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Abstract: The development of wireless power transfer (WPT) facilitates wireless rechargeable sensor
networks (WRSNs) receiving considerable attention in the sensor network research community.
Most existing works mainly focus on general charging patterns and metrics while overlooking the
precedence constraints among tasks, resulting in charging inefficiency. In this paper, we are the first
to advance the issue of scheduling wireless charging tasks with precedence constraints (SCPC), with
the optimization objective of minimizing the completion time of all the charging tasks under the
precedence constraints while guaranteeing that the energy capacity of the mobile charger (MC) is not
exhausted and the deadlines of charging tasks are not exceeded. In order to address this problem,
we first propose a priority-based topological sort scheme to derive a unique feasible sequence on
a directed acyclic graph (DAG). Then, we combine the proposed priority-based topological sort
scheme with the procedure of a genetic algorithm to obtain the final solution through a series of
genetic operators. Finally, we conduct extensive simulations to validate our proposed algorithm
under the condition of three different network sizes. The results show that our proposed algorithm
outperformed the other comparison algorithms by up to 11.59% in terms of completion time.

Keywords: wireless charging; WRSNs; precedence constraints; genetic algorithm

1. Introduction

Due to the development of wireless power transfer (WPT) technology, the limited
lifetime problem of battery-powered sensors in wireless sensor networks (WSNs) has
been addressed effectively. With the pervasive application of WPT into WSNs, the con-
cept of wireless rechargeable sensor networks (WRSNs) has been proposed and attracted
increasing attention in the sensor network research community in recent years [1–11].
According to the different dynamic characteristics of chargers that provide energy for
WRSNs, the research on charging strategies in WRSNs can generally be divided into the
study of charging schemes for static chargers and the study of charging scheduling strate-
gies for mobile chargers. In the research on static charging scenarios in WRSNs, many
works [1–4] optimize network performance by adjusting the transmission power of charg-
ers or designing deployment strategies for chargers. On the other hand, there exist a great
number of works [5–11] focusing on the problem of recharging sensors in WRSNs using
one or more mobile chargers.

Within the next decade, Internet of Things (IoT) devices will grow to a trillion [12],
and the precedence relationship among different kinds of tasks in IoT systems will become
the matter of the most importance. In IoT systems, there are mainly three kinds of tasks
to be carried out by sensors: data collection about their surroundings, data processing,
and data communication [12]. These three tasks usually have specific order relationships;
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that is to say, the data collection task must be started before the data processing task is
carried out, and the data processing task needs to be executed before starting the data
communication task.

Moreover, a great number of applications with considerable computation demands in
WSNs have emerged, such as target tracking applications, acoustic signal processing, and
video sensor networks. These computation-intensive applications contain various kinds
of tasks, like sensing, filtering, image or speech processing, and storing intermediate data
tasks, and the precedence relationships among these tasks are more universal and complex.

Motivated by the aforementioned issues, we propose the problem of scheduling
wireless charging tasks with precedence constraints (SCPC), with the optimization objective
of minimizing the completion time of all the charging tasks while guaranteeing that the
energy capacity of the mobile charger (MC) is not exhausted, the deadline of each charging
task is not exceeded, and no precedence constraints are violated. We give an instance of
our problem, depicted in Figure 1, where there is one mobile charger (MC) and a set of
rechargeable sensors located on a 2D plane. When the residual energy of a sensor falls
below a certain threshold, it will send a charging request to the MC. In particular, there
exist precedence constraints among the charging tasks raised by these sensors. The MC
needs to visit all the energy-deficient sensors to fulfill the charging tasks without violating
the precedence constraints. Thus, our objective is to design a optimal charging route to
minimize the completion time when taking the precedence constraints among charging
tasks into consideration.

Base station

Mobile charger

Rechargeable sensor

Energy rich

Charging route

Precedence constraint

Energy deficient

Figure 1. A diagram of wireless charging tasks with precedence constraints.

For WRSNs, a great many existing works [13–16] focus on the mobile charging sce-
narios and aim to optimize the performance of the network, but none of them take the
precedence relationships among charging tasks into consideration when studying charging
issues. To the best of our knowledge, we are the first to propose charging issues with
respect to the precedence relationships among tasks.

We face two main technical challenges when tackling this problem:

• The first challenge is to schedule the wireless charging tasks with precedence con-
straints by devising a closed path of travel for the MC which is NP-hard.

• The second challenge is that aside from the precedence constraints among charging
tasks, more constraints need to be satisfied, including the deadline constraint of each
charging task and the limited energy capacity constraint of the MC. These multiple
constraints make our problem more complicated.

