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Abstract: Video anomaly detection is a critical component of intelligent video surveillance systems,
extensively deployed and researched in industry and academia. However, existing methods have a
strong generalization ability for predicting anomaly samples. They cannot utilize high-level semantic
and temporal contextual information in videos, resulting in unstable prediction performance. To
alleviate this issue, we propose an encoder–decoder model named SMAMS, based on spatiotemporal
masked autoencoder and memory modules. First, we represent and mask some of the video events
using spatiotemporal cubes. Then, the unmasked patches are inputted into the spatiotemporal masked
autoencoder to extract high-level semantic and spatiotemporal features of the video events. Next, we
add multiple memory modules to store unmasked video patches of different feature layers. Finally,
skip connections are introduced to compensate for crucial information loss caused by the memory
modules. Experimental results show that the proposed method outperforms state-of-the-art methods,
achieving AUC scores of 99.9%, 94.8%, and 78.9% on the UCSD Ped2, CUHK Avenue, and Shanghai
Tech datasets.

Keywords: video anomaly detection; memory network; spatiotemporal masked autoencoder; vision
transformer; skip connections

1. Introduction

In recent years, with the widespread application of video surveillance and municipal
management, anomaly detection has gained extensive attention in video surveillance,
which plays an indispensable role in ensuring public and personal safety. Video anomaly
detection (VAD) refers to identifying events in a video that deviate from expected behavior.
Despite many endeavors, VAD is still highly challenging for three main reasons: (1) The
rarity of anomalous events results in an imbalance between normal and abnormal samples.
(2) The unpredictability of anomalous events makes it difficult for researchers to collect
all such events. (3) The ambiguity in defining anomalous events can result in the same
behavior having completely different anomalous properties in different scenarios. For
example, running in the middle of the road is considered abnormal, while running in the
park is normal. Therefore, it becomes impractical to construct a VAD task using traditional
supervised video event classification techniques. VAD is typically regarded as an outlier
detection problem, in which a normal model is trained using normal data, and events that
deviate from the normal model are detected as anomalies during testing.

When it comes to detecting anomalies in videos, there are two main approaches:
traditional and deep-learning-based. Traditional methods rely on handcrafted features
that represent the video’s appearance and motion [1,2]. However, these methods are labor-
intensive, require meticulous manual design, and can be difficult to extract practical feature
information. Lately, the field of VAD has been largely influenced by deep learning method-
ologies. These techniques can be categorized into two subdivisions: reconstruction-based
and prediction-based approaches. Reconstruction-based methods [3–5] use normal events
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to train autoencoders and use the learned features to reconstruct input data. In testing,
events that exhibit larger reconstruction errors are deemed to be anomalous. However, the
strong generalization capability of the autoencoder can effectively reconstruct anomalies as
well [3]. In other words, as the network depth of these autoencoders increases, they become
proficient at reconstructing both normal and abnormal samples, leading to reduced distin-
guishability between normal and abnormal events due to similar reconstruction errors. This
limitation arises from the excessive focus on low-level details and the neglect of higher-level
semantic information in existing methods [6]. The prediction-based methods [7–9] aim to
predict future frames based on past frames. If the prediction of the future frame signifi-
cantly deviates from the actual ground truth, it is a clear indication of anomalies. However,
due to the minimal changes in temporal and spatial features of adjacent frames, prediction
methods can better predict future frames based on past frames, even for abnormal samples.
This limitation is because prediction methods based on single-frame prediction errors
cannot fully utilize the temporal and spatial context of video abnormal activities when
predicting anomalies [10–12]. The limitations of these two methods in extracting advanced
visual features and comprehensive temporal-spatial contextual relationships hinder their
further performance enhancement.

In this paper, our goal is to explore better methods to mine the high-level semantics
and complex spatiotemporal relationships of video events. Initially, we represented video
events using spatiotemporal cubes (STCs), which are constructed from consecutive fore-
ground segments in unlabeled videos. This allows us to deeply explore the spatiotemporal
characteristics of the video content, facilitating a more comprehensive understanding and
analysis of the video events. Subsequently, the foreground patches are randomly masked,
and the unmasked patches are fed into a spatiotemporal mask autoencoder, which aims to
learn the spatiotemporal features of video events. By randomly masking the foreground
patches, the autoencoder is forced to reconstruct the occluded regions, enabling it to cap-
ture the spatiotemporal features more accurately in the video. By leveraging the ability of
autoencoders to learn inherent structures and patterns from data, it can extract high-level
semantic and spatiotemporal features that are useful for comprehensively understanding
and analyzing video events. Furthermore, to better reconstruct normal events and worse
abnormal events, we introduce multiple memory modules between the spatiotemporal
masked autoencoders. These modules store the typical patterns of unmasked video patches
from distinct feature layers. In addition, to compensate for the loss of key information
caused by the memory modules, we also added skip connections to ensure a more complete
reconstruction of both normal and abnormal events. Finally, the reconstructed masked
video data are obtained from the decoding module, and the normal score for each input is
obtained based on the differences between the reconstructed data and the input data.

