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Abstract: Musical large-scale form is investigated using an electronic dance music piece fed into a
Finite-Difference Time-Domain physical model of the cochlea, which again is input into an Impulse
Pattern Formulation (IPF) Brain model. In previous studies, experimental EEG data showed an
enhanced correlation between brain synchronization and the musical piece’s amplitude and fractal
correlation dimension, representing musical tension and expectancy time points within the large-
scale form of musical pieces. This is also in good agreement with a FitzHugh–Nagumo oscillator
model.However, this model cannot display temporal developments in large-scale forms. The IPF
Brain model shows a high correlation between cochlea input and brain synchronization at the gamma
band range around 50 Hz, and also a strong negative correlation with low frequencies, associated with
musical rhythm, during time frames with low cochlea input amplitudes. Such a high synchronization
corresponds to temporal lobe epilepsy, often associated with creativity or spirituality. Therefore, the
IPF Brain model results suggest that these conscious states occur at times of low external input at low
frequencies, where isochronous musical rhythms are present.

Keywords: music psychology; neural modeling; temporal lobe epilepsy

1. Introduction

Musical large-scale forms; the temporal organization of a musical piece over its whole
length, e.g., the song’s verse and refrain structure; electronic dance music tension build-up
and relaxation; and sonata song structures are poorly researched in terms of brain dynam-
ics [1,2]. It is widely accepted that music is organized according to Gestalt principles [3,4],
often with hierarchical structures, psychologically [5,6], or in terms of music theory [7], and
is subject to long-term memory [8].

The processing of sound in the brain has historically been understood as a bottom-up
process, starting from the transition of sound in the cochlea into neural spikes [9], further
processed in the auditory pathway [10], to coincidence detection [9], tonotopy, interaural
level and time difference detection, and pitch perception [11,12], among others. Still, even
within the auditory cortex, multiple bottom-up and top-down connections are present [13],
and so viewing the auditory pathway as a complex, self-organizing neural network seems
more appropriate.

Such a self-organizing view is standard in terms of cortical processing, and existing
neural models vary in terms of complexity and scaling [14]. Only a few brain models try to
understand the brain with simple principles like the free-energy principle [15], assuming
adaptation of the brain to external surprises; the global workspace view [16], assuming
synchronization and de-synchronization of brain parts over time; or the synergetic approach
of Gestalt perception [17].

Machine learning models also view conscious content as a process of complex, often
nonlinear interactions between single neurons, also leading to heuristic and coherent
Gestalt-like connectionist [18,19] and music models [20,21] when analyzing large musical
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databases such as Computational Phonogram Archiving [22] for streaming platforms or
archives in general [23].

The self-organizing concept is also reflected in the idea of fifty-millisecond intervals
of organized neural spatiotemporal patterns followed by short, chaotic disturbances asso-
ciated with olfactory [24] or auditory [25,26] conscious content. Enlarging the picture to
interactions between subjects results in the idea of a self-organizing society of brains [27] or
the inclusion of cultural artifacts and nature in Physical Culture Theory [28].

Incorporating brains with cultural objects requires a general framework which was
proposed as the Impulse Pattern Formulation (IPF), first developed for musical instru-
ments [29]. As the only force we physically experience—next to gravity—is electricity, it is
straightforward to formulate acoustic as well as electric nervous spike impulses as being
of the same nature. The IPF then takes a viewpoint of a neuron or musical instrument
part, from which an impulse is sent out to several other neurons, musical instrument
parts, or any kind of object. This impulse is processed, damped, and returned back to the
viewpoint object [12,29,30]. Such an iterative, nonlinear dynamical process is scale-free,
capable of modeling sudden phase changes, and includes convergent, bifurcating, complex,
and chaotic states. Although often modeling a system with only very few nodal points, the
IPF has already been shown to be of high precision in musical instrument applications [30]
as well as in rhythm perception and production [31].

The model was also formulated as a brain model [28] with neural adaptation and plas-
ticity, non-trivially finding a concentration of inhibitory vs. excitatory neurons of 10–20%,
corresponding to the real relation in the brain [32], as a maximum of possible system con-
vergence. The model also finds a maximum reflection strength around the usual time for
event-related potentials, as well as a decay in memory in the system corresponding to short-
term memory. These general findings strongly point to the validity of the model.