To address the first challenge, we propose a TS-based improved adaptive genetic
algorithm to seek for the best solution (i.e., the individual with the best fitness value, derived
through population evolution from one generation to the next iteratively). We first use a
directed acyclic graph (DAG) to denote a set of charging tasks and complex precedence
relationships among these tasks. As there are multiple feasible sequences that can be
derived from one DAG, we propose a priority-based topological sorting scheme to obtain a
unique feasible sequence on the DAG. Finally, we combine the priority-based topological
sorting scheme with the procedure of a genetic algorithm to obtain the optimal sequence
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through selection, evaluation, and a series of genetic operators, including reproduction,
crossover, and mutation. To address the second challenge, we design a fitness objective
function by adding penalty weighting factors for deadline tardiness and extra consumed
energy beyond the MC’s capacity to handle the multiple constraints in the SCPC problem.
Specifically, we make the following main contributions:

• We are the first to propose the charging issues of scheduling an MC with respect
to multiple constraints, including precedence constraints among charging tasks, the
deadline constraint of the charging task, and the limited energy capacity constraint of
the MC.

• We propose a TS-based improved adaptive genetic algorithm by combining the
priority-based topological sorting scheme with the procedure of the improved adap-
tive genetic algorithm to find the best solution.

• We conduct extensive simulations to evaluate the performance of our proposed al-
gorithm under the condition of three different network sizes. Our simulation results
show that in terms of completion time, our proposed algorithm outperformed the
other three comparison algorithms by up to 11.59%.

The rest of the paper is organized as follows. Section 2 briefly surveys the related
works. Section 3 illustrates the network model, task precedence relationship, and problem
formulation. Section 4 demonstrates the proposed TS-based improved adaptive genetic
algorithm for the SCPC problem in detail. Section 5 presents the results of the simulations.
Finally, we conclude the paper in Section 6.

2. Related Work

Mobile charger optimization problem. There exists a great amount of research
works [6,7,13–15,17,18] focusing on mobile charging scenarios where rechargeable devices
are charged by one or multiple mobile chargers to maintain perpetual function. However, a
great number of existing works do not take into consideration the energy issues regarding
the task-level scheduling of a mobile charger. For example, Das et al. [6] focused on the
joint data gathering and charging (DGAC) problem and introduced an efficient on-demand
partial DGAC scheme using battery-limited multiple MVs to reduce the total dead periods
of the sensors and the overall data gathering delay. Susan et al. [7] investigated the problem
of scheduling a mobile charging vehicle (MCV) to wirelessly charge the rechargeable sensor
nodes upon receiving a charging request and proposed a novel approach called scheduling
on-demand charging requests with FFO-based optimal path (SOCR-FFO) selection, with
the aim to jointly optimize the path selection for disseminating charging requests and
scheduling MCVs based on the current network status. Shi et al. [13] introduced the
concept of a renewable energy cycle in a sensor network and studied the optimization
problem of maximizing the ratio of the wireless charging vehicle (WCV)’s vacation time
over the cycle time. He et al. [14] investigated the on-demand mobile charging problem
and employed a simple but efficient nearest job next with preemption (NJNP) discipline
for a mobile charger. Liang et al. [15] studied sensor energy replenishment with a mobile
charger in a rechargeable sensor network and aimed to maximize the sum of the charging
rewards collected by all charged sensors from the mobile charger. Dudyala et al. [18]
studied the problem of scheduling mobile chargers efficiently for charging the sensors so
that the network would be up for the maximum time and proposed an efficient way of
scheduling mobile chargers with the help of sensor energy consumption rate prediction.

Task scheduling problem in WRSNs. Some other works [16,19–21] considered charg-
ing task scheduling with or without task cooperation, but none of them took into account the
precedence constraints among charging tasks. Wu et al. [16] explored the collaborated task-
driven mobile charging and scheduling problem and aimed to maximize the overall task
utility in the network by finding a closed charging tour with an energy allocation strategy.
Dong et al. [19] explored the issue of maximizing the charger’s velocity to minimize the
charging delay while guaranteeing that task assignment was feasible in WRSNs. Dai
et al. [20] studied the problem of maximizing the overall effective charging energy for all
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rechargeable devices and further minimizing the total charging time through scheduling
the power of wireless chargers while guaranteeing electromagnetic radiation (EMR) safety.
In [21], Dai et al. further investigated the problem of charging task scheduling for direc-
tional wireless charger networks and maximized the overall charging utility for all tasks by
scheduling the orientations of all chargers before a deadline in a centralized offline and
distributed online fashion, respectively.

3. Problem Statement
3.1. Network Model

Suppose that there are some stationary rechargeable sensors located in a 2D plane
which consume energy for sensing, data reception, and transmission. There is only one
mobile charger (MC) with a limited energy capacity Emc which is responsible for replenish-
ing energy for all the sensors. Once the residual energy of a sensor falls below a certain
threshold, it will launch the charging task and send the task to the MC. Within the sensor
network, there is a fixed base station (BS), denoted by v0, which serves as a data sink as
well as an energy source. An MC carrying a high-volume battery starts from the BS, tries
its best to visit energy-deficient sensors, raising charging tasks for the energy supply, and
returns to the BS after finishing the charging tour. Suppose that there are n charging tasks,
denoted by T = {τ1, τ2, · · · , τn}. Formally, the ith charging task is defined by a four-tuple
τi =< vi, ti

r, ti
d, Ei >, where vi denotes the position of the rechargeable sensor that raises the

task, ti
r is the release time of the task, ti

d is the deadline of the task, and Ei is the required
charging energy. We list the important notations in Abbreviations.

