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Abstract: During the production of a PolyTetraFluoroEthylene(PTFE) emulsion, it is crucial to
detect the separation between the PTFE emulsion and liquid paraffin in order to purify the PTFE
emulsion and facilitate subsequent polymerization. However, the current practice heavily relies on
visual inspections conducted by on-site personnel, resulting in not only low efficiency and accuracy,
but also posing potential threats to personnel safety. The incorporation of artificial intelligence
for the automated detection of paraffin separation holds the promise of significantly improving
detection accuracy and mitigating potential risks to personnel. Thus, we propose an automated
detection framework named PatchRLNet, which leverages a combination of a vision transformer and
reinforcement learning. Reinforcement learning is integrated into the embedding layer of the vision
transformer in PatchRLNet, providing attention scores for each patch. This strategic integration
compels the model to allocate greater attention to the essential features of the target, effectively
filtering out ambient environmental factors and background noise. Building upon this foundation,
we introduce a multimodal integration mechanism to further enhance the prediction accuracy of
the model. To validate the efficacy of our proposed framework, we conducted performance testing
using authentic data from China’s largest PTFE material production base. The results are compelling,
demonstrating that the framework achieved an impressive accuracy rate of over 99% on the test
set. This underscores its significant practical application value. To the best of our knowledge, this
represents the first instance of automated detection applied to the separation of the PTFE emulsion
and paraffin.

Keywords: PTFE; vision transformer; reinforcement learning; multimodal

1. Introduction

PTFE emulsion, a water-based suspension renowned for its outstanding non-stick,
corrosion-resistant, and electrical insulating properties, plays a crucial role in various fields
such as automotive, electrical insulation, and fiber processing. In the production process
of the PTFE emulsion, it is imperative to achieve effective separation between the PTFE
emulsion and liquid paraffin to enhance the purity of the PTFE emulsion and facilitate sub-
sequent polymerization [1]. Current technologies often rely on visual inspection conducted
by on-site personnel, sometimes necessitating direct contact. However, given that the PTFE
emulsion and paraffin solution in this process are typically present at elevated temperatures
(ranging from 90 to 100 degrees Celsius), the on-site paraffin vapor may cause harm or
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irreversible damage to the human respiratory system. Furthermore, if solidified deposits in
the pipeline are not promptly cleared, this may even lead to pipeline explosions, posing a
significant threat to the life safety of workers. Therefore, achieving the automated detection
of paraffin separation in the PTFE emulsion is of paramount research and practical signif-
icance. To the best of our knowledge, our research team was the first to accomplish the
automated detection of PTFE emulsion–paraffin separation and has successfully applied it
in practical production activities.

Artificial intelligence (AI) is a burgeoning discipline aimed at enabling machines to
perform complex tasks that traditionally require human intelligence [2–5]. Among these,
deep learning stands out as a key area in AI research, achieving breakthroughs in numerous
practical production activities [6,7]. Leveraging deep learning for the automated detection
of PTFE emulsion and paraffin separation can circumvent on-site personnel contact, thereby
enhancing the production efficiency and product quality of PTFE materials. According
to studies, vision transformer networks have proven to be one of the most promising
architectures for addressing computer-vision tasks. They can capture not only the global
features of the target, but also learn long-distance relationships between features, finding
extensive research and application in industrial automation [8,9]. However, due to their
lack of local inductive biases, vision transformer networks are often challenging to train
and exhibit a higher dependence on training data. This leads to high challenges in the
practical application of using vision transformer networks for the automatic detection
of paraffin separation. Building upon this foundation, in real-world PTFE emulsion pro-
duction environments, the collected video image data is frequently subject to substantial
interference from background environments and noise. This further exacerbates the chal-
lenges associated with model training. In instances of insufficient data volume, it may
even result in the inability to train the vision transformer model. Performing key feature
selection on video images allows the vision transformer model to focus more on the crucial
features of the target while disregarding surrounding environmental backgrounds or noise.
Research indicates that this not only enhances the efficiency of model training but also
enables the targeted learning of critical objectives, thereby significantly improving model
performance [10–12]. Therefore, the most critical challenge in this study lies in achieving
key feature selection for the vision transformer network.

Reinforcement learning has been demonstrated as one of the most effective methods
for achieving optimal and efficient policy selection [13,14]. By leveraging the interaction
between an agent and its environment, reinforcement learning can formulate optimal strate-
gies based on environmental feedback [15–17]. In this study, we establish a reinforcement
learning framework with the vision transformer classification model serving as the envi-
ronment. The process involves considering the selection of key features as the benchmark
for rewards, where the weight generator embedded in the model’s embedding layer is des-
ignated as the agent. The primary objective of this framework is to optimize the extraction
of key features via the reinforcement learning process. The agent dynamically generates
attention weights for the input patches based on the input image. Subsequently, these
patches, enriched with attention weights, undergo positional and class embeddings. This
amalgamated information then serves as the input to the Transformer encoder, influencing
the prediction scores generated by the vision transformer classifier. The reinforcement
learning process can be viewed as an interactive interplay between the vision transformer
classifier and the weight generator, autonomously selecting the crucial features of the tar-
get. Therefore, this paper proposes a paraffin separation automated detection framework
named PatchRLNet, which combines the vision transformer and reinforcement learning.
This framework constrains the vision transformer network to adaptively perform key
feature selection for model input, stabilizes the training dynamics of the vision transformer
network, reduces its dependence on data, and enhances its overall performance.

