
Citation: Korona, M.; Giermakowski,

R.; Biernacki, M.; Rawski, M.

Lightweight Strong PUF for

Resource-Constrained Devices.

Electronics 2024, 13, 351. https://

doi.org/10.3390/electronics13020351

Academic Editor: Shinichi Yamagiwa

Received: 20 November 2023

Revised: 5 January 2024

Accepted: 11 January 2024

Published: 14 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Lightweight Strong PUF for Resource-Constrained Devices
Mateusz Korona , Radosław Giermakowski , Mateusz Biernacki and Mariusz Rawski *

Institute of Telecommunications, Faculty of Electronics and Information Technology, Warsaw University of
Technology, 00-665 Warsaw, Poland; mateusz.korona@pw.edu.pl (M.K.);
radoslaw.giermakowski@pw.edu.pl (R.G.); mateusz.biernacki@pw.edu.pl (M.B.)
* Correspondence: mariusz.rawski@pw.edu.pl

Abstract: Physical Unclonable Functions are security primitives that exploit the variation in inte-
grated circuits’ manufacturing process, and, as a result, each instance processes applied stimuli
differently. This feature can be used to provide a unique fingerprint of the electronic device, or as an
interesting alternative to classic key storage methods. Due to their nature, they are often considered
an element of the Internet of Things nodes. However, their application heavily depends on resource
consumption. Lightweight architectures are proposed in the literature but are technology-dependent
or still introduce significant hardware overhead. This paper presents a lightweight, Strong PUF based
on ring oscillator architecture, which offers small hardware overhead and sufficient security levels
for resource-constrained Internet of Things devices. The PUF design utilizes a Linear Feedback Shift
Register-based scramble module to generate many challenge–response pairs from a small number of
ring oscillators and a control module to manage the response generation process. The proposed PUF
can be used as a Weak PUF for key generation or a Strong PUF for device authentication.

Keywords: Physical Unclonable Functions; lightweight; Internet of Things; cybersecurity

1. Introduction

The Internet of Things (IoT) has become a reality with the increasing emergence of mo-
bile electronic devices over the last two decades. Its influence on our day-to-day activities
will increase and more than 30 billion devices are expected to be connected worldwide by
2025 [1]. The Internet of Things is a set of connected devices, each with a unique identifier
that automatically collects, processes, and exchanges data over a network. Due to the
unconventional manufacturing of IoT devices and the vast amount of data they handle,
there is a constant threat of cyber attacks. Unfortunately, remarkably inexpensive and
computationally limited IoT devices are generally not designed with security mechanisms.
In addition, IoT device manufacturers may also compromise on security measures to keep
pace with market needs, for example, by reducing the time to market for their devices and
minimizing the design and development costs.

System security in IoT devices for applications requiring user identification and au-
thentication is often based on protecting secret keys. Malicious users can impersonate
authorized users in these applications, when the secret key is uncovered. To protect inte-
grated circuits (ICs), that are the base of IoT systems, against logical and physical tampering
attacks, secret key storage devices provide active logical controls to safeguard the secret
keys. However, an adversary can extract digitalized secret information from the device by
applying invasive and non-invasive physical tampering methods such as micro-probing,
laser cutting, glitch attacks, or power analysis. For instance, an attacker can apply sophisti-
cated reverse engineering to build copies of the circuits and compromise conditional access
systems by using illegal copies of secret information. The device authentication method
provided in most IoT platforms relies on storing the key in memory. This poses a security
threat due to the exposure of the authentication key, as even data in non-volatile memories,
such as EEPROM and NVRAM, can be exposed using sophisticated manipulation methods.

Electronics 2024, 13, 351. https://doi.org/10.3390/electronics13020351 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13020351
https://doi.org/10.3390/electronics13020351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9718-9684
https://orcid.org/0009-0001-3997-4369
https://orcid.org/0009-0008-7765-800X
https://orcid.org/0000-0002-7489-0785
https://doi.org/10.3390/electronics13020351
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13020351?type=check_update&version=1


Electronics 2024, 13, 351 2 of 13

This has led to a high demand for cryptographic mechanisms to protect user privacy and
data security.

The notion of a Physical Unclonable Function (PUF) has been introduced in [2]. PUFs
are security primitives that utilize the inherent, uncontrollable process variation during
integrated circuit manufacture to generate a unique intrinsic identifier for a device. This
physical entity, when stimulated by the input value (challenge), by exploiting process
variations and mismatch, produces a hard-to-clone output (response) that can be used as
a cryptographic key or unique fingerprint for (the physical instance of) a device. When
PUF is utilized, unique keys are not stored physically on the device (unlike in classical
key storage methods such as non-volatile EEPROM / NVRAM memories), but are rather
(re-)generated by PUF upon each activation. Additionally, reverse engineering of PUF-
based devices can be challenging due to the unpredictability of manufacturing process
variations. This particular feature has given birth to new PUF-related security applications.
A comprehensive review of the state of the art of PUF, its architectures, protocols, and
security for IoT has been provided in [3].