3.2. Task Precedence Relationship

Tasks often have precedence relationships between them, implying that a particular
task can only be performed after another task has been completed. We write τi → τj if task
τj is an immediate successor of task τi or, equivalently, task τi is an immediate predecessor
of task τj. This means that task τj raised by nodes vj cannot start before task τi raised by vi
is completed, and thus the MC should visit node vi before node vj.

To represent the precedence relationships among tasks, we define the precedence
matrix P = [pij] as

pij =

{
1, τi → τj,

null, otherwise,
(1)

where pij = 1 indicates that task τi has to precede task τj.
An example of a precedence matrix is shown in Figure 2, containing six nodes with

six precedence relationships. As shown in Figure 2, p13 = 1 means that τ1 is an immediate
predecessor of τ3; that is, node 1 should be visited before node 3. On the contrary, if
pij = null, then there is no sequence relationship between τi and τj. Also, if rows 5 and
6 in the matrix have “null” values, then this indicates that τ5 and τ6 have no successors.
Similarly, columns 1 and 2 being blank means that τ1 and τ2 have no predecessors.

 
     In 
Out         

Node number 
1 2 3 4 5 6 

N
od

e 
nu

m
be

r 

1   1 1   

2    1   

3     1 1 

4      1 

5       

6       
 
Figure 2. An example of a precedence matrix. In the precedence matrix, there exist six precedence
relationships among six nodes (No.1–No.6).
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Using the precedence matrix in Figure 2, we can draw a directed graph, shown in
Figure 3. Obviously, the directed graph must be acyclic; otherwise, no feasible solution
exists. We can use a directed acyclic graph (DAG) to present a set of tasks and the
precedence relationships among these tasks. An example of a DAG is shown in Figure 3,
containing six nodes with six precedence relationships.

1v

2v

3v

4v

5v

6v

Figure 3. An example of a DAG.

In the DAG, each vertex vi represents the charging task τi raised by node vi, and each
arc < vi, vj > indicates the precedence relationship τi → τj.

3.3. Problem Formulation

We introduce a decision variable xij. The decision variable xij is one if and only if node
vi precedes node vj immediately in a sequence; otherwise, it is zero.

The energy consumed by the MC when replenishing a WSN can be classified into two
categories: the moving energy cost and charging energy cost. The moving energy cost of
the MC is

Emove =
n

∑
i=0

n

∑
j=0

(q · dij · xij) +
n

∑
i=1

(q · di0 · xi0), (i ̸= j), (2)

where q is the energy consumption rate per unit length and dij is the distance between
nodes vi and vj. In particular, d0i and di0 denote the distance between the BS and node vi.
During wireless power transfer, energy loss is always inevitable, which depends on the
charging distance and angle. Suppose that the MC consumes η amount of energy when
transferring one unit of energy to a node. Then, the charging energy cost for the nodes is

Echarge =
n

∑
i=1

(η · Ei). (3)

By combining the consumed energy for moving and charging during the closed
charging sequence, the total energy cost of the MC can be expressed as

Ecost = Emove + Echarge

=
n

∑
i=0

n

∑
j=0

(q · dij · xij) +
n

∑
i=1

(q · di0 · xi0) +
n

∑
i=1

(η · Ei). (4)

Let Ai be the arrival time of the MC at node vi. As a task must be served at or after its
release time and before its deadline, it can be derived that Ai is between ti

r and ti
d. If the

MC reaches a node before the release time, then it will bring about extra waiting time. We
define the waiting time of the MC at node vi as ti

w, and thus ti
w = max{0, (ti

r − Ai)}. Note
that Ai should always be smaller than ti

d to prevent the nodes from running out of energy.
The total completion time of finishing a tour, composed of the moving time, waiting time,
and charging time, can be expressed as

Γ = Tmove + Twait + Tcharge

=
n

∑
i=0

n

∑
j=0

(dij · xij/r) +
n

∑
i=1

(di0 · xi0/r)

+
n

∑
i=1

ti
w +

n

∑
i=1

(Ei/qr), (5)
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where r is the traveling speed of the MC and qr is the energy receiving rate of the nodes.
Based on the aforementioned definitions and models, our objective is to minimize

the completion time of all the charging tasks while guaranteeing that the energy capacity
of the MC is not exhausted, the deadlines of the charging tasks are not exceeded, and no
precedence constraints are violated. Therefore, we can formulate the scheduling wireless
charging tasks with precedence constraints (SCPC) problem as

