
Citation: Gadea-Gironés, R.;

Rocabado-Rocha, J.L.; Fe, J.; Monzo,

J.M. A Heterogeneous Inference

Framework for a Deep Neural

Network. Electronics 2024, 13, 348.

https://doi.org/10.3390/

electronics13020348

Academic Editors: Shuping Zhao, Jie

Wen, Chao Huang, Bob Zhang and

Luca Patanè

Received: 7 December 2023

Revised: 9 January 2024

Accepted: 11 January 2024

Published: 14 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Heterogeneous Inference Framework for a Deep
Neural Network
Rafael Gadea-Gironés * , José Luís Rocabado-Rocha , Jorge Fe and Jose M. Monzo

Institute for Molecular Imaging Technologies (I3M), Universitat Politècnica de València, 46022 Valencia, Spain;
jororoc@alumni.upv.es (J.L.R.-R.); jmonfer@upvnet.upv.es (J.M.M.)
* Correspondence: rgadea@eln.upv.es

Abstract: Artificial intelligence (AI) is one of the most promising technologies based on machine
learning algorithms. In this paper, we propose a workflow for the implementation of deep neural
networks. This workflow attempts to combine the flexibility of high-level compilers (HLS)-based
networks with the architectural control features of hardware description languages (HDL)-based
flows. The architecture consists of a convolutional neural network, SqueezeNet v1.1, and a hard
processor system (HPS) that coexists with acceleration hardware to be designed. This methodology
allows us to compare solutions based solely on software (PyTorch 1.13.1) and propose heterogeneous
inference solutions, taking advantage of the best options within the software and hardware flow.
The proposed workflow is implemented on a low-cost field programmable gate array system-on-
chip (FPGA SOC) platform, specifically the DE10-Nano development board. We have provided
systolic architectural solutions written in OpenCL that are highly flexible and easily tunable to take
full advantage of the resources of programmable devices and achieve superior energy efficiencies
working with a 32-bit floating point. From a verification point of view, the proposed method is
effective, since the reference models in all tests, both for the individual layers and the complete
network, have been readily available using packages well known in the development, training, and
inference of deep networks.

Keywords: convolutional neural networks; heterogeneous computation; systolic arrays; FPGA

1. Introduction

Recently, the development of technologies based on artificial intelligence and machine
learning algorithms has surged. These technologies have a wide range of applications,
from image classification and object recognition for medical diagnoses and quality control
to text generation.

However, these technologies rely heavily on machines with considerable computing
power, so processing is usually carried out on cloud servers to facilitate access to the end
user. If we want to bring artificial intelligence closer to electronics, this approach is not
suitable due to latency, power consumption, and size constraints.

In response to this and thanks to improvements in the latest processors, a new ap-
proach known as artificial intelligence “on the edge” has appeared. The philosophy of this
approach consists of carrying out the processing of the data acquired in a node within the
node itself so it can act once the results have been obtained, allowing the electronics to be
independent [1].

Therefore, it is possible to find new architectures whose objective is to achieve the
same functionalities as the rest of the technologies but in exchange for reducing the results’
accuracy and complexity.

In this work, we focus on convolution-based architectures because they are a clear
trend in the current landscape of edge computing. This type of architecture allows us to
extract features or characteristics from the input images, classify them, or detect differ-
ent objects.

Electronics 2024, 13, 348. https://doi.org/10.3390/electronics13020348 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13020348
https://doi.org/10.3390/electronics13020348
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2857-8667
https://orcid.org/0009-0006-6257-3156
https://orcid.org/0000-0003-0987-2860
https://orcid.org/0000-0001-6554-3231
https://doi.org/10.3390/electronics13020348
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13020348?type=check_update&version=2

Electronics 2024, 13, 348 2 of 23

Darknet or VGG are examples of these architectures, as is an interesting option known
as SqueezeNet v1.1. SqueezeNet is a new version of [2] that maintains the same accuracy
and reduces the computational cost by a factor of 2.4.

We can observe the use of SqueezeNet in applications such as: self-driving cars [3],
face-mask detection [4], weather classification [5], fire detection [6,7], garden insect recogni-
tion [8], and indoor obstacle classification [9]. In many of these applications, the key element
is to be able to rely on a solution that can perform prediction, recognition, classification, and
detection tasks with resource-constrained systems that provide maximum operational au-
tonomy without compromising the accuracy achieved. We have implemented SqueezeNet
v1.1, a convolutional neural network, on low-cost FPGA SOC platforms, such as the DE10-
Nano development board, which is our primary contribution. This system includes an
ARM HPS processor that works with the acceleration hardware. This enables us to compare
solutions based solely on software (PyTorch 1.13.1) and create heterogeneous inference
solutions that take advantage of the best options from both software and hardware flows.

To reduce design time, we resort to high-level compilers (HLS) by which the abstraction
level is increased to generate the synthesis of the hardware by a C/C++ code. One of the
most interesting options provided by the manufacturer that allows us to take advantage
of the FPGAs’ capabilities to optimize the results with energy efficiency and low latency
is the Intel FPGA SDK for OpenCL. With this tool, we can implement our image-sorting
algorithm, inferring acceleration hardware with a parallelism capability as set by the
OpenCL standard inside the low-cost development board, DE10-Nano.

A conceptual diagram summarizing the main goal is shown in Figure 1.

HPS

FPGA

Kernel
OpenCL

(Accelerator)

Program Host
Parameters
and Data

Result

Squeezenet V1.1

Parameters Input

"Spotted
Salamander"

DE10-Nano

Figure 1. Conceptual diagram of the main objective.

Methodologically speaking, this work’s main contribution consists of basing the whole
verification flow on Python using Jupyter notebooks that access our accelerators through
PyopenCL. This technology is already quite common in working with GPUs but is rarely
used in low-cost FPGAs in which the host is exercised by an ARM hard macro.

The remainder of this article is organized as follows. Section 2 reviews CNN imple-
mentations performed on low-cost FPGAs. In Section 3, the elements used in the proposed
design and verification methodology are determined. In Section 4, the implementation
results obtained for a CNN are analyzed by comparing them with other available environ-
ments. Conclusions are presented in Section 5.

2. SqueezeNet Implementations Review

In the first subsection, we review the fundamentals of the convolutional layers, which
are fundamental to understanding the topology of the SqueezeNet convolutional network.
Above all, we consolidate the terminology used throughout the article and establish the
theoretical foundations.

Electronics 2024, 13, 348 3 of 23

Other types of layers commonly used in convolutional architectures and the selected
model, SqueezeNet V1.1, are also discussed.

Once we have all the pieces of the puzzle that make up this type of network, we discuss
the main structural element that gives essence to this type of network, the fire module.

We then review works that work with this type of network, with low-cost FPGA
devices that can develop AI at the edge.

Finally, we discuss the OpenCL standard and its two main approaches to address
different types of problems from the point of view of FPGA solutions.

2.1. Convolution Layer

The convolution layer is normally used to process input or feature maps whose spatial
distribution is two-dimensional, as in the case of an image whose size is usually expressed
by pixel width and height, Hpixel ×Wpixel .

