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Abstract: As the demand for detailed load data descriptions in modern power systems continues
to increase, challenges such as high computational complexity in load identification tasks and high
hardware requirements for devices have significantly hindered progress. Therefore, this paper
proposes a non-intrusive load identification method using Densely-connected Bi-directional Long
Short-Term Memory (DB-LSTM) with Kernel Principal Component Analysis. Firstly, a bilateral sliding
window algorithm is employed for event detection in the data collected by load identification devices,
checking for the switching on and off of electrical appliances. Secondly, after detecting the switching
of load devices and extracting features, Kernel Principal Component Analysis is used to reduce
data dimensions due to the complexity of existing features, selecting more relevant characteristics.
Finally, a densely connected Bi-directional Long Short-Term Memory (LSTM) network is utilized.
This enhances global and dynamic local features by stacking LSTM units and combining them with
dense skip connections, providing additional channels for signal transmission, thereby strengthening
feature propagation and reducing the number of parameters. This approach lowers computational
complexity and improves the efficiency of the model’s load identification. The proposed model
is compared and validated against mainstream non-intrusive load identification models through
experiments, demonstrating its higher efficiency in load identification.

Keywords: non-invasive load identification; Kernel Principal component analysis; feature dimension-
ality reduction; Long Short-Term Memory network

1. Introduction

In the continuously evolving landscape of new energy societies, electricity users are
increasingly demanding detailed and refined management of their power consumption
devices. To meet this challenge, Dr. Hart proposed a method called Non-Intrusive Load
Monitoring (NILM) [1]. Unlike traditional intrusive load monitoring methods, NILM
utilizes the total load information of electricity users. By inferring the power usage behavior
of each appliance, it avoids the cumbersome process of installing sensors on each device.
This approach offers numerous advantages, such as reduced installation costs, minimal
interference with user privacy, and ease of operation [2–4], making it the mainstream
method for analyzing electricity consumption behavior. However, to understand and
apply the NILM method more deeply, it is beneficial to fully utilize Advanced Metering
Infrastructure (AMI) data. AMI not only provides information about the total load of
users but also offers more detailed and real-time electricity usage data, thereby enhancing
the accuracy of appliance monitoring. Through precise analysis of AMI data, we can
gain a more accurate understanding of the energy consumption patterns and usage of
each device, further optimizing energy management strategies. Additionally, integrating
the NILM method with demand response technology allows for flexible adjustment of
electricity demand during peak periods, achieving intelligent energy dispatching. For
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emerging electricity demands like electric heat pumps and electric vehicle charging, the
NILM method can also support their integration, ensuring efficiency and sustainability
in energy usage. Overall, the application of the NILM method in power management,
particularly in combination with AMI data and demand response technology, will propel
the forefront of energy management and provide electricity users with more intelligent and
efficient consumption solutions. By adopting this comprehensive approach, a more holistic
understanding of every aspect of the power system can be achieved, laying the foundation
for sustainable and intelligent energy management goals.

The process of NILM involves four crucial steps to accomplish load identification
effectively. The first step is event detection. In the initial models of load identification, this is
primarily achieved by setting relevant thresholds based on changes in load information such
as current, voltage, and active power. This allows for the detection of related load events. [5].
However, these methods can be cumbersome when setting thresholds, as different types
of equipment exhibit varied fluctuations during load-switching events. Determining
reasonable thresholds usually requires manual setting, which is time-consuming and
labor-intensive, hindering the load identification task. Therefore, Dr. Yang [6] proposed
using zero-crossing detection, current similarity detection, and threshold assessment to
evaluate load-switching events, improving the success rate of event detection. Furthermore,
Kotsilitis proposed a novel approach in his work [7] to calculate the slope coefficient of
relevant load data, detecting load-switching events by the degree of change in the slope
coefficient. In addition to these methods, improvements in event detection methods for load
identification tasks include using the transient response of active power [8], introducing
multi-head attention mechanisms [9], and a deep dictionary learning model based on
adaptive window changes [10], which have significantly improved the accuracy of load
identification tasks, although some methods still struggle with detecting minor and short-
term load changes.