In summary, we propose an encoder–decoder model named SMAMS, based on spa-
tiotemporal masked autoencoder (ST-MAE) and memory modules. The main contributions
of this paper are summarized as follows:

(1) Using the spatiotemporal cubes (STCs) to represent video events, we can explore the
spatiotemporal characteristics of video content in depth, facilitating a more compre-
hensive understanding and analysis of video events.

(2) By learning the spatiotemporal features of video events through a spatiotemporal mask
autoencoder, it accurately captures the spatiotemporal features in video and extracts
advanced semantic and spatiotemporal features that are helpful for comprehensive
understanding and analysis.

(3) Introducing multiple memory modules and skipping connections to better reconstruct
normal and abnormal events, compensate for the loss of key information, ensure a
more complete reconstruction, and obtain normal scores based on the differences
between reconstructed data and input data.

(4) Our model demonstrated competitive performance on three datasets: UCSD Ped2,
CUHK Avenue, and Shanghai Tech. Furthermore, we conducted comprehensive
ablation experiments to investigate the impact of various model components.
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2. Related Work
2.1. Video Anomaly Detection (VAD)

Reconstruction-based methods typically learn to reconstruct the input by training
on normal videos and consider those with a large reconstruction error as anomalies.
Autoencoders (AE) and their variants are widely used for reconstructing training data.
Gong et al. [3] proposed a Memory-Augmented Autoencoder (MemAE) to address the
limitations of traditional autoencoders in anomaly detection. Fan et al. [13] implemented
VAD using a Gaussian mixture variational autoencoder. Recently, several relevant studies
have delved into the application of residual networks in autoencoders. Deepak et al. [14]
introduced a residual spatiotemporal autoencoder that addresses the issue of gradient
vanishing in traditional convolutional autoencoders by incorporating skip connections
and residual blocks into its architecture. Le et al. [4] presented a residual autoencoder
architecture that incorporates a deep convolutional neural network-based encoder and a
decoder equipped with multi-level channel attention. Kommanduri et al. [15] proposed a
Bi-Residual AutoEncoder that employs dual residual connections to preserve both local
and global information. Some works combine LSTM with autoencoders. Wei et al. [5]
proposed an autoencoder architecture based on a stacked convolutional LSTM framework
to train normal patterns. Joshi et al. [16] proposed an LSTM-based autoencoder architecture
that can reconstruct features extracted by a CNN model. Waseem et al. [17] introduced a
convolutional LSTM architecture that integrates a variational autoencoder, with the bottle-
neck layer representing the distribution of mean and variance. A dual-stream framework is
popular for detecting video anomalies by combining appearance and motion anomalies.
For example, Li et al. [18] employed both a Space–Time Adversarial Autoencoder and a
Space–Time Convolutional Autoencoder to fuse the appearance and motion cues of video
anomaly events for a more comprehensive evaluation of anomalies. Li and Chen et al. [19]
proposed a novel dual-stream architecture called Two-Stream Deep Space–Time Autoen-
coder (Two-Stream DSTAE) to extract appearance features and motion patterns separately
and fuse them with a joint reconstruction error strategy to extract spatiotemporal features
for anomaly detection. To address the issue of the lack of exploration of correlation in the
dual-stream framework, Liu et al. [20] proposed a dual-stream autoencoder framework
based on enhanced space–time memory, which explores the correlation between spatial and
temporal patterns through adversarial learning to boost anomaly detection performance.
The reconstruction-based methods tend to overemphasize low-level details rather than
delve into high-level semantics, resulting in excessive generalization that hinders effective
discrimination between normal and abnormal samples.