Building upon this foundation and considering various interferences present in real
PTFE emulsion production scenarios, such as occluded monitoring cameras and insufficient
illumination, which may significantly diminish the detection performance of the model and
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even render it inoperable, we introduce a multimodal integration mechanism. This mecha-
nism allows the PTFE emulsion automated detection model to gather more comprehensive
information from two different perspectives [18,19]. By adopting this strategy, we enable
the model to acquire target feature information from different angles; this can effectively
reduce the impact of potential interference on the performance of detection models in real
scenarios, improve the model’s ability to cope with and adapt to complex work scenarios,
and ensure the sustained and stable operation of the proposed PTFE emulsion and paraffin
separation detection framework.

To the best of our knowledge, there is currently no work within the community that
combines deep learning for the automated detection of PTFE emulsion and paraffin separa-
tion. This implies that we are the first to undertake the task of PTFE emulsion and paraffin
separation automated detection using deep learning technology. Based on real industrial
scenarios in PTFE emulsion production, we have validated the performance of the pro-
posed framework and further applied it to practical production activities. Through these
efforts, we have not only addressed a research gap in this field but have also provided an
innovative solution for the automated detection of PTFE emulsion and paraffin separation
in industrial production. The contributions of this paper include the following: 1. A large
sample and high-definition multi-mode PTFE emulsion–paraffin separation and detection
research queue was collected and constructed in the production base of Quzhou Juhua
Fluoropolymer Company. As far as we know, this is the only relevant dataset available in
the community at present. 2. Combining the vision transformer and reinforcement learning,
we have constructed a PTFE emulsion–paraffin separation framework PatchRLNet, with
high precision and high generalization ability, and encapsulated it as an operational system.
3. At the production base of Quzhou Jusheng Fluorine Chemical Co., Ltd., we applied the
proposed model for the separation of the PTFE emulsion and paraffin in actual produc-
tion processes, achieving an accuracy exceeding 99%. This thoroughly demonstrates the
effectiveness of our proposed framework and the feasibility of reinforcement learning in
the key feature selection of vision transformer networks. Furthermore, the research results
indicate that our proposed framework has substantial practical application value in the
actual industrial production of the PTFE emulsion.

2. Related Work

Currently, works involving the automatic detection of liquids using deep learning
based on videos or images primarily fall into two types: those based on traditional convo-
lutional neural networks(CNNs) and those based on vision transformer models. Each of
these types has its own advantages and disadvantages.

According to relevant research, the use of convolutional neural networks can better
and more automatically analyze optical visible phenomena, thereby broadening the scope
of non-invasive measurement. At the same time, because additional process parameters can
be monitored, this allows for additional sensors based on convolutional neural networks
to control data via more accurate process control. Therefore, Laura Neuendorf et al. [20]
proposed a method of analyzing a single rising droplet to determine its physical character-
istics. In the field of flow mode recognition, the determination of streaming type is vital to
predicting the prediction of non-stable flow parameters and directly affects the integrity
management of multi-phase current pipelines. Haobin Chen et al. [21] proposed a non-
invasive and robust convolutional neural network flow pattern recognition method based
on FIV analysis. The method involves the simultaneous analysis of collected FIV signals
and high-speed videos, conducting experimental studies on FIV in horizontal gas–liquid
pipe flows under various flow patterns and extracting their features. Finally, a neural
network architecture trained by GoogLeNet is employed for the pattern recognition of
the flow, achieving an accuracy exceeding 95%. In addition, Dongming Liu et al. [22] pro-
posed a lightweight hazardous liquid detection method based on the depth-based canolate
convolution for X-ray safety inspection. In this study, dual-energy X-ray data, instead of
pseudo-colored images, are used as the object to be tested. Researchers have proposed
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a new detection framework by designing a lightweight object positioning network and
lightweight hazardous liquid classification network based on the depth separation of con-
volution and squeezing incentive modules to reduce the cost of calculation and achieve
the parallel operation of detection and imaging. In [23], considering the generalization
and feature extraction capabilities of convolutional neural networks, they were applied
to computational applications for liquid flow velocity. Under the conditions of large-scale
data with different soil properties and various solid-phase fractions, using normalized
electrical resistivity tomography images as an input to the network, and the corresponding
flow rates as an output, the study utilized convolutional neural networks to calculate the
fluid flow velocity, resulting in an average accuracy improvement of approximately 21%.

While CNNs have been widely applied in automatic liquid detection, they face poten-
tial challenges due to their common use of fixed-sized convolutional kernels, particularly
when confronted with liquids of varying scales. Moreover, CNNs often exhibit local induc-
tive biases, making them susceptible to the impact of noise in the environment. In contrast,
vision transformer networks incorporate a self-attention mechanism, enhancing their ability
to model long-range relationships between features. This capability proves notably effective
in globally capturing image relationships, offering a distinct advantage for liquid detection
tasks in complex environments. Furthermore, the vision transformer demonstrates height-
ened flexibility compared to CNNs when handling information across different scales and
hierarchical levels.