(SCPC) min Γ (6)

s.t.
n

∑
i=0

xij = 1, (i ̸= j; j = 1, . . . , n) (7)

n

∑
j=0

xij = 1, (j ̸= i; i = 1, . . . , n) (8)

n

∑
i=1

x0i =
n

∑
i=1

xi0 = 1, (i = 1, . . . , n) (9)

Aj > Ai, (τi → τj) (10)

0 ≤ Ai ≤ ti
d, (i = 1, . . . , n) (11)

Ecost ≤ Emc (12)

xij ∈ {0, 1}, (i ̸= j; i = 1, . . . , n; j = 1, . . . , n). (13)

In the above formulation, Equations (6), (7), and (8) ensure the connectivity of the tour
and that every node is visited only once. Equation (9) denotes the precedence relationship
between nodes. Equation (10) guarantees the arrival time of the MC being within each
task’s deadline. Equation (11) guarantees that the consumed energy will not exceed the
MC’s capacity. Equation (12) restricts xij to be a value from 0 to 1. The SCPC problem
can be reduced to the traveling salesman problem with precedence constraints (TSPPC),
with the MC’s energy capacity being unlimited and the unspecified task’s deadline being
unlimited. Clearly, since the TSPPC belongs to the scope of NP-hard problems [22], the
SCPC problem is also NP-hard.

4. TS-Based Improved Adaptive Genetic Algorithm

In this section, we propose a TS-based improved adaptive genetic algorithm to tackle
the thorny SCPC problem. The genetic algorithm (GA) is one of the evolutionary search
methods that attempts to find a good (or best) solution for specific problems, such as combi-
natorial optimization problems. The basic principles of the GA were first proposed by Hol-
land in 1975 [23]. Genetic programming is based on the Darwinian principle of reproduction
(i.e., survival of the fittest). The utilization of a genetic algorithm is finding the individual
with the best fitness value from the search space of the problem.

Because precedence constraints exist in the SCPC problem, the traditional representa-
tion schemes in a GA algorithm generate infeasible solutions, which would conflict with the
precedence constraints. To handle this conflict, we propose a TS-based improved adaptive
genetic algorithm.

4.1. Priority-Based Topological Sorting Scheme

In the aforementioned directed acyclic graph (DAG), the vertices denote charging
tasks raised by the nodes, and the edges represent the precedence relationships among
the tasks. A solution to the SCPC problem must involve a linear ordering of the nodes
satisfying all the precedence constraints of the edges on a DAG.

Several definitions related to topological sorting need to be introduced before investi-
gating the process of topological sorting.

Definition 1. One topological sorting (also called topological ordering) of a DAG is a linear
ordering of all its vertices such that for every directed edge from vertex u to vertex v, vertex u comes
before vertex v in the ordering [24].
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Definition 2. The indegree of one vertex is the number of edges which terminate into the vertex [25].

The process of topological sorting involves searching for a feasible linear ordering of
the vertices on a DAG. One DAG may have multiple feasible sequences. In order to decide
upon a unique sequence among all feasible ones, a priority assignment scheme is used; that
is, a different priority value is assigned to each vertex on the graph randomly. The priority
of each vertex is generated within [1, n] randomly and exclusively, where n is the number
of vertices or tasks. The only feasible sequence can be derived from one priority string
by combining the priority assignment scheme with topological sorting (i.e., the proposed
priority-based topological sorting scheme), and thus one priority string can represent a
unique, feasible sequence.

Algorithm 1 presents the pseudo-code for the priority-based topological sorting
scheme on a DAG. Figure 4 shows an instance of generating a feasible sequence using
the priority-based topological sorting scheme. Figure 4(I) demonstrates the process of
topological sorting with the assigned priority that is shown in Figure 4(II), and the final
feasible path is displayed in Figure 4(III). In the initial graph in Figure 4(I)(a), the indegree
values of vertices v1 and v2 are equal to zero. Vertex v1 was selected as the first point
because its priority, which is was three as marked in the yellow triangle, was higher than
the priority of vertex v2 (two), and vertex v1 was stored in the queue. Then, for vertex v1, its
outgoing edges < v1, v3 > and < v1, v4 > were removed from the graph. In the generation
graph in Figure 4(I)(b), vertex v2 was picked in the same manner, and then vertex v2 and
its outgoing edges were also removed from the graph. As shown in Figure 4(I)(c–f), we
continued this procedure until all the vertices were visited, and then a final sequence
(v1 − v2 − v4 − v3 − v6 − v5) was uniquely derived for the priority string “321645”. The
solution path (v1 − v2 − v4 − v3 − v6 − v5) is represented by the priority string “321645”.

Each individual of the population is represented as a string of integers, and each digit
of the string indicates the priority of the vertex and ranges between one and the number
of vertices. The initialization of the population of chromosomes (i.e., a series of integer
strings) is generated randomly, and the population size pop_size is predetermined.