After the initial event detection of transient events is completed, it is necessary to
preprocess the data that may have load state changes and extract relevant features. NILM
is then conducted by associating different feature changes with different load-switching
events. Scholars have proposed using features like current, voltage, peak current, root mean
square, and even V-I trajectory curves for load identification tasks [11–13]. Researchers
from Zhejiang University [14] suggested using the Fast Fourier Transform (FFT) for further
frequency domain transformation of features before extraction. Additionally, there are
one-dimensional and two-dimensional load features like recurrence plots [15], equivalent
impedance analysis of voltage and current data [16], and time-frequency multi-feature fu-
sion of time-series images [17]. Various directions of research have continuously improved
models in the data preprocessing and feature extraction aspects of load identification tasks.

The final step in the load identification task involves feeding the extracted features
into relevant deep-learning networks to complete the task. With an increasing number of
deep learning models being employed in load identification tasks, such as CNN, KNN,
multi-task neural networks like SAMNet, Temporal Convolutional Networks (TCN), and
Random Finite State Machines, various deep learning models have been researched for
their application in NILM tasks [18–22]. As models continue to be optimized and improved,
new improved models are continually being applied to NILM tasks: Dr. Himeur [23]
proposed an improved K-Nearest Neighbors algorithm based on histograms (IKNN) to
enhance load identification performance; Dr. Yang [12] introduced a transfer learning
method that converts voltage-current (V-I) trajectories into visual representations through
color coding; Mr. Kaselimi [24] proposed the use of attention mechanism to improve the
s2p learning model; [25] and adaptive context-aware bidirectional deep learning models
considering non-causal and seasonal factors have also been developed. However, while
computing related load features, these models have not effectively excluded irrelevant
features, leading to redundancy in the model training phase, thereby reducing model
efficiency and hindering the load identification tasks.
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The various load identification methods discussed above consider different aspects
in each segment and make corresponding improvements. However, some aspects are
still not sufficiently addressed, such as in the feature transfer phase. The aforementioned
load identification models all use effective features but do not specially handle redundant
features. This results in a bloated model structure, where many features are ignored and
left unprocessed, leading to decreased computational efficiency and impacting the effi-
ciency of load identification. This paper proposes a NILM method that incorporates feature
dimensionality reduction and DB-LSTM to address these aspects. Considering that sensors
and other data collection devices are widely installed in load identification tasks, models
that require high hardware specifications are not suitable. Therefore, this paper proposes
the use of Dense Bidirectional LSTM networks, which enhance both global and dynamic
local features. By stacking LSTM units and combining them with dense skip connections,
additional channels for signal transmission are provided, thereby strengthening feature
propagation, reducing the number of parameters, and lowering computational complexity.
This approach decreases computational demands on devices, aiming to enhance the effi-
ciency of the model in load identification tasks. Below are the specific research works of
this paper:

1. To address the difficulty in effectively monitoring load-switching events in load
identification problems, a bilateral sliding window CUSUM algorithm is proposed.
This algorithm dynamically monitors types of data such as load power, voltage, and
current in the input load monitoring devices to identify the operational status of
electrical equipment in real time.

2. Existing methods extract a variety of features from multiple domains. However, due
to the large number of extracted load features, potentially beneficial features for load
identification tasks might be overlooked, resulting in longer computation times and
increased computational demands on devices. Therefore, this study considers using
Kernel Principal Component Analysis (KPCA) for data dimensionality reduction of
the extracted load features, thereby obtaining more relevant feature data for load
identification tasks.

3. Considering that existing methods already account for the time-related aspects of
load operation data but suffer from overly complex models that only utilize effective
features without special handling of redundant ones, this leads to bloated model struc-
tures. Many features are ignored and left unprocessed, thus reducing computational
efficiency and impacting load identification efficiency. To enhance the efficiency and
accuracy of load identification, this paper proposes the use of Dense-LSTM networks.
By employing stacked representation learners, both global and dynamic local features
are enhanced. The interconnection of various modules within the LSTM network
model ensures that the extracted features are transmitted to each layer, enhancing the
reuse of effective features, reducing data redundancy, and decreasing the number of
parameters to improve load identification efficiency.

