
Citation: Park, J.; Shin, J.; Kim, R.; An,

S.; Lee, S.; Kim, J.; Oh, J.; Jeong, Y.;

Kim, S.; Jeong, Y.R.; et al. Accelerating

Strawberry Ripeness Classification

Using a Convolution-Based Feature

Extractor along with an Edge AI

Processor. Electronics 2024, 13, 344.

https://doi.org/10.3390/

electronics13020344

Academic Editor: Arkaitz Zubiaga

Received: 9 December 2023

Revised: 5 January 2024

Accepted: 11 January 2024

Published: 13 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Accelerating Strawberry Ripeness Classification Using a
Convolution-Based Feature Extractor along with an
Edge AI Processor
Joungmin Park , Jinyoung Shin , Raehyeong Kim , Seongmo An , Sangho Lee , Jinyeol Kim ,
Jongwon Oh , Youngwoo Jeong , Soohee Kim , Yue Ri Jeong and Seung Eun Lee *

Department of Electronic Engineering, Seoul National University of Science and Technology,
Seoul 01811, Republic of Korea; parkjoungmin@seoultech.ac.kr (J.P.); shinjinyoung@seoultech.ac.kr (J.S.);
kimraehyeong@seoultech.ac.kr (R.K.); ahnseongmo@seoultech.ac.kr (S.A.); leesangho@seoultech.ac.kr (S.L.);
kimjinyeol@seoultech.ac.kr (J.K.); ohjongwon@seoultech.ac.kr (J.O.); jeongyoungwoo@seoultech.ac.kr (Y.J.);
kimsoohee@seoultech.ac.kr (S.K.); jeongyueri@seoultech.ac.kr (Y.R.J.)
* Correspondence: seung.lee@seoultech.ac.kr; Tel.: +82-2-970-9021

Abstract: Image analysis-based artificial intelligence (AI) models leveraging convolutional neural
networks (CNN) take a significant role in evaluating the ripeness of strawberry, contributing to the
maximization of productivity. However, the convolution, which constitutes the majority of the CNN
models, imposes significant computational burdens. Additionally, the dense operations in the fully
connected (FC) layer necessitate a vast number of parameters and entail extensive external memory
access. Therefore, reducing the computational burden of convolution operations and alleviating
memory overhead is essential in embedded environment. In this paper, we propose a strawberry
ripeness classification system utilizing a convolution-based feature extractor (CoFEx) for accelerating
convolution operations and an edge AI processor, Intellino, for replacing FC layer operations. We
accelerated feature map extraction utilizing the CoFEx constructed with systolic array (SA) and
alleviated the computational burden and memory overhead associated with the FC layer operations
by replacing them with the k-nearest neighbors (k-NN) algorithm. The CoFEx and the Intellino both
were designed with Verilog HDL and implemented on a field-programmable gate array (FPGA).
The proposed system achieved a high precision of 93.4%, recall of 93.3%, and F1 score of 0.933.
Therefore, we demonstrated a feasibility of the strawberry ripeness classification system operating in
an embedded environment.

Keywords: system-on-chips(SoC); hardware accelerator; artificial intelligence (AI); convolutional
neural network (CNN); systolic array (SA)

1. Introduction

Recently, AI technologies have undergone rapid development, bringing significant
changes to the field of agriculture. Research and applications utilizing AI to enhance
agricultural productivity and promote sustainable farming practices have emerged di-
versely [1–3]. Within the domain of AI applications, image analysis models assume a
critical role in shaping agricultural production and management. Image-based AI models
contribute significantly to discerning the state of crops and evaluating the ripeness of fruits,
thereby predicting the optimal harvesting time to maximize productivity [4–6]. Particularly,
accurately measuring the ripeness of fruits in this field is emphasized as a key task in
the modern agricultural paradigm to optimize yield and resource utilization. Strawber-
ries, being a representative crop, enable the evaluation of ripeness levels based on color.
Strawberries are economically valuable fruits due to their sweet taste and rich nutritional
content [7,8]. The flavor and market impact of strawberries are significantly influenced
by their degree of ripeness. A more advanced level of ripening results in distinct taste

Electronics 2024, 13, 344. https://doi.org/10.3390/electronics13020344 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13020344
https://doi.org/10.3390/electronics13020344
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-5570-2400
https://orcid.org/0009-0009-1069-2454
https://orcid.org/0009-0000-6706-4840
https://orcid.org/0009-0006-1823-3162
https://orcid.org/0009-0004-7197-4029
https://orcid.org/0009-0000-4706-0121
https://orcid.org/0009-0004-1153-0020
https://orcid.org/0000-0003-1002-5482
https://orcid.org/0000-0001-8741-1643
https://orcid.org/0009-0007-7846-5026
https://orcid.org/0000-0003-3817-4383
https://doi.org/10.3390/electronics13020344
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13020344?type=check_update&version=1

Electronics 2024, 13, 344 2 of 19

variations and has considerable implications for distribution. For these reasons, evaluating
the appropriate ripeness of strawberries is essential as it enhances the marketability and
economic viability of the fruit through timely harvesting [9].

To harvest strawberries at the right time, the characteristics of strawberries must be
accurately extracted and classified according to their ripeness. Specifically, finding unique
patterns or structures within images is crucial for extracting appropriate features from
the images. Traditional methods for feature extraction include algorithms such as scale-
invariant feature transform (SIFT), speeded-up robust features (SURF), and features from
accelerated segment test (FAST). SIFT is an algorithm that detects features in an image
that are invariant to scale and rotation [10]. SURF improves upon SIFT, providing faster
processing speeds [11]. FAST is a computer vision algorithm that rapidly detects corners
in an image, identifying keypoints based on intensity differences between central and
neighboring pixels [12]. However, deep learning (DL), which automatically learns features
from large amounts of data and is applicable to various complex tasks, has demonstrated
higher performance and versatility compared to traditional feature extraction methods.

Among DL models for image analysis, CNN models especially demonstrate excellent
performance in extracting features and learning from images, making them effective in
analyzing images in complex agricultural environments [13]. The CNN model consists
of a combination of a convolution layer, responsible for extracting feature maps, and an
FC layer, which performs the final classification based on the extracted feature maps.
In the convolution layer, kernels are applied using small windows to perform convolution
operations, extracting various feature maps from the input image. During this process,
each kernel effectively captures features related to the relationships between pixels within
the window, revealing information about local patterns, edges, textures, and more [14].
In the FC layer, a flattened feature vector is typically received as input. In this process,
the locally extracted multi-channel feature map data from convolution layer is flattened
into a single-channel feature vector. This flattened vector is connected to the neurons in the
FC layer, where each neuron corresponds to a specific feature. Based on this connectivity,
the model learns global patterns of the input image, leading to the final classification [15].

In CNN models, convolution operations constitute a significant portion of the overall
computation. Equation (1) represents the feature map, expressed as the cumulative sum
of the product between weights and input vectors. Here, i and j denote the positions of
the output feature map, M and N represent the kernel size, and C indicates the number
of channels in the input image. The convolution operations, especially in AI processors
that demand high performance, require significant computational resources. Therefore,
the developments of convolution operation accelerators have emerged as crucial topics in
the field [16]. In particular, the CNN accelerator utilizing stochastic computing (SC-CNN)
has achieved energy efficiency and performance improvement by introducing probabilistic
bit representation and highly parallelized methods [17,18]. Additionally, binary neural
networks (BNN) are known for limiting weights and activations to binary values, making
them suitable for edge devices with low power consumption and resource requirements.
BNN contributes to improving latency and throughput performance of specific hardware
models by binarizing the network [19,20].