Investigating the brain dynamics using large-scale musical forms has already shown
that musical tension can be represented in the increasing synchronization of brain
parts [1,2,33]. Such findings correspond to synchronization caused by expectancy [34]
of a climax. This represents the development of tension over the large-range form of a
musical piece, but it also might correspond to other semantic content like anger, anxiety,
drama, relaxation, spirituality, or meditation. Such a relation might be found when refer-
ring to the lyrics of a musical song, discussed in the conclusion section below with respect
to the piece investigated. Nevertheless, in EEG measurements, the main finding is that
brain synchronization is strongest around 50 Hz, and thus in the gamma band of brain
dynamics, although of course other brain rhythms exist [32].

An interesting aspect of the IPF Brain model is the presence of convergence, i.e., the
complete synchronization of neurons in the model. This corresponds to epilepsy [35], which
is not the usual state and is a very dangerous brain state. Still, partial synchronization in the
brain is well known in chimera states [36]. Also, in terms of the auditory cortex, temporal
lobe epilepsy has often been reported [37], and is associated with spiritual or meditative
states of mind. Such states are naturally associated with longer time spans than pitch or
rhythm and are subject to large-scale forms.

The present paper applies the IPF Brain model as suggested previously [28] to the case
of an electronic dance music (EDM) piece One Mic by the rapper NAS, which has been in-
vestigated before in EEG experiments [1,2] by using a FitzHugh–Nagumo dynamical brain
model [33]. Strong correlations between the large-scale form of the model, associated with
the sound amplitude and fractal correlation dimension as a measure of musical density [29],
have been found experimentally and in the model, with a maximum synchronization
in the gamma band of brain dynamics of around 50 Hz in both cases. Still, due to the
FitzHugh–Nagumo model not dissolving the temporal development of brain dynamics, a
deeper understanding of the reason for this frequency-dependent synchronization requires
a model capable of such a temporal resolution, which is represented by the IPF Brain model
in this paper.
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The paper first introduces the method used. As in the previous paper, the input to the
Brain IPF is the output of a Finite-Difference Time-Domain (FDTM) physical model of the
cochlea, for which the musical sound is used as an input. The output of the cochlear model
is fed into the input of the Brain IPF. To estimate the influence of the amount of neurons
used in the model, N = 50, 100, and 200 neurons are taken, showing the independence of
the model with respect to this parameter. In the Section 2, the post-processing of these
modeled parameters is discussed, especially the Kuramoto order parameter to measure the
synchronization of neurons and the correlation of this parameter with the cochlea input.
The Section 3 then mainly concentrates on this correlation and discusses the reason for the
model behavior. In the Section 4, an overview of different conscious states with respect to
the synchronization frequency is given.

2. Methods
2.1. Cochlea Model

The present model assumes the differential equation of a membrane

K(x)
µ(x)

∂2u
∂x2 − d(x)

∂u
∂t

=
∂2u
∂t2 + f (t), (1)

with basilar membrane displacement u along a one-dimensional axis x; basilar mem-
brane stiffness K(x) = 2 × 109e−3.4x dyn/cm3, changing along the x axis; linear density
µ(x) = m/A(x), with the mass over area again changing along the basilar membrane; and
A(x) = 0.1 cm× (0.1 cm+ 0.02 cm× x/l) with basilar membrane length l = 3.5 cm, taking
the slight widening of the basilar membrane over its length into account.

A 1D model is sufficient to model a basilar membrane, as shown in [38], which
compared 1D and 2D models based on the anisotropy of the basilar membrane as discussed
by [39]. Here, it was found numerically and based on experimental data that the inclusion
of a second dimension contributes less than 1% of the results already obtained by a 1D
model. This is reasonable, as the basilar membrane has dimensions of about 3.5 cm in
length but only about 1 mm in width and is therefore more a rod than a membrane. Also,
the Young’s modulus in the y-direction is only about 10% of that in x-direction [38] and
does therefore not add considerably to the overall basilar membrane movement.