Prediction-based approaches construct the present frame by learning from earlier
frames, and if the prediction result is not satisfactory, it is considered an anomaly. Liu et al. [8]
modeled video sequences using deep learning models and used a generative model to
predict frames. The first work detected anomalous events using the difference between
predicted and actual future frames. Building on this work, Lu et al. [9] proposed an
improved approach considering temporal information in predicting future frames from a
modeling perspective. They proposed a generative model based on the variational autoen-
coder (VAE) and Convolutional LSTM (ConvLSTM). Wang et al. [21] designed a multi-path
ConvGRU frame prediction module to better handle semantic information in different
regions and capture the spatiotemporal dependencies of normal videos. Zhao et al. [22]
utilized the evolution laws of long-term and short-term appearance and motion to uti-
lize the spatiotemporal correlations between video frames better to understand normal
patterns. Xu et al. [23] introduce a motion-aware future frame prediction network that
integrates salient detection with frame prediction branches for effective anomaly detection
in videos. Baradaran et al. [24] present a future frame prediction proxy task and semantic
segmentation map to effectively address the challenges of long-term motion modeling in
VAD. Deng et al. [25] utilize optical flow estimation and interpolation networks to syn-
thesize normal frames and detect anomalies. Cheng et al. [26] proposed a flow-frame
prediction model based on spatial-temporal graph convolutional networks, combined
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with appearance and motion features, for detecting video anomalies. In addition, some
recent works have utilized Generative Adversarial Networks (GANs) for future frame
prediction. Li et al. [27] proposed an anomaly detection method based on a Generative
Adversarial Network with an auxiliary discriminator, which combined adversarial and
collaborative prediction of future frames for anomaly detection. Zhang et al. [28] proposed
an unsupervised anomaly detection method based on Generative Adversarial Networks
(GANs), which utilized two generators to predict the next future frame. However, these
methods fail to fully utilize the temporal context of abnormal activities in videos.

Both reconstruction-based and prediction-based methods have their limitations and
cannot provide a flawless solution. We propose a VAD method that uses a masked
autoencoder with spatiotemporal capabilities, combined with multi-memory and skip
connections, to extract high-level semantic and spatiotemporal context information from
video events.

2.2. Memory Modules

Memory modules can enhance the network to remember and learn complex informa-
tion better and have attracted increasing attention for their better performance in various
tasks. A differentiable neural computer model was put forward by Graves et al. [29] and
consists of a memory module for external data storage and a neural network for feature
extraction. Gong et al. [3] introduced the Memory-Enhanced Autoencoder (MemAE)
method, which reconstructs outputs by retrieving similar memory slots and combining
them to generate new encoding features. This method stores normal patterns in the mem-
ory storage, suppressing the autoencoder’s generalization ability. Following this trend,
Park et al. [30] presented an inferior memory module that may be updated while being
tested. To overcome the limitations of current neural memory networks in knowledge
retrieval mechanisms, Fernando et al. [31] proposed a plastic neural memory access mech-
anism. This mechanism dynamically adjusts connection weights to adapt to different
input data, therefore improving the flexibility and efficiency of neural memory networks in
knowledge retrieval and output generation. Yu et al. [32] proposed a novel long-term seg-
mentation and tracking method, LTST, aimed at addressing the limitation of existing video
object segmentation tasks in creating target models in the first frame, therefore improving
long-term adaptability. The proposed method employs a memory attention network to
extract relevant historical information and dynamically reconstruct the segmentation tem-
plate, achieving the effect of online learning. We propose a multi-layer Memory-Enhanced
Autoencoder to store critical features of distinct feature layers and add skip connections to
compensate for the information loss caused by the memory module.

3. The Proposed SMAMS Video Anomaly Detection Approach

To address the problem of the strong generalization ability to exist methods for pre-
dicting abnormal samples, which cannot utilize advanced semantics, we propose an en-
coder–decoder model, named SMAMS, which is based on a spatiotemporal masked autoen-
coder (ST-MAE), incorporating multi-memory and skip connections. The network of our
method is shown in Figure 1. Initially, the video events are represented as spatiotemporal
cubes, and a portion of the foreground patches are randomly concealed. Subsequently, the
unmasked patches were fed into the spatiotemporal masked autoencoder, which can extract
both the spatiotemporal features and high-level semantics of the video events. Second, to
reconstruct normal events better and abnormal events worse, multiple memory modules
are added on top of the spatiotemporal masked autoencoder to store the normal patterns
of uncovered video patches from different feature layers. Additionally, skip connections
are added to compensate for the crucial feature loss caused by the memory modules. Nor-
mal event patterns are commonly characterized by simplicity and predictability, whereas
abnormal event patterns tend to exhibit greater complexity and irregularity. Finally, the
reconstructed masked video data are obtained from the decoding module, and the normal
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score for each input is obtained based on the differences between the reconstructed data
and the input data.

Figure 1. The network of our method, SMAMS.

3.1. ST-MAE Based Memory Encoder–Decoder

Traditional convolutional autoencoders have a poor temporal dependency. To better
utilize the advanced semantics and temporal contextual cues of video events, we introduce
the spatiotemporal masked autoencoder (ST-MAE) into the field of VAD. ST-MAE is a novel
method for reconstructing the training dataset, which can be used for denoising and fully
learning high-level semantics and spatiotemporal features of normal samples.