2. Bilateral CUSUM Event Detection Method Based on Median Filtering in
Sliding Windows

In non-intrusive load identification tasks, it is often necessary to collect and obtain
data from actual field operations. Relying on data sets from intrusive load identification
is very time-consuming and labor-intensive, making it costly for load identification tasks.
Therefore, it is essential to utilize non-intrusive load identification methods for event
detection, feature extraction, data processing, and load identification of electrical devices to
accomplish the task. A crucial issue is how to effectively detect load events from the load
data obtained from electrical users. Existing load identification methods can be categorized
into two types based on the method of identifying changes in the state of electrical devices:
event-based load identification methods and non-event-based load identification methods.
Non-event-based methods, also known as blind source separation methods, mainly include
hidden Markov models, stochastic finite state machines, and others. Event-based methods
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can be referred to as rule-based load identification methods or change point detection-
based load identification methods. These methods typically involve unidirectional scanning
of load data. However, such methods often fail to detect local data changes or sudden
load-switching events, resulting in the oversight of some electrical device status changes.
Therefore, effectively monitoring related event changes becomes a challenge. This paper
proposes an event detection method based on bilateral CUSUM and median filter denoising
in sliding windows to determine the occurrence of load-switching events in electrical
devices within the input data for the non-intrusive load identification model.

2.1. Bilateral Cumulative Sum Event Detection Method Using Sliding Windows

In existing non-intrusive load identification models, some utilize cluster-based meth-
ods or hidden Markov models, which are non-event-based. These models are effective in
identifying switching events of electrical devices from large amounts of load data. However,
they often fail to monitor short-term load-switching events of electrical devices, especially
when there is no historical data for newly connected devices in the power system, lead-
ing to decreased identification capability under short-term load changes. Event-based
methods for detecting load-switching events excel in real-time monitoring of load data
fluctuations and observing the load behavior of electrical devices, thereby swiftly detecting
the occurrence of switching events in these devices.

The Cumulative Sum (CUSUM) algorithm, derived from the likelihood ratio model,
is a control chart model that continuously accumulates the difference between the data
to be tested and the standard data in the input model. This process analyzes fluctuations
in the data, amplifies related fluctuations, and thus detects the occurrence of switching
events in electrical devices. Taking the active power consumption of electrical devices
as an example, when there is a load-switching event in the electrical devices, the active
power data collected by relevant sensors may exhibit either abrupt or gradual changes.
Subsequently, transient events can be determined through algorithms. However, it still
faces challenges in detecting short-term changes and local anomalies.

To address these issues, scholars have further proposed the bilateral CUSUM (Cumu-
lative Sum) event detection method using sliding windows [26]. This method is a statistical
approach for real-time monitoring of abnormal changes or events in time series data. Unlike
the traditional CUSUM method, the bilateral CUSUM with sliding windows introduces
the concept of a sliding window to adapt to short-term changes and local anomalies that
may occur in the system or process. In this approach, instead of applying the CUSUM
algorithm to the entire load data sequence, a fixed-size window is deployed over the entire
load data sequence, and the CUSUM algorithm is applied only within this window. This is
more beneficial for detecting the occurrence of switch-on and switch-off events in electrical
devices. Its working principle is as follows:

Firstly, introduce a period of time series data X, Its expression is X = {x(k), k = 1, 2, 1 . . .}.
Assuming that an electrical device switching event occurs at a certain moment δ, the
expressions for the statistical functions g+k and g−k can be set as:{

g+0 = 0
g+k = max

(
0, g+k−1 + s+k

) (1)

{
g−0 = 0
g−k = max

(
0, g−k−1 + s−k

) (2)

In the formula, s+k and s−k represent the positive and negative offsets of the current
detection point after removing the influence of noise values.

The expressions for s+k and s−k are:

s+k = xk − (µ0 + β) (3)
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s−k = (µ0 − β)− xk (4)

where µ0 represents the average data value under normal conditions; And β represents
various types of noise that exist during the data collection process; When the amplitude of
the change in active power is less than β, it will be ignored. In addition, due to a certain
time delay between the occurrence and detection of events throughout the entire process,
this time delay is set to ζ, Therefore, the following sliding window bilateral CUSUM event
detection process can be obtained:

Firstly, when there is no transient event of the electrical equipment in the overall data,
the overall value of 0 remains basically unchanged as the average of the statistical function,
and no event detection is performed;

Secondly, if a transient event occurs, numerical accumulation is performed in statistical
functions g+k and g−k based on the rise and fall of the data, until the threshold Ω is reached,
which is considered a transient event. If the cumulative threshold does not reach the
threshold, d is applied to the time delayed data, that is, ζi+1 = ζi + 1, until the value
exceeds the threshold, which is considered a transient event.