Therefore, the vision transformer has also been applied to the detection of liquid states.
Sesame oil (SO), as a high-value edible oil, is often subject to counterfeiting and adulteration.
Zhilei Zhao et al. [24] proposed a novel approach based on Excitation Emission Matrix
Fluorescence (EEMF) and a Total Synchronous Fluorescence (TSyF) spectral stereogram.
This method utilizes a vision transformer network for the recognition of sulfur dioxide (SO)
quality. Basic samples including pure, counterfeit, and adulterated SO were characterized
via fluorescence spectroscopy. At the same time, for a small amount of sample learning,
the data enhancement strategies including linear interpolation, displacement, and noise
injection were selected. Finally, the author designed and trained a ViT network architec-
ture based on an attention mechanism, thereby establishing four SO quality recognition
models. In [25], Hongliang Li et al. demonstrated a liquid recognition scheme based on the
vision transformer network, which combines an optical flow-controlled refractive index
sensor with visual intelligence algorithms and does not require a spectrometer and precise
metasurface mediation, further demonstrating the role of the vision transformer network
in liquid-state detection. In addition, You Wu et al. [26] proposed a dataset for detecting
liquid content in transparent containers (LCDTC), leading to an innovative task involv-
ing transparent container detection and liquid content estimation. The dataset proposed
by the author developed two baseline detectors, called LCD-YOLOF and LCD-YOLOX,
and further proposed a Swin Transformer Integration (WISTE) method for automatically
identifying the water index of water bodies. Firstly, a dual-branch encoder architecture
was devised for the Swin Transformer, leveraging the aggregation of a fully convolutional
network (FCN) and a multi-head self-attention mechanism to capture global semantic
information and pixel neighborhood relationships of the target. Secondly, to prevent the
Swin Transformer from disregarding multispectral information, the authors constructed
a prediction map integration module. Finally, based on the Swin Transformer and the
Normalized Difference Water Index (NDWI), the accurate identification of water indices
was achieved.

Inspired by the work on liquid detection using traditional Convolutional Neural
Networks and vision transformer models, we introduce deep learning models into two
distinct industrial scenarios involving the separation of different types of liquids. To the best
of our knowledge, this study represents the first application of deep learning models to the
separation of the Polytetrafluoroethylene emulsion and high-temperature liquid paraffin.
In our work, the separation scenarios of the PTFE emulsion and high-temperature liquid
paraffin are intricate, encompassing multiple pipelines, each with a stochastic operational
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state. Concurrent operation of multiple pipelines is also a possibility. We undertake
the task of liquid-state pattern recognition by analyzing the morphological color of the
liquid flowing out of the operational pipelines and the splash patterns when the liquid
comes into contact with the paraffin reservoir. When comparing liquid-state recognition
models based on CNNs and the vision transformer, it is observed that the CNN-based
approach achieves higher accuracy when the liquid state is clear and there is minimal
environmental noise. This is attributed to its ability to utilize local inductive biases to better
capture the local details of the target, thereby enhancing detection accuracy while reducing
sample dependency. However, in our dataset, characterized by abundant environmental
backgrounds and noise, employing CNNs as the primary framework may lead to the
misinterpretation of noise as valid image features or the masking of valid features by noise,
resulting in reduced detection performance. In contrast, the self-attention mechanism in
the vision transformer network enables effective modeling of critical features, capturing
long-range relationships between features and, consequently, global information about
the target. This process proves efficient in mitigating the impact of background and noise
on the model. This motivates our adoption of the vision transformer network for the
task of PTFE emulsion and paraffin separation automatic detection. However, existing
vision transformer methods still face challenges in terms of reliability and effectiveness,
particularly in more complex scenarios. This difficulty stems from the intricate nature
of background environments and noise within the PTFE emulsion–paraffin separation
detection scene, coupled with a relatively sparse presence of target content. Additionally,
the limited sample size poses challenges for vision transformer methods in effectively
modeling crucial features.

3. Materials and Methods
3.1. Research Queue and Data Augmentation

The research data for this study were obtained from the actual production processes
of the Fluoropolymer Division within Ju Sheng Fluorochemical Co., Ltd., a subsidiary
of Zhejiang Juhua Co., Ltd., located in the city of Quzhou, Zhejiang Province, China.
Zhejiang Juhua Co., Ltd. stands as the largest and most influential enterprise in the field of
fluorine chemical research and manufacturing in China, and it is also situated in the city of
Quzhou, Zhejiang Province. The research data included in this study were collected from
the authentic production processes of the PTFE emulsion–paraffin separation equipment
within the PTFE Production Unit of the Fluoropolymer Division from 18 October 2023 to 23
October 2023. Two Hikvision MV-CU050-60GM 5-megapixel industrial area-scan cameras
were employed to comprehensively capture the entire process of PTFE emulsion–paraffin
separation from two distinct perspectives. The lens used in this setup is the ZX-SF0820C,
an 8 mm fixed-focus industrial vision lens. We collected a total of 463 video segments
from two perspectives and randomly divided them into training and testing sets in a 7:3
ratio. To ensure the reliability of the collected data, the videos were captured in a single-
channel AVI format with a resolution of 2592×1944 and a capture rate of 30 frames per
second. To ensure the continuous and stable operation of the PTFE emulsion–paraffin
separation detection system in an industrial setting, the labels for video images included
four categories: “occlusion”, “paraffin”, “emulsion”, and “idle”. The “occlusion” label
refers to instances where the camera view of the paraffin pipeline is completely covered
by personnel or other objects, potentially triggering an alarm mechanism in the system
when such a condition persists over an extended period. To ensure the reliability of the
data, all labels were annotated by four personnel with more than three years of work
experience. Subsequently, two additional personnel, each with more than five years of work
experience, conducted a review of the annotations. Finally, we obtained 10,548 obstructed
images, 49,030 paraffin images, 77,134 emulsion images, and 99,418 idle images from the
two perspectives.