Spatial-temporal cubes (STC) are used in our proposed method to represent video
events, which are constructed from temporally contiguous foreground patches. STC
extraction is critical for detecting anomalies [33,34] since it allows subsequent modeling to
concentrate on relevant foreground information instead of unimportant backgrounds in
video clips. We first localize every frame in the video to gather the foreground information,
adopting the video event extraction approach in [34,35]. Second, according to each object’s
position, T foreground blocks are taken from the present frame and T-1 subsequent frames
in time. Finally, the size of the T foreground patches is adjusted to ti ∈ RH×W(i = 1, 2, ..., T),
and then heaped to generate a STC,S ∈ RH×W×D = [t1, t2, ..., tT ]. Given a video event
represented by the STC S = [t1, t2, ..., tT ], randomly conceal 90% of the foreground patches.
Assuming the masked spatiotemporal patches are Smask = [x1, x2, ..., xm],m = 9T/10. The
unmasked spatiotemporal patches are Sunmask = [y1, y2, ..., yu], u = T/10. We follow the
settings of ST-MAE and use ViT as the backbone network for the encoder and decoder.
The unmasked spatiotemporal patch sequence Sunmask is input to the encoder for encoding,
resulting in a hidden feature y. The feature representation y can be utilized as the query to
retrieve and modify items within the memory module.

y = fe(Sunmask; θe) (1)

ŷ = fm(Sunmask; θm) (2)

where θe and θm represent hyperparameters, and ŷ represents the memory module’s out-
put feature representation. The decoder is used to reconstruct the masked spatiotempo-
ral patches.

x̃ = fd(Smask; θd) (3)

where θd represents the hyperparameters of the decoder fd(·).
In particular, we adopt the ST-MAE model combined with the memory module as

the backbone of our masked autoencoder. As shown in Figure 2, the encoder utilizes the
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Transformer architecture and memory module, composed of multiple self-attention layers
and feed-forward neural network layers and memory module. The decoder part is mainly
responsible for reconstructing the input-masked blocks according to the original settings of
the Transformer. In VAD, ST-MAE effectively models the temporal and spatial correlations
in video sequences, leading to a better understanding of the differences between normal
and abnormal patterns. The memory module is to remember the normal mode of unmasked
patches. Specifically, the unmasked spatiotemporal patches are used as the input to the
encoder part. Given the sequence of unmasked patches Sunmask ∈ RH∗W∗D, it is first
flattened into a 1-dimensional token sequence {tk ∈ RH∗W | k = 1, 2, ..., D/10}. Each
token sequence is then mapped to a lower-dimensional embedding using a trainable linear
projection. To preserve the spatiotemporal information of the patches, learnable embeddings
xcls and learnable position embeddings Epos ∈ RD/10∗dim are added to the token embeddings,
resulting in the following token sequence:

Z0 = [xcls; x
′
1; x

′
2; ...; x

′
k] + Epos (4)

Then, we pass the token sequence Z(0) through multiple encoder blocks, where each
block performs the following computation processes to learn temporal-spatial features f of
unmasked patches.

Zl = fA(W
(l−1)
Q Z(l−1), [W(l−1)

K Z(l−1), M(l−1)
K ], [W(l−1)

V Z(l−1), M(l−1)
V ]), (5)

f = LN(Z0
L) (6)

where Z0 is the encoder input matrix formed from the unmasked patches. Zl−1 and Zl

are the input and output of layer l, W(l−1)
Q , W(l−1)

K , W(l−1)
V are the linear projections of the

encoder’s layer l-1 for query, key, and value of the multi-head attention operator, respec-
tively. M(l−1)

K , W(l−1)
V are the layer l learnable memory matrices that are concatenated with

W(l−1)
K , W(l−1)

V . The multi-head attention operator fA adheres to the standard architecture
of ViT and Transformer. L represents the count of encoder blocks. Multiple encoders can be
stacked together to form a deep architecture, therefore increasing the model’s representative
capacity. Based on our experiments and evaluations, we have determined that setting L to
3 yields the optimal configuration for our model.

Subsequently, the decoder is employed to reconstruct the sequence of masked patches.
The generated STC Srec is considered to be the reconstruction of the original sequence Smask.
The ST-MAE is trained by minimizing the reconstruction error.