PUFs can be implemented in Application-Specific Integrated Circuits (ASICs), or,
at a lower cost, in Field-Programmable Gate Arrays (FPGAs). FPGA devices are popular for
IoT and embedded systems applications due to their programmability, partial reconfigura-
bility, and faster time-to-market features. Many PUF architectures have been proposed for
FPGA. A ring oscillator PUF (RO PUF), that has been introduced in [4], is an FPGA-friendly
design using the delay of FPGA primitives. Various industrial and academic efforts have
attracted the development of different techniques to improve the performance of PUFs
using FPGAs to find a reliable and robust countermeasure against increased hardware
security attacks [5–7].

In general, PUFs can be classified into two subtypes—Weak PUFs and Strong PUFs [8].
The difference between the two is the number of possible challenge–response pairs (CRPs)
supported by the PUF. If the number of CRPs supported by the PUF scales exponentially
with its size, it is considered a Strong PUF. On the other hand, linear or polynomial increases
typically characterize Weak PUFs. Exponential scaling produces exceptionally large CRP
sets with increasing device size. Strong PUFs can be used directly for authentication, while
Weak PUFs are used for cryptographic key generation [2].

A Strong PUF realization faces some challenges regarding resource utilization and se-
curity level. Secure PUF may require a large amount of resources to implement [9,10], while
simplified PUF implementation may be vulnerable to machine learning attacks that can
model its behavior [11]. The security concerns for IoT center around resource-constrained
IoT devices with limited processing power and storage capabilities. In designing crypto-
graphic primitive for such devices, there is always a tradeoff between the security level
provided by the primitive and the resources needed to implement it. Therefore, designing a
PUF that balances resource utilization and security level is an important and active research
topic in the field of hardware security.

In [12], a lightweight Strong PUF design has been proposed. This Arbiter-based PUF
(APUF) is composed of two identical groups of flip-flops and multiplexers. The response
generation is dependent on creating a race condition between two identical delay paths.
Although it saves more than 66% in hardware resource usage compared to previous APUF
designs [13], its hardware overhead is still significant.

In [14], a p-SPUF (“pseudo” Strong PUF) is proposed that combines Weak PUF with
obfuscation logic in the form of shift registers. Although its simple architecture, it delivers
good resistance to modeling attacks and smaller hardware overhead than typical Strong
PUF designs. However the proposed solution is not technology independent since it uses
some structural features of selected Xilinx FPGA.

Another example of a lightweight solution is an LFSR-based Strong PUF introduced
in [15]. Linear Feedback Shift Register (LFSR), as a circuit that can generate pseudorandom
number sequences, is widely used in key generation and communication fields. LFSR is
usually composed of two parts: a shift register and a feedback function (polynomial). The



Electronics 2024, 13, 351 3 of 13

Strong PUF structure proposed in [15] uses the output response of the Weak PUF to provide
a unique feedback polynomial for the LFSR, making the LFSR structure of each device
different. However, since the response of a given PUF depends on uncontrollable process
variation during integrated circuit manufacturing, the resultant feedback function may
lead to the suboptimal polynomial. If the polynomial is not a primitive one, the generated
sequences may be easily predictable. This makes the sequences obtained from such an
LFSR not directly usable in security applications [16]. Moreover, as the authors admit in
their paper, using LFSR in the described manner will cause reliability problems because it
will amplify the unreliability of utilized Weak PUF. To mitigate this problem, additional
resource-intensive reconstruction mechanisms would be required.

This paper proposes a lightweight Strong PUF based on ring oscillator architecture.
The presented approach utilizes the LFSR-based scrambler to control a set of ring oscillators
to sequentially generate bits of the PUF response. It was implemented on several FPGA-
based platforms and experiments were conducted to verify its efficiency. Obtained results
demonstrate that such realization offers small hardware overhead. Significantly reduced
complexity results in low resource utilization in comparison to the existing solutions. It
delivers substantial security with a high uniqueness and reliability level for resource-
constrained IoT devices. The proposed approach is not technology dependent and can be
used to implement PUFs in ASIC, as well as in FPGAs.

2. Basic Information
2.1. Physical Unclonable Function

A PUF is a physical system that can be challenged with external stimuli or so-called
“challenges” Ci. Depending on the PUF type, it can have one possible challenge, a few,
or even a large number. When exposed to a challenge Ci, the PUF reacts by producing a
corresponding response Ri. The tuples (Ci, Ri) are termed the challenge–response pairs
(CRPs) of the PUF. PUF can produce unique n-bit responses with an m-bit challenge,
depending on the process variation during integrated circuit manufacture (Figure 1).

PUF1

PUF2

PUFk

R1

R2

Rk

C

C

C

PUF

R1

R2

Rk

C1

C2

Ck

Figure 1. Working principle of PUF module.