Feature map(i, j) =
M−1

∑
m=0

N−1

∑
n=0

C−1

∑
c=0

Input(m, n, c) ∗ Kernel(i − m, j − n, c) (1)

However, the CNN accelerators primarily emphasize convolution operations, necessi-
tating consideration for operations in the FC layer. As the depth of deep neural networks
(DNN) increases, in the FC layer, there are numerous parameters that need to be accessed
from external memory to perform extensive weight multiplication operations for millions
of parameters [21,22]. Furthermore, the FC layer is to be challenging compared to accel-
erating convolution layer, especially in achieving high data reuse performance. These
requirements lead to issues such as speed degradation due to external memory access and
memory overhead arising from the substantial volume of parameters stored in external

Electronics 2024, 13, 344 3 of 19

memory [23]. Especially in embedded systems, limited memory resources, and compu-
tational performance become obstacles to performing FC layer operations. Additionally,
the massive computational volume of the FC layer hinders efficient power consumption
and management in embedded systems. To address these challenges, various methods have
been proposed, including techniques based on the utilization of statistics from extracted
feature maps to reduce power consumption and approaches employing the k-NN algo-
rithm [24]. Especially, the k-NN algorithm demonstrates robust performance, particularly in
small-scale datasets, and is efficient in terms of both memory and computational resources
due to its concise and intuitive structure. Furthermore, the k-NN algorithm performs
relatively fewer computations compared to the FC layer, which involves multiplication
operations with weights for numerous nodes. Therefore, the algorithm notably enhances
performance and efficiency, especially on edge devices, where optimizing limited resources
is paramount [25].

In this paper, we utilized a CoFEx, which performs convolution operations, to ef-
ficiently extract feature maps. The CoFEx is based on the SA architecture, efficiently
performing matrix and vector operations for rapid convolution execution. The SA archi-
tecture processes data in parallel as it flows along fixed-sized matrix blocks, allowing for
efficient computation. This architecture allows for high-dimensional parallel processing
of data while maintaining computational efficiency [26]. Notably, the CoFEx contributes
to minimizing performance degradation during the convolution operation by facilitating
the efficient reuse of weight data. Additionally, we utilized an edge AI processor, Intellino,
employing the lightweight k-NN algorithm for image classification based solely on feature
maps. The k-NN algorithm performs classification and regression tasks based on the prox-
imity of feature vectors. This algorithm, primarily employed for estimating the class of
specific data points, operates mainly by utilizing distance measurement techniques and
determining predicted values through majority voting or averaging principles [27].

The main contributions of this paper are as follows:

• Designing and verifying the CoFEx for accelerate convolution layer operations.
• Replacing the FC layer with the AI processor, Intellino, to perform classification tasks

with fewer computations.
• Implementation and analysis of the proposed system consisting of the CoFEx and

AI processor.

This paper consists of the following. Section 2 introduces related works about the
strawberry ripeness classification systems. Section 3 elucidates the proposed overall system
architecture and the detailed aspects of the CoFEx and the AI processor, Intellino, based on
the k-NN algorithm. Section 4 presents the implementation of the proposed system and
discusses the analysis results. Section 5 compiles our system and draws conclusions.

2. Related Work

With the development of AI, sensor technology, and computer vision technology,
research has been conducted to apply these technologies to the agricultural field, such
as smart farms, to create high added-value [28–35]. In particular, for the system that
determines the ripeness of fruits, many studies have been carried out utilizing AI and
computer vision technology, as it is often necessary to judge the ripeness by external factors
such as color, shape, etc. [28–30].

In [28], a system was proposed to estimate the ripeness of Hass avocados with hy-
perspectral imaging (HSI) and DL. A camera with a spectral resolution of 1.3 nm was
employed to obtain hyperspectral images, and a total of 551 avocado images were obtained.
The 44,096 sub-images obtained from the avocado images were used for training and testing
the CNN to determine the number of days left until the avocado ripens, and an average
of 1.17 days of root mean squared error (RMSE) was obtained. In [29], a system capable
of object detection of Cavendish bananas and Carabao mangoes with the you only look
once (YOLO) algorithm and determining the ripeness of the fruits with a support vector
machine (SVM) is shown. With 33 test images, the system’s overall accuracy regarding its

Electronics 2024, 13, 344 4 of 19

classification of ripeness to the fruit subjects is 90.9%. Meanwhile, in addition to research
on systems employing AI and computer vision technology, there are also studies using
new sensors. In [30], a tactile-based sensor was used to determine the ripeness of fruit.
The ripeness was estimated by developing a low-cost, lithography-free, highly sensitive
and flexible capacitive tactile sensor to measure the firmness and stiffness of the fruit,
and it was confirmed that the capacitance of the sensor varies depending on the stiffness
of tomatoes.

Strawberries have been widely employed in many studies as a fruit for ripeness
detection research based on computer vision technology due to their distinct color changes
depending on the degree of ripeness [31–35]. The authors in [31] utilized the YOLOv7 model
for object detection and ripeness measurement of strawberries. They also visualized the
location and ripeness with augmented reality (AR) technology. The ripeness of strawberries
was divided into ‘Unripe’, ‘Partially Ripe’, and ‘Ripe’, and the performance of the model
was improved by preventing overfitting through data augmentation. A total of 2900 images
were set for training and validation, and the accuracy of ripeness prediction had an F1 score
of 0.92. In [32], a two-path model that learns the coordinates of the stalk while learning
the ripeness utilizing semantic segmentation was proposed. The model was designed
based on VGG16, and the highest accuracy was 90.33%. In [33], a method of measuring
strawberry ripeness by extracting RGB features and utilizing the k-NN algorithm was
proposed. The authors measured the ripeness using the k-NN algorithm by inputting
representative values calculated from features such as component values, area features,
roundness, slenderness, etc., extracted from the RGB data of the image. As a result of
training with a total of 30 images and testing with 20 images, it showed a ripeness prediction
accuracy of 85%. In [34], a multiclass SVM with a radial basis function (RBF) kernel was
utilized. The proposed system consisted of an image resizing process to reduce execution
time and memory usage, RGB to HSV converting, feature extraction represented by the
average value of RGB, and classification with the SVM. The maximum accuracy of the
system was 85.64%. In [35], a ripeness detection system that combines semantic graphics for
data annotation with a fully convolutional neural network (FCN) made up of an encoder
and an expanding decoder was proposed, showing an average ripeness prediction accuracy
of 88.57%. Table 1 displays the comparison of related works regarding strawberry ripeness
estimation mentioned above.

Table 1. The comparison of related works in strawberry ripeness prediction.

Source Proposed Approach Accuracy Pros Cons

[31]

(1) Combination of YOLOv7 and
AR to detect and visualize the
ripeness of strawberries.
(2) Multiscale training of YOLO
to overcome challenges in de-
tecting small objects.

F1 score of 0.92
It has proven superior perfor-
mance compared to other state-
of-the-art methodologies.

It is not suitable for embedded
environments because there are
many computing elements.

[32]

(1) The ripeness of strawberries
is detected with a semantic seg-
mentation model.
(2) To reduce parameters of the
model, a two-path convolution
method was proposed.

90.33%
The two-path convolution
method effectively reduced the
number of parameters.

The amount of strawberry im-
age data is small, and the diver-
sity is insufficient.

Electronics 2024, 13, 344 5 of 19

Table 1. Cont.

Source Proposed Approach Accuracy Pros Cons

[33]

(1) RGB feature extraction: to ob-
tain the color information of straw-
berry images, the paper calculates
the mean and standard deviation
of each color component.
(2) The k-NN algorithm was used
to classify the strawberry images
into ripeness categories.

85% The amount of computation is low
compared to other methods.

RGB features alone cannot com-
pletely distinguish the degree of
ripening of strawberries.

[34]

(1) SVM with RBF kernel function
is used to classify the ripeness.
(2) A prototype of the straw-
berry classification system was
constructed with real-time video.

85.64% SVM is a simple and lightweight
classification method.

The number of categories that can
be classified with RBF kernel is
limited.

[35]

(1) Semantic graphics for data an-
notation: use simple graphic ele-
ments to display the quantity and
ripening of strawberries.
(2) FCN is utilized to recognize
and learn semitangible graphics.