Figure 2. The internal structure of the masked autoencoder.
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3.2. Multi-Layer Memory Module with Skip Connections

First, the memory module is introduced, which consists of two main components:
an encoding pattern that provides query and matching for memory item storage features
and a memory update strategy. By utilizing a memory module, the model can effectively
prevent the reconstruction of anomalous samples, significantly improving anomaly detec-
tion performance. During the query and match phase, the memory module is designed
as a matrix M∈RN∗C, where it consists of N feature vectors of dimension C. The memory
matrix M stores the normal patterns observed during the training process. Assuming the
dimension of the feature representation z is the same as C, Z = RC. Let the row vector mi
represent a memory item in the matrix M, where i denotes the i-th row of matrix M. Given
a query feature z ∈ RC, we can retrieve similar memory items and reconstruct the feature ẑ
by multiplying them with wi.

ẑ = wM =
N

∑
i=1

wimi (7)

where wi represents the similarity between the query feature z and the memory items,
which can be mathematically expressed as follows:

wi =
eScos(z,mi)

∑N
j eScos(z,mj)

(8)

where Scos represents the cosine similarity:

Scos =
zMT

∥z∥∥M∥ (9)

For the memory update strategy, the following metrics are utilized to gauge the
matching degree between memory items and queries:

ξij =
eScos(zi ,mj)

∑C
i eScos(zi ,mj)

(10)

Each memory item is updated to:

M ⇐ f2(M +
C

∑
i=1

ξijz) (11)

where f2(·) represents the L2 norm, and the weighted average of the feature is computed
to make the feature pattern in the memory item more normal. We adopted the approach
proposed in reference [36], where three memory modules were introduced between the
encoder and decoder of the spatiotemporal masking autoencoder. These memory modules
were designed to capture the features of unmasked patches. Additionally, skip connections
were incorporated to ensure the preservation of crucial information.

3.3. Anomaly Score

After performing the ST-MAE, we aim to distinguish anomalies by computing an
anomaly score. Following existing reconstruction-based methods, we use reconstruction
error as the anomaly score. Let the reconstruction result for Smask be denoted as Srec, and
we employ the mean squared error (MSE) loss as the reconstruction loss for each STC:

ℓreon = MSE(S) =∥ Smask − Srec ∥2
2 (12)

where ∥ · ∥2
2 represents the L2 norm. It calculates the Euclidean distance between the pre-

dicted values Srec and the true values Smask. A higher value implies a greater differentiation
between the predicted values and the true values.
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The matching probability w for each memory module is added with entropy loss as
the memory module loss:

ℓmem =
M

∑
i=1

N

∑
k=1

−wij log(wij) (13)

where M is the number of memory modules and wij is the matching probability for the j-th
memory slot in the i-th memory module. Balancing the above two loss functions, we obtain
the following loss function to train the model:

ℓ = λreonℓreon + λmemℓmem (14)

In the testing phase, we utilize the trained autoencoder model to reconstruct the test
data and calculate the loss error for each sample. For each STC, the anomaly score is
computed pixel-wise based on the defined loss function. It can be calculated as follows:

Score(S) =
ℓ(S)− µ

σ
(15)

where µ and σ represent the mean and standard deviation of the losses ℓ. The anomaly
score represents the distribution of reconstruction errors for a sample relative to normal
behavior. A higher anomaly score indicates a larger deviation of the sample from normal
behavior, suggesting the presence of anomalies.

4. Experiments
4.1. Datasets and Evaluation Metrics

Datasets. We conduct experimental validation on three publicly available datasets:
UCSD Ped2 [2], CUHK Avenue [37], and Shanghai Tech [38]. The UCSD Ped2 dataset
consists of pedestrian walking videos captured on sidewalks, comprising 28 video clips.
Among them, 16 video sequences depict normal pedestrian behavior, while the remaining
12 video sequences contain anomalous behavior such as cycling, driving small cars, and
riding skateboards. The CUHK Avenue dataset features videos captured from a horizontal
perspective at subway entrances, comprising 37 video clips. Among them, 16 video
sequences depict normal pedestrian behavior, while the remaining 21 video sequences
contain anomalous behavior such as running and throwing litter. The ShanghaiTech
dataset is highly challenging and is the largest dataset in existing benchmarks for anomaly
detection, containing over 270,000 training frames and 130 abnormal events. Normal events
observed on the campus primarily consist of pedestrians engaged in normal walking
behavior. On the other hand, abnormal events encompass a range of occurrences, such as
vehicles unlawfully traversing sidewalks, instances of violent altercations, and incidents
of robbery.

Evaluation Metrics. We measure the model’s overall performance by calculating the
area under the receiver operating characteristic (ROC) curve (AUC). This metric provides a
comprehensive assessment of the anomaly detection capabilities of our proposed method.
When evaluating the performance of a classification model, we also utilize commonly used
evaluation metrics, the F1 score and OA (Overall Accuracy).