2.2. Ring Oscillator PUF

The Ring Oscillator PUF is a popular FPGA-based PUF topology. The basic PUF
implementation technique based on ring oscillators uses the architecture shown in Figure 2,
proposed in [4]. It consists of N Ring Oscillators (RO), which oscillate with a particular
frequency. Despite being designed identically with an odd number of inverters, each ring
oscillator (RO) has a different output frequency due to process variations in each inverter



Electronics 2024, 13, 351 4 of 13

stage. To generate a single response bit, a specific pair of oscillators is selected by an input
called “challenge”. The challenge is passed as an select input to the multiplexers (ctrl_1,
ctrl_2) in order to set the corresponding oscillators to their outputs. The output of each
multiplexer drives the clock input of a counter that measures the frequency of the selected
oscillator, which is enabled for a fixed period. Then, depending on which counter holds the
higher value, a response bit of 1 or 0 is generated. To generate more bits, the procedure is
repeated with different challenge values.

In [3], the authors describe several RO-PUF solutions suitable for IoT applications and
discuss the strengths, weaknesses, quality metrics, and evaluation of common architectures.

RO1

RO2

RON

M
U

X
M

U
X

COUNTER1

COUNTER2

> ?
out

0 or 1

ctrl_1

ctrl_2

log2N

log2N

N oscillators

Figure 2. The traditional structure of the RO PUF. Based on [4].

3. Lightweight RO PUF Concept

The basic RO PUF circuit shown in Figure 2 can generate N(N − 1)/2 response bits,
where N is the number of ring oscillators. The bit width of the PUF response equals to the
number of combinations of oscillator pairs whose frequencies are compared. However, the
number of independent bits that can be generated is less than N(N − 1)/2 because the bits
obtained from the frequency comparisons of the ring oscillators already used may correlate.
Each oscillator should be used only once to generate a single bit to avoid this situation.
However, this involves an increase in system resource consumption since generating,
for example, 128 response bits requires the implementation of as many as 128 distinct
pairs of ring oscillators. The described solution is characterized by high sensitivity to
temperature changes and high power consumption, but good statistical properties of the
generated response.

To increase the number of response bits produced by the PUF, the concept of duplicat-
ing one-bit response PUF instances can be used [17]. It assumes multiple, parallel-connected
RO PUF submodules, whose number depends on the number of expected bits in a response.
The application of such a concept is characterized by a constant response generation time
equal to the number of clock ticks needed to generate a single bit, where the generated
response bits are not correlated. In addition, the result obtained is characterized by good
statistical properties, i.e., high uniqueness between different devices and a uniform distri-
bution of zeros and ones. The main disadvantage of the described solution is the significant
resource consumption. Assuming that a single RO PUF submodule consists of 32 ring



Electronics 2024, 13, 351 5 of 13

oscillators, the generation of 16 response bits requires 512 oscillators and an appropriately
adjusted number of multiplexers or counters, of which a single RO PUF instance consists.
The linear dependence of the number of ring oscillators used on the number of response bits
makes this type of architecture unacceptable for implementing in IoT devices when creating
cryptographic keys of the lengths used in typical cryptographic functions (e.g., 128 bits
in AES).

To apply RO PUFs in resource-constrained IoT devices, a compromise has to be found
between the statistical properties of the generated response and the hardware resources
required for implementation. The proposed solution is based on the serial architecture
of RO PUF that has been enhanced with an additional module generating a sequence
of challenges to produce a response of a required number of bits (Figure 3). This allows
us to reduce the number of ring oscillators used and, thus, a significant reduction in the
number of circuit’s logic elements is achieved. The sequence of challenges is generated by
a scrambler based on some initial value. Each successive response bit is generated based
on a different challenge—the subsequent value in the scrambler’s stream.

Figure 3. The lightweight RO PUF concept.

The scrambler’s most straightforward implementation may be using a simple counter
that increments or decrements the challenge value. However, this leads to the creation of
correlated output values due to the linearity of the counter. To avoid a high correlation of
the response bits and thus increase the level of uniqueness of the responses for different
challenges, a scrambler structure should be based on a pseudo random generator. The
most common method to implement a pseudo-random number generator is using a Linear
Feedback Shift Register (LFSR). This method is preferable due to it’s low-cost implemen-
tation, large period, and good statistical properties [18]. However, this will also lead to
a correlation of some of the response bits, for given pairs of challenges (initial values of
the LFSR), if they are incorrectly selected. This is due to the periodicity of the LFSR—for
example, if eight response bits are generated and values X and Y are adjacent in the LFSR
cycle, the response to challenge X and challenge Y will have seven bits in common, leading
to a reduction in intra-chip uniqueness.