The sliding window bilateral CUSUM method can effectively detect local changes in
load data, thereby detecting the occurrence of related load-switching events and achieving
more accurate load identification.

2.2. Data Denoising with Median Filtering

In load identification tasks, it is crucial to collect effective and accurate load data such
as current, voltage, power, and sensor measurements related to the load in the power
system. However, these data often contain various interferences, such as Gaussian noise.

Moreover, during event detection tasks, load data is highly susceptible to noise from
measurement devices, communication interference, and other external factors, leading to
unnecessary fluctuations and disturbances in the data. Additionally, the power system
experiences various sudden events, such as equipment switching and fault recovery, which
can cause dramatic changes in load data, thereby reducing the accuracy.

Therefore, this paper proposes the use of median filtering technology for denoising
filtering [27]. Median filtering is a nonlinear signal processing technique based on the theory
of order statistics. It is an effective noise reduction technique for on-site data collection,
also known as a nonlinear filter or a statistical order filter. The principle of median filtering
is to take each load data point of an electrical device as the center and convert this point
into the median value of all data points within a certain neighborhood window [28].

For data requiring noise reduction, median filtering can effectively accomplish this
task and better preserve the edges of the signal, maintaining the complete structure of the
data, unlike linear filtering methods that may blur the data waveform by treating edge data
as noise points. Additionally, median filtering possesses the advantages of simplicity in
computation and ease of application in hardware, making it more suitable for the denoising
task in the scenario presented in this paper compared to other filtering methods. The
specific process is as follows:

Assuming a load data sequence of electrical equipment is xj(−∞ < j < +∞), when
performing median filtering on this set of time series data, a window of length l needs to
be set, and the value of l is 2N + 1, where N is a positive integer. Taking a certain moment
x(i) as an example, taking a total of a points before and after x(i− N), . . . x(i), . . . x(i + N)
as 2N + 1 window, where x(i) is the center point of all data in this window, and arranging
the aforementioned points x(i− N), . . . x(i), . . . x(i + N) and 2N + 1 according to their size,
taking the value, and defining it as the output value of the median filter in this window.

This article proposes a double accumulation and CUSUM event detection method
using sliding windows based on median filtering to effectively detect the switching of
electrical equipment. After preliminary noise reduction of load data using median filtering
technology, it can effectively reduce the interference of noise on load events by detecting
whether switching events have occurred.
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3. Non-Intrusive Load Monitoring Method Incorporating Feature Dimension Reduction
and DB-LSTM

In existing load identification tasks, models process the raw steady-state or transient
features extracted from the operation of electrical devices. This processing may involve
time-frequency domain transformations or other feature extraction methods to obtain
higher-dimensional relevant features. However, among these features, some may be highly
beneficial for load identification tasks, while others may have little or no use. Therefore,
selecting relevant and beneficial features becomes a noteworthy research problem.

3.1. Feature Dimension Reduction Method Based on Kernel Principal Component Analysis

In non-intrusive load monitoring tasks, the model performs a sequence of operations,
encompassing event detection, feature extraction, data preprocessing, and load identifi-
cation, in order to accomplish the task of load identification. However, the data input
into the model is often voluminous and complex, containing both beneficial load feature
information and other redundant information not useful for load identification. Therefore,
selecting relevant data features becomes an important research issue.

Some scholars have proposed using Principal Component Analysis (PCA) [29] to
perform feature dimension reduction analysis on load data during the switching events
of electrical devices in non-intrusive load identification tasks. However, traditional PCA
is a linear feature processing method and is less sensitive to changes in data involving
randomness and occasional events, such as the switching of electrical devices, which have
nonlinear relationships. Therefore, its feasibility in non-intrusive load identification is
not high.