4.2. Implementation Details

The implementation details are as follows. We utilize Cascade R-CNN, which is based
on mm detection, to extract the foreground objects. These extracted objects are then stacked
to build STCs. The size of the STC is set to D = 8, and the width and height of the STCs are
adjusted to H = W = 32. We employ a spacetime-agnostic masking strategy to conceal part
of the STCs, with a mask ratio set to 0.9. The unmasked STC is used to train our model,
while the masked STC is used for model reconstruction. For the ViT module in SMAMS,
we set the number of ViT blocks to L = 4 and the embedding dimension dim = 512. At the
same time, the number of heads in MSA is set to 8, and the hidden dimension in MLP is
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1024. We use 3 memory modules, with N = 2000 for each memory module. The optimizer
uses the Adam optimizer in PyTorch with a learning rate of 0.0001. The batch size is 128,
and the training epoch is 200. λreon and λmem are set to 1.0 and 0.0002, respectively. The
anomaly scores of videos are smoothed by a median filter with a window size of 16.

4.3. Ablation Experiments
4.3.1. The Impact of Different Cube Sizes on Model Performance

The setting of different cube sizes in ST-MAE can affect the model’s performance,
as shown in Figure 3. Cube sizes that are too large or too small can affect the model’s
generalization ability and stability. We conducted experiments using different cube sizes
and found that the model’s performance was optimal when the cube size was set to 8.

Figure 3. The impact of different cube sizes on model performance.

4.3.2. Design of Hyperparameters for the Model

In our experiments, we found that the design of the model is a crucial aspect in
determining the performance of the SMAMS model.

The choice of an appropriate patch size is crucial for capturing spatial and temporal
dependencies. Smaller patch sizes are well-suited for capturing short-term temporal
features and local spatial features, making them highly effective in detecting rapidly
changing anomalies in local regions. Conversely, larger patch sizes are more suitable
for capturing long-term temporal dependencies and global spatial features, which are
beneficial for gradually detecting changing global anomalies over time. For our anomaly
detection task, our experimental results indicate that setting the patch size to 16 × 16 yields
the best performance, as shown in Table 1.

We observed that deeper Transformer layers are better at capturing long-term depen-
dencies and spatiotemporal context in videos. However, deeper networks typically require
more computational resources and time for training and inference. To achieve a balance
between model performance and efficiency, our experimental results indicate that using
four Transformer layers yields the best results. as shown in Table 2.

By utilizing multiple attention heads, the model can better comprehend the global
context relationships in videos, capturing long-term temporal patterns and global spa-
tial patterns. Considering computational resource constraints, we found that selecting
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eight attention heads strikes an optimal balance between performance and computational
efficiency, as shown in Table 3.

The multi-layer perceptron (MLP) serves as the decoder in the autoencoder, tasked
with reconstructing the features extracted by the encoder. A larger MLP with more hidden
layers and neurons can learn more complex and abstract feature representations, therefore
enhancing the model’s ability to detect anomalous patterns in video data. However, a
larger MLP also has a higher parameter count and is prone to overfitting on the training set.
Four layers can provide sufficient levels to capture long-term dependencies in the video
while avoiding the waste of computational resources caused by excessive complexity, as
shown in Table 4.

Table 1. Patch size.

Patch AUC F1 OA

8 86.54 82.48 80.92
16 94.12 90.74 88.34
32 87.86 88.85 86.86

Table 2. Number of Transformer layers.

Layer AUC F1 OA

2 87.43 84.86 83.54
4 92.17 86.82 89.94
6 88.91 87.39 87.75

Table 3. Number of attention heads.

Head AUC F1 OA

6 84.83 86.78 84.74
8 92.49 90.47 86.65
12 86.97 85.83 87.94

Table 4. MLP size.

MLP AUC F1 OA

512 87.46 89.73 83.79
1024 91.36 89.51 89.81
1536 88.12 85.68 83.98

4.3.3. Validation of the Effectiveness of Memory Module and Skip Connections

Ablation experiments were performed on three datasets to assess the effectiveness of
integrating multiple memory modules and skip connections. These experiments aimed
to examine the influence of the memory module and skip connections on the overall
performance. The results are presented in Tables 5 and 6.