To confirm this finding, a two-dimensional model was built:

Kx(x)
µ(x, y)

∂2u
∂x2 +

Ky(x)
µ(x, y)

∂2u
∂y2 − d(x, y)

∂u
∂t

=
∂2u
∂t2 + f (t) , (2)

with a Young’s modulus in the x-direction of Kx(x) = 2 × 109e−3.4xdyn/cm3 as above
and in the y-direction of Ky(x) = 0.1 × Kx(x) according to the literature [38]. The linear
density µ(x, y) = mu(x) of the 1D model holds also for damping d(x, y) = d(x). The model
consists again of 48 modal points in the x-direction and 6 nodal points in the y-direction.
The boundary conditions were again simply supported. Still, the results did not differ
considerably [9]. For the sake of simplicity and also taking the computational cost into
consideration, the 1D model was then used further.

The electronic dance music piece One Mic by the rapper NAS was used as a sound
input to the cochlea model. The FDTM sample rate was 192 kHz to ensure model stability.
The output is a set of spike time points Si

B at each of the 24 Bark bands B with i = 1, 2, 3. . . NB,
where NB is the maximum number of spikes at Bark band B. Each Si

B has an associated
amplitude of Ai

B. Although single spikes have a more or less uniform amplitude, the
cochlea nerve fiber output of the model sums many spikes at each position Si

B. Therefore,
Ai

B represents the amount of spikes or the output strength.
As input to the IPF Brain model, all outputs, as accumulated with respect to 20 ms

time intervals, were used, corresponding to fmax = 500 Hz, which is then the time constant
of the IPF Brain model discussed below. Therefore, the frequency range of interest in the
brain is well represented up to about 200 Hz. The resulting cochlea output time series is
then denoted as
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Ct =
24

∑
B=1

fmax×Tmax

∑
i=1

G(Ai
B)H(Si

B) , (3)

where Tmax = 266 seconds—the length of the musical piece—and the functions G and H
detect if the respective spike is within the respective time window and gives G(Ai

B) = Ai
B

and H(Si
B) = 1 if so. For further correlation with the IPF Brain model output, CT is

calculated as the time series averaged over time windows of 1 s. The unit-less mean
amplitude of the Ct = 0.000118.

2.2. Brain Impulse Pattern Formulation (IPF)

The brain is modeled using N = 50 neurons. Each neuron is a reflection point, returning
impulses from a viewpoint neuron. The system state of the viewpoint neuron is g, which
represents a time period and an amplitude strength. Each reflection neuron i has a damping
αi. The IPF is then

gt =
1
N

∣∣∣∣∣ N

∑
i=1

Pi ln αi
t gt−i

∣∣∣∣∣+ w2 gI
t . (4)

Here, the viewpoint neuron is i = 1; the reflections come from neurons i = 2, 3, 4, . . . N.
Pi are the polarizations of the neuron, where Pi = 1 is an excitatory neuron and Pi = −1
is an inhibitory neuron. Throughout the paper, a relation of 10% of inhibitory neurons
is used. Note that the sum of all reflections is normalized using the amount of neurons
N. The model is discrete with time steps t = 0, 1, 2, 3. . . Therefore, the earlier states of the
viewpoint neuron, which this neuron has sent out to the other neurons, return after a delay
in a damped and polarized form.

For a deeper discussion of the model, see [28].

2.3. Plasticity Model

The plasticity of each neuron is calculated for each time step t. Plasticity refers to a
change in the damping parameter αi, where each time step t then might have a different
damping αi

t. Note that in the IPF reasoning, the damping is originally 1/α, which, for the
sake of convenience, is skipped, using α instead.

For each time step, the new damping is calculated as

αi
t =

∣∣∣αi
t−1 + w1 ln(1 + (gt−i − gt))

∣∣∣ . (5)

If the reflection point neuron t-i, gt−i, has the same value as the viewpoint neuron
value, gt, the logarithm becomes zero, and no change in damping αti happens. If the
reflection point neuron t−i has a larger value than the viewpoint neuron, the logarithm
becomes larger than zero and αi increases. Otherwise, the logarithm assures a negative
influence, and αi decreases. The plasticity process is generally modeled using a constant
w1. Therefore, plasticity can be switched off in the model by using w1 = 0. To examine
different model behaviors, w1 will systematically be altered, as shown below. Again, the
absolute value of α is used, not allowing negative or complex values. This, again, does
not change the model behavior due to the logarithms used. Still, positive values are more
convenient. Indeed, negative arguments of the logarithm in the simulations shown below
appear very rarely and are additionally suppressed by using the absolute value.

2.4. External Musical Instrument Input IPF

Like in a previous study [33], the electronic dance music piece One Mic by the rapper
NAS has been used.