88.57% Desired targets can be efficiently
tagged with semantic graphics.

The external characteristics of
strawberries are not fully repre-
sented.

3. System Architecture

Figure 1 illustrates the overall system architecture that we propose for classifying
multi-channel strawberry images according to their ripeness. The proposed system consists
of the CoFEx, which extracts features; the Intellino, an edge AI processor based on the
k-NN algorithm for classifying ripeness utilizing the extracted feature mapsl; and the mi-
cro controller unit (MCU), which controls the CoFEx and the AI processor. The MCU
communicates with both the CoFEx and the AI processor through the synchronous serial
communication protocol, serial peripheral interface (SPI), controlling the learning and
inference states of both modules. Furthermore, the external memory serves as a repository
for extensive parameters and feature map data, supplying them to the CoFEx as required.

Figure 1. The overall architecture of the strawberry ripeness classification system.

The CoFEx accelerates the convolution layer operations of a pre-trained CNN model,
efficiently extracting features from strawberry images. The extracted feature maps are
provided as input to the AI processor, Intellino. The AI processor based on the k-NN
algorithm classifies the ripeness of strawberry images into categories such as ‘Green’,
‘Initially Red’, ‘Partially Red’, and ‘Fully Red’. The MCU utilizes SPI communication to

Electronics 2024, 13, 344 6 of 19

transmit pre-trained CNN model parameters and layer information to the CoFEx according
to predetermined instructions. Additionally, the MCU conveys the feature map data
extracted by the CoFEx to the Intellino to determine the ripeness of strawberries. Through
this, a harmonious interaction among the CoFEx, the AI processor, and the MCU is achieved,
enabling the effective operation of the entire system.

3.1. CoFEx

Figure 2 shows the block diagram of the CoFEx. The CoFEx is broadly divided into
the CoFEx Interface section and the CoFEx Operator section. The CoFEx Interface section
is comprised of an SPI Slave, responsible for communication with the external system,
and an Instruction Decoder that interprets commands received through SPI communi-
cation. Through this, the Interface section efficiently communicates with the external
system and processes commands. The CoFEx Operator section includes a Layer File for
storing CNN model layer information and a Layer File Controller to ensure that layer
information is stored and operates in the correct order. Furthermore, the Operator section
comprises the CoFEx Scheduler to control operations related to the required convolution
layer, a convolution processing accelerator3x3 (CPA3x3) for performing convolution oper-
ations, and various setup units to configure parameters and result data appropriately in
different situations.

Figure 2. The block diagram of the CoFEx.

The Layer File contains various information related to each layer of the CNN model
received through instructions. The information for each layer, including address point-
ers for weight, bias, feature map, and result, is flexibly modified by the user as needed
through instructions. This allows for adaptability to various CNN models, enabling swift
adjustments to changes in the model. The CoFEx Scheduler, based on the information
from the layer file, determines the operational status of various functions. Additionally,
the CoFEx Scheduler, driven by an internal state machine, enables each setup unit and
convolution accelerator to operate sequentially. The CPA3x3, a critical component of the
CoFEx, efficiently performs the frequently used 3 by 3 convolution operations in CNN
models. The CPA3x3 consists of a CPA3x3 Controller, SA-based processing elements (PE),
and a 3-Input Adder that sums the results outputted from the PEs. The CPA3x3 Controller
regulates the movement of input and output as well as internal partial sum data within the
accelerator to ensure the smooth operation of the dataflow in the SA. The SA-based PEs
have a specialized architecture tailored for nine-sized weights, with all internal PE statically
arranged to support high-speed convolution operations. The 3-Input Adder simultaneously
adds three 32-bit floating-point data outputs generated by the PEs.

Electronics 2024, 13, 344 7 of 19

The bias setup unit (BSU), the result setup unit (RSU), the feature map setup unit
(FSU), and the weight setup unit (WSU) are controlled by the CoFEx scheduler. These
setup units efficiently set the data required for convolution layer operations. Additionally,
the setup units fetch information from external memory, store it in internal block memory,
and transmit data from the CPA3x3 utilizing first-in first-out (FIFO) under appropriate
circumstances. The data are received from the CPA3x3 as needed. Finally, the Memory
Interface, through the Instruction Decoder, either directly transfers data like parameters to
External Memory or fetches data from External Memory in block units as required by the
setup units. This approach allows the setup units to efficiently manage data, and facilitates
effective data transfer between external memory and the accelerator, supporting optimal
system operation.

3.1.1. Finite-State Machine of the CoFEx

The CoFEx is designed to efficiently handle diverse functionalities required in con-
volution layer, encompassing not only convolution operations but also various functions
like zero padding, max pooling, bias addition, and activation function. These various
functionalities are operationalized by the CoFEx FSM implemented within the CoFEx
scheduler, based on the configuration information of each layer stored in the Layer File.
The CoFEx FSM governs CPA3x3 and setup units to facilitate the sequential execution of
individual functionalities.

Figure 3 represents the architecture of the CoFEx FSM. && represents and operation,
and || represents or operation as logical operators. Before the operation commences,
the CoFEx Scheduler sets the state of various function bits based on the layer configura-
tion information stored in the Layer File. The function bits include func_padd, func_bias,
and func_pool. These bits indicate whether zero-padding is performed, whether bias is used,
and whether the max-pooling function is activated, respectively.

Figure 3. The state diagram of the CoFEx .

In the initial state, zero-padding is determined based on the cpa_strt signal and the
func_padd bit. Upon performing zero-padding, zero data are added to the feature map
data at both the front and back before being inputted into CPA3x3. Subsequently, as the
operation progresses, in the load weight block (LWB) state, the WSU loads a weight block
of input channel size from external memory. Moreover, depending on the state of the

Electronics 2024, 13, 344 8 of 19

func_bias bit, the BSU either fetches the bias block or progresses to the load fmap block
(LFB) state. In the LFB state, the FSU fetches one channel data from the input channels of
the feature map in blocks, starting from the top three rows. Following that, in the conv state,
convolution operations are performed on the portions corresponding to the top three rows.
If the func_pool state is not ‘1’, the CoFEx FSM reverts to the LFB state to fetch the feature
map block of another single channel. Upon completing the partial convolution operation
for the input channels utilizing this method, the conv_cplt signal is generated, and the FSM
transitions to the save result block (SRB) state. In the SRB state, the RSU transfers the
computation results to external memory. As the convolution for the input channels is not
yet completed, FSM returns to the LFB state based on the rsu_cplt signal. Subsequent to
the completion of convolution operations for all input channels, the transition to the LWB
state is triggered by the rsu_cplt signal. The WSU loads the weight block corresponding to
the next input channel size, and this iterative process continues. Furthermore, upon the
completion of convolution operations for all input channels, a return to the IDLE state is
triggered by the cpa_cplt signal.

In the func_pool state was ‘1’, the iterative sequence of the CoFEx FSM undergoes a
slight modification. The convolution operation for a single channel continues to iterate
until the pool_cplt signal occurs, regardless of the completion of partial convolution for
that channel. In the iterative operation process, for the purpose of max pooling, the larger
data are selectively stored in the temporary register inside the RSU by comparing the sizes
of data in pairs. This process repeats twice, and the results are compared with the data
stored in the temporary register inside the RSU. The larger data are then saved again in the
temporary register. The data stored in the temporary register undergo a transition to the
SRB state following the pool_cplt signal, facilitating the RSU in transmitting the respective
data to the external memory.

3.1.2. Systolic Array Architecture of PEs

In DL models, a large number of repetitive convolution operations are performed to
effectively extract feature maps from multichannel images. In particular, these convolution
operations are crucial for detecting and extracting various features in large-scale image
datasets. Convolution operations require repetitive multiplication and addition, making
bottleneck issues prone to occur in traditional von Neumann architectures. To overcome
these limitations, SA is gaining attention for its effective hardware acceleration structure in
DL models, maximizing parallelism and efficiently processing diverse matrix operations at
high speeds [26,36]. Therefore, we accelerated the convolution operations performed in the
CoFEx by leveraging the SA architecture.