However, images usually have different channels that contain color information in
the format HRed−Green−Blue. Therefore, the inputs to the convolution layers usually have
the format Hin ×Win × CHin, which are the height, width, and channel depth of the input
feature map, respectively.

Consequently, the 2D convolution layers are formed by several filters of dimension
Hk ×Wk × CHin to maintain the agreement with the input data. Regarding the size of the
filters, Hk ×Wk, we can find different combinations with the common sizes 1 × 1, 3 × 3,
and 5 × 5. Another parameter that is part of the convolutions is called the bias. It consists
of a scalar value for each convolution filter.

Figure 2 visually represents the dimensions, with their nomenclature, of a feature map
and a filter used in a 3 × 3 convolution.

Figure 2. Representation of CHin feature maps and CHin kernels with the nomenclature of its
dimensions.

The result of the convolution corresponds to the sum of the product of the filter with
the input data element by element. The filter slides through the size of the input data,
producing an output value for each displacement. If there is more than one channel, the
filter is applied to its corresponding channel, and all channels’ results are summarized.

Assume that a Hin ×Win × CHin input and a single filter Hk ×Wk × CHin. The first
element of the output corresponds to the following:

out(0, 0) = bias +
CHin
∑
c=0

Wk
∑
i=0

Hk
∑
j=0

f ilter(c, i, j) · f eature(c, i, j) (1)

Electronics 2024, 13, 348 4 of 23

The size of the output depends mainly on the size of the kernel, the sliding factor or
stride, and an optional setting known as padding that allows a frame, usually of zeros, to
be added around the input.

The input and filter being square with sizes insize and ksize, respectively, we can
calculate the size of the output outsize as:

outsize =
insize + 2 · padding− ksize

stride
+ 1 (2)

where padding is the size of the added frame, and stride is the positions the filter moves over
the input data.

The number of channels of the output CHout depends on the number of filters the
convolution applies.

Figure 3 shows a visual example of a convolution layer operation. We observe an
input feature map with a size insize of 5 and a filter with a ksize of 3, since this is a 3 × 3
convolution, with a stride and padding of 1.

Figure 3. Example of 3 × 3 convolution with an input image of dimensions 5 × 5 × 3 and two filters
of dimensions 3 × 3 × 3 with a padding and stride of 1.

Applying Formula (2), we can verify that the output size outsize is 5. Also, since we
have two filters, there are 2 output channels (CHout), obtaining an output dimension of
5 × 5 × 2.

To conclude, it is necessary to comment that a widespread practice is to apply an
activation function to the results obtained in the convolution and to apply nonlinearities
to the data, allowing the network to tackle more complex problems. The most common is
ReLU, whose piecewise function is found in Equation (3).

ReLU(x) =

{
x if x > 0
0 otherwise

(3)

2.2. Layers of Type Pool

There are two main types of layers, max-pooling and average-pooling (both present in
SqueezeNet v1.1), depending on the type of data extraction they perform. These layers have
a procedure similar to convolutions, consisting of a filter of a given size that slides through
the input data, performing the corresponding operation. In addition, both the stride and
the padding can be configured. However, they do not affect the channel dimensionality of
the input feature map.

Electronics 2024, 13, 348 5 of 23

The max-pool layer extracts the input data with the highest value within the kernel size,
while the average-pool layer calculates the average of the characteristics of the input data.

2.3. SqueezeNet

SqueezeNet, [2], is a CNN architecture whose main objective has been to reduce the
number of parameters without significantly affecting the classified images’ precision level.
Reducing the number of parameters in the convolutional network makes its implementation
feasible in FPGA or embedded systems. Moreover, it allows the parameters to be stored in
the on-chip memory, reducing the bottleneck generated by the memory access bandwidth.

To do this, in [2], we present the fire modules that make up the global architecture.
These modules consist of a Squeeze layer, corresponding to a 1 × 1 convolution, whose
output connects directly with an Expand layer, formed by a mixture of 1 × 1 and 3 × 3
convolutions, whose concatenated results generate the module output.

Using a squeeze layer before the 3 × 3 convolution allows one to reduce the number
of input channels and the number of kernels of each filter. Figure 4 shows the layout of the
different convolutions in a fire module.

Figure 4. Structure of the fire module made up of the different convolution filters. For example, in
this figure, we have a squeeze factor, S1×1, of 2; an expand factor of the 1 × 1 convolution, E1×1, of 3;
and an expand factor of the 3 × 3 convolution, E3×3, of 3.

Subsequently, a new version of SqueezeNet, SqueezeNet v1.1, was released in the
official repository [2]. This version modifies the original architecture, keeping the fire
modules, slightly reducing the number of parameters, and obtaining a 2.4 reduction in the
computational cost without losing accuracy.

A comparison between the versions of the error classifications of the pretrained
model with Imagenet images is available in the documentation of the PyTorch open-source
machine learning library [10]. The results are shown in Table 1.

Table 1. Comparative table of the prediction errors of the SqueezeNet versions with the Imagenet
dataset. Data obtained from [10].

Structure of the Model Error Top-1 Error Top-5

SqueezeNet V1.0 41.90% 19.58%
SqueezeNet V1.1 41.81% 19.38%

We can see the structure and configuration of SqueezeNet v.1.1 in Figure 5 and
Table 2. It is a succession of layers (14). If we break down each layer into its constituent
units (Figure 5), we need to implement four fundamental elements: a 1 × 1 convolution,
a 3 × 3 convolution, and max-pool and average-pool operations. Of course, the reuse of

Electronics 2024, 13, 348 6 of 23

these units requires that the implementations be reconfigurable to adapt to the different
sizes and parameters listed in Table 2.

DATA

CONV1_3x3

ReLU_CONV1

Maxpool1

Squeeze1x1

ReLU

Expand3x3

ReLU

Expand1x1

ReLU

Concat

Fire1

3ch × 224× 224

64ch × 111× 111

64ch × 55× 55

16ch × 55× 5516ch × 55× 55

128ch × 55× 55

Maxpool2

Squeeze1x1

ReLU

Expand3x3

ReLU

Expand1x1

ReLU

Concat

Fire2

16ch × 55× 55

64ch × 55× 5564ch × 55× 55

16ch × 55× 55

128ch × 55× 55

Squeeze1x1

ReLU

Expand3x3

ReLU

Expand1x1

ReLU

Concat

Fire3

32ch × 27× 27

128ch × 56× 56128ch × 27× 27

32ch × 27× 27

256ch × 27× 27

128ch × 27× 27

Squeeze1x1

ReLU

Expand3x3

ReLU

Expand1x1

ReLU

Concat

Fire4

32ch × 27× 27

128ch × 56× 56128ch × 27× 27

32ch × 27× 27

256ch × 27× 27

Maxpool3

Squeeze1x1

ReLU

Expand3x3

ReLU

Expand1x1

ReLU

Concat

Fire5

48ch × 13× 13

192ch × 13× 13192ch × 13× 13

48ch × 13× 13

384ch × 13× 13

256ch × 13× 13

Squeeze1x1

ReLU

Expand3x3

ReLU

Expand1x1

ReLU

Concat

Fire7

256ch × 13× 13256ch × 13× 13

64ch × 13× 13

Squeeze1x1

ReLU

Expand3x3

ReLU

Expand1x1

ReLU

Concat

Fire8

256ch × 13× 13256× 13× 13

64ch × 13× 13

384ch × 13× 13

64ch × 13× 13

512ch × 13× 13

64ch × 13× 13

CONV2_1x1

ReLU_CONV2

Avgpool

512ch × 13× 13

1000ch × 13× 13

1000ch × 1× 1

Squeeze1x1

ReLU

Expand3x3

ReLU

Expand1x1

ReLU

Concat

Fire6

192ch × 13× 13192ch × 13× 13

48ch × 13× 13 48ch × 13× 13

Figure 5. SqueezeNet v1.1 structure.