2.5. Detection of System Behavior

Each neuron has its own time series
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gi
t = Pi ln αi

t gt−i (6)

when reflecting back to the central neuron, as can be seen in Equation (4), where gi is the
ith neuron at time point t with a certain αi

t at that time point. These time series are Fourier-
analyzed with time windows of one second, resulting in Fi

T( f ), where 0 ≤ T ≤ 266 s, i.e.,
the length of the musical piece. All IPF simulations in this paper were performed with a
maximum of fmax = 500 Hz; therefore, 1 ≤ f ≤ 500 Hz. The time series of the central neuron
will be labeled below as simply g.

Synchronization was measured, as in a previous paper, using the Kuramoto order
parameter

KT( f ) =
1
N

∣∣∣∣∣ N

∑
i=1

eı θi
T( f )

∣∣∣∣∣ , (7)

where θi
T( f ) is the phase of the ith neuron at time interval T of frequency f taken from Fi

T( f ).
N is the amount of neural reflection points; in this study, N = 50, N = 100, and N = 200.
The Kuramoto order parameter is used as it is the most widely accepted synchronization
measurement parameter. It holds that 0 ≤ KT( f ) ≤ 1 with KT( f ) = 0 in the case of no
synchronization and KT( f ) = 1 in the case of maximum synchronization.

The synchronization order parameter KT( f ) is time-dependent. To estimate the overall
synchronization strength from KT( f ), a time-averaged mean K( f ) is calculated.

Also, the correlation of KT( f ) with the cochlea input time series CT is performed,
leading to KC( f ), an estimation of the frequency dependency of the correlation strength of
the synchronization with the time series.

The Finite-Difference Time-Domain model of the cochlea was implemented using C++,
C#, and CUDA code in Visual Studio software 2012 and 2017. CUDA code implements
the model on an NVIDIA Graphic Processing Unit in parallel with calculation of the
model nodal points. The IPF model was run and the results analysis was performed using
Mathematica 12 software.

3. Results

To estimate the influence of the amount of neurons used, an analysis was performed
for N = 50, as in a previous study, as well as N = 100 and N = 200.

3.1. System Behavior

At first, the system parameter g is expected to follow the cochlea input systematically.
Figure 1 shows the cochlea input CT at the bottom (blue) and the system parameter g of the
central neuron (yellow) at the top. The simulation was performed for N = 50, N = 100, and
N = 200 neural reflection points, and the figure shows the N=100 case. Visually, the time
series correspond well. The correlations are 0.37 for N = 50, 0.38 for N = 100, and 0.40 for
N = 200. This is the first example of a high independence of the results with respect to the
amount N of neural reflection points.

3.2. Gamma Band Synchronization Strength

The IPF Brain model is expected to reproduce experimental data. It was found that
the strongest correlation between brain synchronization and musical sound input is in the
gamma band around 50–80 Hz. Below and above the gamma band, synchronization is still
there, but decreases considerably.

Figure 2 shows KC( f ), the correlation of the Kuramoto order parameter with cochlea
input CT for frequencies up to 200 Hz for the three reflection points N = 50, N = 100, and
N = 200. As expected, there is a peak in KC( f ) around 50 Hz, with decreasing correlation
both above 50 Hz, up to about 90–100 Hz, and below 50 Hz. This is consistent over N = 50,
100, and 200, again pointing to the independence of the choice of N. Still, the correlation for
N = 50 is slightly lower than for N = 100 and N = 200, a tendency already found above.
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Figure 1. Time series of cochlea input Ct (blue) and system parameter g (yellow) over the 266 s of the
musical piece One Mic by NAS, using N = 100 reflection points. Both time series correlate with 0.38.

As an example of the correspondence between KC( f ) and CT in Figure 3, the time
series of CT and KC(50), so at 50 Hz for the N = 100 case, is shown. Clearly, synchronization
follows the amplitude of the cochlea input, the musical piece, nicely. The synchronization
is not as smooth as found experimentally; however, the model is only about listening to
this musical piece while the EEG experimental data measure the whole brain performing
many other tasks at the same time.