3

2 2

1

6

1

(a) Pick node (b) Pick node (c) Pick node 

(d) Pick node 

5

4

(e) Pick node (f) Pick node  

(Ⅰ) Priority-based topological sort procedure 

Vertex  

 Priority  3 2 1 6 4 5

(Ⅱ) Priority values of vertices 

(Ⅲ) Final feasible sequence 

priority

1v

1v

1v

1v

2v

2v

2v

2v

3v

3v

3v

3v

3v

3v

2v

4v 4v 4v

4v

4v

4v

5v 5v 5v

5v 5v

5v

5v

5v

5v

6v 6v

6v 6v

6v

6v

6v

6v

3v

Figure 4. An example of a priority-based topological sorting scheme.
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Algorithm 1 Priority-based topological sorting scheme.

INPUT Directed acyclic graph
OUTPUT Feasible sequence on the directed acyclic graph
Initialization Phase

1: Collect all the indegree information of the vertices on the graph;
2: Initialize the priority value of each vertex on the graph.

Working Phase
1: for all vertices do
2: if all the indegrees of vertices are not equal to zero then
3: the graph is infeasible, stop.
4: else
5: Select the vertex vi with the highest priority among the vertices with an indegree equal to

zero;
6: Return the vertex vi;
7: Remove the vertex vi and all its outgoing edges from the graph.
8: end if
9: end for

4.2. Objective and Fitness Value

To evaluate the goodness of each individual, the fitness value of each individual
should be measured with the proper objective function. The objective of the SCPC problem
is to minimize the completion time of serving a set of charging tasks without violating the
precedence constraints, missing the deadlines of tasks, or exceeding the battery capacity of
the MC. The individuals represented by the randomly assigned priority strings will satisfy
the precedence constraints in Equation (9) according to the above analysis. However, it
cannot ensure that these individuals meet the deadlines of the tasks in Equation (10) or
the capacity constraint of the MC in Equation (11). Considering the complex constraints in
the SCPC problem, we adopted the penalty function method from [26] to construct a new
criterion for measuring the fitness, which we call the modified objective function:

min (α · (
n

∑
i=0

n

∑
j=0

(dij · xij/r) +
n

∑
i=1

(di0 · xi0/r)) + β ·
n

∑
i=1

ti
w+

γ ·
n

∑
i=1

max{0, (Ai − ti
d)}+ η · max{0, (Ecost − Emc)}). (14)

The modified objective function includes terms weighted by coefficients α for the
touring time, β for the waiting time at the nodes, and penalty weighting factors γ for
tardiness of task deadlines and η for extra consumption energy beyond the MC’s capacity.
Specifically, the charging time item ∑n

i=1(Ei/qr) is removed from the objective function,
since the charging time is constant for different individuals. It is critical to assign proper
values to these coefficients of the objective function. We gave lower weights to coefficients α
and β and much higher weights to penalty factors γ and η. For example, we can set α = 0.5,
β = 0.25, γ = 25, and η = 50. The set of weights is biased toward searching for feasible
solutions in comparison with reducing the total completion time. If there is no violation of
the tasks’ deadlines and the MC’s capacity constraints, then the function is to reduce the
total completion time. The weights of the coefficients of the objective function are chosen
to prioritize exploring for feasible solutions and then minimize the total completion time
under the precondition of the feasibility of solutions.

4.3. Selection Mechanisms

The selection operator is concerned with improving the average quality of the popu-
lation by giving high-quality chromosomes a better chance for further reproduction. We
employed the two most popular selection operators: the roulette wheel selection mecha-
nism and elitist strategy.

In the roulette wheel selection mechanism, the probability of one chromosome being
selected for survival into the further evolution process is closely related to its fitness
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value. The selected probability of one individual is higher with a better fitness value. This
means that the average quality of the population is improving by giving the high-quality
chromosomes a better chance to be reproduced into the next generation. Moreover, the
elitist strategy is employed to ensure that one or a number of the best chromosomes can be
copied into the next generation.

4.4. Genetic Operators

Generally, a GA is composed of three operators: reproduction, crossover, and mutation.
By using the three operators, one generation is evolved into the next generation iteratively.
Some of the best individuals are reproduced from the current generation into the next
generation using the elitist strategy.