To enhance the model’s processing speed for real-world scenarios, we initially resize
video images to a standard size of 224 × 224. To address the issue of imbalanced sample
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quantities across different states leading to a long-tail problem, we perform oversampling
on classes with fewer samples to balance the quantity of different state samples in the
training queue. This helps mitigate the impact of data imbalance on model training, en-
suring effective learning across various states. To prevent oversampling from causing
overfitting on the training data and a decrease in generalization performance on unseen
data, we employ data augmentation methods, including random cropping, random ro-
tation, random noise, Random Erasing, random brightness, and random contrast. These
methods diversify the training dataset, enhancing the model’s generalization performance.
Specifically, in the industrial setting of wax emulsion, where complex noise surrounds the
target pipes, random cropping enables the model to learn invariance to target positions,
improving robustness across different target locations. In real production scenarios, where
cameras are inevitably touched, leading to changes in the angle of captured images, random
rotation assists the model in learning features from different angles, increasing robustness to
rotational variations. Considering the high temperatures in real production environments
that may cause solid condensation of PTFE on cameras, introducing random noise helps
the model robustly handle real-world noise and interference. Although extended complete
obstruction triggers an alarm mechanism, for inevitable short-term local obstructions, we
utilize random erasing to simulate potential obstructions or missing information, aiding
the model in learning robustness to partial information loss and improving its ability to
handle incomplete information. Finally, to enable the model to adapt to varying lighting
conditions in complex environments, we introduce random brightness and random contrast
to simulate real-world scenarios. The aforementioned data augmentation techniques not
only simulate various challenges the model may encounter in real scenarios, but it also
provides the model with diverse data patterns, enhancing its generalization capabilities
and effectively reducing the likelihood of overfitting issues.

3.2. Method

In PatchRLNet, the vision transformer model primarily consists of three key compo-
nents: image partitioning and embedding, class embedding, positional encoding, and the
vision transformer encoder. Specifically, the image partitioning and embedding stage in-
volve segmenting the input image into a set of non-overlapping square patches, which are
then embedded into a low-dimensional space to create the initial representation of the image.
This process aims to extract local image features of the target. Building upon this foun-
dation, the vision transformer network introduces positional encoding to the embedded
image features. This incorporation of positional encoding establishes spatial relationships
for the model’s understanding of the positional context of the image embeddings. This
assists the model in comprehending the relative positions between different partitions of
the image, thereby facilitating a more effective capture of global contextual relationships.
Finally, the sequence of image features, after partitioning, embedding, and positional en-
coding, is input into the vision transformer encoder, which is composed of consecutive
vision transformer encoding blocks. These encoding blocks, operating at different scales
and levels, progressively extract high-level semantic features of the target. Throughout this
process, the self-attention sub-layers within the vision transformer encoding blocks utilize a
multi-head self-attention mechanism. This mechanism performs correlation calculations on
different positions of the patches to capture relationships between features at both global
and local levels.

Considering the various potential disturbances such as insufficient lighting, obstacles
obstructing the view, and a cluttered background that may be present in real manufacturing
processes, the vision transformer model might encounter challenges in feature extraction
due to high-dimensional and complex features. As a result, it becomes challenging to
efficiently extract and analyze critical information. To address this issue, unlike the conven-
tional approach of directly concatenating each patch in the embedding layer in a sequential
manner, we introduce reinforcement learning to provide an interpretable attention score
for each patch in the encoding sequence. This allows the vision transformer model to
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focus more on crucial features while ignoring background environments and noise. This
not only enhances the feature extraction efficiency of the vision transformer model in
complex scenarios, but also incorporates a reinforcement learning framework tailored to
the model input. In this process, a reinforcement learning framework oriented towards the
model input is integrated into the internal structure of the vision transformer model. This
framework dynamically adjusts attention scores for different patches, increasing sensitivity
to critical information, and thus, is better at addressing background environments and
noise interferences. This integrated reinforcement learning strategy enhances the adapt-
ability and robustness of the vision transformer model, thereby improving the accuracy
and stability of PTFE emulsion–paraffin separation automated detection. To provide a
more comprehensive description of our proposed model, PatchRLNet, we will introduce
our approach in two parts: reinforcement learning for enhancing key patch features and
PatchRLNet model for the separation of PTFE emulsion and paraffin, as detailed below.

3.2.1. Reinforcement Learning for Enhancing Key Patch Features

Considering a standard Reinforcement Learning (RL) formulation, we can describe it
using the tuple < S, A, T, r, π >, where S is the observation space, A is the action space,
and T is the transition function that generates the next state from the current state–action
pair. The function r represents the reward function, evaluating the value for the current
action. The objective of this process is to learn a policy π that maximizes the expected
return reward. Within our reinforcement learning framework, the vision transformer
classification model operates as the environment, with a weight generator embedded in the
vision transformer network’s embedding layer serving as the agent. The iterative process
of reinforcement learning unfolds as an intricate interplay between the vision transformer
classification model and the weight generator. In this framework, the input to the vision
transformer model is conceptualized as the state, and the weight generator, influenced
by the input state and the current environment, produces a weight matrix representing
the action in the reinforcement learning process, aimed at selecting pertinent key features.
In this dynamic setting, the vision transformer classification model provides actionable
feedback to determine rewards. These rewards, derived from the output results of the
vision transformer classifier, serve as the foundation for updating the weight generator.
This configuration establishes a cyclical process where the weight generator refines its
strategy based on the received rewards, ultimately influencing its actions in adapting to
the evolving input states and environment. Represent the decision-making process of the
agent (generator) using M =< S, A, T, r, π >. Similarly, express the classification process
of the vision transformer classification model with the function of F(Θ; Sa) =< Θ; Sa; ra >.
In this context, the reward for the agent can be formalized as

r = ra − benchmark (1)

where ra represents the feedback from the environment under action a, and the benchmark
is employed to generate negative rewards.