To solve this problem, some degree of non-linearity needs to be introduced, which can
be realized by calculating a simple XOR of the values from the LFSR with the initial chal-
lenge value. This solution will allow for the generation of two different challenge sequences
for both initializing values X and Y, and increasing the uniqueness value. Subsequent
values from the LFSR, on the other hand, are calculated from a generating polynomial.
Appropriate taps (representing the primitive polynomial) for maximum length LFSR have
been selected from [19]. The values generated by the scrambler are used to control two
demultiplexers and two multiplexers, each having N ring oscillators connected to them
so that a specific pair of oscillators is selected whose frequencies will be compared for each



Electronics 2024, 13, 351 6 of 13

response bit. The function of the demultiplexers is to appropriately control the enable
signal so that only one RO is triggered at a time, limiting the system’s power consumption.
The bit width of the values generated by the scrambler module should correspond to the
number 2log2N, where N is the number of ring oscillators used for a single multiplexer.
The number of unique challenge values is equal to 2d − 1, where d specifies the number
of bits of the scrambler. The number of CRPs scales exponentially, which is characteristic
of Strong PUFs.

The CONTROL module (Figure 2) is the component that manages the operation of
the PUF and the generation of subsequent response bits. It controls two asynchronous
counters, a synchronous counter, and a scrambler. According to the pseudocode presented
in Algorithm 1, the generation process begins in the LOAD_CHALLENGE by asserting load
signal. This enables the loading of a new challenge value into the SCRAMBLER. Assigning
an initial value to the SCRAMBLER is a one-time action during the generation of a single
PUF response. Then, in the SHIFT_SCRAMBLER state, the shift signal is asserted to enable
the calculation of the MUX/DEMUX selection value. Subsequently, the corresponding pair
of ring oscillators is activated, and the rising edges of the signals they produce are counted
by ASYNC COUNTERS. This process is initiated by a start signal (START_COUNTERS
state). Then, on the expiry of a fixed time, indicated by the SYNC COUNTER (ready
signal), a value is read from the COMPARATOR module, which determines the value
of a particular bit of the response. The response register is implemented as a serial-in
parallel-out shift register. Afterwards, the SCRAMBLER content value is modified, and the
process is repeated until R output bits have been generated. The proposed concept does not
assume using a specific number of inverters comprising a single RO. This value can be set
in such a way as to obtain the appropriate statistical properties of the generated response.

Algorithm 1: Generating PUF response
Input: start, load, shift, ready, comparator
Output: response

1 Constants: LOAD_CHALLENGE, SHIFT_SCRAMBLER, START_COUNTERS,
WAIT_FOR_RESULT, R

2 Variables: current_state← IDLE , iterator← 0

3 while iterator < R do
4 if current_state == LOAD_CHALLENGE then
5 start← false
6 load← true
7 shift← false
8 current_state← SHIFT_SCRAMBLER
9 else if current_state == SHIFT_SCRAMBLER then

10 load← false
11 shift← true
12 current_state← START_COUNTERS
13 else if current_state == START_COUNTERS then
14 shift← false
15 start← true
16 current_state←WAIT_FOR_RESULT
17 else if current_state == WAIT_FOR_RESULT then
18 if ready then
19 iterator++
20 response← { response[R− 2 : 0], comparator }
21 current_state← SHIFT_SCRAMBLER
22 end



Electronics 2024, 13, 351 7 of 13

If the scrambler’s initial value (challenge) is loaded to the PUF every time at the
beginning of the response generation, the proposed solution can be used as Strong PUF as
discussed in previous paragraphs. The proposed architecture allows for the construction of
Weak PUF as well, when the initial value (challenge) of the scrambler is fixed at the design
time, and thus, only single CRP is available. In such case, the configuration and control
logic can be further reduced.

4. Implementation

The proposed RO PUF architecture has been implemented on Cora Z7-10 evaluation
boards with Zynq 7000 devices equipped with 28 nm programmable logic. Xilinx FPGA
devices are built from configurable logic blocks (CLB), which can implement sequential
or combinational functions. For the Zynq 7000 programmable logic, each CLB contains
two blocks called SLICEs, each composed of four six-element display boards (LUT6),
eight memory elements, a wide-function multiplexer, and carry logic [20]. To ensure the
identical structure of each oscillator, it is necessary to use predefined macros provided by
the CAD tool to define each single inverter or NAND gate in a single LUT6 instance. This
is achieved by the correct description of the truth table of each LUT6 instance. Additionally,
it was necessary to use the dont_touch macro, thus preventing the optimization of the
implemented logic. To implement the feedback and output to the multiplexer, it is required
to use the LUT6_2 primitive, which has two independent outputs implemented as two
separate LUT tables. An example of mapping a ring oscillator consisting of four NOT gates,
a NAND gate, and an additional LUT6 table implementing the feedback in the physical
resources of the FPGA, which is shown in Figure 4.

Figure 4. RO implementation in Zynq 7000 programmable logic.