Table 5 reveals that adding multiple memory modules enhances the performance
of anomaly detection, indicating that during the training process, incorporating memory
modules allows for the retention of crucial features that are not masked. However, the
improvement in AUC is not significant when multiple memory modules are added. This
could be attributed to excessive information filtering caused by multiple memory modules,
leading to network degradation and the failure to retain the most representative features.
Specifically, to validate the effectiveness of the memory module, the ROC curves on three
different datasets are shown in Figures 4–6. To mitigate this issue, skip connections were
introduced. The results presented in Table 6 illustrate an enhancement in the AUC for
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anomaly detection following the incorporation of skip connections. In addition, the val-
idation of the effectiveness of skip connections on three different datasets is depicted by
the ROC curves shown in Figures 7–9. From the ROC curve, it is evident that the inclu-
sion of memory modules and skip connections significantly enhances the performance of
our model.

Figure 4. The effectiveness of the memory module is validated on the UCSD Ped2 dataset.

Figure 5. The effectiveness of the memory module is validated on the Avenue dataset.
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Table 5. Validation of the Effectiveness of Memory Module.

Memory Module Ped2 Avenue Shanghai Tech

0 96.9 86.8 75.3
1 97.5 88.5 76.9
2 98.1 89.3 77.3
3 98.6 89.9 77.9

Figure 6. The effectiveness of the memory module is validated on the Shanghai Tech dataset.

Figure 7. The effectiveness of Skip Connections is validated on the UCSD Ped2 dataset.
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Table 6. Validation of the Effectiveness of Skip Connections.

Ped2 Avenue Shanghai Tech

without skip connections 98.6 89.9 77.9
with skip connections 99.9 94.8 78.9

Figure 8. The effectiveness of Skip Connections is validated on the Avenue dataset.

Figure 9. The effectiveness of Skip Connections is validated on the Shanghai Tech dataset.

4.3.4. The Impact of Masking Strategy and Mask Ratios on Anomaly Score

Masking Strategy. In this section, we discuss how different masking schemes affect
performance. We believe that the space-only strategy, which masks only the spatial dimen-
sion, can simulate spatial occlusion, noise, or missingness, and is suitable for anomalies
with spatial correlation in videos, such as moving objects or spatial shifts. However, it
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ignores temporal information and cannot capture temporal anomalies, such as fast-moving
objects or persistent anomalies. The temporal-only strategy, which masks only the temporal
dimension, can simulate temporal missingness, occlusion, or uncertainty and is suitable
for temporal anomalies in videos, such as time interval or duration anomalies. However,
it ignores spatial information and cannot capture spatial anomalies, such as object shape
changes or spatial shifts. Given the characteristics of video anomaly detection tasks, which
require capturing both temporal and spatial relationships, the optimal masking strategy
should consider both spatial and temporal dimensions. The spacetime-agnostic strategy
preserves complete spatial and temporal information without specific masking of either
dimension. It can capture various spatiotemporal patterns and relationships and is suitable
for handling diverse anomalies. Therefore, we adopt the spatiotemporal agnostic strategy.
As shown in Table 7, the spatiotemporal agnostic random sampling method performs the
best. Additionally, we demonstrate the superiority of the spacetime-agnostic masking
strategy on different datasets through ROC curves in Figures 10–12.

Table 7. AUROC of anomaly detection under different masking strategies.

Masking Strategies Ped2 Avenue Shanghai Tech

spacetime-agnostic 99.9 94.8 78.9
space-only 97.5 88.7 76.2
time-only 97.2 88.1 75.4

Mask Ratios. The influence of different mask ratios on anomaly detection perfor-
mance is demonstrated in Table 8. The performance is poorest when the mask ratio is 0,
demonstrating the effectiveness of masking. As the mask ratio increases, the performance
consistently improves, reaching its peak at a mask ratio of 90%. However, when the mask
ratio exceeds 90%, a slight decline in performance is observed. This phenomenon can be
attributed to the presence of redundant information in video data, which can be effectively
eliminated using the masking strategy. Consequently, the masking strategy enables the
extraction of key spatiotemporal features from the videos. Nevertheless, excessively high
mask ratios can lead to the obscuring of crucial information.

Figure 10. ROC Curves of Different Masking Strategies on the UCSD Ped2 Dataset.
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Figure 11. ROC Curves of Different Masking Strategies on the Avenue dataset.

Figure 12. ROC Curves of Different Masking Strategies on the Shanghai Tech dataset.

Table 8. AUC of anomaly detection under different masking ratios.