The changes in other key elements can be expressed as follows:{
π : S × A → π

A : A < r, π >
(2)

In this context, A < r, π > represents the decision made by the agent based on rewards
and the previous policy. The state always corresponds to the input images for the vision
transformer model, so the transformation function T remains constant and unaffected by
actions. On the other hand, the transformer model operates on weighted patches, where µ
represents the initial two-dimensional sequence obtained by partitioning and embedding
the input image, and w denotes the weight distribution generated by the agent, so we can
say that

Sa = µ × w (3)
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Finally, Sa is integrated into the vision transformer encoder along with positional
embeddings and category information. This implies that the vision transformer model,
leveraging the output from the weight generator, allocates attention scores to individual
patches. These scores are then multiplied to amplify or attenuate the weight distribution of
specific patches, thereby fulfilling the essential role of feature selection.

3.2.2. PatchRLNet for the Separation of PTFE Emulsion and Paraffin

Figure 1 illustrates the framework of PatchRLNet: Firstly, video images captured by
the camera undergo data augmentation and are then converted into tensors, serving as the
input for PatchRLNet. Within the model, the weight generator (Generator G) generates
a weight matrix of n × n based on the input, where each weight represents the model’s
attention to the corresponding patch in the embedding layer. The weight generator sends
this weight matrix as an action to the embedding layer of the vision transformer network,
multiplying it with the patch sequence of the corresponding image. After undergoing linear
mapping and positional embedding, this processed data serve as the input to the vision
transformer encoder, which is composed of multiple vision transformer encoding blocks. In
each vision transformer encoding block, multiple multi-head attention sub-layers and multi-
layer perceptron blocks are employed to extract features from the input image sequence.
Finally, extract the class token from the last encoding block of the vision transformer and
use it as input for the vision transformer classifier, facilitating the prediction of scores for
each potential class.

Figure 1. The proposed framework for PatchRLNet, where all components are parameterized by
neural networks.

The input to the vision transformer model is Ximage ∈ Rc×h×w with a shape of
h × w and a channel of c [27,28]. Due to the vision transformer encoder’s input be-
ing a two-dimensional sequence shaped like (x1, x2, . . . , xn), we divide the input image
into n2 patches and transform it into a sequence X = (x11, x12, . . . , x1n, . . . , xnn), where
xij ∈ Rc× h

n ×
w
n . We utilize reinforcement learning to obtain a weight matrix W that repre-

sents the attention levels for the n2 patches.

W = G(state) (4)

where the state is the input Ximage, and G is the generator network consisting of convolu-
tional layers and pooling layers, W ∈ Rn×n.

For sequence X = (x11, x12, . . . , x1n, . . . , xnn), after applying reinforcement learning, it
can be written as {

X∗ = (X11, X12, . . . , X1n, . . . , Xnn)

Xij = xij + wijxij
(5)
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where wij represents the element in the i-th row and j-th column of W, between −1 and
1. When wij = −1, the values of elements in the patch will be set to 0. In this scenario,
the model regards the content of this patch as background or noise and discards it. When
wij = 1, the values of elements in the patch will be enhanced, at which point the model
identifies the contents of this patch as crucial features and prioritizes the extraction and
analysis of the features in this specific region.

Research suggests that utilizing a two-dimensional sequence X∗ = (X11, X12, . . . ,
X1n, . . . , Xnn) as the input for the vision transformer encoder effectively reduces the compu-
tational complexity of the model. However, due to the parallel nature of patches in the input
sequence, unlike the sequential nature of RNN inputs, it is necessary to add positional and
class embeddings to each dimension of the sequence X∗ to obtain an optimized sequence Z.

Z = (X1 + PE1, X2 + PE2, . . . , Xm + PEm, Xclass)

m ∈
(
1, 2, . . . , n2)

Xclass ∈ RC× h
n ×

w
n

(6)

where

PEk = (PE(posk, 0), PE(posk, 1), . . . , PE(posk, dmodel − 1)); k ∈
(

1, 2, . . . , n2
)

(7)

In this context, dmodel represents the dimensions of each Xi, and posk indicates the
patch at the k-th position.

PE(pos,2i) = sin
(

pos/10,0002i/dmodel
)

PE(pos,2i+1) = cos
(

pos/10,0002i/dmodel
) (8)

Thus, it can be inferred that for a specific dimension of the position vector of posk + m,
it can be expressed as a linear combination of the positions of posk and m, indicating that the
position vector encapsulates relative positional information. Hence, the vision transformer
model can employ self-attention mechanisms to capture the relationships between global
and local features when processing image patches.

Upon inputting the sequence Z, embedded with positional information into a series of
interconnected vision transformer encoding blocks, we can say thatZ′ = MSA(LN(Z)) + Z

Z = MLP(LN(Z′)) + Z′
(9)

In the multi-head self-attention (MSA) layer, the input sequence Z is individually
mapped to three learnable weight matrices denoted as WQ, WK, and WV . This results in
obtaining the corresponding variables Q = ZWQ, K = ZWK, and V = ZWV . Building
upon this foundation, they are partitioned into h segments based on the number of heads,
and each segment is fed into a separate self-attention mechanism. The results are then
concatenated to obtain the final outcome. On this basis, Q, K, and V are further mapped to
h different spaces based on the number of heads. Subsequently, they are individually input
into self-attention mechanisms to extract features. Finally, the outcomes are consolidated to
yield the ultimate result. The mathematical formulation for this process is as follows:

MSA(Q, K, V) = Concat(head1, . . . , headh)WO

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
Attention(Q, K, V) = so f tmax

(
QKT√

dk

)
V

(10)
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Here, dk represents the dimensionality of K.
The MLP layer primarily comprises two linear transformations and a GELU activation

function, which indicates that the input of the vision transformer classifier defined as Y is
the sum of the output of the MLP layer and Z. That is to say,

Y = MLP(LN(Z)) + Z (11)

Finally, the vision transformer classifier is composed of a linear layer and a ReLU
activation function. Similar to traditional vision transformer models, we utilize the category
token γ(0) (i.e., Xclass) instead of extracted image features as the input for the classifier.
Training our network involves employing the cross-entropy (CE) loss between predictions
and ground truth, which can be expressed as follows:

LCE = −∑(ylogŷ + (1 − y)log(1 − ŷ)) (12)

where y is the true label, and ŷ is the predicted probability. The loss function captures the
discrepancy between the true label and the predicted probability.