The crossover operation is the main evolutionary operator, and it works by recom-
bining genes from different parents to generate a new one, called the offspring. Once the
parents have been selected with the roulette wheel selection mechanism, the crossover
operator is applied according to the crossover probability. Through the crossover operation,
many excellent new individuals are continuously generated to expand the search range
of the algorithm in the entire space and ensure the excellent search performance of the
genetic algorithm. There are many crossover operators proposed in the literature for genetic
operators. One of the most-used crossover operators is the partially mapped crossover
(PMX) operator adapted to the path planning case. The PMX operator was suggested by
Goldberg and Lingle [27]. Figure 5 illustrates an example including the four steps of the
PMX operator. In Step 1, it randomly selects two cut points along the two parents strings
uniformly. Suppose that the first cut point is selected between the first and second string
elements, and the second one is between the fourth and fifth string elements. The substrings
between the two cut points are known as mapping sections. In Step 2, the selected mapping
sections are exchanged between parents; that is, the mapping section “234” of the first
parent is copied into the second offspring. Correspondingly, the mapping section “526”
of the second parent is copied into the first offspring. Then, the first offspring is filled up
by copying the remaining elements of the first parent, as is the second offspring. In Step
3, the mapping relationships are defined according to the mapping sections (i.e., 5 ↔ 2,
2 ↔ 3, and 6 ↔ 4). The digits in one chromosome, denoting the priorities of the vertices,
are different from each other. In Step 4, in case a digit is already present in the offspring, it
is replaced according to the mapping relationships. For example, the fifth element of the
first offspring would be digit 5, which is already present in the mapping section. Hence,
digit 5 is replaced by digit 3 according to the mappings 5 ↔ 2 and 2 ↔ 3. Analogously, the
sixth element of the first offspring and the first and sixth elements of the second offspring
are updated to digit 4, digit 5, and digit 6, respectively.

Step 1: select two cut-points

Step 2: exchange mapping sections between parents

Step 3: define the mapping relationships

Step 4: generate offsprings with mapping relationships

parent 2:

parent 1:

3 5 2 6 1 4

1 2 3 4 5 6

cut-point 1 cut-point 2

offspring 2:

offspring 1:

3 2 3 4 1 4

1 5 2 6 5 6

offspring 2:

offspring 1:

5 2 3 4 1 6

1 5 2 6 3 4

2 3 4

5 2 6 5      2

2      3

6      4

Figure 5. Illustration of the PMX.
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The mutation operator and crossover operator play different roles in a genetic algo-
rithm. Mutation operations are usually used in conjunction with crossover operations to
improve the global search performance of algorithms. When the algorithm is approaching
the optimal solution, appropriate mutation operations can effectively accelerate the con-
vergence speed of the algorithm. A mutation operation is applied to explore new states
by making a change in one chromosome, thus preventing premature convergence to a
dominant result by introducing diversification into the population. The exchange mutation
(EM) [28] is employed in our algorithm. The EM randomly selects two genes within a
chromosome and exchanges them. As shown in Figure 6, one chromosome is represented
by string “123456”, and suppose that the second and fifth genes are randomly selected. This
results in new chromosome represented by string “153426” by employing the EM operator.

parent: 1 2 3 4 5 6

offspring: 1 5 3 4 2 6

Figure 6. Illustration of the EM.

4.5. Adaptive Crossover Probability and Mutation Probability

The selections of the crossover probability and mutation probability play a critical role
in the performance of genetic algorithms. Scientific and reasonable probability parameters
can effectively avoid premature convergence of the local optimal solution and improve
the global search performance of genetic algorithms. In traditional genetic algorithms,
the crossover probability and mutation probability are empirical values and are often
fixed and invariant. In order to better screen out outstanding individuals and improve
the search efficiency of global optimal solutions, the genetic algorithm will be optimized
by adjusting the crossover and mutation probabilities dynamically. The fitness values of
individuals in the population are used as important reference indicators for the crossover
and mutation probabilities.

The crossover operation is the most core part of a genetic algorithm, taking responsi-
bility for individual gene recombination. As the only indicator of the strength of crossover
operations, the selection of crossover probability values is crucial. If the crossover prob-
ability value is too large, then although the search space of the algorithm will increase,
the overall efficiency of the algorithm will be affected. If the crossover probability value
is too small, then the algorithm is highly likely to become slow and inefficient, greatly
reducing global search performance. Repeated experiments are required to determine the
crossover probability for different optimization problems, making it difficult to find the
optimal crossover probability suitable for each problem. M. Srinivas et al. proposed an
adaptive genetic algorithm [29] in which the crossover probability is continuously adjusted
according to the fitness values of individuals. In the adaptive genetic algorithm [29], the
crossover probability approaches or equals zero when the fitness of an individual is close
to or equal to the maximum fitness of the population. This is unfavorable for the early
stage of evolution, as the excellent individuals at the early stage remain almost unchanged,
increasing the likelihood of evolution toward a local optimal solution. In order to overcome
this problem, an improved adaptive crossover probability is proposed. For individuals with
the highest or lowest fitness, no crossover operation or complete crossover operation has
been avoided. Instead, the crossover operation is carried out with a specific probability. It
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effectively enhances the role of the crossover operation in maintaining individual diversity
in the algorithm. The adjusted crossover probability is

pc =


k2 + (k1 − k2)

fmax− f
fmax− fmin

,

( f ̸= fmax; f ̸= fmin; 0 ≤ k2 ≤ k1 ≤ 1)
k1, ( f = fmin)

k2, ( f = fmax),

(15)

where pc is the crossover probability, k1 and k2 are certain constants, f is the larger fitness
value between two parents for the crossover operation, and fmax and fmin are the maximum
and minimum fitness values in the population, respectively.