Masking Ratios Ped2 Avenue Shanghai Tech

0% 98.1 88.7 77.3
50% 99.4 91.5 78.3
75% 97.3 89.3 77.7
90% 99.9 94.8 78.9
95% 98.6 93.5 78.1
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4.4. Comparative Experiments

As demonstrated in Table 9, our method achieved the highest performance on the
USCD Ped2 dataset. Notably, our method demonstrated a 2.0% performance gain over
mainstream VAD methods on the recently utilized large-scale benchmark dataset, Avenue.
However, the performance of the Shanghai Tech dataset is slightly higher than the currently
prevailing state-of-the-art methods by 0.1%. This is because the Shanghai University of
Science and Technology dataset contains 13 different complex environments and scenarios,
such as high-density crowds, multiple movement patterns, and abnormal events. For
datasets of this complexity, due to the high dependence of SMAMS performance on the
selection of parameters and hyperparameters, a large amount of computational resources
and time are usually required for training and evaluation. Nevertheless, our device cur-
rently does not support such large-scale operations, so in the future, we will adopt other
optimization strategies to improve computational efficiency and reduce training time. In
addition, comparing our method to MNAD, which also incorporates a memory module,
our method exhibited slightly better performance when utilizing the memory module. This
is attributed to the integration of the memory module into the ST-MAE, which enhances
the model’s ability to capture long-term dependencies, incorporate contextual information,
and improve the detection of abnormal patterns, therefore enhancing the effectiveness of
anomaly detection.

Table 9. Comparison of anomaly detection performance with state-of-the-art methods.

Years Method Ped2 Avenue Shanghai Tech

2020 SIGnet [39] 96.2 86.8 -
2020 MNAD [30] 97.0 88.5 70.5
2021 AST-AE [40] 96.6 85.2 68.8
2021 ROADMAP [21] 96.3 88.3 76.6
2022 CDD-AE+ [41] 96.7 87.1 73.7
2022 STC-Net [22] 96.7 87.8 73.1
2022 STM-AE [20] 98.1 89.8 73.8
2023 AR-AE [4] 98.3 90.3 78.1
2023 DMAD [42] 99.7 92.8 78.8

- Ours 99.9 94.8 78.9

4.5. Visualization Results and Analysis

Figures 13–15 shows the curve of anomaly scores and ground truth on representative
test video frames from the three datasets in this study, including anomalies such as riding
in a crowd, throwing objects in a public place, and fighting on a pedestrian road. The blue
curve represents the anomaly score calculated by our model. At the same time, the red line
segment is the ground truth, representing the true situation of the event, where 0 represents
a normal frame, and 1 represents an abnormal frame. The figure shows that the ground
truth and anomaly scores have similar changes, indicating that our model can respond
correctly to normal and abnormal events. Specifically, when an abnormal object suddenly
appears, the anomaly score curve sharply increases, and when an abnormal event occurs,
the curve remains at a high level. The curve quickly drops to a low level when the abnormal
event disappears. The experimental results provide validation for the effectiveness of the
proposed model in accurately identifying abnormal events in surveillance video data. The
model demonstrates robust and accurate detection performance across a range of different
scenarios and various types of abnormal events. Through testing on three different datasets,
we found that our model can adapt well to different scenarios and maintain high accuracy
in anomaly detection. Our model has proven effective in distinguishing between normal
and abnormal frames, making it highly applicable in practical scenarios.
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Figure 13. Typical test video from the UCSD Ped2 dataset. The blue curve represents the anomaly
score calculated by our model. The red line segment is the ground truth.

Figure 14. Typical test video from the Avenue dataset. The blue curve represents the anomaly score
calculated by our model. The red line segment is the ground truth.
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Figure 15. Typical test video from the ShanghaiTech dataset. The blue curve represents the anomaly
score calculated by our model. The red line segment is the ground truth.

5. Conclusions and Future Work

This paper proposes a VAD method based on ST-MAE and memory modules. First,
we extract spatiotemporal cubes by capturing appearance and motion clues for precise and
comprehensive video event extraction. Second, we perform random masked foreground
patching on the spatiotemporal cubes, extract feature representations of the unmasked
patched regions using a pre-trained ViT model, and input them into the decoder for
predicting the masked patches to learn the high-level semantics of video events. Finally,
we design multiple memory modules based on the ST-MAE to store unmasked video
patch features of different feature layers and add skip connections to compensate for
performance degradation caused by information loss due to the memory modules to better
distinguish between normal and abnormal videos. Experiments on three public datasets
show that the proposed method is effective and outperforms state-of-the-art approaches in
terms of performance. Ablation experiments demonstrate the contributions of each model
component to excellent performance. In addition, the visualization of experimental results
further demonstrates the effectiveness and robustness of the proposed method.

When dealing with complex anomaly scenes in the real world, we recognize the need
for optimization strategies to enhance computational efficiency and reduce training time.
Given the high sensitivity of SMAMS performance to parameter and hyperparameter selec-
tion, we acknowledge the challenges posed by the requirement of extensive computational
resources and time for training and evaluation on complex datasets. To address these
challenges, we aim to investigate optimized techniques that are specifically designed for
complex scenarios in the future.
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