To ensure that the reinforcement learning framework can generate appropriate weight
matrices for image sequences, similarly, the training of the weight generator and evalua-
tion network follows the Proximal Policy Optimization-Clip (PPO-C) strategy. PPO is a
novel class of policy gradient methods used in reinforcement learning. It samples data by
interacting with the reinforcement learning environment, and it optimizes an alternative
objective function using a backward stochastic gradient descent strategy. This strategy
introduces a similarity constraint to prevent the distance between the output policy and the
target policy from being too large in importance sampling. We summarize this similarity
constraint as follows:

Jθk

PPO−C ≈ ∑
st ,at

min

(
pθ(at ∥ st)

pk
θ(at ∥ st)

Aθk
(st, at), clip

(
pθ(at ∥ st)

pk
θ(at ∥ st)

, 1 − ε, 1 + ε

)
Aθk

(st, at)

)
(13)

By incorporating reinforcement learning into the embedding layer of the vision trans-
former network, we achieve a crucial feature selection process, mitigating the interference
of environmental factors and noise. This ensures that the model can better capture global
features of the target while focusing more on key features. Ultimately, this enhances the
detection accuracy and performance of the model.

3.3. Detection for PTFE Emulsion–Paraffin Separation Based on Multimodality
3.3.1. Multimodality

Due to the substantial environmental backgrounds and noise interference present
in real PTFE emulsion production scenarios, especially potential occlusion, there is a
risk of significant impact on the model’s detection performance. To address this issue, we
introduced a multimodal mechanism into the PTFE emulsion–paraffin separation automatic
detection system to ensure the model’s consistent and stable operation. By capturing video
images on both sides of the PTFE emulsion–paraffin separation device, we effectively
mitigate the impact of various interferences on the model’s detection, thereby enhancing
its robustness. Additionally, the combination of both modalities feeds more comprehensive
information to the model. The integration of information from different perspectives
allows the model to receive more data support for classification, thereby improving its
detection performance.

Figure 2 illustrates the multimodal process for the automated detection of PTFE
emulsion–paraffin separation. Image sequences X1 and X2, acquired from two different
viewpoints, serve as inputs for two PatchRLNet models—PatchRLNet1 and PatchRLNet2.
Both PatchRLNet1 and PatchRLNet2 share the same architecture and undergo independent
training. Subsequently, by modifying the output of PatchRLNet, we use it as different
branches for the classifier to achieve integration. Specifically, the latent representations ob-
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tained from the backbone structures of PatchRLNet1 and PatchRLNet2 are added, and the re-
sulting new class token is input into the vision transformer classifier to obtain the final result.

Figure 2. The proposed automatic detection process for PTFE emulsion–paraffin separation relies on
a multimodal approach, employing two PatchRLNets designated as PatchRLNet1 and PatchRLNet2.

3.3.2. Engineering Control of Paraffin Separation from PTFE Emulsion

In accordance with the requirements of the PTFE emulsion production from the
Fluoropolymer Division of Ju Sheng Fluorine Chemical Co., Ltd., we encapsulated the
proposed PTFE emulsion–paraffin separation automatic detection model into a deployable
system and utilized it in real production processes. Figure 3 illustrates the operational
workflow of the PTFE emulsion–paraffin separation detection system.

Figure 3. The workflow diagram of the PTFE emulsion–paraffin separation detection system. The sys-
tem issues an alert when continuous PTFE emulsion or occlusion is detected, prompting the control
center to take appropriate actions.

In the actual production process of the PTFE emulsion, occlusions may occur due to
the operational needs of on-site personnel, potentially leading to brief interruptions in the
camera view. To mitigate continuous alarms triggered by these momentary occlusions,
we implemented a counting mechanism for occlusions. The system issues an alert only
when the output state is occluded 150 consecutive times (within a 5 s interval), indicating
an unexpected obstruction of the lens by some object. Otherwise, the model restarts the
counting process. Similarly, the system issues an alert to personnel to close the valve
only when the model detects continuous PTFE emulsion overflow for 3 s. All thresholds
mentioned are set based on the actual requirements of the enterprise and can be adjusted
as needed when applied to different scenarios.

4. Results
4.1. Performance Evaluation Method

We conducted a thorough validation of the proposed PTFE emulsion–paraffin separa-
tion detection system using accuracy, average accuracy, and Micro-average F1 Score metrics
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to ensure its reliable precision and generalization capabilities. In this context, Accuracy is a
straightforward and intuitive performance metric commonly employed in classification
problems. It signifies the proportion of samples correctly predicted by the model out of the
total number of samples. The calculation is expressed via the following Formula (14):

Accuracy =
Number o f Correct Predictions
Total Number o f Predictions

(14)

However, Accuracy is easily influenced by the imbalance of sample categories. When
the Accuracy of a state with a larger number of samples is low, while the Accuracy of the
remaining states is high, the overall Accuracy tends to be lower. Conversely, when a state
with a larger number of samples has high Accuracy, while the Accuracy of the remaining
samples is low, the overall Accuracy may appear higher. Therefore, Accuracy alone cannot
fairly assess the performance of a model in the presence of imbalanced data. Instead,
Average Accuracy is a crucial performance metric, particularly suitable for evaluating the
overall effectiveness of a model in tasks such as classification or information retrieval. As a
relative measure rather than an absolute one, it allows for a robust evaluation of model
performance even in the presence of sample imbalance. It can be formalized as

Average Accuracy =
∑

N(Classes)
i=1 Accuracyi

N(Classes)
(15)

where N(Classes) represent the number of classes (typically four in this study), and Accuracyi
corresponds to the Accuracy of class i.