The SA architecture is organized with PE arranged in a regular array, where each PE
cell operates in parallel, systematically processing specific portions of the matrix. Figure 4
illustrates the arrangement of PE and the overall SA architecture in our proposed system.
Each PE stores weight values internally in advance and performs multiplication operations
as needed with input feature map data. Furthermore, the results of the multiplication
operations are combined with partial sums generated by neighboring PEs through addition,
and then communicated back to the surrounding PEs. Both the multiplication and summa-
tion operations within the PE adhere to IEEE-754 half-precision floating-point arithmetic,
utilizing 32-bit precision.

The SA architecture is a specialized form of data processing where multiple data
elements move simultaneously in a specific direction, and each PE along the path performs
the same operation in parallel. This architecture allows for efficient reuse of data according
to the dataflow, minimizing computational bottlenecks and achieving high performance.
Especially in SA, various dataflow methods exist, with weight stationary (WS), output
stationary (OS), and input stationary (IS), among others, being representative examples [37].
These dataflow methods differ in how operations are conducted based on the movement
of data. WS denotes the method in which data move while weights are fixed, OS denotes
the method in which data move while output is fixed, and IS denotes the method in which

Electronics 2024, 13, 344 9 of 19

data move while input is fixed. Selecting the suitable method from these diverse dataflow
approaches is a key strategy in crafting an SA architecture optimized for specific operations.

Figure 4. (a) Architecture of the PE. (b) Architecture of the SA.

Figure 5 illustrates the dataflow of the SA used in our proposed system, as well as the
dataflow of the conventional WS method. The proposed dataflow, an improved version
of the traditional WS method, is specifically optimized for convolution layer operations.
By storing the weights from the opposite end of the feature map input, the operation,
facilitated by the SA, systematically produces results consecutively along a specific column
direction. The proposed dataflow enhances performance by minimizing clock waste at the
input and output stage of the SA. Furthermore, we added a three-input adder to the output
stage of the SA architecture, combining the output of three partial sum results before the
final output. This dataflow enables the CoFEx to process convolution layer operations more
efficiently and continuously.

Figure 5. (a) Dataflow of the conventional WS method. (b) Dataflow of the proposed system method.

3.2. AI Processor, Intellino

Figure 6 illustrates the architecture of the AI processor, Intellino, employed in the
proposed system [38]. The Intellino is an AI processor designed for embedded systems,
featuring low power consumption and efficient resource utilization based on the k-NN
and radial basis function-neural network (RBF-NN) algorithms. The architecture employs
parallelized neurons in a single neural network, enabling simultaneous and efficient large-
scale recognition while reducing the workload on the system.

Electronics 2024, 13, 344 10 of 19

Figure 6. The architecture of the AI processor, Intellino.

The AI processor, Intellino, comprises the Interface and Operator components. The In-
terface, facilitating data exchange with external sources, consists of the Data Transceiver,
the finite-state machine (FSM), and the Instruction Encoder. The Data Transceiver receives
datasets for learning and recognition or instructions from external sources. The FSM inter-
prets the received data according to a specific protocol. The Instruction Encoder encodes
interpreted data and transmits the encoded information to the Operator. The Operator,
consisting of the Instruction Decoder, Neuron Core, and Classifier, performs learning and
recognition tasks based on the input data. The Instruction Decoder processes encoded in-
formation, including data, category, distance, write and read signals, and algorithm details,
directing the operation of the Neuron Core accordingly. The Neuron Core comprises a
Scheduler and parallel-connected Neuron-cells(N-cell). Each N-cell has a vector memory,
storing training data and corresponding categories during learning. In recognition tasks,
the Neuron Core computes the distance between the input data and the data stored in the
vector memory of each N-cell. This distance calculation is performed for all trained N-cells,
and the results are sent to the Classifier. The Classifier, using the user-selected k-NN or
RBF-NN algorithm, determines the category of the input data based on the N-cell with the
smallest distance. As the number of N-cells increases, the required number of memory also
significantly grows. Therefore, the selection of an appropriate vector size and N-cell count
depends on the data size of the desired model and hardware design specifications.

However, the AI processor, Intellino, has limitations in terms of the number of N-cells
required to train a large amount of data, limiting the quantity of learnable data. Therefore,
efficient utilization of memory size through effective learning is crucial. The AI processor
exhibits limitations in handling continuously evolving data over time due to the absence
of parameters capturing the temporal correlation between past and present input data.
Hence, for sequential data classification such as sound analysis, preprocessing methods are
crucial, and the classification performance is significantly influenced by how preprocessing
is conducted [39,40]. The AI processor, which excels in the classification of single-channel
vector data, is well-suited for creating classification models through image processing,
such as determining parking feasibility and detecting human movement, leveraging the
advantages of k-NN [41,42]. But, the AI processor is disadvantageous in directly analyzing
and classifying information from multichannel input data. In this paper, to overcome
the limitations of the AI processor, we trained and inferred the AI processor utilizing
only the feature map data extracted through the convolutional operations-based CNN
model. Through this approach, we effectively acquired a training dataset, reduced the
memory requirements for the AI processor’s learning process, and enhanced the inference
performance for multichannel images.

Electronics 2024, 13, 344 11 of 19

4. Implementation and Analysis

To assess the performance of the proposed system without causing any harm to the
actual system, we initially conducted software simulations by simulator before proceed-
ing with the implementation [43]. We subsequently implemented a strawberry ripeness
classification system incorporating the CoFEx and the AI processor, Intellino. Figure 7
illustrates the overall system flow, encompassing parameter learning, parameter setting,
feature extraction, and result inference. We curated a dataset for training and inference
purposes by directly capturing strawberry images from agricultural settings. We directly
gathered strawberry images from a strawberry farm and curated a dataset for training
and inference purposes. The gathered strawberry image dataset was categorized into
four classes based on ripeness: ‘Green’, ‘Initially Red’, ‘Partially Red’, and ‘Fully Red’,
comprising 829, 171, 90, and 871 images, respectively.

Figure 7. The overall system flow, encompassing both the training and inference processes.

Data augmentation is an essential method to overcome the performance degradation
caused by limited datasets and to avoid over-fitting [44]. Employing data augmentation
techniques, we expanded the dataset to a total of 18,000 instances. We utilized the OpenCV
library to perform augmentation techniques on images, including flipping horizontally
and vertically, rotating randomly within the range of −30 to 30 degrees, and adjusting
brightness. These image augmentation techniques were applied randomly to enhance the
dataset, and multiple augmentations were applied to each image. The augmented images
were segregated into two distinct sets for experimentation, 8000 images for training the
CNN model and the AI processor, and an additional 10,000 images dedicated to feature
extraction and result inference.

In the process of training CNN model, we employed the PyTorch library, a Python-
based open-source machine learning framework, to train a CNN model with appropriately
designed layers. The trained CNN model utilized kernels to extract feature maps. Subse-
quently, we applied the layer information and parameter data from the trained model’s
convolution layer to the CoFEx. In the process of training Intellino, we initiated the proce-
dure by randomly selecting data from the training dataset, which was originally utilized
for training the CNN model. The selection of data was based on the required number
of cells that the AI processor would be trained on. The CoFEx with appropriate layer
information extracted feature maps in 32-bit floating-point format. The extracted map data
were quantized into an 8-bit integer format and applied to the training of the AI processor
as a one-dimension feature vector. In the inference process, we utilized the test dataset
to perform the same quantization of the feature map data extracted from the CoFEx into

Electronics 2024, 13, 344 12 of 19

an 8-bit feature vector. Subsequently, the AI processor inferred the strawberry ripeness
classification category based on this vector.

