Rotation,

zooming, and
shifting

0.01 88.8 90.7 89.8 0.3652 89.63
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2. Methodology
2.1. Dataset

Earlier datasets concentrate on a small number of distractions, many of which are no
longer publicly available. State-Farm’s distracted driver detection competition on Kaggle
defined 10 postures to be discovered [15]. This was the first set of statistics to examine a
wide range of distractions and was made public.

The State-Farm dataset mainly contains two folders, one for the training dataset and
the other for the testing dataset. There are 22,424 images in the dataset’s training folder that
have been labeled. The data that are in the testing folder comprise 29,700 unlabeled images.
As a result, photographs from the training folder, which contained 22,424 images, were
used in this investigation. The collection includes ten distinct types of driver problems, that
are named from C0 to C9 as class names. Table 2 displays the picture attributes included in
the dataset’s image classes.

In Table 2, it is clear that the data have a class imbalance in terms of the number of
images per each class. This is especially the case for the C8 class (hair and makeup class),
which contains only 1911 images, while the C0 class (safe driving class) contains 2489 im-
ages. Hereby, during the proposed architecture training, the augmentation technique is
used to overcome the class imbalance by making transformation processes like shifting,
rotation, and zooming. Also, the data augmentation helps in producing a robust trained
model during deployment.

2.2. Proposed Architecture
2.2.1. Main Architecture Components

MobileNet is the first TensorFlow-based mobile deep learning model. Because its
design and computational cost are substantially simpler when compared to other trans-
fer learning models (e.g., VGG and ResNet), the term Mobile suggests that the model
may work in mobile applications. MobileNet is built on a method known as separable
depth-wise convolutions, which greatly decreases the computational cost by lowering
the number of parameters, particularly when compared to networks using the standard
convolutions of the same depth. MobileNet is therefore a lightweight deep neural network
appropriate for mobile applications. The technique of depth-wise separable convolution is
created by combining two fundamental operations: depth-wise convolution and point-wise
convolution. The concept behind depth-wise convolution was that the spatial and depth
aspects of the filter might be separated. The height and width dimensions of the filter are
separated, and then the depth dimension is separated from the horizontal (width × height)
dimension. The point-wise convolution is a 1 × 1 convolution that modifies the preceding
layer’s dimension [14,22,23]. This transfer learning model is used as a backbone for the
overall architecture, to perform feature extraction from the human driver images with a
size of (224 × 224 × 3).

Global average pooling 2D is the layer that averages all values per channel to convert
the 2D channel into only one value. This layer helps reduce the number of parameters and
computational costs for the model [24]. This layer is inserted after the MobileNet model to
convert the extracted features from (7 × 7 × 1024) into (1 × 1024), by averaging the values
of each (7 × 7) channel.

Dense is one of the most basic and widely used layers in deep learning models because
it is a core layer that implements a fully connected neural network layer. It can learn
complex patterns and representations from the input data by performing a transformation
followed by an activation function [25]. This layer type is used many times after the global
average layer, until obtaining the final classification output.

Batch normalization is a layer that uses the mean and standard deviation of the current
batch during training to normalize its inputs. In addition, it assists in the prevention of
overfitting, the acceleration of training, and the reduction in the model’s reliance on the
initialization and learning rates [26]. The batch normalization layer is used after one of the
dense layers to make use of its advantages.
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Dropout is a regularization layer that randomly changes part of the input units to zero
during training to prevent overfitting. This change is performed based on a fraction called
rate. The rate, which is the proportion of units to drop, is scaled up by the dropout layer,
which increases the remaining units by a factor of 1/(1-rate) [27]. The dropout layer is
inserted before some dense layers, to perform regularization and avoid overfitting.

2.2.2. Overall Proposed Architecture Layout

As shown in Figure 1, the proposed architecture starts with the MobileNet model as a
backbone to perform the feature extraction process by taking RGB images as input of size
(224 × 224 × 3) and extracting features as an output of size (7 × 7 × 1024). Then, the global
average pooling layer converts the extracted features into a size of (1 × 1024) by making
an averaging process per each extracted feature channel. Hereby, the dense layer with
1024 units and ReLU activation function is inserted, followed by a dropout layer with a rate
value of 0.5. Therefore, a new dense layer with 512 units and a ReLU activation function is
added, followed by a batch normalization layer and a dropout layer with a rate value of
0.3. Furthermore, a further 256 units of a dense layer with a ReLU activation function are
appended, followed by a dropout layer with a rate value of 0.1.

Figure 1. The proposed architecture layout in the details of each layer.
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Finally, a dense layer with 10 units (i.e., one output per each driver case class) and a
softmax activation function, are added to extract the final probability per each class. The
hyper-parameters for the proposed architecture are adjusted based on the main author’s
experience of handling such cases over the course of many papers [28–31].