Electronics 2024, 13, 348 7 of 23

Table 2. The architecture of the SqueezeNet v1.1 model [10].

Layer Name/Type Output Size Size/Stride of Filter
(No Fire Modules)

S1×1 E1×1 E3×3

Input image 224 × 224 × 3
conv1 111 × 111 × 64 3 × 3/2 (× 64)
maxpool1 55 × 55 × 64 3 × 3/2

fire1 55 × 55 × 128 16 64 64
fire2 55 × 55 × 128 16 64 64
maxpool2 27 × 27 × 128 3 × 3/2

fire3 27 × 27 × 256 32 128 128
fire4 27 × 27 × 256 32 128 128
maxpool3 13 × 13 × 256 3 × 3/2

fire5 13 × 13 × 384 48 192 192
fire6 13 × 13 × 384 48 192 192
fire7 13 × 13 × 512 64 256 256
fire8 13 × 13 × 512 64 256 256

conv2 13 × 13 × 1000 1 × 1/1 (×1000)
avgpool1 1 × 1 × 1000 13 × 13/1

2.4. Related Work

Shortly after the appearance of the SqueezeNet model, David Gschwend [11] imple-
mented the model on a low-cost Zynqbox development platform that included a Xilinx
Zynq-7000 FPGA combined with an ARM Cortex-A9. The implemented solution was called
ZynqNet and was divided into two parts.

Modifications were made to the original SqueezeNet model to adapt it to FPGA
requirements. One of the most notable modifications was eliminating the max-pool layers,
following the philosophy of “all convolutional networks”, where the network is composed
only of convolutional layers. To obtain the same result by reducing the output size, they
added a stride of two in the convolution immediately after that. However, in SqueezeNet,
this layer always consists of a 1 × 1 convolution, which would result in information loss.
Therefore, they replaced this first layer with a 3 × 3 filter. They also implemented the
final layer of type average pool, which could be considered a convolution whose filters are
composed of values kernel−1

size.
Another modification worth mentioning is the resizing of the layers, making their

height and width powers of two. This is notable because this type of change is common in
several implementations, which condition the type of CNN topology developed, achieving
better latency values in exchange. On the other hand, in implementing the accelerator, the
authors opted to use a single-precision floating point for data representation to maintain
compatibility with their implementation of ZynqNet in GPU.

In addition, they leaned on the use of cache memories to facilitate memory reads and
writes and also chose to unwind the loops of the 3 × 3 convolutions, thus achieving a top-5
error on Imagenet of 15.4% using a 32-bit floating-point data representation. We highlight
that the accelerator was optimized to perform 3× 3 convolutions, and it is possible that any
other configuration would require additional logic, resulting in a low utilization of multiple-
accumulate operations. It is worth noting that they performed their implementation using
Vivado’s HLS.

Work similar to ZynqNnet was carried out in [12], resulting in EdgeNet. This pro-
posed convolutional network was implemented on a DE10-Nano board, and its proposed
accelerator consisted of a configurable computing block. This unit was designed to work
inversely, with the accelerator input equivalent to an expand layer and the output being
the squeeze layer. This allowed fewer input channels to be accessed, as the input of the
computation unit was mostly the result of a 1 × 1 convolution of the squeeze layer. The

Electronics 2024, 13, 348 8 of 23

unit’s output was also the squeeze layer. Additionally, the unit was able to access pool-type
layers depending on the configuration of the data path.

It should be noted that the results were obtained with a representation of the data and
parameters using 8-bit floating points (five bits of exponent and two of mantissa) of the
parameters resulting from the training of [11], obtaining a reduction of 6% in accuracy in
the classifications and achieving 51% of top-1 accuracy with Imagenet.

Continuing with the quantification of the parameters of convolutional neural networks,
we find again in [13] an implementation of SqueezeNet v1.1 where, prior to the design of
the accelerator, the authors performed a study of the effect of quantification on the model’s
accuracy.

They observed that by using the 8-bit integer data type, they considerably reduced
both the FPGA resources and the memory access, obtaining a loss of 0.69% and 0.72%,
resulting in 57.49% and 79.90%, the first and fifth in accuracy, respectively.

It is worth mentioning that this implementation was carried out on the low-cost
DE10-Nano board using the OpenCL standard and HLS.

In addition, they incorporated additional logic that allowed them to read the input
data, filter the convolution, and write the results into the global memory. Also, because the
ReLU activation function generates feature maps with results equal to zero, they introduced
a specific control with which they avoided performing operations with null input values.

Continuing with implementations using reduced fixed-point precision, we have the
work of [14]. They used a Zynq-7020 for the implementation based on the ZC702 devel-
opment board. The authors employed 8 bits for the parameters (weights and bias) and
16 bits for the activations and carried out fixed-point arithmetic. This yielded an execution
time of 333 ms. Their energy efficiency measurements were obtained from Vivado’s Xilinx
Estimator Power (XPE) and resulted in a 2275-watt consumption. The Xilinx HLS tool
was used for the design, which required two kernels for implementation. In particular,
186 DSPs were used in its implementation.

Similar works to those with Zynq-7020 can be found in [15], using HLS but working
with 32-bit floating point. They reached execution times of 1 second, and curiously, with
coupling degrees similar to those previously mentioned, they obtain 7.95 watts of power
consumption again using XPE.

Later, in [16], the researchers developed a project on the SOC DE10-Nano board, the
implementation of SqueezeNet v1.1 conferring parallelism at a multithreaded level, using
the HLS of OpenCL.

They provided detailed documentation of the steps followed to carry out their design.
They included different versions where applying optimization techniques of kernels as
the coalescent memory access and the loop unrolling reduced the time required in the
network’s prediction. Reviewing the implementation, it is observed that using coalescent
memory through the float4 data structure limits the number of channels of each convolution
layer since they must be a multiple of four due to the number of data elements that are
read in a coalescent way.