To guarantee the randomness of each ring oscillators’ pair comparison, it is necessary
to ensure identical implementation of each RO in the FPGA’s resources to avoid the impact
of placement and routing procedure. The optimal solution is to place each oscillator in one
single CLB block. However, this depends on the number of inverters used in a single RO.
Unfortunately, the CAD tool randomly places the defined LUT6 instances on the available
FPGA logic resources. Therefore, it is necessary to precisely specify each LUT instance’s
location, assign it to an appropriate SLICE block, and then to a specific CLB block. To do
this, the use of set_property BEL and set_property LOC SLICE macros is necessary, which
allows us to control the technological mapping process and ensures the identical structure
of each ring oscillator. An example implementation of 64 ring oscillators for the Cora Z7-10
platform is shown in Figure 5. Each RO comprises six inverters, a NAND gate, and the
LUT implementing feedback.



Electronics 2024, 13, 351 8 of 13

Figure 5. Implementation of ring oscillators in FPGA resources.

5. Experimental Results

Four parameters are used to evaluate the implemented RO PUF quality [21]. The
first parameter is uniformity, which determines how uniform the distribution of “0” and
“1” in the PUF response bits is. In ideal conditions, this proportion should be 50%. The
next parameter is intra-chip uniqueness, which determines the degree of uniqueness of
the PUF response on a single device but for different challenge values. Another key
aspect is to consider inter-chip uniqueness, which defines the diversity degree of generated
responses for the same challenge value but on different devices. An optimal value for
uniqueness is 50%. Whether generating identifiers across different devices or cryptographic
keys on a single device, it is crucial that the values obtained from the PUF differ significantly.
The final parameter is reliability, which determines the degree of repeatability of generated
responses for the same challenge value. The ideal reliability value should be equal to 100%,
as it is essential to consistently reproduce the generated response.

Due to the limited number of hardware resources available in IoT devices, which
are the target of the implemented PUF module, only ring oscillators consisting of three,
five, and seven inverters were considered in the analysis. A PUF architecture consisting of
64 ring oscillators, 10-bit scrambler (based on maximum length LFSR with characteristic
polynomial: x10 + x7 + 1 [19]), 16-bit asynchronous counters, and an 8-bit reference counter
was chosen for testing purposes. The system generated a 64-bit response. This size of
the response is motivated by the size of the key for typical lightweight cryptographic
algorithms, which is usually a multiple of 64 bits. This value is also selected in other
lightweight PUF implementation.

Table 1 presents the results showing the parameters’ dependence on the number
of inverters used in a single RO. The tests were performed on four different Digilent Cora
Z7-10 platforms. The inter-chip uniqueness test involved generating PUF responses for
1024 challenges on four devices. Conversely, the intra-chip uniqueness test calculated



Electronics 2024, 13, 351 9 of 13

Hamming distances of PUF responses for 1024 challenges on one device. All challenge
values were randomly generated.

Table 1. Quality comparison for different RO lengths.

RO Inverters Uniformity
[%]

Uniqueness
(Inter-Chip)

[%]

Uniqueness
(Intra-Chip)

[%]

Reliability
[%]

3 48.239 37.018 49.612 96.685
5 50.661 30.612 49.889 97.773
7 51.509 32.612 49.302 97.826

The distribution of uniqueness of PUF responses implemented in four different FPGA
devices for these 1024 challenge values has been presented in Figure 6. According to the
histogram and Table 1, the average inter-chip uniqueness is 37.018%. This value, satisfactory
for most PUF applications [22], can be controlled by adding more RO at the cost of increased
resource consumption. The histogram’s shape approximates a normal distribution with
a high standard deviation of 9%. Crucially, the quality of the generated responses strongly
depends on the challenge value used to initialize the scrambler module. Thus, it is possible
to define a range of challenges that would yield uniqueness close to the ideal value of 50%.
In this study, a 10-bit scrambler was used, and all available initial challenge values (1024)
were parsed. In the literature, the number of challenges used to calculate uniqueness is
usually not defined, making it difficult to replicate results that are close to 50%.

The presented solution can be scaled in two ways. One way is to increase the size of
the scrambler preserving the number of ROs, which will increase the number of CRPs but
may reduce the uniqueness value. This solution will not affect hardware overhead much.
The other way is to simultaneously increase the number of ROs, which will enhance both,
the number and the quality of CRPs, at the expense of greater use of device resources.

Table 2 presents the resource utilization for RO PUFs dependent on the number of
inverters. The results indicate that the proposed architecture of the PUF module is designed
with low demand for logic elements of the system, corresponding to its use in resource-
constrained devices.

Figure 6. Distribution of fractional uniqueness values of PUFs between devices.



Electronics 2024, 13, 351 10 of 13

Table 2. Resource utilization.