However, the more recently proposed KPCA method can greatly improve this issue.
Firstly, KPCA is a method of performing principal component analysis on nonlinear data.
By exploring additional mapping forms in high-dimensional space, this method effectively
captures the nonlinear correlations between input features. Consequently, it selects features
more conducive to the load identification task, extracts more crucial information, achieves
feature dimensionality reduction, and establishes a more precise model. This, in turn, re-
duces computational complexity, improves computational efficiency, and lessens hardware
requirements. The KPCA method includes multiple kernel functions, such as linear kernels,
radial basis function (RBF) kernels, etc. Among them, the Gaussian kernel function is one
of the most common and effective kernel functions in RBF kernels, and its mathematical
expression is as follows:

K
(
xi, xj

)
= exp

(
−
∥xi − xj∥2

2σ2

)
(5)

where xi and xj represent the input electrical equipment load data, while σ represents a
parameter of the shape of the kernel function. Due to the selected load device data in
this paper being a type of nonlinear and complex data, among various kernel functions
in KPCA, RBF kernel is highly effective in capturing nonlinear relationships within the
data. It achieves this by mapping the data into a high-dimensional space and generating
additional nonlinear structures. This further processes the data. Since the RBF kernel allows
for the adjustment of the kernel’s width through parameter ‘σ‘, it diversifies the function,
making it more adaptable to different data forms, thereby enhancing the effectiveness of
data analysis and optimizing the algorithm.

3.2. DB-LSTM Non-Intrusive Load Identification Model

Various deep-learning methods have already been applied to non-intrusive load identi-
fication tasks. However, issues such as model complexity and high computational demand
still exist. Additionally, some types of LSTM models tend to overlook the connections
between load data of the same electrical device over different lengths of time [30,31]. This
type of data connection is crucial for users who can collect or store long-term load data
and should not be ignored. The DB-LSTM network addresses this by analyzing data across
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different time scales using densely connected LSTM modules, thus achieving more accurate
load identification.

To overcome the shortcomings of existing methods, this paper introduces a novel
long-term temporal model for non-intrusive load identification, namely the Dense-LSTM
network. This network utilizes a stack of representation learners to enhance both global and
dynamic local features. By integrating various modules within the LSTM network model
and establishing interconnections between layers, features extracted can be propagated
throughout each layer, ensuring the effective reuse of valuable features, reducing data
redundancy, and minimizing the number of parameters. Additionally, short-term and
long-term time analysis patterns are established to facilitate the learning of temporal
relationships in load data. Furthermore, forward and backward bidirectional learning is
conducted based on the current target point, capturing a broader range of load information
and comprehensively improving the efficiency of load identification.

Following the concept of densely connected networks, the LSTM network is further
expanded into a densely connected form. This involves using skip connections within the
densely connected network blocks, as shown in Figure 1, where yl

t represents the densely
connected module at the t time step in the l layer, with various colored lines indicating the
connections between different dense layers.
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The DB-LSTM network models the related temporal patterns of the switching actions
of electrical devices through the aforementioned structure. It takes full advantage of the
dense connection modules and bidirectional time feature detection to reduce computational
complexity and enhance event detection capabilities. The main feature of the entire DB-
LSTM network is that it not only achieves inter-layer connectivity but also cross-level
connections across multiple layers. Its structure is shown in Figure 2. This structure
effectively reduces the gradient explosion problem commonly found in traditional LSTM
networks. Additionally, by facilitating communication across multiple levels, it enhances
effective feature reuse.

In this DB-LSTM model,
↔
yt refers to the output of the t-th LSTM module, and the

specific calculation formula is as follows:

↔
yt =

[→
yt,
←
yt

]
(6)

The
→
yt and

←
yt in Formula (6) represent the output of the t-th step in the two-way

directions of the module in that group, respectively. [, ] indicates that these two outputs
are directly linked to each other. → and← respectively represent the direction of output d.
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The output yl
t calculation method for the t -th time step of the LSTM module’s l-th layer is

as follows:
yl

t =
[

hl
t

([
y0

t , y1
t , . . . , yi

t, . . . yl−1
t

])
, xt

]
(7)

Among them,
[
y0

t , y1
t , . . . yi

t, . . . yl−1
t

]
refers to the set of features extracted by multiple

modules before this layer module.
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Using expression Hl(X) to represent the l-th layer in the DB-LSTM network, where X
is the input to each layer of the LSTM:

X = {x0, x1, . . . , xt−1} (8)

Merge the output of the previous LSTM layer with the input feature xt of the t-th time
step.