4.1. Implementation

Figure 8 illustrates the hardware experimental environment for our proposed straw-
berry classification system. The proposed system consists of the CoFEx,the AI proces-
sor Intellino, and an MCU. We implemented the CoFEx on the Intel FPGA (Cyclone IV:
EP4CE115F29C7N) embedded in the development board, and implemented the AI proces-
sor on the Intel FPGA (MAX 10: 10M50SAE144C8G). The CoFEx and AI processor were
designed utilizing Verilog HDL. Both modules are interfaced with the MCU through gen-
eral purpose input/output (GPIO), and communication with the MCU is established using
the SPI protocol. Also, we employed a Python-based simulator to conduct simulations
under various conditions for constructing a system model suitable for strawberry ripeness
classification. Through the simulator, we conducted a performance analysis of the classi-
fication system based on the layer configuration of an appropriate CNN model and the
memory size of the AI processor. Leveraging the system under optimized conditions, we
conducted functional validation of the strawberry ripeness classification system utilizing
feature maps in the implemented environment.

Figure 8. The experimental environment of the FPGA implementation.

To validate the functionality, we pre-emptively applied the suitable CNN modeled sys-
tem, obtained through simulation, into the implemented hardware system and proceeded
with experiments. The proposed system was trained and inferred on four categories of
strawberry ripeness, ‘Green’, ‘Initially Red’, ‘Partially Red’, and ‘Fully Red’. The inference
results included the feature map data information list extracted through the CoFEx, the dis-
tance result value and the category value from the AI processor, and performance metrics
such as the F1 score. We validated the utility of our system by the performance metrics and
the memory size used during the inference process. Furthermore, we confirmed that the
CoFEx, which bears a substantial computational load, has an operation processing time
of 495 milliseconds at a clock speed of 50 MHz. Additionally, the total execution time of
our proposed system took 533 milliseconds, during which the input image passed through
the CoFEx to generate a feature vector, traversed MCU, and was transmitted to the AI
processor for the inference of ripeness.

Figure 9 illustrates the result of the implementation of the input images for inference,
the feature vector extracted through convolution layer operations, and the classified results.
All input images have undergone the data augmentation process. The size of the extracted
feature vector is 16, and this vector is input into the k-NN algorithm. Ultimately, the ripeness
is determined by classifying the category associated with the closest distance value obtained
through a simple subtraction operation.

Electronics 2024, 13, 344 13 of 19

Figure 9. The implementation results.

4.2. Analysis

The performance assessment of our proposed strawberry ripeness classification system
involved evaluating its suitability through key performance metrics, namely the average
precision, recall, and F1 score for each classification category. Equation (2) represents
the formula for calculating the F1 score. Precision is the proportion of true positive (TP)
samples among those predicted as positive, with a focus on minimizing false positives
(FP). Recall represents the proportion of TP samples among those that are actually positive,
emphasizing the reduction of false negatives (FN).

F1 score = 2 × Precision × Recall
Precision + Recall

(2)

The F1 score is a metric that measures how harmoniously precision and recall are com-
bined through their harmonic mean. Additionally, the F1 score measures how accurately
the positive class is identified and how well the model detects samples belonging to the
positive class. Therefore, we conducted an analysis of our system’s performance in specific
contexts based on these metrics.

4.2.1. Comparison Based on Model Depth and Thickness

To analyze the proposed system, we conducted experiments based on the depth and
thickness of CNN model layers, as well as analyses of memory size and computational
methods. Firstly, we divided the models based on the depth of the network, with a rela-
tively deep CNN model (Model5) composed of five convolution layers and a relatively
shallow CNN model (Model4) composed of four convolution layers. Furthermore, each ex-
perimental model was separated into three categories; the Fat model, which has operations
for a relatively large number of channels; the Normal model, with an intermediate number
of channels; and the Thin model, with fewer channels. Figure 10 shows the architecture of
Model5 and Model4 and Table 2 provides detailed information about the input and output
channel configurations for each layer in Model5 and Model4, categorized by their thickness.

Figure 10. (a) The architecture of Model5. (b) The architecture of Model4.

Electronics 2024, 13, 344 14 of 19

Table 2. The input/output channel configurations in Model5 and Model4.

Channel: (Input, Output) Layer1 Layer2 Layer3 Layer4 Layer5

Model5
Fat (3, 16) (16, 16) (16, 16) (16, 16) (16, vector size)

Normal (3, 8) (8, 16) (16, 16) (16, 8) (8, vector size)
Thin (3, 8) (8, 8) (8, 8) (8, 8) (8, vector size)

Model4
Fat (3, 16) (16, 16) (16, 16) (16, vector size) -

Normal (3, 8) (8, 16) (16, 16) (8, vector size) -
Thin (3, 8) (8, 8) (8, 8) (8, vector size) -

To assess the comparative performance of the models, we conducted an evaluation
based on the total average F1-score (TAF) metric. The TAF represents the average F1
score for each model, ranging from 4 to 2048 cells and with vector sizes varying from
4 bytes to 64 bytes. Figure 11 shows the TAF values corresponding to the structures of each
model. The relatively deep Models5 generally achieved TAF values of 0.9 or higher, while
the comparatively shallow Model4 had a maximum TAF of around 0.85. Additionally,
Model5 showed approximately 7% to 11% higher TAF compared to Model4 under similar
conditions. Hence, we concluded that deeper models are more meaningful. Within Model5,
a comparison of TAF values based on channel thickness, the Fat model with thicker channels
exhibited a relatively higher TAF value of 0.927 compared to the Normal and Thin models
with relatively thinner channels. In conclusion, we determined that the Model5-Fat is the
most suitable model.

Figure 11. The TAF values corresponding to the structures of each model.

4.2.2. Comparison According to Model Memory Size

Table 3 for experimental results show Memory, Precision, Recall, and F1 score for various
quantities of cells ranging from 4 to 2048 and vector sizes from 4 to 64 bytes. In this case,
Memory refers to the memory required for the AI processor, specifically the product of the
cell and vector sizes. Additionally, Precision, Recall, and F1 score refer to precision, recall,
and F1 score under the specified conditions. The vector size is associated with the extracted
feature map and later with the number of parameters in the FC layer constructed afterward.
Therefore, we represented the number of parameters in FC layers as FC layer parameter.
Additionally, we conducted experiments based on CNN models that were appropriately
trained and achieved an F1 score of 0.9 or higher. In the endeavor to minimize the memory
footprint essential for constructing the AI processor, our concentration was directed towards
conditions exhibiting a superior F1 score compared to TAF, with particular emphasis on
the smallest memory size. Considering the TAF of 0.927 for the selected Model5-Fat, we
explored conditions that achieve a higher F1 score than TAF. Therefore, we considered
the model with the highest F1 score among conditions with a 128 byte memory size,
characterized by 8 cells and a 16 byte vector, as the optimal configuration. This memory
optimization selection allows for maintaining high accuracy while utilizing fewer memory
resources and performing fewer computations.

Electronics 2024, 13, 344 15 of 19

In the optimal model, we utilized a lightweight algorithm-based AI processor, specif-
ically based on the k-NN algorithm, instead of performing multiplication operations for
the extensive parameters in the FC layer. The lightweight k-NN algorithm utilized in the
AI processor performs distance-based computations utilizing only addition and subtrac-
tion operations. We replaced the FC layer operations, containing 2184 parameters and
performing over 2000 multiply–accumulates (MAC), with a k-NN operation that requires
only 128 bytes of memory and performs just 128 subtraction operations. We efficiently
utilized resources by performing fewer operations compared to the traditional FC layer,
which involves a significant number of multiplication and addition operations. Through
this approach, we achieved high performance with a relatively small memory resource of
128 bytes, showcasing a precision of 93.4%, recall of 93.3%, and an F1 score of 0.933.

Table 3. Model5-Fat results.