RO Inverters Slice LUTs Slice Registers Slices

3 474 148 174
5 603 148 232
7 730 148 235

In Table 3, a comparison between the presented PUF solution with three inverters in a
single ring oscillator and various implementations of other PUFs is presented. Both the
statistical values of the generated responses and the utilization of resources were compared.
The proposed architecture results in resource consumption significantly lower than the
Strong PUF solution based on arbiters. It also offers lower hardware overhead than Strong
PUFs presented in the literature as lightweight. In fact, the resource consumption of the
PUF solution proposed in this paper is at the level offered by Weak PUFs. This developed
version of the PUF can generate a larger number of challenge–response pairs compared
to the Weak PUF, using only 174 Slices cells while maintaining a high reliability value.
Despite its lower uniqueness value, the proposed solution proves competitive with other
PUF versions as a lightweight alternative.

Table 3. Comparison of hardware resource consumption and metrics of different PUF designs,
based on [6]. Strong PUFs marked with * are presented in literature as lightweight. Results marked
with † were obtained with small number of challenges. Results marked with ‡ present in fact
reliability of Weak PUF used in the solution, but not the solution itself.

PUF Design Type Uniqueness Reliability Hardware Response (bit) Resource
Consumption

Latch PUF [23] Weak 46% >87% Spartan 3 128 2 × 128 slices

Flip-flop
PUF [24] Weak ≈50% >95% Virtex 2 4096 4096 flip flops

Buskeeper
PUF [25] Weak ≈50% 94% Virtex 5 64 130 slices

RO PUF [4] Weak 46.15% 99.52% Virtex 4 128 16 × 64 array

PicoPUF [26] Weak 45.60% 98.74% Artix-7 128 128 slices

RO PUF [6] Weak 48.05% 99.30% Artix-7 128 >256 slices

Arbiter PUF [13] Strong 9.42% 99.5% Artix-7 64 129 × 64 slices

Flip-Flop Arbiter
PUF [12] Strong * 40% 97.10% Artix-7 64 44 × 64 slices

p-SPUF [14] Strong * 50.58% 93.3% Artix-7 32 12 × 32 slices

L-PUF [15] Strong * 50.25% † 96.3% ‡ Artix-7 64 210 slices

LR-PUF [15] Strong * 49.66% † 96.3% ‡ Artix-7 64 129 slices

RO PUF
(this work) Strong * 37.02% 96.69% Artix-7 64 174 slices

6. Security Analysis

Physical Random Function, as a novel method of embedding a secret key onto the IC, is
the answer to the conventional threat model where the adversary fabricates a “counterfeit”
chip [2]. Although the application of PUFs significantly improves the security of IoT
solutions, it still faces a variety of security threats. One of the most powerful ones is a
modeling attack, where the attacker builds a software model of the PUF and intentionally
collects a large set of CRPs to train the model [3].

Although our proposed design delivers a small hardware overhead with satisfac-
tory performance, the resilience to modeling attacks should be further investigated and



Electronics 2024, 13, 351 11 of 13

discussed. The presented solution prevents the most straightforward attempt attack on
RO-based PUF via a simple read out of a response bit for all pairs of oscillators, which
would allow us to predict all responses with 100% correctness without knowing the exact
RO frequencies themselves. However, it can still be attacked using machine learning algo-
rithms, though the application of LFSR as a challenge generator may obfuscate the relation
between the challenge and the response, making the application of machine learning attacks
more challenging.

7. Conclusions

The paper presents a new lightweight PUF with a simple structure that can be conve-
niently implemented in FPGA. The proposed solution can be used as a Weak PUF for key
generation purposes or a Strong PUF for device authentication. Compared to traditional
Strong PUF, it has a significantly reduced complexity, resulting in low resource utilization
and power consumption. These features are very suitable for applications in IoT resource-
constrained devices. The PUF design was implemented on evaluation boards with Zynq
7000 devices equipped with 28 nm programmable logic. The experimental results show
that it is satisfactory in uniformity, uniqueness, and reliability.

Future work involves investigating the proposed PUF’s performance by using more
boards and chips. It is also planned to conduct experiments by changing the environmental
conditions, e.g., ambient temperature, humidity, and core voltage of the FPGA. Another
plan involves the security evaluation of the PUF against machine learning attacks.

The authors also intend to enhance the presented PUF with Controlled PUF [3,27]
elements and make it a part of Hardware Root of the Trust IP core, where it can be used for
cryptographic key storage and management purposes.