2.3. Evaluation Metrics

Accuracy, recall, precision, f1-score, and confusion matrix are the common metrics that
have been used for evaluating the multi-class classifiers. These are based on the concepts
of true positives (TPs), false positives (FPs), and false negatives (FNs). A true positive is an
instance that is projected to belong to a class. A false positive is a case in which an instance
does not belong to a class but is projected to do so. True negatives are instances that do not
belong to a class and are not projected to be so. A false negative is an instance that belongs
to a class but is not projected to be a member of that class.

Accuracy (as shown in Equation (1)) is a measure of how successfully a multi-class
classifier predicts the input data’s class labels. Recall (as shown in Equation (2)) is the
proportion of actual positive instances that are correctly predicted by the classifier. Precision
(as shown in Equation (3)) is the proportion of predicted positive instances that are actually
positive. F1-score (as shown in Equation (4)) is the combination of recall and precision
metrics which serves to identify how effectively the model can detect real positives among
all positive instances and predictions. A confusion matrix, which is a table that gives the
number of TPs, FPs, TNs, and FNs for each class, is required to determine the accuracy of
multi-class classification.

Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
(1)

Recall =
True Positive

True Positive + False Negative
(2)

Precision =
True Positive

True Positive + False Positive
(3)

F1-Score = 2 × Precision × Recall
Precision + Recall

(4)

2.4. Experimental Setup

The suggested architecture is developed and evaluated using the Python program-
ming language’s TensorFlow library using a computer that has a Windows 10 operating
system, and hardware specifications of (a 12th Gen Intel(R) Core(TM) i9-12900KF 3.20 GHz)
processor, (32.0 GB) RAM size, and (NVIDIA GeForce RTX 3090-Ti) GPU.

After ingesting the Distracted Driver dataset, the following preprocessing is performed:
(1) The driver (_imgs_list.csv) file and the images are loaded; (2) The images are loaded
as RGB and resized to (244 × 244 × 3) because this is the MobileNet model’s input size;
(3) The data are divided into training and validation sets. The training and validation sets
were created based on the subject (driver ID), the subjects selected for the validation were
p015, p022, p050, and p056 (as mentioned in [14]), while IDs of the remaining drivers are
kept as a training set; and finally (4) The classification labels are transformed into category
values using the one hot encoder. Consequently, there were 13,770 photos in the training
set and 3692 in the validation set.

For the model training, stochastic gradient descent (SGD) is selected as an optimizer;
with a learning rate value of 0.005, and a momentum value of 0.5. Furthermore, the
categorical cross-entropy is selected as a loss function for the distracted driver detection
model training. Also, some transformations are performed by an image data generator for
the training images through the training time (e.g., height and width shifting with values
of 0.5, zooming with 0.5 value, and rotation with 30 degrees). Furthermore, the maximum
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number of epochs for the training is set to 100 epochs. At the same time, the early stopping
technique is used during the proposed architecture training process that monitors the
validation loss value and stops the training before the performance degradation.

3. Results and Discussion

First of all, by looking into the proposed architecture training curves (as shown in Figure 2),
it is clear that the curves converge to the best validation data performance after around six
epochs. After that, the model starts to overfit the data, so the best weights during the training
process are saved using a callback function based on the validation loss monitoring. With this,
the best model achieves a training accuracy of 87.75% and a validation accuracy of 89.63%. Also,
the model obtains a training loss of 0.3966 and a validation loss of 0.3652. Then, the performance
curves start to overfit the training data, so the validation curves yield worse results while the
training curves progress towards yielding better values.

Furthermore, by looking much more deeply into the model performance through the
visualization for the normalized confusion matrix (as shown in Figure 3), most of the classes
are correctly classified by the proposed architecture (e.g., exiting, talking on the phone, and
reaching behind classes). On the other hand, there are two classes for which the results of
the proposed model are fuzzy, the first one being the safe driving class that is sometimes
incorrectly classified as a talking to passenger class, and the second one being the talking
to passenger class that may be incorrectly classified as a safe driving class or a hair and
makeup class. However, the overall architecture performance overcomes this issue.

Hereby, the proposed architecture achieves an overall acceptable performance (i.e.,
with training and validation accuracies of 87.75% and 89.63%, respectively; and training
and validation losses of 0.3966 and 0.3652, respectively), especially when compared with
the previous work in Table 3. In addition, the average processing time for the architecture
to make the classification process is 0.01 seconds per image, which means a high response
time for the driver case identification. In other words, the fast response for the driver case
decreases the probability of there being an accident by alerting the driver much faster in the
emergency situations that the autonomous system cannot handle. Furthermore, an implicit
performance evaluation is performed based on the recall, precision, and f1-score values.
This evaluation resulted in a validation recall value of 88.8%, a validation precision value
of 90.7%, and a validation f1-score value of 89.8%. These results can additionally show the
proposed architecture’s effectiveness. Also, by looking into Table 3, it can be noted that
the proposed work is more informative compared to the related works that do not contain
details about the architecture or the evaluation.