To obtain a comprehensive overall temporal correlation feature of load data, this paper
represents the last output of the DB-LSTM network as φ(S, F, WS, WL), where S is the
sampling stack, F is the primary network, and WS and WL represent the weights of the
SRL and DB-LSTM backbone networks, respectively. And use the cross entropy function to
calculate the loss:

Ψ(ρ, φ) = −
c

∑
j=1

ρi

(
φi − log

c

∑
j=1

exp φi

)
(9)

Finally, merge the scores generated by the network model modeling with the fusion
layer and use a multi-scale sliding window to fuse all outputs into scores, the fusion
formula is:

Wq =
1

(K− q)q

K−q

∑
s=1

s+q

∑
t=s

Dbi
t (10)

In the formula, s represents the starting time step of the sliding window, and K
represents the number of time steps.

3.3. Non-Intrusive Load Identification Model Incorporating Feature Dimension Reduction
and DB-LSTM

The illustration in Figure 3 outlines the specific procedure of the KPCA-DBLSTM
non-intrusive load identification model proposed in this paper.
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1. Step 1: Collect aggregate data through sensors or other devices.
2. Step 2: Perform denoising on the data using median filtering.
3. Step 3: Detect events in the data using a sliding window’s bilateral cumulative

sum (CUSUM).
4. Step 4: Extract features from the detected data, focusing on multi-dimensional

characteristics.
5. Step 5: Employ the KPCA technique for data dimension reduction, extracting features

that are more effective for load identification tasks.
6. Step 6: Input the processed data into the DB-LSTM network for load identification.
7. Step 7: Obtain the results of the load identification and output relevant information.

4. Case Analysis
4.1. Evaluation Metrics and Model Parameters

This paper uses the REFIT Power Data public dataset, which consists of electricity
usage data from multiple UK households between 2013 and 2015 [32]. For non-intrusive
load disaggregation experiments, seven types of common household load devices from
households 2, 3, 5, 6, 15 in the REFIT Power Data dataset were selected [33]. The electrical
load data from a portion of HOUSE2 will be extracted to serve as the training set for the
experimental section of this paper, while the remaining data will be used as the test set. The
data from household 3, 5, 6, and 15 was used as a validation set for experimentation. Some
devices exhibited variable states and operating modes in different households, including
single-state and multi-state switching devices. Due to the similar active load values and
variable operating modes of these devices, the task of load disaggregation presents certain
challenges. The capability of this work in load identification tasks is further highlighted,
emphasizing its proficiency in the recognition of electrical loads. Detailed information
about the seven types of loads is shown in Table 1.

Table 1. Equipment Type Classification and Information Table.

Equipment Number Equipment Category Device Type Maximum Power/W Minimum Power/W

1 Multistate device refrigerator 130 80
2 Multistate device washing machine 100 2600
3 Multistate device dishwasher 2360 2000
4 Multivariable equipment television 60 18
5 Single state device microwave oven 1250 10
6 Single state device toaster 989 21
7 Single state device kettle 2920 1280

The article selects Acc, MAE and F1 as relevant evaluation metrics for the load identi-
fication model [34], assessing the ability of the load decomposition model in this article.
Whereas Acc represents the overall accuracy of load identification results. The MAE met-
ric reflects the real-time accuracy of the model in load identification, with a lower value
indicating higher accuracy in load identification. The F1 metric focuses on reflecting the
error between actual load data and data identified by the model in real situations. These
three categories of metrics provide a comprehensive evaluation of the load identification
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results [35]. The following formulas 21–25 represent the calculation formulas for these
three metrics:

Acc = 1−

N
∑

i=1

T
∑

i=1

∣∣∣∣∣∧β(i)

t − β
(i)
t

∣∣∣∣∣
2

N
∑

i=1

T
∑

i=1
β
(i)
t

(11)

MAE =
1

T1 − T0

T1

∑
t=T0

abs

(
∧
β
(i)

t − β
(i)
t

)
(12)

PRE =
TP

TP + FP
(13)

REC =
TP

TP + FN
(14)

F1 = 2× PRE× REC
PRE + REC

(15)

In the formula, β̂
(i)
t represents the power value of electrical appliance i obtained

using the load decomposition algorithm at time t, β
(i)
t represents the actual power value

of electrical appliance i at time t, Acc denotes the accuracy of the decomposition of all
appliances in the entire household. MAE stands for the mean absolute error of the power
decomposition values from time T0 to T1 within the time period. PRE represents precision.
REC signifies recall. F1 represents the harmonic mean of precision and recall; TP is the
point at which it is in and considered to be in a working state; FP is the point in time when
it is in but not considered to be in a working state; FN is a point in time when it is not
considered to be in a working state.