Author Contributions: Conceptualization, M.K., R.G., and M.R.; methodology, M.K. and R.G.;
software, M.K. and R.G.; validation, M.K. and R.G.; formal analysis, M.K. and R.G.; investigation,
R.G. and M.B.; resources, M.R.; data curation, R.G. and M.B.; writing—original draft preparation,
M.K., R.G., and M.B.; writing—review and editing, M.K., R.G., and M.R.; visualization, M.K. and
R.G.; supervision, M.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The Polish National Centre for Research and Development
under project No. CYBERSECIDENT/456446/III/NCBR/2020.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of the data; in the writing of the
manuscript; or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ASIC Application-Specific Integrated Circuit
CAD Computer-Aided Design
CLB Configurable Logic Block
CRP Challenge–Response Pair
EEPROM Electrically Erasable Programmable Read-Only Memory
FPGA Field-Programmable Gate Array
IC Integrated Circuit
IoT Internet of Things
LFSR Linear-Feedback Shift Register
LUT Look-Up Table
NAND Not-AND
NVRAM Non-Volatile Random Access Memory
PUF Physical Unclonable Function
RO Ring Oscillator



Electronics 2024, 13, 351 12 of 13

References
1. Lueth, K.L. State of the IoT 2020: 12 Billion IoT Connections, Surpassing Non-IoT for the First Time. Available online:https:

//iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time (accessed on 5 January
2024).

2. Gassend, B.; Clarke, D.; Van Dijk, M.; Devadas, S. Silicon Physical Random Functions. In Proceedings of the 9th ACM Conference
on Computer and Communications Security, Washington, DC, USA, 18–22 November 2002. [CrossRef]

3. Al-Meer, A.; Al-Kuwari, S. Physical Unclonable Functions (PUF) for IoT Devices. ACM Comput. Surv. 2023, 55, 1–31. [CrossRef]
4. Suh, G.E.; Devadas, S. Physical unclonable functions for device authentication and secret key generation. In Proceedings of the

Design Automation Conference, San Diego, CA, USA, 4–8 June 2007. [CrossRef]
5. Dang, T.K.; Serrano, R.; Hoang, T.T.; Pham, C.K. A Novel Ring Oscillator PUF for FPGA Based on Feedforward Ring Oscillators.

In Proceedings of the International SoC Design Conference ISOCC, Gangneung-si, Republic of Korea, 19–22 October 2022;
pp. 87–88. [CrossRef]

6. Gu, C.; Chang, C.H.; Liu, W.; Hanley, N.; Miskelly, J.; O’Neill, M. A large-scale comprehensive evaluation of single-slice ring
oscillator and PicoPUF bit cells on 28-nm Xilinx FPGAs. J. Cryptogr. Eng. 2021, 11, 227–238. [CrossRef]

7. Wild, A.; Becker, G.T.; Guneysu, T. On the problems of realizing reliable and efficient ring oscillator PUFs on FPGAs. In
Proceedings of the 2016 IEEE International Symposium on Hardware Oriented Security and Trust, HOST, McLean, VA, USA, 3–5
May 2016; pp. 103–108. [CrossRef]

8. Ruhrmair, U.; Holcomb, D.E. PUFs at a glance. In Proceedings of the 2014 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Dresden, Germany, 24–28 March 2014; pp. 1–6. [CrossRef]

9. Majzoobi, M.; Koushanfar, F.; Potkonjak, M. Lightweight secure PUFs. In Proceedings of the 2008 IEEE/ACM International
Conference on Computer-Aided Design, San Jose, CA, USA, 10–13 November 2008; pp. 670–673. [CrossRef]

10. Sahoo, D.P.; Saha, S.; Mukhopadhyay, D.; Chakraborty, R.S.; Kapoor, H. Composite PUF: A new design paradigm for Physically
Unclonable Functions on FPGA. In Proceedings of the 2014 IEEE International Symposium on Hardware-Oriented Security and
Trust (HOST), Arlington, VA, USA, 6–7 May 2014; pp. 50–55. [CrossRef]

11. Rührmair, U.; Sölter, J.; Sehnke, F.; Xu, X.; Mahmoud, A.; Stoyanova, V.; Dror, G.; Schmidhuber, J.; Burleson, W.; Devadas, S. PUF
Modeling Attacks on Simulated and Silicon Data. IEEE Trans. Inf. Forensics Secur. 2013, 8, 1876–1891. [CrossRef]

12. Gu, C.; Cui, Y.; Hanley, N.; O’Neill, M. Novel lightweight FF-APUF design for FPGA. In Proceedings of the 2016 29th IEEE
International System-on-Chip Conference (SOCC), Seattle, WA, USA, 6–9 September 2016; pp. 75–80. [CrossRef]

13. Hori, Y.; Kang, H.; Katashita, T.; Satoh, A.; Shinichi, K.; Kazukuni, K. Evaluation of Physical Unclonable Functions for 28-nm
Process Field-Programmable Gate Arrays. J. Inf. Process. 2014, 22, 344–356. [CrossRef]

14. Hou, S.; Guo, Y.; Li, S.; Deng, D.; Lei, Y. A lightweight and secure-enhanced Strong PUF design on FPGA. Ieice Electron. Express
2019, 16, 20190695. [CrossRef]

15. Hou, S.; Guo, Y.; Li, S. A Lightweight LFSR-Based Strong Physical Unclonable Function Design on FPGA. IEEE Access 2019,
7, 64778–64787. [CrossRef]