Correlations decrease up to 90–100 Hz and increase again at higher frequencies. Os-
cillations higher than about 100 Hz are not considered within ‘classical’ bands like delta
(0.5–3.5 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and the gamma band, which
is found at frequencies above 30 Hz [40], or split into the lower gamma range (30–60 Hz)
or higher gamma range (60–120 Hz) [41]. Frequencies above 120 Hz are referred to as fast
oscillations [32] and are only briefly associated with conscious content.

Looking for an explanation of the gamma band strength, we could expect some
connection between the frequency dependency of KC( f ) and the cochlea input Ct or the
system parameter g. However, connections in terms of their spectral amplitudes are not
straightforward. In Figure 4, both spectra are shown. Both spectra are very similar, pointing
to a response of the Brain IPF to its input, as expected. Indeed, at around 50 Hz, a peak is
present in both time series, corresponding to the 50 Hz peak of KC( f ). Still, the 50 Hz peaks
in Ct and g are much sharper. Also, Ct and g spectra have a wider peak around 90–100 Hz,
while there is a gap in the correlation with Kuramoto synchronization in this region.

Furthermore, both the spectra of Ct and g have an enhanced energy in the low fre-
quency range, pointing to the rhythm content of the musical piece. The piece is 92 BPM,
corresponding to 1.53 Hz. During the high-amplitude sections of the piece, semiquaver
notes are played, resulting in 6.1 Hz; during the low-amplitude sections, the piece uses
mainly quaver notes at 3.1 Hz. Thus, much energy is expected below about 6 Hz, which is
the case.

Again, connections to KC( f ) are not straightforward, as below about 10 Hz, KC( f ) is
mainly negative. This is not found experimentally and is surprising at first. Still, when
examining an example of N = 100 at 2 Hz, as shown in Figure 5, the reason becomes clear.
During times of low cochlea input, amplitude synchronization is very strong, while it is
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lower when the cochlea input is stronger. In a previous study on the principle behavior of
the IPF Brain model [28], it appeared that at a relation of 10% of inhibitory vs. excitatory
neurons in the brain, an optimum in terms of convergence or stability of the system
is reached. Therefore, we expect the system to converge when a low external input is
presented, which is the case here. This leads to a systematic increase in synchronization at
times of low external input and therefore to a negative correlation.

Figure 2. Frequency-dependent correlation of cochlea input with Kuramoto synchronization KC( f ).
As expected, the gamma band around 50–80 Hz shows the strongest correlation, while the correlation
decreases at lower and higher frequencies. Very low frequencies have negative correlations, pointing
to a conversion of the system during low sound input time windows.

Figure 3. Kuramoto order parameter KT( f ) of 100 neural reflection points at a frequency of 50 Hz
(yellow) and with a cochlea input CT (blue). Mainly, windows of strong cochlea input correspond to
large Kuramoto synchronization and vice versa.
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Figure 4. Spectra of the cochlea input Ct and the system parameter g for N = 100. Peaks are present
at about 50 Hz and 100 Hz. Strong amplitudes at very low frequencies point to the rhythm content of
the musical piece.

For comparison, an IPF Brain model fed with white noise was studied to see if the
low-frequency behavior might be a systematic bias of the model. However, over the whole
frequency range, low correlations around zero were found, with slightly positive and
negative values and no frequency dependence, as expected.

Such convergence would correspond to epilepsy, as all neurons are synchronized.
Indeed, epilepsy is reported in the auditory cortex, associated with creativity or spiritual-
ity [37]. Such non-everyday experiences are known to occur as a trance, often associated
with either long periods of isochronous rhythm or during silence. Both are present in the
musical piece during times of low cochlea input. Of course, as discussed above, the model
is only about listening to a musical piece without performing other tasks like a real brain
does. Still, temporal lobe epilepsy is only present at the auditory cortex, and therefore, the
negative correlations might model such a case.

Indeed, in the EEG data, there is enhanced synchronization at such low frequencies,
which is again not found in the FitzHugh–Nagumo model [33]. This synchronization is
positive and not negative. This might be due to the EEG data being taken from all regions of
the human skull, while the IPF Brain model is not specifying brain regions and therefore is
also suitable to represent the auditory cortex only. The enhanced synchronization at lower
frequencies might also be caused by motor action taken in the brain at low frequencies in
the body movement dancing range.