In Table 3, the contribution of the proposed work compared to the previous works
is declared by making a comparison in terms of the architecture components, the expla-
nation for architecture details for each layer, the number of parameters or weights for
each architecture, the loss function, the optimizer, the augmentation techniques, and the
evaluation metrics such as the average prediction time, recall, precision, f1-score, loss, and
accuracy. For the architecture components, all previous works are constructed based on the
MobileNetV2 model, while the proposed architecture is based on MobileNetV1 architecture.
For the declaration of architecture details (e.g., the number of units per layer, dropout
rate values, and the type of activation function); the proposed work is fully informative
compared to the previous works that rarely describe any details as in [12,13]. For the
number of parameters in an architecture, the proposed architecture has a slightly higher
number than the one in [14], while the proposed work achieves a better performance. The
loss function has been applied identically in all works (i.e., the categorical cross-entropy
function). The Adam optimizer has been leveraged in previous works, while the proposed
work uses the SGD optimizer. For the augmentation techniques, the proposed work only
uses three transformation techniques, while the previous works use more than that. For the
performance evaluation, the proposed architecture is evaluated using various criteria (e.g.,
the average prediction time, recall, precision, f1-score, loss, and accuracy), unlike previous
works such as [12–14].
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Figure 2. The accuracy and loss curves for the proposed architecture through training and valida-
tion epochs.

Figure 3. The confusion matrix for the proposed architecture using the validation dataset.

For more results, the declaration of the ten human driver conditions stated in the
State-Farm dataset and predicted by the proposed architecture, the visualization of some
correct prediction examples and some wrong prediction examples (as shown in Figure 4)
from the validation dataset are required.
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Figure 4. Examples of the correct and incorrect prediction results of the proposed architecture for the
ten human driver conditions according to the State-Farm dataset, in which the TL is the true label
and the PL is the predicted label.

4. Limitations and Future Work

Actually, the limitations of the proposed architecture is directly correlated with ex-
pected future work. However, the results and discussion section demonstrates the high
performance of the proposed architecture. At the same time, the section mentions the
misclassification problem for two specific classes (i.e., safe driving and talking to passenger
classes). This issue is the main limitation of the proposed architecture because it degrades
the overall performance, as clarified through the confusion matrix visualization. Hence, the
expected future work will be totally focused by increasing the classification accuracy for the
specified classes (i.e., safe driving and talking to passengers) and making some additional
helpful techniques (e.g., ensampling, and features extraction techniques). Hereby, the
overall classification model performance will be enhanced.

In addition, the results and discussion section provides the fast response for the pro-
posed architecture. Therefore, the expected future work may study the implementation of
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the architecture in a real-time system with hardware components to prove the applicability
of the proposed architecture.

5. Conclusions

This study introduces a sufficient architecture that effectively utilizes the MobileNet
transfer learning model as its backbone in order to classify ten types of human driver
distraction as featured in the State-Farm dataset. Through proposing this architecture, the
paper is organized based on three main points:

Firstly, to declare the importance of distracted human driver detection in real-life and
autonomous driving, the paper starts by explaining the interaction between autonomous
driving cars and the distracted driver detection task with a declaration of the autonomous
driving target levels for this task and the task challenges (i.e., the fast response time and
high-performance results) with a demonstration of the importance of distracted human
driver detection in real-life applications.

Secondly, to demonstrate the proposed architecture’s effectiveness and efficiency, the
paper reviews the related work which works on a MobileNet-based architecture and uses
the State-Farm dataset and demonstrates the reason for selecting the MobileNet model as a
backbone for this architecture, which serves to obtain a fast response for the detection of
the human driver condition. Also, the proposed architecture is declared in detail (which
is not provided in most of the previous work stated in the review part). In addition, this
paper presents a comparative evaluation of the proposed architecture based on the accuracy,
recall, precision, f1-score, the confusion matrix, and the response time, with a declaration
of the importance of the confusion matrix through the analysis of the results. Furthermore,
the performances of the proposed architecture and the previous work reviewed herein are
compared to state that the proposed work outperforms most of the related work because it
achieves a validation accuracy of 89.63%, a validation recall of 88.8%, a validation precision
of 90.7%, a validation f1-score of 89.8%, a validation loss of 0.3652, and a prediction time of
about 0.01 seconds per image.

Finally, to declare the limitations and the expected future work for the proposed
architecture, this paper explains the classification imbalance limitation of the proposed
architecture, and the expected future work of this paper to enhance this problem by making
some additional helpful techniques (e.g., ensampling and features extraction techniques).
Hereby, this elaborates a real-time hardware system to perform the task in real life.
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