16. Espinosa García, J.; Cotrina, G.; Peinado, A.; Ortiz, A. Security and Efficiency of Linear Feedback Shift Registers in GF(2n) Using
n-Bit Grouped Operations. Mathematics 2022, 10, 996. [CrossRef]

17. Aguirre, A.; Hall, M.; Lim, T.; Trinh, J.; Yan, W.; Tehranipoor, F. A Systematic Approach for Internal Entropy Boosting in
Delay-based RO PUF on an FPGA. In Proceedings of the Midwest Symposium on Circuits and Systems, Springfield, MA, USA,
9–12 August 2020; pp. 623–626. [CrossRef]

18. Menezes, A.J.; Van Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography; CRC Press: Boca Raton, FL, USA, 2018;
Chapter 6; p. 195. Available online: https://cacr.uwaterloo.ca/hac/ (accessed on 5 January 2024 ).

19. Xilinx. Linear Feedback Shift Register Taps. 1996. Available online: https://docs.xilinx.com/v/u/en-US/xapp052 (accessed on
5 January 2024).

20. Xilinx. 7 Series FPGAs Configurable Logic Block User Guide; Version 1.8; Xilinx: San Jose, CA, USA, 2016. Available online:
https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB (accessed on 5 January 2024).

21. Maiti, A.; Gunreddy, V.; Schaumont, P. A systematic method to evaluate and compare the performance of physical unclonable
functions. Embed. Syst. Des. Fpgas 2013, 9781461413622, 245–267. [CrossRef]

22. Leest, V.; Schrijen, G.J.; Handschuh, H.; Tuyls, P. Hardware intrinsic security from D flip-flops. In Proceedings of the ACM
Conference on Computer and Communications Security, Chicago, IL, USA, 4 October 2010. [CrossRef]

23. Yamamoto, D.; Sakiyama, K.; Iwamoto, M.; Ohta, K.; Ochiai, T.; Takenaka, M.; Itoh, K. Uniqueness Enhancement of PUF Responses
Based on the Locations of Random Outputting RS Latches ; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6917, pp. 390–406.
[CrossRef]

24. Maes, R.; Tuyls, P.; Verbauwhede, I. Intrinsic PUFs from Flip-Flops on Reconfigurable Devices; Katholieke Universiteit Leuven:
Leuven, Belgium, 2008.

25. Kumar, S.; Guajardo, J.; Maes, R.; Schrijen, G.J.; Tuyls, P. The butterfly PUF protecting IP on every FPGA. In Proceedings of
the 2008 IEEE International Workshop on Hardware-Oriented Security and Trust, Anaheim, CA, USA, 9 June 2008; pp. 67–70.
[CrossRef]

 https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time
 https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time
http://doi.org/10.1145/586110
http://dx.doi.org/10.1145/3591464
http://dx.doi.org/10.1145/1278480.1278484
http://dx.doi.org/10.1109/ISOCC56007.2022.10031300
http://dx.doi.org/10.1007/s13389-020-00244-5
http://dx.doi.org/10.1109/HST.2016.7495565
http://dx.doi.org/10.7873/DATE.2014.360
http://dx.doi.org/10.1109/ICCAD.2008.4681648
http://dx.doi.org/10.1109/HST.2014.6855567
http://dx.doi.org/10.1109/TIFS.2013.2279798
http://dx.doi.org/10.1109/SOCC.2016.7905439
http://dx.doi.org/10.2197/ipsjjip.22.344
http://dx.doi.org/10.1587/elex.16.20190695
http://dx.doi.org/10.1109/ACCESS.2019.2917259
http://dx.doi.org/10.3390/math10060996
http://dx.doi.org/10.1109/MWSCAS48704.2020.9184468
https://cacr.uwaterloo.ca/hac/
https://docs.xilinx.com/v/u/en-US/xapp052
https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB
http://dx.doi.org/10.1007/978-1-4614-1362-2_11
http://dx.doi.org/10.1145/1867635.1867644
http://dx.doi.org/10.1007/978-3-642-23951-9_26
http://dx.doi.org/10.1109/HST.2008.4559053


Electronics 2024, 13, 351 13 of 13

26. Gu, C.; Hanley, N.; O’neill, M. Improved Reliability of FPGA-Based PUF Identification Generator Design. Acm Trans. Reconfigurable
Technol. Syst. 2017, 10, 1–23. [CrossRef]

27. Gassend, B.; Clarke, D.; van Dijk, M.; Devadas, S. Controlled physical random functions. In Proceedings of the 8th Annual
Computer Security Applications Conference, Las Vegas, NV, USA, 9–13 December 2002; pp. 149–160. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3053681
http://dx.doi.org/10.1109/CSAC.2002.1176287

	Introduction
	Basic Information
	Physical Unclonable Function
	Ring Oscillator PUF

	Lightweight RO PUF Concept
	Implementation 
	Experimental Results
	Security Analysis
	Conclusions
	References