3. Methodology and Architectures

We developed three architectures. We developed a Python-based method using
Jupyter notebooks for design and verification. Our kernels developed in Opencl were
verified with host programs developed in Python that contextualized and communicated
with the kernels through PyopenCL. This allowed us to design and verify our OpenCL
implementation to use as a reference model in each of the developed layers and in each of
the structures that linked them (fires, blocks, and the complete network) with the PyTorch
solution. This verification was performed with test benches developed in Jupyter notebooks
at both the emulation level, the cosimulation level with an HDL simulator, and the physical
level in the FPGA itself.

In this way, we could debug the execution of the host and the implementation of the
kernel at the same time since:

Electronics 2024, 13, 348 9 of 23

■ The SqueezeNet model is easily instantiated, thanks to PyTorch, making it a good
reference model.

■ The results of each node of the PyTorch model can be converted to NumPy arrays,
facilitating a layer-by-layer comparison for design debugging.

■ The host implementation is more flexible and user-friendly via PyOpenCL.

The first architecture that is described allows us to know the basic algorithm needed
for the different layers of the SqueezeNet and present an implementation based on simple-
task kernels. In the next two, we use systolic implementations to apply the concepts of
“task-parallelism” available in HLS, such as OpenCL. For each of these architectures, we
establish comparisons in resources used and performance with the hardware architectures
that have so far offered the best performance and that are based on NDRange kernels with
the same board. We also establish a comparison with solutions developed on the DE10
nano board but resorting only to the combined use of dual-core ARM Cortex-A9 plus fpu
NEON by using the PyTorch Python package.

3.1. Simple Task Architecture
3.1.1. Convolution 1 × 1

We can see in Algorithm 1 the equations involved in convolution 1 × 1 and in Figure 6
a graphic detail for the first iteration of the loop contained between lines 3–13 of this
algorithm. As we can see, the fact that the pointers are not performing operations consider-
ably speeds up execution time. Moreover, the only method that manages to considerably
optimize the loop’s pipeline is the implementation of a shift register, with version 6 being
the best-optimized kernel of the 1 × 1 convolution layer.

Algorithm 1 Convolution 1 × 1

Input: in_channels (parameter)
Input: in_size (parameter)
Input: f ilte_size (parameter)
Input: in_img (buffer read only)
Input: f ilter_weight (buffer read only)
Input: f ilter_bias (buffer read only)
Output: out_img (buffer)

1: for f ilter_index ← 0 To f ilter_size do
2: bias← f ilter_bias[f ilter_index]
3: for j← 0 To (in_size× in_size) do
4: tmp← bias
5: for k← 0 To (in_channels) do
6: tmp ← in_img[k × in_size× in_size + j]× f ilter_weight[k + f ilter_index ×

in_channels] + tmp ;
7: end for
8: if tmp > 0 then
9: out_img[ij + in_size× in_size× f ilter_index]← tmp

10: else
11: out_img[ij + in_size× in_size× f ilter_index]← 0
12: end if
13: end for
14: end for

We can see in Table 3 different implementations of the kernel corresponding to the
1 × 1 convolution. We discarded version 2 due to the resources needed to implement it and

Electronics 2024, 13, 348 10 of 23

its high ii. Although it is the version with the shortest execution time, it is not compatible
with the synthesis of the kernel with all SqueezeNet layers.

In Table 4, we find the results obtained from the synthesis of the hardware of the 1 × 1
convolution (V6) with the inference of a shift register. Again, we obtain the execution time
required for the execution of a 1 × 1 convolution with an input feature map of 13 × 13 ×
512 with 1000 filters.

Figure 6. Detail of convolution 1× 1 with CHin = 8, CHout = 1, and insize = 5.

Table 3. Results of execution times and initial interval, ii, of different versions of the kernel conv1 × 1.

Latency (s) Initial Interval (ii)

V0 3.4381 16
V1 1.7096 16
V2 1.0423 31
V5 2.4772 16
V6 1.2000 1

Table 4. Compilation and execution results of conv1 × 1 V6.

Single Task NDRange [16] PyTorch

ALUTs 16,421 11,536 -
Registers 28,536 21,064 -
Logic resources 12,413/41,910 (30%) 6962/41,910 (24%) -
DSP blocks 9/112 (8%) 20/112 (18%) -
Memory bits 351,936/5,662,720 (6%) 1,092,608/5,662,720 (19%) -
RAM blocks 101/553 (18%) 168/553 (30%) -
Fmax (MHz) 116.13 120.81 -
Latency (s) 1.2000 0.3689 0.1823

3.1.2. Convolution 3 × 3

We can see in Algorithm 2 the equations involved in convolution 3 × 3 and in Figure 7
a graphic detail for first iteration of the loop contained between lines 5-23 of this algorithm.

The first thing that stands out about this implementation and the Ndrange [16] with
which it is compared is that they are implementations in which the filter size is fixed (3× 3),
as well as the padding (1) and stride (1).

The results obtained from synthesizing the hardware of the 3 × 3 convolution with
shift register inference are shown in Table 5, even though it is not in the final OpenCL code.
The execution time required for the execution of a 3 × 3 convolution with a 13 × 13 × 64
input feature map with 256 kernels is also shown. This corresponds to a single-layer expand
configuration of 7 or 8 fire modules.

Electronics 2024, 13, 348 11 of 23

Algorithm 2 Convolution 3 × 3

Input: in_channels (parameter)
Input: in_size (parameter)
Input: pad (parameter)
Input: stride (parameter)
Input: out_size (parameter)
Input: f ilter_size (parameter)
Input: in_img (buffer read only)
Input: f ilter_weight (buffer read only)
Input: f ilter_bias (buffer read only)
Output: out_img (buffer)

1: out_img← start_channel × out_size× out_size + out_img
2: for f ilter_index ← 0 To f ilter_size do
3: bias← f ilter_bias[f ilter_index]
4: for i← 0 To (out_size) do
5: for j← 0 To (out_size) do
6: tmp← bias
7: for k← 0 To (in_channels) do
8: for l ← 0 To 3 do
9: h← i× stride + l − pad

10: for m← 0 To 3 do
11: w← j× stride + m− pad
12: if (h >= 0)&(h < insize)&(w >= 0)&(w < insize)0 then
13: tmp← in_img[k× in_size× in_size + h× insize + w]

× f ilter_weight[9× k + 3× l + m] + tmp
14: end if
15: end for
16: end for
17: end for
18: if tmp > 0 then
19: out_img[i× out_size + j]← tmp
20: else
21: out_img[i× out_size + j]← 0
22: end if
23: end for
24: end for
25: f ilter_weight← input_channels× 9 + f ilter_weight
26: out_img← out_size× out_size + out_img
27: end for

Electronics 2024, 13, 348 12 of 23

Figure 7. Detail of Convolution 3× 3 with CHin = 8, CHout = 1, insize = 5, pad =1, and stride = 1.

Table 5. Compilation and execution results of kernel conv3 × 3.