Model5-Fat Average
F1 Score
(Vector)

Number of Cell FC layer
4 8 16 32 64 128 256 512 1024 2048 Parameter

4

Memory 16 32 64 128 256 512 1024 2048 4096 8192

1176 0.919Precision 84.5% 92.2% 92.3% 92.9% 93.1% 92.9% 93.1% 92.9% 92.9% 93.2%
Recall 83.6% 91.6% 92.2% 92.8% 93.0% 92.7% 93.0% 92.9% 92.8% 93.1%
F1 score 0.840 0.919 0.922 0.928 0.930 0.928 0.930 0.9229 0.928 0.931

8

Memory 32 64 128 256 512 1024 2048 4096 8192 16,384

1512 0.929Precision 86.5% 91.5% 92.8% 93.2% 94.2% 94.2% 94.5% 94.5% 94.6% 94.6%
Recall 85.5% 90.4% 92.4% 92.7% 94.1% 94.1% 94.4% 94.5% 94.4% 94.5%
F1 score 0.860 0.909 0.926 0.929 0.941 0.941 0.944 0.945 0.945 0.945

16

Memory 64 128 256 512 1024 2048 4096 8192 16,384 32,768

2184 0.933Vector Precision 90.1% 93.4% 89.9% 91.4% 94.2% 95.0% 95.1% 95.3% 95.3% 95.1%
Size Recall 88.8% 93.3% 88.7% 90.7% 94.2% 95.0% 95.1% 95.2% 95.2% 95.0%

F1 score 0.894 0.933 0.893 0.910 0.942 0.950 0.951 0.952 0.952 0.950

32

Memory 128 256 512 1024 2048 4096 8192 16,384 32,768 65,536

3528 0.920Precision 87.8% 89.4% 92.7% 92.3% 92.0% 93.3% 93.7% 93.9% 93.9% 93.7%
Recall 86.9% 89.0% 92.2% 91.4% 91.4% 92.9% 93.4% 93.8% 93.8% 93.5%
F1 score 0.873 0.892 0.924 0.918 0.917 0.931 0.935 0.938 0.938 0.936

64

Memory 256 512 1024 2048 4096 8192 16,384 32,768 65,536 131,072

6216 0.933Precision 90.0% 91.9% 92.5% 92.6% 93.8% 94.5% 94.8% 94.7% 94.7% 94.5%
Recall 89.5% 91.6% 92.0% 92.0% 93.7% 94.4% 94.7% 94.7% 94.6% 94.5%
F1 score 0.897 0.917 0.922 0.923 0.937 0.944 0.947 0.947 0.946 0.945

Average F1 score (Cell) 0.873 0.914 0.918 0.922 0.934 0.939 0.942 0.942 0.942 0.942 TAF:0.927

4.2.3. Comparison to Similar Research and Algorithm

Table 4 presents the classification accuracy, parameter number for operations, and exe-
cution time for strawberry ripeness in several similar studies [31–35], as well as representa-
tive lightweight algorithms such as k-NN and MobileNet, and our system. The number of
parameters used in operations is closely related to the computational capabilities of each
system. As the number of parameters required for operations increases, more memory
resources are needed, leading to increased external memory access and a decrease in compu-
tational performance. Moreover, the number of operations that need to be performed also
increases proportionally to the parameters. From this perspective, our proposed system has
a parameter count of 0.01 M, significantly fewer parameters compared to similar studies,
providing an advantage in computational performance. Additionally, with a relatively high
accuracy of 93.3%, our system demonstrates the ability to achieve sufficiently high accuracy
while using fewer memory resources compared to other similar studies.

Electronics 2024, 13, 344 16 of 19

Table 4. Comparison to similar research.

[31] [32] [33] [34] [35] [Intel Core i7-12700 (2.10 GHz)]
k-NN MobileNet Our

Parameters 6.2 M 16.1 M - - 2.01 M 128 3.22 M 0.01 M
Accuracy 95% 90.33% 85% 85.64% 88.57% 32.1% 97.92% 93.3%
Run Time 60 ms - - - 23 ms 0.03 ms 39 ms 0.91 ms

Moreover, we conducted comparative experiments in the same Intel Core i7-12700
(2.10 GHz) environment to compare the execution speed of our system with representative
lightweight algorithms, k-NN, and MobileNet. The k-NN algorithm, with very few parame-
ters, performed at a very fast speed. But the accuracy of the k-NN algorithm was relatively
low, not sufficiently validating its utility. MobileNet exhibited a high accuracy of 97.92%.
However, due to over 30,000 parameters, MobileNet required significantly more memory
resources than our algorithm, resulting in a much slower execution speed. Therefore,
through these comparisons, we confirmed that our system demonstrates sufficiently high
accuracy despite using very little memory.

5. Conclusions

In this paper, we proposed a strawberry ripeness classification system utilizing the
CoFEx and the lightweight algorithms based AI processor, Intellino. The proposed system
consists of the CoFEx, which extracts suitable feature maps from RGB 3-channel straw-
berry images, the Intellino, an edge AI processor utilizing the extracted feature maps for
strawberry ripeness classification, and the MCU, which controls and operates the entire
system. We utilized the Python environment and the PyTorch library to train a CNN model
suitable for the strawberry classification system. Subsequently, we applied the parame-
ter information from the convolution layer of the appropriate CNN model to the CoFEx.
The appropriately sized feature map outputted from the CoFEx was then input into the
AI processor, Intellino, for training and inference. We implemented the CoFEx and the
AI processor utilizing FPGAs named Cyclone IV and MAX 10, respectively. These two
modules communicate through the MCU utilizing the SPI protocol, exchanging input and
output, parameter information, and control information. Furthermore, we designed and
validated both modules with Verilog HDL.

To evaluate the efficiency of our proposed system, we conducted experiments varying
the layer depth and channel width of the CNN model, as well as the memory size of the AI
processor. We utilized the F1 score, which represents the harmonic mean of precision and
recall, as the metric for our analysis. To compare the performance based on the depth and
channel thickness of the models, we evaluated the TAF. We selected the Model5-Fat, which
exhibited the highest TAF, as the most suitable model. Within the context of the Model5-Fat,
we conducted a performance analysis by varying the vectors and cells employed by the AI
processor. In the scenario where the memory size consists of 8 cells and a 16-byte vector,
totaling 128 bytes, we confirmed sufficiently high precision of 93.4%, recall of 93.3%, and F1
score of 0.933.

Under conditions where the system achieves high accuracy metrics, the CoFEx, per-
forming complex and extensive convolution operations in an environment with a clock
speed of 50 MHz, has demonstrated an operation time of 495 milliseconds, and the total
system took 533 milliseconds. Furthermore, we replaced the extensive multiplication and
addition operations in the FC layer with the lightweight algorithm k-NN. We reduced the
computational burden by replacing the 2184 multiplication and addition operations in the
FC layer with only 128 subtraction operations through the k-NN algorithm. We utilized
the k-NN-based AI processor, Intellino, to alleviate the burden of external memory access.
As a result, we demonstrated a strawberry ripeness classification system suitable for an
embedded environment by accelerating convolution operations through the CoFEx and
replacing operations in the FC layer with the lightweight algorithm k-NN implemented in
the AI processor.

Electronics 2024, 13, 344 17 of 19

In future work, we will conduct model parameter quantization to reduce the mem-
ory size occupied by parameters and enhance the computational speed in performing
convolution operations.