The mutation operation is also an indispensable part of genetic algorithms, ensuring
the diversity of individuals in the population. In mutation operations, the intensity of
mutation operations is represented by the mutation probability. The value of the mutation
probability has a significant impact on the entire algorithm. The mutation probability is
usually small, which can prevent the loss of excellent genes in the population. If the value
is too large, then the algorithm will become a pure random search algorithm and lose its
original characteristics. Similarly, the mutation probability in [29] had the issue of the
mutation probability for individuals with the highest fitness being equal to zero. In the
same way, the adaptive mutation probability is optimized as follows:

pm =


k4 + (k3 − k4)

fmax− f
fmax− fmin

,

( f ̸= fmax; f ̸= fmin; 0 ≤ k4 ≤ k3 ≤ 1)
k3, ( f = fmin)

k4, ( f = fmax),

(16)

where pm is the mutation probability, k3 and k4 are certain constants, and f is the fitness
value of an individual for the mutation operation.

Algorithm 2 demonstrates the detailed process of our proposed TS-based improved
adaptive genetic algorithm. In the working phase, a DAG is derived from the given
precedence constraints (Step 1), and then individuals represented by the chromosomes in
the current population are deduced by employing Algorithm 1 (Step 3). After that, the
fitness values of individuals are estimated (Step 4), and the elitist strategy and roulette
wheel selection mechanism are performed (Step 5 and 6). Finally, the selected parents from
the current population are evolved into offspring for the next generation by using genetic
operators (i.e., reproduction, crossover, and mutation) (Steps 7–9).

Algorithm 2 TS-based improved adaptive genetic algorithm.
INPUT Precedence constraints; GA parameters
OUTPUT Best chromosome
Initialization Phase
1: Population size pop_size, number of generation max_gen;
2: Generate initial population including pop_size individuals randomly.

Working Phase
1: Obtain directed acyclic graph (DAG) from the given precedence constraints;
2: while (no termination criteria) do
3: Obtain the individuals represented by the chromosomes in the population through the priority-based topological sort

scheme (i.e., Algorithm 1);
4: Evaluate fitness of each individual in the population according to the modified objective function;
5: Reproduce best chromosomes of the current generation into the next generation using elitist strategy;
6: Select parents for next generation using roulette wheel selection mechanism;
7: Create new chromosomes (offspring) for next generation through carrying out the PMX operator with adaptive crossover

probability pc ;
8: Create offspring for next generation through executing the EM operator with adaptive mutation probability pm ;
9: Evaluate and determine the new population with population size pop_size.

10: end while
11: Output the best chromosome, together with the corresponding sequence.
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5. Simulation Results

In this section, we conduct extensive simulation experiments to demonstrate the
performance of our proposed TS-based improved adaptive genetic algorithm (TS-IAGA) in
terms of its effectiveness and efficiency.

5.1. Evaluation and Baseline Set-Up

We utilized the following parameter set-up in the simulation unless otherwise stated.
We supposed that charging tasks were uniformly distributed in a 20 m × 20 m square area,
and the energy requirement of the charging tasks ranged from 5 J to 10 J. We set Emc = 50
(task number 6), Emc = 150 (task number 20), or Emc = 400 (task number 50) and q = 0.1,
r = 10, qr = 5, α = 0.5, β = 0.25, γ = 25, η = 50, max_gen = 1000, k1 = 0.9, k2 = 0.7,
k3 = 0.15, and k4 = 0.05. Aside from that, the release time ti

r and deadline ti
d of the charging

task were generated in the range of [0, 20] and [5, 30], respectively. We introduced three
charging schemes for comparison: the TS-based genetic algorithm (TS-GA) [30], earliest
deadline first policy (EDF) [31], and nearest job next with preemption discipline (NJNP) [14].
For the TS-GA, the crossover probability in the gene algorithm is an invariant constant
and fixed throughout the entire crossover operation process, and the same applies for the
mutation probability, which is also constant during the mutation operation. For the EDF,
the MC always serves the node with the earliest deadline. For the NJNP, the nearest node
will be served first by the MC. Moreover, each data point in the following figures stands for
an average result for 100 topologies generated randomly.

5.2. Performance Comparison

In the following subsections, we compare our TS-IAGA with the TS-GA, EDF, and
NJNP in terms of the total completion time considering problems with three different
complexity degrees (i.e., networks containing 6 tasks, 20 tasks, and 50 tasks).