3.3. Scaling Law

EEG data of the brain show a scaling law in the brain spectrum. Plotting this spectrum
in a log–log plot exhibits a constant slope over a wide range of frequencies [24]. This
corresponds to a so-called 1/f-noise, as the spectrum follows a 1/ f α rule, where a fractal
dimension of α∼2 is found. The scaling law points to a close and systematic connection
between the different frequency regions of brain activity and the self-organizing nature of
the brain.

The IPF Brain model also shows such a scaling law, as shown in Figure 6. Experimental
EEG data also show a plateau or even a positive slope up to about 5 Hz, consistent with
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the IPF Brain findings. The rippling of the spectrum indicates enhanced activity in certain
regions like with the gamma band found already above. The only aspect not corresponding
to EEG data is the fractal dimension of the IPF at ∼0.43, rather than the expected ∼2. The
reason here is unclear and will be analyzed in future.

Figure 5. Cochlea input CT and Kuramoto order parameter KT(2 Hz) for the N = 100 neuron reflection
point case. During times of low cochlea input, synchronization is very strong, up to 0.8, pointing to
convergence behavior of the system during times of low input at low frequencies, similar to temporal
lobe epilepsy.

Figure 6. Scaling law of brain synchronization measured as Kuramoto order parameter KC( f ). In a
log–log plot over a wide range of frequencies, a constant slope points to the scaling law of the IPF
Brain model which is consistent with EEG data.



Electronics 2024, 13, 362 10 of 12

4. Conclusions and Discussion

The association of temporal lobe epilepsy with spiritual or meditative experiences
corresponds well with the intention of the musical piece One Mic used in this investigation.
The lyrics report about the hard struggle in criminal gangs with police interaction and
shootings. Several references are made to spiritual, especially Christian, symbols and
similar ways of suffering. Such lyrics are rapped during the large amplitude time frames
of the piece, i.e., the verses, where also a police siren can be heard. These sections are
followed by the low-amplitude parts, where the refrain All I need is one mic is repeated,
pointing to music and lyric production as an alternative or a weapon against such a hard
struggle. These sections contrast the verses, as they are presented in a contemplative or
meditative way.

This compositional tool of presenting a meditative alternative by reducing the volume,
reducing the beat from semi-quavers to quavers, and omitting most of the sound effects and
keyboard pads of the verse is shown in this paper to produce strongly enhanced synchrony
and convergence of the neural network. This synchrony is found in the low frequency
range, where the musical rhythm is represented.

Such musical structures are very simple and are present in many musical pieces,
where regions of low volume and isochronous rhythm are present. Further investigations
are needed to model and measure the neural reaction to such musical content in more
detail. Still, due to the simplicity of this compositional tool, one can expect composers and
musicians to use it in many musical scenarios.

In a previous similar EEG study of a musical piece, Classical Symphony by Shemian,
increased brain synchronization was found towards an expectancy point, after which
synchronization decreased again [1]. This is a typical electronic dance music piece in that a
tension is built up by compositional tools like increased amplitude and event density, only
to climax at a point where the dense structure ends and a four-to-the-floor bass drum starts.
Again, this is a typical compositional tool in electronic dance music, a tension build-up and
decay repeated dozens of times during a song. This compositional tool is clearly present
again in the EEG data here in its large-scale musical form.

In this study, brain synchronization followed the reasoning of a coincidence detection
mechanism of cortical oscillators, modeling neural activity in the striatum [34]. After the
start of neural oscillation, increased synchronization peaks occur at the point a subject
expects an event to happen, like waiting at a traffic light to turn green. The oscillation is
then expected to include motor regions, making us nervously shake towards the expected
time point.

This might be considered another compositional tool to make people dance. A tension
build up, leading to a neural oscillation and including the motor region, enhances the will
of subjects to move and, in the case of music, to dance. Although there is strong evidence
that this is the case, there is no final proof, as measurements in the motor region are still
missing in the musical case.

This line of reasoning seems fundamentally different than that followed in the present
paper of neural synchronization leading to a meditative mood. Still, both cases are con-
firmed experimentally, as is the case of temporal lobe epilepsy [37]. The difference might
indeed be found in the different frequency ranges, where increased synchronization at
higher frequencies, around 50 Hz, might cause the perception of increased tension and syn-
chronization at low frequencies, contrary to that of a meditative state. Taking into account
that synchronization and de-synchronization are fundamental activities in the brain, and
brain activity represents all possible states of mind, perception, and consciousness, such a
differentiation seems plausible.
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