Single Task NDRange [16] PyTorch

ALUTs 30,109 255,353 -
Registers 52,305 38,286 -
Logic resources 23,699/41,910 (57%) 20,028/41,910 (48%) -
DSP blocks 29/112 (26%) 29/112 (26%) -
Memory bits 982,288/5,662,720 (17%) 2,831,104/5,662,720 (50%) -
RAM blocks 202/553 (37%) 403/553 (73%) -
Fmax 104.85 113.23 -
Latency (s) 0.0723 0.0149 0.1795

3.1.3. Max-Pool

We can see in Algorithm 3 the equations involved in the max-pool layer and in
Figure 8 a graphic detail for the first iteration of the loop contained between lines 3–14 of
this algorithm in two different channels. This implementation works with a fixed filter
size (3 × 3), with a padding of 0, and a stride of 1. Therefore, it must work with outsize
according to the dimensions of insize and these prefixed parameters.

In this section, the resources of DE10-nano are visualized after compilation with the
OpenCL HLS. The results presented in Table 6 correspond to the execution of the kernel that
implements the max-pool layer with the maxpool1 configuration of the SqueezeNet v1.1
architecture.

7

2

0

1

69025

9

95

8123

0974

8733

81236

00642

87331

59763

12704

5
86

97

Figure 8. Detail of max-pool layer with CHsize = 2, insize = 5 and outsize = 2, pad = 0, and stride = 2.

Electronics 2024, 13, 348 13 of 23

Algorithm 3 Max-pool

Input: in_size (parameter)
Input: out_size (parameter)
Input: channel_size (parameter)
Input: in_img (buffer read only)
Output: out_img (buffer)

1: for channel_index ← 0 To channel_size do
2: for i← 0 To (out_size) do
3: for j← 0 To (out_size) do
4: tmp← 0
5: for l ← 0 To 3 do
6: for m← 0 To 3 do
7: value← in_img[(i× 2 + l)× in_size + j× 2 + m]

8: if value > tmp then
9: tmp← value

10: end if
11: end for
12: end for
13: out_img[i× out_size + j]← tmp
14: end for
15: end for
16: in_img← in_img× in_img + in_img
17: out_img← out_size× out_size + out_img
18: end for

Table 6. Compilation and execution results of the kernel max-pool.

Single Task NDRange [16] PyTorch

ALUTs 6274 6318 -
Registers 10,757 12,317 -
Logic resources 5432/41,910 (13%) 6032/41,910 (14%) -
DSP blocks 8/112 (7%) 12/112 (11%) -
Memory bits 183,644/5,662,720 (3%) 234,864/5,662,720 (4%) -
RAM blocks 68/553 (12%) 58/553 (10%) -
Fmax 122.24 118.51 -
Latency (s) 0.0308 0.0642 0.0947

3.1.4. Average-Pool

We can see in Algorithm 4 the equations involved in the average-pool layer and in
Figure 9 a graphic detail for two iterations of the loop contained between lines 1–14 of this
algorithm. The Table 7 presents the results obtained by the OpenCL code synthesis of the
average-pool layer, taking into account that the filter size is fixed (13 × 13) and coincides
with insize. This layer corresponds to the last stage of the selected architecture and gives us
the result of the classification.

Electronics 2024, 13, 348 14 of 23

7

2

0

1

69025

5.1

8123

0974

8733

81236

00642

87331

59763

12704

3.92

Figure 9. Detail of average-pool with CHsize = 2, insize = 5, and outsize = 2.

Algorithm 4 Average-pool

Input: in_img (buffer read only)
Output: out_img (buffer)

1: for class_index ← 0 To 1000 do
2: tmp← 0
3: for i← 0 To 169 do
4: tmp← bias
5: for i← 0 To (in_channels) do
6: tmp← in_img[169× class_index + i] + tmp ;
7: end for
8: out_im[class_index]← tmp/169
9: end for

10: end for

Table 7. Compilation and execution results of the average-pool kernel.

Single Task NDRange [16] PyTorch

ALUTs 6178 6045 -
Registers 9303 8492 -
Logic Resources 4736/41,910 (11%) 4633/41,910 (11%) -
DSP blocks 4/112 (4%) 4/112 (4%) -
Memory bits 182,798/5,662,720 (3%) 209,162/5,662,720 (4%) -
RAM blocks 59/553 (11%) 49/553 (9%) -
Fmax 133.16 117.28 -
Latency (s) 0.0028 0.0034 0.0057

3.1.5. Complete Model

If we join the four kernels described above and implement the complete network
described in Figure 5, we can see in Table 8 how the lower efficiency achieved in the 1 × 1
and 3 × 3 convolutions makes the continuous reuse of these kernels result in a much lower
performance than other hardware solutions referenced and our software implementations
based on PyTorch libraries.

In terms of resources used, the solution is comparable to other solutions with a
performance four times higher. Thus, despite working with a simple-task solution that is, in
principle, more efficient with FPGA devices, the reality is that the results are disappointing.

3.2. Systolic Unroll Architecture

Fundamental contributions in these two areas have already been provided by our
group in this architecture, as follows.

1. Systolic generation

Electronics 2024, 13, 348 15 of 23

■ The first contribution is the implementation of the convolution layers in pairs
rather than individually. With this technique, we can improve the communication
between layers by performing it internally in the IP developed through channels.
The SqueezeNet fire processing unit (SFPU) is designed to facilitate the integration
of the squeeze layer and the expand layer as a single entity. This implementation
is intended to be versatile enough to be used multiple times to implement the
various fire units that exist in the convolutional network (see Table 2).

■ The SFPU should be fractionable so that we can implement 3 × 3 and 1 × 1
convolutions in isolation when necessary (see layers conv1 and conv3 in Table 2).
This implementation should increase the possibilities available in the published
solutions. It should support filter sizes other than 3× 3 and with configurable
padding and stride.

■ The systolic architecture must also be flexible enough to implement the Max-pool
and Average-pool layers with configurable filter sizes and characteristics.

■ Finally, it must be compatible with the possibility of implementing dense layers,
even if SqueezeNet does not have this type of layer. With this approach, we could
solve the final stages of CNN (LeNet, AlexNet, VGGNet).

2. Implementation of the systolic architecture using OpenCL

■ Use of a system of task implementation, in which the projected processing units
are assumed by a function with the property autorun kernels. From now on, this
element is referred to as the projected processing element (PE).

■ Use of functions for data entry and data extraction based on two techniques:
buffers and queues.

■ Use of two control units from which it distributes its control signals to the remain-
ing kernels.

■ Use of control flow and data flow through channels (exclusive to IntelFPGA
OpenCL) that play a key role in the synchronization of all processing units.

Table 8. Compilation results and executions of the full OpenCL code implementing the SqueezeNet
v1.1 model. A comparison is also made with previous work.