The Micro-average F1 Score is one of the performance evaluation metrics in multiclass
classification problems. It calculates the F1 Score by comprehensively considering the sum
of true positives, false positives, and false negatives for each class. The advantage of the
Micro-average F1 Score lies in its equal treatment of each class and a stronger emphasis on
the overall performance. This makes it suitable for multiclass classification problems with
imbalanced class distributions, where the importance of certain classes may be greater than
others. It can be formalized as

Micro-average F1 Score =
True Positives

True Positives + 1
2 (False Positive + False Negatives)

(16)

In this context, True Positives signify the cumulative count of correct positive predic-
tions across all classes, while False Positives denote the total count of incorrect positive
predictions across all classes. Similarly, False Negatives represent the collective count of
incorrect negative predictions across all classes. The Micro-average F1 Score serves as
a comprehensive metric for assessing the model’s precision and recall, ensuring equal
consideration for each class in the computation.

4.2. Performance Evaluation of the Vision Transformer

Tables 1 and 2 present a comparison between the vision transformer model and current
state-of-the-art convolutional neural networks on two distinct PTFE emulsion–paraffin
separation test queues, including the first and second perspectives. The metrics used for
comparison include Params, GFlops, Average Accuracy, Accuracy, and Micro-average F1
Score. In this context, smaller values for Params and GFlops indicate lower hardware
requirements for the model, while higher Average Accuracy, Accuracy, and Micro-average
F1 Score values signify better model performance.
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Table 1. The performance of various models utilizing convolutional neural networks or vision
transformer blocks is assessed via a comparison of parameter quantity (Params), GFlops, Average
Accuracy, Accuracy, and Micro-average F1 Score (F1 Score) as indicated by the results from the
first perspective.

Models Params GFlops Average Accuracy Accuracy F1 Score

ResNet152 [29] 5.81 M 11.60 78.77 ± 3.90 79.85 ± 4.04 79.42 ± 5.02

DenseNet201 [30] 18.10 M 4.39 80.92 ± 3.84 80.40 ± 3.83 79.78 ± 4.37

DPN131 [31] 76.58 M 16.17 79.41 ± 3.58 80.56 ± 3.72 79.19 ± 4.49

SE_ResNet152 [32] 64.78 M 11.39 80.41 ± 3.15 82.50 ± 3.67 79.13 ± 3.95

VIT-L-16 [8] 303.31 M 59.73 82.34 ± 3.98 84.17 ± 4.43 81.50 ± 3.51

VIT-B-16 85.80 M 16.88 85.47 ± 4.09 87.31 ± 5.73 85.65 ± 3.34

Table 2. The performance of various models utilizing convolutional neural networks or vision
transformer blocks is assessed via a comparison of parameter quantity (Params), GFlops, Average
Accuracy, Accuracy, and Micro-average F1 Score (F1 Score) as indicated by the results from the
second perspective.

Models Params GFlops Average Accuracy Accuracy F1 Score

ResNet152 5.81 M 11.60 73.41 ± 3.42 73.28 ± 4.05 73.59 ± 3.84

DenseNet201 18.10 M 4.39 74.12 ± 3.25 74.11 ± 3.66 74.83 ± 3.97

DPN131 76.58 M 16.17 74.39 ± 4.18 75.52 ± 3.98 74.96 ± 3.70

SE_ResNet152 64.78 M 11.39 76.37 ± 4.23 78.93 ± 4.58 77.12 ± 4.25

VIT-L-16 303.31 M 59.73 78.81 ± 4.52 82.03 ± 5.01 80.61 ± 4.54

VIT-B-16 85.80 M 16.88 82.15 ± 5.76 83.95 ± 5.22 81.03 ± 4.45

It can be observed that whether using traditional convolutional neural network models
or vision transformer models, the achieved Average Accuracy, Accuracy, and Micro-average
F1 Score are relatively close. This suggests that effective data preprocessing can mitigate
the challenges posed by sample imbalance. On the one hand, compared to traditional con-
volutional neural networks, vision transformer models generally achieve higher Accuracy
and Average Accuracy. This implies that extracting more global features can significantly
enhance the performance of the detection model in PTFE emulsion–paraffin separation.
Across all convolutional neural network models, we obtained a minimum improvement
of 5.06% in Average Accuracy, 4.81% in Accuracy, and 3.91% in Micro-average F1 Score.
On the other hand, when comparing the results of VIT-L-16 and VIT-B-16, it is revealed
that for PTFE emulsion–paraffin separation detection, excessively large models with a
high number of parameters do not necessarily yield better results. This is because the task
involves only four categories and the scene remains relatively fixed, making it challenging
for the model to benefit from an excessively large number of parameters during training.