4.2. Experimental Parameter Settings and Effect Analysis

Experiment 1: Regarding the median filtering method proposed in this paper, its
filtering effect and its impact on the accuracy of load identification results were investigated.
The aim is to demonstrate the filtering effect of the median filtering method and its impact
on the accuracy of load identification results. A comparison is made using before-and-after
filtering effect images, as well as the evaluation metrics Acc, MAE and F1.

Experiment 2: Validates the effectiveness of the feature dimensionality reduction
method proposed in this paper and compares it with various other methods.

Experiment 3: Conducts comprehensive experiments comparing results between
trained and untrained data.

The above three sets of experiments aim to thoroughly validate the effectiveness and
generality of the previously proposed methods in the task of load identification.

5. Results

The effectiveness experiment of the median filtering method was conducted first. The
intuitive filtering effect is shown in Figure 4, where (a) represents the waveform of the
load data without median filtering, and (b) represents the waveform of the load data after
median filtering. It is apparent that after median filtering, the significantly prominent
data in the load data has reduced, making the overall waveform smoother without losing
the general fluctuation pattern. It retains the overall information regarding load changes.
According to Table 2, it is evident that this does not affect the load identification effect. On
the contrary, the accuracy of load identification has slightly improved.

In addition, Table 2 shows the comparison of three metrics between the LSTM, CNN,
HMM models, and the proposed KPCA-DBLSTM model under two conditions: with and
without median filtering. According to the data in Table 2, the load data after median
filtering, when input into the model, does not decrease the overall recognition rate. Instead,
it leads to different degrees of improvement in the three evaluation metrics. Firstly, there is
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an improvement of 1.2% to 2.6% in the Acc metric, and the MAE metric also shows a slight
improvement. Finally, the F1 metric exhibits an improvement ranging from 1.3% to 4%. In
this experimental part, the KPCA-DBLSTM model proposed in this paper achieves optimal
performance across all three evaluation metrics. From the comprehensive performance
in the above table, it can be observed that the median filtering event detection method
employed in this paper has the potential to improve the load identification efficiency of
multiple models to varying degrees. However, there is a certain degree of variation in
the improvement among different models. This is because, although median filtering can
effectively reduce the impact of various factors such as noise and outliers, it is difficult
to avoid filtering out the special feature information contained in some extreme values.
Consequently, while the method can enhance accuracy in the subsequent identification of
relevant models, it does not lead to a significant increase in accuracy.
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Table 2. Comparison of recognition result metrics for load data with and without filtering.

Identification Results without Median Filtering Identification Results after Median Filtering
LSTM CNN HMM KPCA-DBLSTM LSTM CNN HMM KPCA-DBLSTM

Acc 0.835 0.897 0.872 0.941 0.847 0.911 0.901 0.967
MAE 12.75 8.94 9.51 3.74 10.17 7.14 7.87 3.32

F1 0.828 0.887 0.869 0.932 0.845 0.902 0.882 0.972

Next, this paper conducted experiments to validate the effectiveness of feature dimen-
sionality reduction methods, and the results of three evaluation metrics can be obtained
from Table 2. In this experiment, to verify the effectiveness of the feature dimensionality
reduction methods, only changes were made in the feature processing part. Specifically,
the results of the three metrics after feature computation with and without feature dimen-
sionality reduction methods were compared.

From the results in Table 3, it can be observed that the feature dimensionality reduction
method has a certain effect on the improvement of load identification accuracy. Firstly, there
is a noticeable improvement of 3.7% to 5.4% in the Acc metric, and the MAE metric also
shows a slight improvement. Finally, the F1 metric exhibits a relatively stable improvement
ranging from 3.5% to 3.8%. This indicates that feature dimensionality reduction techniques
effectively eliminate load features that are ineffective or have minimal impact on the load
identification task. This makes the model calculations lean towards load features that
are more beneficial for load identification, resulting in an increase in relevant evaluation
metric values. However, after analyzing the data in the table, it was found that there is a
disparity in the improvement of accuracy among different models. This is because, during
the process of feature dimensionality reduction, different models emphasize the extraction
of different types of features. As a result, the applicable features vary, leading to such issues
in accuracy enhancement.
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Table 3. Comparison of dimensionality reduction effects.