Single Task
Ours

PyTorch
Ours

NDRange
[16]

ZynqNet
[11]

Edgenet
[12]

Int8
[13]

SqJ
[14]

FPGA Cyclone V Cyclone
V

Cyclone V Zynq 7000 Cyclone
V

Cyclone
V

Zynq 7000

ALUTs 46,615 - 446,951 - -

Registers 826,347 - 736,337 137k - - 306,554

Logic resources 37k/42k (87%) - 37k/42k (87%) 154k/218k (70%) - 110k

DSP blocks 50/112 (45%) - 65/112 (58%) 739/900 (82%) - - 186/200
46%

Memory bits 1503k/5662k
(27%)

- 4096k/5662k
(72%)

- - -

RAM blocks 383/553 (69%) - 553/553 (100%) 996/1090 (91%) - -

Fmax (MHz) 106.6 - 103.07 200 100 101.7 100

Latency fire (ms) 389 140 74 - - -

Latency block 3 (ms) 1203 379 331 - - -

Global latency (ms) 4484 1231 1012 977 110 121 333

The architecture of the implementation is shown in Figure 10. The vertical processing
units (PE) are basically in charge of the squeeze stage, and the horizontal processing units

Electronics 2024, 13, 348 16 of 23

(PE) are in charge of the expand stage. However, the latter has a higher complexity and can
realize the average-pool and max-pool layers.

This structure is reused 13 times for the complete network implementation (Figure 11).
The buffers (red blocks) that communicate with the producer and consumer blocks visible
in Figure 10 are fundamental. The efficiency of the communication between them and the
device kernels and the global RAM of the DE10-nano is critical.

+

+
float

floatVertical
PE

* +

*

*

*

+

+

float4

float4

Horizontal
PE Relu

Consumer
C

Channel Data

Producer
B2B

0

Horizontal
PE Relu

Vertical
PE

Vertical
PE

Producer
A

Producer
B1

0

1

Relu

1

Producer
B2A

Producer
Consumer

C1
BUFFER

*

*

*

*

AC
C

U+

float4

float4

float Horizontal
PEmuxmuxmuxmux

m
ux

+

mux

AC
C

U+

AC
C

U+

AC
C

U+

float4

float

float

Text

Control
B1

Control
B2

Channel Control

> M
AX

Figure 10. Systolic unroll architecture.

HOST

CONV1_3x3

ReLU

Maxpool1

3ch × 224× 224

64ch × 111× 111

64ch × 55× 55

128ch × 55× 55

Maxpool2
128ch × 55× 55

256ch × 27× 27

128ch × 27× 27

Maxpool3

384ch × 13× 13

256ch × 13× 13

CONV2_1x1

ReLU

Avgpool

512ch × 13× 13

1000ch × 13× 13

1000ch × 1× 1

384ch × 13× 13

512ch × 13× 13

256ch × 27× 27

HOST

Global Buffer

Fire1

Global Buffer

Global Buffer

Global Buffer

Global Buffer

Global Buffer

Global Buffer

Fire2

Fire4

Fire3

Fire5

Global Buffer

Global Buffer

Fire6

Fire7

Global Buffer

Global Buffer

Fire8

Global Buffer

Global Buffer

Global Buffer

Figure 11. Organization of the reuse of the unroll architecture for SqueezeNetv1.1.

Electronics 2024, 13, 348 17 of 23

3.3. Systolic Roll Architecture

The folded architecture we describe in Figure 12 is very similar to the previous one,
although a better efficiency is achieved in communication between Fire1–Fire2, between
Fire3–Fire4, between Fire5–Fire6, and between Fire7–Fire8, as this is now done through
channels between kernels. Of course, the control is more complicated, but this type of
folding may allow us in the future to have more possibilities with the implementation of
dense layers. We can clearly see how communication improves in Figure 13. On the other
hand, the unroll architecture is more adaptable than the roll architecture as it does not
necessitate that the numbers of vertical and horizontal processing units be the same. This is
because it does not involve looping between outputs and inputs.

Horizontal
PE Relu

Consumer
C

Channel Data

Producer
B2B

0

Horizontal
PE Relu

Vertical
PE

Vertical
PE

Producer
A

Producer
B1

0

1

Relu

1

Producer
B2A

Producer
Consumer

C1
BUFFER

Control
B1

Control
B2

Channel Control

Figure 12. Systolic roll architecture.

Figure 13. Fire level comparison between roll version and unroll version.

3.3.1. Optimization: Use of RTL Libraries

Our group has developed our own libraries to implement basic operations
(output = A × B + C and Accu = A × B + Accu) for different technologies (Cyclone V and
Arria 10). These libraries have been very effective in replacing the default implementation
by the OpenCL compiler ([17,18]). Therefore, we also used them in this SqueezeNet imple-
mentation. The results can be seen in Figure 14, and there is no doubt that our low-level
implementations significantly improve the results when applied in deep networks. This
figure focuses on the implementation of the convolutions in which we used these func-
tions. As the network depth increases, this optimization clearly reflects the improvement
achieved, as shown in Figure 15.

Electronics 2024, 13, 348 18 of 23

Figure 14. Fire level comparison between roll version without RTL and roll version with RTL.

Figure 15. Comparison of latency using RTL libraries and not using RTL libraries.

3.3.2. Optimization: Use of Heterogeneous Solutions

A closer look at Figure 13 shows a degradation in the implementation of the max-pool
layers when we made the architectural change between the roll version and the unroll
version. This circumstance, together with the need to reduce the number of resources used
in the FPGA, led to the implementation of the max-pool layer using a simple-task kernel
and the implementation of average-pool by the host through PyTorch. Transfers between
the host and FPGA kernels are not feasible solutions inside a deep network, but they are
feasible at the beginning and the end of the network since both ends are in the scope of the
host. The consequence of this optimization appear in the results as the mixed architecture.

3.3.3. Optimization: Communication of Data

We performed all communications between the host and the kernel (through buffers)
and between the kernels (via channels) with data in the IEEE 754 single-precision format.
If we replace this data communication with the IEEE 754 half-precision format, we can
increase the efficiency of our implementation considerably because we can double the
multiplication-and-add units of our processing units (PE). Let us say that we can increase
our processing capacity (equally realized with the IEEE 754 single-precision format) at the
cost of data communication accuracy.

Electronics 2024, 13, 348 19 of 23

4. Results and Performance Evaluation
4.1. Performance Evaluation

In AI-at-the-edge applications, the latency of the system and consequently the through-
put of the application are usually the most sought-after performance indicators.

It is not unexpected that the number of frames per second (FPS) is a widely used metric
for evaluating the effectiveness of computer vision applications. This measure was used
in the present study to compare our results with those of other studies. Nevertheless, it is
essential to remember that this parameter is heavily dependent on the network topology,
which includes the input layer that would have the size of the original image.

It is more intriguing and does not depend on the topology to determine the throughput
as a function of the number of network parameters processed per second, as it is generally
accepted that each synaptic connection requires one parameter (one MAC operation).

It should be specified whether these operations are performed in fixed or floating
point and the exact type of representation used. We can assess the effect on accuracy at
different levels, but it will always depend on the application used.

The importance of energy efficiency is especially relevant when AI-at-the-edge process-
ing is performed on embedded devices with limited battery capacity [19]. This is usually
measured in terms of the number of operations per joule, but in this work, mW/Mps,
or energy per operation, was used. This is a significant value when comparing different
manufacturers. The only issue with this metric is determining how the power has been
evaluated (estimated or measured); the values found in many studies are estimates of
the design environments with FPGAs (Vivado or Quartus), and it can often be difficult to
ascertain what has been done with the power consumed by the processor system (PS) in
systems-on-chips (SOCs).