5.2.1. Completion Times for Six Tasks

Our algorithm outperformed the EDF and NJNP by up to 10.53% and 9.70%, respec-
tively, as the generation number increased from 0 to 1000 when there were 6 tasks in
the network. In additon, although the final solution of our algorithm was equal to that
of the comparison TS-GA, our algorithm converged to the final solution earlier than the
TS-GA. The simple network topology was composed of six vertices and six precedence
constraints. In Figure 7, the completion time of the EDF and NJNP remained constant since
the parameter generation number was unrelated to both the EDF and NJNP. In addition,
the completion time of the TS-IAGA dropped off as the generation number increased.
Furthermore, the TS-IAGA converged to the final solution at generation number 26, while
the TS-GA converged after generation number 94. Obviously, the TS-IAGA had a greater
search efficiency than the TS-GA.
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Figure 7. Completion time vs. generation number (task number 6).
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5.2.2. Completion Time for Twenty Tasks

Our algorithm outperformed the TS-GA, EDF, and NJNP by 7.84%, 11.59%, and 10.05%,
respectively, as the generation number increases from 0 to 1000 when there were 20 tasks
in the network. The more complex network topology was composed of 20 vertices and
21 precedence constraints. The variation tendency of the completion time for the four
algorithms is illustrated in Figure 8. As usual, we can see that the completion time of the
EDF and NJNP did not change with varying generations. A little different from Figure 7,
the completion time for the TS-IAGA tended to decrease relatively stably as the generation
number increased. Additionally, the TS-IAGA converged to the final solution at a later
generation (285) in comparison with when there was simply six tasks.
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Figure 8. Completion time vs. generation number (task number 20).

5.2.3. Completion Time for Fifty Tasks

Our algorithm outperformed the TS-GA, EDF, and NJNP by 7.64%, 11.40%, and 8.83%,
respectively, as the generation number increased from 0 to 1000 when there were 50 tasks in
the network. For a larger problem, we considered a network topology with 50 vertices and
68 precedence constraints. As depicted in Figure 9, the completion time of the EDF and NJNP
still remained unchanged regardless of the variation in the generation number. Aside from
that, the trend of the completion time for the TS-IAGA declined at a lower pace when the
generation number increased. Moreover, the TS-IAGA converged to the final solution at an
even later generation (617) compared with the previous results in Figures 7 and 8.
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Figure 9. Completion time vs. generation number (task number 50).
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5.3. Insights

In this subsection, we depict the distribution of the completion times of each individual
in every generation to indicate the performance of our proposed algorithm. In Figure 10, the
red dots denote the poor output results of the TS-IAGA, and yellow dots signify mediocre
output results, while green dots indicate relatively better output results. We set two con-
stant threshold values, FlagValue1 and FlagValue2, which were between the minimum
and maximum completion times, and FlagValue1 was less than FlagValue2. When the
completion time of one individual at a certain generation was less than FlagValue1, the
corresponding dot was colored green, and when the result of one individual was between
FlagValue1 and FlagValue2, the corresponding dot was painted yellow, while a red dot sig-
nifies that the completion time of the corresponding individual was larger than FlagValue2.
It can be observed that the quantity of red dots became lower and lower and the number
of yellow dots did not vary too much, merely becoming slightly lower. With regard to
the amount of green dots, it increased, which further validates the effectiveness of our
proposed algorithm.

Figure 10. Completion times for all individuals vs. generation number (task number 20). Note: The
overall distribution map of population individuals presents the completion times of 50 individuals
at each generation when there were 20 tasks in the network and pop_size was set to 50. One dot
indicates the completion time of one individual at a certain generation. Moreover, red dots denote
relatively poor results, and yellow dots signify mediocre results, while green dots indicate relatively
better results.

6. Conclusions

The key novelty of this paper is that we are the first to raise the issue of scheduling
of wireless charging tasks with precedence constraints in wireless rechargeable sensor
networks. The key contribution of this paper is proposing a TS-based improved adaptive
genetic algorithm and conducting simulations for evaluation under networks of three
different complexity degrees. In order to obtain a unique, feasible sequence satisfying the
precedence constraints in the SCPC problem, we proposed a priority-based topological
sorting scheme. By combining the priority-based topological sorting scheme with the
procedure of an improved adaptive genetic algorithm, we searched for the optimal sequence
iteratively. Moreover, we constructed the modified fitness objective function by adding
penalty terms to tackle the additional constraints. Our evaluation results show that in
terms of completion time, our proposed algorithm outperformed the three comparison
algorithms by up to 11.59%.
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Abbreviations
The following abbreviations are used in this manuscript:

Symbol Meaning
MC Mobile charger
BS Base station
vi Sensor (node) i
τi, T The ith charging task, task set
n Number of charging tasks
Ei Required charging energy of charging task τi
ti
r Release time of charging task τi

ti
d Deadline of charging task τi

ti
w Waiting time of MC at node vi

dij Distance between nodes vi and vj
r Traveling speed of MC
Emc Battery capacity of MC
qr Energy receiving rate of node
q Energy consumption rate of MC per unit length
η Energy consumption of MC for transferring one unit of energy to node
Ai Arrival time of MC at node vi
pc Adaptive crossover probability
pm Adaptive mutation probability
pop_size Population size
max_gen Number of generation
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