Identification Results of Dimensionality Reduction
without Features

Identification Results after Feature Dimensionality
Reduction

LSTM CNN HMM KPCA-DBLSTM LSTM CNN HMM KPCA-DBLSTM

Acc 0.817 0.861 0.854 0.923 0.874 0.913 0.891 0.977
MAE 14.29 10.57 8.55 4.74 9.44 6.23 7.52 3.12

F1 0.801 0.873 0.857 0.939 0.839 0.911 0.892 0.975

The final step involves a comparative experiment to validate the model’s generalization
performance. This paper verifies the generalization capability of the proposed model by
comparing untrained data from HOUSE2 with data from HOUSE3, 5, 6, and 15. Figure 5
illustrates the comparative results of three metrics across multiple load identification models.
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Through the comparison of the three indicators in Figure 5a–c, the results indicate
that the proposed KPCA-DBLSTM model in this paper exhibits a significant advantage
across multiple scenarios and various metrics. For the Acc metric, the KPCA-DBLSTM
model proposed in this paper shows a 7.6–15.1% increase compared to other models in
different scenarios. Under the MAE metric, there is an optimization ranging from 3.8% to
10.18%, and finally, the F1 metric shows an improvement of 6.7–17.1%. The comparison
of these data effectively demonstrates the overall effectiveness of the non-intrusive load
identification model proposed in this paper.

Furthermore, during the process of validating the generalization performance of the
KPCA-DBLSTM model in different household data situations, there is a certain fluctuation
in the accuracy. For instance, in the trained data of HOUSE2, the model performs the best,
while the load identification results for data from other households (HOUSE3, 5, 6, and
15) show varying degrees of decrease. This is attributed to the fact that although different
households may adopt similar electrical devices, their electricity consumption behaviors,
power consumption, and other relevant load characteristics differ from those in HOUSE2,
which was part of the training data. Therefore, while still effective in identification, there is
a potential decrease in load identification accuracy.

6. Discussion

In this paper, a non-intrusive load identification method based on DB-LSTM, consid-
ering feature dimensionality reduction, is proposed. Through experimental comparisons,
the model introduced in this paper optimizes and improves the load identification task
in various stages, such as event detection, data processing, and load identification. The
median filtering method helps mitigate the impact of extreme data on experiments, fea-
ture dimensionality reduction concentrates computational resources on aspects beneficial
to load identification, and the DB-LSTM network effectively reduces model complexity
and hardware requirements for load identification devices through the multiple reuse
of features.

The proposed model facilitates the simplification of load identification procedures in
real-world scenarios, enhancing computational speed and, consequently, improving the



Electronics 2024, 13, 343 13 of 14

efficiency of analyzing electricity consumption behavior. This leads to a more convenient
and accurate execution of load identification tasks, providing power users with more
authentic and effective electricity consumption data. It assists users in optimizing their
electricity consumption habits intelligently.

However, the computational process of the proposed method remains relatively exten-
sive and cumbersome, requiring a complete workflow for load identification tasks. This
imposes higher computational demands on load identification devices, potentially limiting
the widespread deployment of this technology, especially in cost-sensitive or resource-
constrained environments. Therefore, further research is needed to explore ways to enhance
the computational capabilities of load identification devices, such as simplifying algorith-
mic processes, reducing computational complexity, and lowering device computational
requirements.

For instance, more efficient feature selection and dimensionality reduction techniques
could be investigated, or lighter network structures could be developed. Model compres-
sion and quantization techniques could also be explored to reduce the size and computa-
tional demands of the model, making it more suitable for operation on resource-constrained
devices. This could further facilitate the interoperability between edge devices and cloud
devices, leveraging the advantages of the simplified network in DB-LSTM to reduce hard-
ware requirements for edge detection devices installed in homes. This, in turn, addresses
the current challenge of the limited installation of load identification devices due to cost
issues and contributes to the further development of smart grids, promoting advancements
in intelligent electricity usage.
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