Finally, it is essential to consider the flexibility and architectural adaptation of our
implementation. Other implementations may be superior in terms of metrics but re-
quire a time-consuming hardware recompilation for any topology change. Additionally,
implementations that depend on group size (such as NDrange kernel-based OpenCL imple-
mentations) may be efficient with a batch of input vectors, but this is not a realistic situation
in inference. Therefore, our implementation is advantageous in terms of flexibility and
architectural adaptation.

4.2. Resources

We show in Table 9 the resources used in each of the developed architectures. It is
not important as an element of comparison since what is really important is that we can
implement it on the DE10-nano device. However, it is useful as a reference element when
we want to compare the performance of each solution in the following subsection.

Table 9. Compilation results of the full OpenCL code implementing the SqueezeNet v1.1 model.

Unroll Architecture
(Section 3.2)

Roll Architecture
(Section 3.3.1)

Mix Architecture
(Section 3.3.2)

Mix-Hybrid Architec-
ture (Section 3.3.3)

ALUTs 48,454 42,878 44,596 58,680
Registers 75,051 66,240 69,582 72,497
Logic resources 37,463/41,910 (89%) 31,682/41,910 (87%) 32,426/41,910 (77%) 37,656/41,910 (90%)
DSP blocks 57/112 (51%) 61/112 (54%) 61/112 (54%) 77/112 (69%)
Memory bits 3,670,872/5,662,720 (65%) 3,627,956/5,662,720

(64%)
2,795,292/5,662,720 (49%) 1,764,372/5,662,720

(31%)
RAM blocks 553/553 (100%) 553/553 (100%) 502/553 (91%) 393/553 (71%)
Fmax (MHz) 108.31 98.39 97.05 95.43

Electronics 2024, 13, 348 20 of 23

4.3. Performance

At this point, we show the speed results achieved by our proposed systolic archi-
tectures. For this purpose, we show the complete run-time of the SqueezeNet network
version v1.1 (Figure 16) and a detail of the execution times of each phase of the network
(Figure 17). In each of the two figures, we also include for comparison a pure software
solution developed with PyTorch (dual-core ARM Cortex-A9 plus fpu NEON) on the same
device and a hardware solution based on NDrange from those referenced in the literature
and using the same device.

Figure 16. Comparison of full network inference with accumulated times.

It can be seen for each of the proposed architectures where the possible points of
improvement are located. For example, in our best implementation (mix solution), the
bottlenecks are found in the expand layers of even fire blocks, together with the final 1 × 1
convolution (which we call conv2).

It can also be observed that the final 1 × 1 convolution could also be assumed by the
software through PyTorch. Examining the graphs (Figures 16 and 17), it is evident that our
approach resulted in a significant improvement compared to prior solutions.

Figure 17. Comparison of full network inference with phase times.

Electronics 2024, 13, 348 21 of 23

4.4. Energy Efficiency

As we have said before, it is important to make the same comparison in terms of
energy efficiency. For this purpose, we include Table 10.

Table 10. Compilation results and executions of the full OpenCL code implementing the
SqueezeNet V1.1 model. A comparison is also made with previous work.

Single Task
(Section 3.1)

NDRange [16] PyTorch Unroll (Section 3.2) Roll (Sec-
tion 3.3.1)

Mix (Sec-
tion 3.3.2)

Hybrid (Sec-
tion 3.3.3)

Energy per infer-
ence (Joules)

32.4 10.8 3.6 7.2 10.8 5.04 2.88

Power (mw) 7523.55 10,641.33 3716.07 6418.91 7928.37 7626.50 7447.42
mw/Mps 27,427.31 8780.49 2926.83 5853.65 8780.48 4097.56 2341.46

It is evident that the last of our architectures is more energy efficient than imple-
menting the algorithm solely with the software solution (PyTorch). However, from an
application perspective, the execution time is of great importance, and our systolic archi-
tectures implemented in OpenCL have enabled us to reduce these execution times. This
energy efficiency study raises doubts about the suitability of many hardware–software
codesign solutions from an energy efficiency standpoint in low-cost devices.

4.5. Discussion

The HPSs available in this type of resource-limited devices provide very high perfor-
mance thanks to the use of the vector accelerators they have implemented (Neon in this
case) and hardly justify the use of the FPGA part to perform additional acceleration except
when we need to free the microprocessor for other tasks. We managed to improve energy
efficiency with our kernels but at the cost of no longer having resources in the FPGA that
might be necessary for the generation and acquisition of signals needed for a dedicated
instrument.

We would like to emphasize the effectiveness of HLS compilers. We have discov-
ered that incorporating our own RTL libraries into them can significantly enhance their
performance. Additionally, we have noticed that the more granular the system (which
leads to a greater number of kernels that must be connected through channels), the more
the efficiency of dataflow systems decreases. The solution may lie in the communication
system between kernels (channels, pipes, or streaming interfaces); however, it does not
appear that they can be tailored or designed at the RTL level.

5. Conclusions

This paper presented a workflow for the implementation of deep neural networks
that combined the flexibility of HLS-based networks with the architectural control features
of HDL-based flows. OpenCL was the main tool used in this workflow, as it provides a
structural approach and a high level of hardware control, which is especially important
when dealing with systolic architectures.

From a verification point of view, the proposed method based on Pyopencl–Jupyter
Notebook is effective since the reference models in all tests, both for the individual layers
and the complete network, have been readily available using packages well known in the
development, training, and inference of deep networks (PyTorch).

From a results point of view, we managed to lower the inference of SqueezeNet v1.1
by 0.4 s working on all calculations in single-precision float (32 bits), and we managed
to outperform in energy efficiency the results measured in solutions that did not use the
programmable logic infrastructure available in the package.

Of course, the results are easily surpassed when working with more resource-intensive
devices, but they become unfeasible in AI-at-the-edge solutions. We have seen that in
deep networks, the only solution is the continuous reuse of a flexible architecture, and the

Electronics 2024, 13, 348 22 of 23

intermediate step through global memories is absolutely necessary. This reuse, together
with the intervention of the global memory, considerably reduces the implementation
results of deep networks with respect to shallow networks [17].

The importance of the relationship between layers in deep neural networks is clear and
must be thoroughly examined. Our next steps will be to enhance the interlayer transfers by
improving the interconnection between the FPGA and the SDRAM connected to the hard
processor system (HPS).

Author Contributions: Conceptualization, J.F.; Methodology, R.G.-G. and J.L.R.-R.; Validation,
J.L.R.-R.; Investigation, R.G.-G. and J.L.R.-R.; Resources, J.M.M.; Writing—original draft, R.G.-G.;
Writing—review & editing, J.M.M.; Supervision, J.F. and J.M.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by grant PID2020-116816RB-100 from Ministry of Science,
Innovation and Universities (MCIU) of Spain.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Singh, R.; Gill, S.S. Edge AI: A survey. Internet Things Cyber-Phys. Syst. 2023, 3, 71–92. [CrossRef]
2. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50× fewer

parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. Available online: http://arxiv.org/abs/1602.07360 (accessed
on 10 May 2023).