Author Contributions: Conceptualization, J.P., J.S., R.K. and S.A.; methodology, J.P., J.S., R.K. and
S.A.; software, J.P., J.S. and R.K.; validation, J.P. and J.S.; data curation, J.P., S.L., J.K., J.O., Y.J., S.K. and
Y.R.J.; investigation, J.P., S.A., S.L., J.K., J.O., Y.J., S.K. and Y.R.J.; writing—original draft preparation,
J.P.; writing—review and editing, J.P., J.S., R.K., Y.J., S.A. and S.E.L.; supervision, S.E.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was supported by SeoulTech (Seoul National University of Science and Technology).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CNN Convolutional Neural Network
FC Fully Connected
CoFEx Convolution-based Feature Extractor
SA Systolic Array
k-NN k-Nearest Neighbors
FPGA Field-Programmable Gate Array
DL Deep Learning
DNN Deep Neural Network
YOLO You Only Look Once
SVM Support Vector Machine
AR Augmented Reality
RBF Radial Basis Function
FCN Fully Convolutional neural Network
MCU Micro Controller Unit
SPI Serial Peripheral Interface
CPA3x3 Convolution Processing Accelerator3x3
FIFO First-In First-Out
FSM Finite-State Machine
N-cell Neuron-Cell
GPIO General Purpose Input/Output
TAF Total Average F1-score

References
1. Bhat, S.A.; Huang, N.F. Big Data and AI Revolution in Precision Agriculture: Survey and Challenges. IEEE Access 2021,

9, 110209–110222. [CrossRef]
2. Ragavi, B.; Pavithra, L.; Sandhiyadevi, P.; Mohanapriya, G.; Harikirubha, S. Smart Agriculture with AI Sensor by Using Agrobot.

In Proceedings of the 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode,
India, 11–13 March 2020; pp. 1–4. [CrossRef]

3. Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [CrossRef]
4. Dey, B.; Masum Ul Haque, M.; Khatun, R.; Ahmed, R. Comparative performance of four CNN-based deep learning variants in

detecting Hispa pest, two fungal diseases, and NPK deficiency symptoms of rice (Oryza sativa). Comput. Electron. Agric. 2022,
202, 107340. [CrossRef]

5. Wang, H.; Mou, Q.; Yue, Y.; Zhao, H. Research on Detection Technology of Various Fruit Disease Spots Based on Mask R-CNN. In
Proceedings of the 2020 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 13–16 October
2020; pp. 1083–1087. [CrossRef]

6. Kuo, H.H.; Barik, D.S.; Zhou, J.Y.; Hong, Y.K.; Yan, J.J.; Yen, M.H. Design and Implementation of AI aided Fruit Grading Using
Image Recognition. In Proceedings of the 2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD), Taichung, Taiwan, 7–9 December 2022; pp. 194–199.
[CrossRef]

http://doi.org/10.1109/ACCESS.2021.3102227
http://dx.doi.org/10.1109/ICCMC48092.2020.ICCMC-00078
http://dx.doi.org/10.1016/j.compag.2018.02.016
http://dx.doi.org/10.1016/j.compag.2022.107340
http://dx.doi.org/10.1109/ICMA49215.2020.9233575
http://dx.doi.org/10.1109/SNPD54884.2022.10051810

Electronics 2024, 13, 344 18 of 19

7. Devi, M.S.; Shanthana, S.; Hemasri, B. Inception Adaptive Gradient L2 Regularized Learning Rate CNN for Strawberry Leaf
disease Detection. In Proceedings of the 2023 Fifth International Conference on Electrical, Computer and Communication
Technologies (ICECCT), Erode, India, 22–24 February 2023; pp. 1–4. [CrossRef]

8. Huang, Z.; Sklar, E.; Parsons, S. Design of Automatic Strawberry Harvest Robot Suitable in Complex Environments. In
Proceedings of the Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, HRI ’20, Cambridge,
UK, 23–26 March 2020; pp. 567–569. [CrossRef]

9. Cho, W.; Na, M.; Kim, S.; Jeon, W. Automatic prediction of brix and acidity in stages of ripeness of strawberries using image
processing techniques. In Proceedings of the 2019 34th International Technical Conference on Circuits/Systems, Computers and
Communications (ITC-CSCC), JeJu, Korea, 23–26 June 2019; pp. 1–4. [CrossRef]

10. Agarwal, A.; Samaiya, D.; Gupta, K.K. A Comparative Study of SIFT and SURF Algorithms under Different Object and
Background Conditions. In Proceedings of the 2017 International Conference on Information Technology (ICIT), Bhubaneswar,
India, 21–23 December 2017; pp. 42–45. [CrossRef]

11. Micheal, A.A.; Vani, K. Comparative analysis of SIFT and SURF on KLT tracker for UAV applications. In Proceedings of the
2017 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 6–8 April 2017; pp. 1000–1003.
[CrossRef]

12. Rosten, E.; Porter, R.; Drummond, T. Faster and Better: A Machine Learning Approach to Corner Detection. IEEE Trans. Pattern
Anal. Mach. Intell. 2010, 32, 105–119. [CrossRef] [PubMed]

13. Apostolopoulos, I.D.; Tzani, M.; Aznaouridis, S.I. A General Machine Learning Model for Assessing Fruit Quality Using Deep
Image Features. AI 2023, 4, 812–830. [CrossRef]

14. Nayak, J.; Kaje, S.B. Fast Image Convolution and Pattern Recognition using Vedic Mathematics on Field Programmable Gate
Arrays (FPGAs). In Proceedings of the 2022 OITS International Conference on Information Technology (OCIT), Bhubaneswar,
India, 14–16 December 2022; pp. 569–573. [CrossRef]

15. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

16. Kim, Y.H.; An, G.J.; Sunwoo, M.H. CASA: A Convolution Accelerator using Skip Algorithm for Deep Neural Network. In
Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp.
1–5. [CrossRef]

17. Hu, A.; Li, W.; Lv, D.; He, G. An Efficient Stochastic Convolution Accelerator Based on Pseudo-Sobol Sequences. In Proceedings
of the 17th ACM International Symposium on Nanoscale Architectures, NANOARCH ’22, Virtual, OR, USA, 7–9 December 2022.
[CrossRef]

18. Yoon, H.; Kim, C.; Um, S.; Yoon, H.W.; Kang, H.G. SC-CNN: Effective Speaker Conditioning Method for Zero-Shot Multi-Speaker
Text-to-Speech Systems. IEEE Signal Process. Lett. 2023, 30, 593–597. [CrossRef]

19. Andri, R.; Karunaratne, G.; Cavigelli, L.; Benini, L. ChewBaccaNN: A Flexible 223 TOPS/W BNN Accelerator. In Proceedings of
the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 22–28 May 2021; pp. 1–5. [CrossRef]

20. Guo, P.; Ma, H.; Chen, R.; Li, P.; Xie, S.; Wang, D. FBNA: A Fully Binarized Neural Network Accelerator. In Proceedings of the
2018 28th International Conference on Field Programmable Logic and Applications (FPL), Dublin, Ireland, 27–31 August 2018;
pp. 51–513. [CrossRef]

21. Tsai, T.H.; Lin, D.B. An On-Chip Fully Connected Neural Network Training Hardware Accelerator Based on Brain Float Point
and Sparsity Awareness. IEEE Open J. Circuits Syst. 2023, 4, 85–98. [CrossRef]

22. Chen, S.; Sun, W.; Huang, L.; Yang, X.; Huang, J. Compressing Fully Connected Layers using Kronecker Tensor Decomposition.
In Proceedings of the 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT), Dalian,
China, 19–20 October 2019; pp. 308–312. [CrossRef]

23. Naronglerdrit, P. Facial Expression Recognition: A Comparison of Bottleneck Feature Extraction. In Proceedings of the
2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media), Bali, Indonesia, 5–8 August 2019; pp. 164–167.
[CrossRef]

24. Montgomerie-Corcoran, A.; Savvas-Bouganis, C. DEF: Differential Encoding of Featuremaps for Low Power Convolutional
Neural Network Accelerators. In Proceedings of the 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC),
Tokyo, Japan, 18–21 January 2021; pp. 703–708.