3. Lee, H.J.; Ullah, I.; Wan, W.; Gao, Y.; Fang, Z. Real-Time Vehicle Make and Model Recognition with the Residual SqueezeNet
Architecture. Sensors 2019, 19, 982. [CrossRef] [PubMed]

4. Kwaghe, O.P.; Gital, A.Y.; Madaki, A.; Abdulrahman, M.L.; Yakubu, I.Z.; Shima, I.S. A Deep Learning Approach for Detecting
Face Mask Using an Improved Yolo-V2 With Squeezenet. In Proceedings of the 2022 IEEE 6th Conference on Information and
Communication Technology (CICT), Gwalior, India, 18–20 November 2022; pp. 1–5. [CrossRef]

5. Fang, C.; Lv, C.; Cai, F.; Liu, H.; Wang, J.; Shuai, M. Weather Classification for Outdoor Power Monitoring based on Improved
SqueezeNet. In Proceedings of the 2020 5th International Conference on Information Science, Computer Technology and
Transportation (ISCTT), Shenyang, China, 13–15 November 2020; pp. 11–15. [CrossRef]

6. Zhang, J.; Zhu, H.; Wang, P.; Ling, X. ATT Squeeze U-Net: A Lightweight Network for Forest Fire Detection and Recognition.
IEEE Access 2021, 9, 10858–10870. [CrossRef]

7. Tsalera, E.; Papadakis, A.; Voyiatzis, I.; Samarakou, M. CNN-based, contextualized, real-time fire detection in computational
resource-constrained environments. Energy Rep. 2023, 9, 247–257. [CrossRef]

8. Yang, Z.; Yang, X.; Li, M.; Li, W. Automated garden-insect recognition using improved lightweight convolution network. Inf.
Process. Agric. 2023, 10, 256–266. [CrossRef]

9. Huang, Q. Weight-Quantized SqueezeNet for Resource-Constrained Robot Vacuums for Indoor Obstacle Classification. AI 2022,
3, 180–193. [CrossRef]

10. Team, P. Pytorch Vision SQUEEZENET Model. Available online: https://pytorch.org/hub/pytorch_vision_squeezenet (accessed
on 1 April 2023).

11. Gschwend, D. ZynqNet: An FPGA-Accelerated Embedded Convolutional Neural Network. arXiv 2020, arXiv:2005.06892.
Available online: http://arxiv.org/abs/2005.06892 (accessed on 1 April 2023).

12. Pradeep, K.; Kamalavasan, K.; Natheesan, R.; Pasqual, A. EdgeNet: SqueezeNet like Convolution Neural Network on Embedded
FPGA. In Proceedings of the 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Bordeaux,
France, 9–12 December 2018; pp. 81–84. [CrossRef]

13. Zhao, J.; Yin, Z.; Zhao, Y.; Wu, M.; Xu, M. Scalable FPGA-Based Convolutional Neural Network Accelerator for Embedded
Systems. In Proceedings of the 2019 4th International Conference on Computational Intelligence and Applications (ICCIA),
Nanchang, China, 21–23 June 2019; pp. 36–40. [CrossRef]

14. Mousouliotis, P.G.; Petrou, L.P. SqueezeJet: High-Level Synthesis Accelerator Design for Deep Convolutional Neural Networks.
In Proceedings of the Applied Reconfigurable Computing. Architectures, Tools, and Applications, Santorini, Greece, 2–4 May
2018; Voros, N., Huebner, M., Keramidas, G., Goehringer, D., Antonopoulos, C., Diniz, P.C., Eds.; Springer Nature: Cham,
Switzerland, 2018; pp. 55–66. [CrossRef]

15. Arora, M.; Lanka, S. Accelerating SqueezeNet on FPGA. Available online: https://lankas.github.io/15-618Project (accessed on 20
September 2023).

http://doi.org/10.1016/j.iotcps.2023.02.004
http://arxiv.org/abs/1602.07360
http://dx.doi.org/10.3390/s19050982
http://www.ncbi.nlm.nih.gov/pubmed/30813512
http://dx.doi.org/10.1109/CICT56698.2022.9997956
http://dx.doi.org/10.1109/ISCTT51595.2020.00009
http://dx.doi.org/10.1109/ACCESS.2021.3050628
http://dx.doi.org/10.1016/j.egyr.2023.05.260
http://dx.doi.org/10.1016/j.inpa.2021.12.006
http://dx.doi.org/10.3390/ai3010011
https://pytorch.org/hub/pytorch_vision_squeezenet
http://arxiv.org/abs/2005.06892
http://dx.doi.org/10.1109/ICECS.2018.8617876
http://dx.doi.org/10.1109/ICCIA.2019.00014
http://dx.doi.org/10.1007/978-3-319-78890-6_5
https://lankas.github.io/15-618Project

Electronics 2024, 13, 348 23 of 23

16. Er1cZ. Deploying_CNN_on_FPGA_using_OpenCL. 2017. Available online: https://github.com/Er1cZ/Deploying_CNN_on_
FPGA_using_OpenCL (accessed on 1 January 2023).

17. Gadea-Gironés, R.; Fe, J.; Monzo, J.M. Task parallelism-based architectures on FPGA to optimize the energy efficiency of AI at the
edge. Microprocess. Microsyst. 2023, 98, 104824. [CrossRef]

18. Gadea-Gironés, R.; Herrero-Bosch, V.; Monzó-Ferrer, J.; Colom-Palero, R. Implementation of Autoencoders with Systolic Arrays
through OpenCL. Electronics 2021, 10, 70. [CrossRef]

19. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. How to Evaluate Deep Neural Network Processors: TOPS/W (Alone) Considered
Harmful. IEEE Solid-State Circuits Mag. 2020, 12, 28–41. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/Er1cZ/Deploying_CNN_on_FPGA_using_OpenCL
https://github.com/Er1cZ/Deploying_CNN_on_FPGA_using_OpenCL
http://dx.doi.org/10.1016/j.micpro.2023.104824
http://dx.doi.org/10.3390/electronics10010070
http://dx.doi.org/10.1109/MSSC.2020.3002140

	Introduction
	SqueezeNet Implementations Review
	Convolution Layer
	Layers of Type Pool
	SqueezeNet
	Related Work

	Methodology and Architectures
	Simple Task Architecture
	Convolution 1 1
	Convolution 3 3
	Max-Pool
	Average-Pool
	Complete Model

	Systolic Unroll Architecture
	Systolic Roll Architecture
	Optimization: Use of RTL Libraries
	Optimization: Use of Heterogeneous Solutions
	Optimization: Communication of Data

	Results and Performance Evaluation
	Performance Evaluation
	Resources
	Performance
	Energy Efficiency
	Discussion

	Conclusions
	References