25. Jeong, Y.; Oh, H.W.; Kim, S.; Lee, S.E. An Edge AI Device based Intelligent Transportation System. J. Inf. Commun. Converg. Eng.
2022, 20, 166–173. [CrossRef]

26. Liu, L.; Brown, S. Leveraging Fine-grained Structured Sparsity for CNN Inference on Systolic Array Architectures. In Proceedings
of the 2021 31st International Conference on Field-Programmable Logic and Applications (FPL), Dresden, Germany, 30 August–3
September 2021; pp. 301–305. [CrossRef]

27. Zhou, L.; Wang, L.; Ge, X.; Shi, Q. A clustering-Based KNN improved algorithm CLKNN for text classification. In Proceedings of
the 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010), Wuhan, China, 6–7
March 2010; Volume 3, pp. 212–215. [CrossRef]

28. Davur, Y.J.; Kämper, W.; Khoshelham, K.; Trueman, S.J.; Bai, S.H. Estimating the Ripeness of Hass Avocado Fruit Using Deep
Learning with Hyperspectral Imaging. Horticulturae 2023, 9, 599. [CrossRef]

http://dx.doi.org/10.1109/ICECCT56650.2023.10179788
http://dx.doi.org/10.1145/3371382.3377443
http://dx.doi.org/10.1109/ITC-CSCC.2019.8793349
http://dx.doi.org/10.1109/ICIT.2017.48
http://dx.doi.org/10.1109/ICCSP.2017.8286523
http://dx.doi.org/10.1109/TPAMI.2008.275
http://www.ncbi.nlm.nih.gov/pubmed/19926902
http://dx.doi.org/10.3390/ai4040041
http://dx.doi.org/10.1109/OCIT56763.2022.00111
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/ISCAS.2019.8702307
http://dx.doi.org/10.1145/3565478.3572543
http://dx.doi.org/10.1109/LSP.2023.3277786
http://dx.doi.org/10.1109/ISCAS51556.2021.9401214
http://dx.doi.org/10.1109/FPL.2018.00016
http://dx.doi.org/10.1109/OJCAS.2023.3245061
http://dx.doi.org/10.1109/ICCSNT47585.2019.8962432
http://dx.doi.org/10.1109/Ubi-Media.2019.00039
http://dx.doi.org/10.56977/jicce.2022.20.3.166
http://dx.doi.org/10.1109/FPL53798.2021.00060
http://dx.doi.org/10.1109/CAR.2010.5456668
http://dx.doi.org/10.3390/horticulturae9050599

Electronics 2024, 13, 344 19 of 19

29. Yumang, A.N.; Rubia, D.C.; Yu, K.P.G. Determining the Ripeness of Edible Fruits using YOLO and the OVA Heuristic Model.
In Proceedings of the 2022 IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Com-
munication and Control, Environment, and Management (HNICEM), Boracay Island, Philippines, 1–4 December 2022; pp. 1–6.
[CrossRef]

30. Maharshi, V.; Sharma, S.; Prajesh, R.; Das, S.; Agarwal, A.; Mitra, B. A Novel Sensor for Fruit Ripeness Estimation Using
Lithography Free Approach. IEEE Sens. J. 2022, 22, 22192–22199. [CrossRef]

31. Chai, J.J.K.; Xu, J.L.; O’Sullivan, C. Real-Time Detection of Strawberry Ripeness Using Augmented Reality and Deep Learning.
Sensors 2023, 23, 7639. [CrossRef]

32. Kim, S.J.; Jeong, S.; Kim, H.; Jeong, S.; Yun, G.Y.; Park, K. Detecting Ripeness of Strawberry and Coordinates of Strawberry
Stalk using Deep Learning. In Proceedings of the 2022 Thirteenth International Conference on Ubiquitous and Future Networks
(ICUFN), Barcelona, Spain, 5–8 July 2022; pp. 454–458. [CrossRef]

33. Anraeni, S.; Indra, D.; Adirahmadi, D.; Pomalingo, S.; Sugiarti; Mansyur, S.H. Strawberry Ripeness Identification Using Feature
Extraction of RGB and K-Nearest Neighbor. In Proceedings of the 2021 3rd East Indonesia Conference on Computer and
Information Technology (EIConCIT), Surabaya, Indonesia, 9–11 April 2021; pp. 395–398. [CrossRef]

34. Indrabayu, I.; Arifin, N.; Areni, I.S. Strawberry Ripeness Classification System Based on Skin Tone Color using Multi-Class
Support Vector Machine. In Proceedings of the 2019 International Conference on Information and Communications Technology
(ICOIACT), Yogyakarta, Indonesia, 24–25 July 2019; pp. 191–195. [CrossRef]

35. Ilyas, T.; Kim, H. A Deep Learning Based Approach for Strawberry Yield Prediction via Semantic Graphics. In Proceedings of the
2021 21st International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea, 12–15 October 2021; pp. 1835–1841.
[CrossRef]

36. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al.
In-Datacenter Performance Analysis of a Tensor Processing Unit. SIGARCH Comput. Archit. News 2017, 45, 1–12. [CrossRef]

37. Samajdar, A.; Zhu, Y.; Whatmough, P.; Mattina, M.; Krishna, T. SCALE-Sim: Systolic CNN Accelerator Simulator. arXiv 2019,
arXiv:1811.02883. [CrossRef]

38. Yoon, Y.H.; Hwang, D.H.; Yang, J.H.; Lee, S.E. Intellino: Processor for Embedded Artificial Intelligence. Electronics 2020, 9, 1169.
[CrossRef]

39. Go, K.H.; Han, C.Y.; Cho, K.N.; Lee, S.E. Crime Prevention System: Crashing Window Sound Detection Using AI Processor. In
Proceedings of the 2021 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 10–12 January 2021;
pp. 1–2. [CrossRef]

40. Shin, J.Y.; Ho Lee, S.; Go, K.; Kim, S.; Lee, S.E. AI Processor based Data Correction for Enhancing Accuracy of Ultrasonic Sensor.
In Proceedings of the 2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS), Hangzhou,
China, 11–13 June 2023; pp. 1–4. [CrossRef]

41. Kim, S.; Park, J.; Jeong, Y.; Lee, S.E. Intelligent Monitoring System with Privacy Preservation Based on Edge AI. Micromachines
2023, 14, 1749. [CrossRef] [PubMed]

42. Cho, K.N.; Oh, H.W.; Lee, S.E. Vision-based Parking Occupation Detecting with Embedded AI Processor. In Proceedings of
the 2021 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 10–12 January 2021; pp. 1–2.
[CrossRef]

43. Han, C.Y.; Jeong, Y.S.; Lee, S.E. Simulation-Based Fault Analysis for Resilient System-On-Chip Design. J. Inf. Commun. Converg.
Eng. 2021, 19, 175–179.

44. Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 1–48. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/HNICEM57413.2022.10109379
http://dx.doi.org/10.1109/JSEN.2022.3210439
http://dx.doi.org/10.3390/s23177639
http://dx.doi.org/10.1109/ICUFN55119.2022.9829583
http://dx.doi.org/10.1109/EIConCIT50028.2021.9431854
http://dx.doi.org/10.1109/ICOIACT46704.2019.8938457
http://dx.doi.org/10.23919/ICCAS52745.2021.9649871
http://dx.doi.org/10.1145/3140659.3080246
http://dx.doi.org/10.48550/arXiv.1811.02883
http://dx.doi.org/10.3390/electronics9071169
http://dx.doi.org/10.1109/ICCE50685.2021.9427630
http://dx.doi.org/10.1109/AICAS57966.2023.10168652
http://dx.doi.org/10.3390/mi14091749
http://www.ncbi.nlm.nih.gov/pubmed/37763912
http://dx.doi.org/10.1109/ICCE50685.2021.9427661
http://dx.doi.org/10.1186/s40537-019-0197-0

	Introduction
	Related Work
	System Architecture
	CoFEx
	Finite-State Machine of the CoFEx
	Systolic Array Architecture of PEs

	AI Processor, Intellino

	Implementation and Analysis
	Implementation
	Analysis
	Comparison Based on Model Depth and Thickness
	Comparison According to Model Memory Size
	Comparison to Similar Research and Algorithm

	Conclusions
	References