4.3. Performance Evaluation of PatchRLNet

Traditional convolutional neural networks and vision transformer models fall short
of achieving sufficient accuracy in PTFE emulsion–paraffin separation detection. This
is primarily due to the presence of abundant environmental backgrounds and noise in
real industrial production scenarios, causing the model’s attention to be diverted towards
other objects, thus significantly affecting its detection performance. To mitigate the impact
of environmental backgrounds and noise on the model, we introduced a reinforcement
learning framework into the embedding layer of the vision transformer network. We
constructed a novel model, PatchRLNet, which aims to constrain the model’s focus on key
region features by reinforcing or attenuating the weights of patches. Using VIT-B-16 as
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the baseline model, and based on the test queues for PTFE emulsion–paraffin separation
detection including the first and second perspective, we validated the performance of the
vision transformer model and PatchRLNet, with the results presented in Tables 3 and 4.

Table 3. Performance comparison was conducted between PatchRLNet and the standard vision
transformer model in the context of the first perspective. The evaluation utilized four key met-
rics: parameter quantity (Params), GFlops, average accuracy, accuracy, and micro-average F1 score
(F1 score).

Models Params GFlops Average Accuracy Accuracy F1 Score

VIT-B-16 85.80 M 16.88 85.47 ± 4.09 87.31 ± 5.73 85.65 ± 3.34

PatchRLNet 85.80 M 16.88 98.00 ± 1.04 98.69 ± 1.06 98.71 ± 1.12

Table 4. Performance comparison was conducted between PatchRLNet and the standard vision
transformer model in the context of the second perspective. The evaluation utilized four key met-
rics: parameter quantity (Params), GFlops, average accuracy, accuracy and micro-average F1 score
(F1 score).

Models Params GFlops Average Accuracy Accuracy F1 Score

VIT-B-16 85.80 M 16.88 82.15 ± 5.76 83.95 ± 5.22 81.03 ± 4.45

PatchRLNet 85.80 M 16.88 95.02 ± 2.88 96.73 ± 2.40 96.14 ± 2.08

With the parameter quantity held constant, PatchRLNet, compared to the original VIT-
B-16, achieved improvements of 13.53% and 12.87% in average accuracy, 11.38% and 12.56%
in accuracy, and 13.06% and 15.11% in micro-average F1 score across the two perspectives.
Additionally, it is noteworthy that the stability of the model has significantly increased,
which is evident from the reduced fluctuations in model accuracy. These results validate
our hypothesis and underscore the potential application of reinforcement learning in critical
feature selection.

Utilizing the cross-entropy loss function as the standard for evaluating model per-
formance during training, we visualized the changes in the loss curves for the training
and test research sets during the training process of PatchRLNet and the standard vision
transformer model, as depicted in Figure 4.

Using an initial learning rate of 0.1 and applying learning rate reductions at the 35th
and 70th epochs with a decay factor of 0.2, we observed that PatchRLNet, despite exhibiting
initial training dynamics’ instability and lower test accuracy compared to the standard
vision transformer model, quickly converged and surpassed the performance of the latter
(PatchRLNet experienced transient increases in training loss in the first 10 epochs). On the
one hand, this is due to the incorporation of reinforcement learning, meaning the model
needs more time at the beginning of training to adjust its parameters, ensuring a well-
balanced integration of the reinforcement learning framework and the vision transformer
network. On the other hand, thanks to the reinforcement learning framework helping the
vision transformer network avoid interference from environmental backgrounds and noise,
PatchRLNet exhibits more stable training dynamics and better resilience to overfitting. It
can be clearly observed that the training and testing curves of PatchRLNet are smoother and
more stable, particularly in the later stages of training. The experimental results thoroughly
demonstrate the effectiveness and reliability of our proposed algorithm, which combines
reinforcement learning with a vision transformer. Not only does it enhance model accuracy,
but it also stabilizes the training dynamics of the model.
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Figure 4. The proposed automatic detection process for PTFE emulsion–paraffin separation based on
multimodality, in which two PatchRLNets called PatchRLNets1 and PatchRLNets2 are used.

Class Activation Mapping (CAM) [33] is a technique that visualizes attention on
images by projecting the weights of the output layer back onto the feature maps. It
provides a genuine reflection of the model’s focus areas. In this study, CAM was employed
to visualize the results of PatchRLNet and vision transformer models on the PTFE emulsion–
paraffin separation test queue, as illustrated in Figure 5. In the visualization, darker colors
indicate higher attention from the model to the corresponding regions.

As shown in the figure, PatchRLNet predominantly focuses on the crucial target
areas in the images, such as the outflow points of the PTFE emulsion and high-temperature
paraffin solution, whereas the vision transformer exhibits attention in many irrelevant areas,
such as the liquid surface and background noise, as is evident in the results presented in
the second row of the second and third columns. For occlusion and idle states, PatchRLNet
demonstrates nearly identical attention, for instance, towards the solidified PTFE emulsion
and the edges of the paraffin reservoir, indicating its consistent focus on key features.
In contrast, the attention points of the vision transformer vary widely, lacking a certain
level of interpretability. The results of these experiments clearly demonstrate the efficacy
of PatchRLNet proposed in this study in selecting critical features, reducing interference
from background environments and noise and thereby meeting the high-precision pattern
recognition requirements in complex scenarios.
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Figure 5. Visualization results of attention. The first column represents blockage, the second column
represents the PTFE emulsion, the third column represents paraffin wax, and the fourth column
represents the idle state. The first and fourth rows depict the original input images. The second and
third rows, as well as the fifth and sixth rows, respectively, showcase the comparison of attention
between PatchRLNet and the Visual Transformer model for images corresponding to different states
from two different perspectives.

4.4. Performance Evaluation of PTFE Emulsion–Paraffin Separation

Combining multimodal data, we validated the performance of our proposed PTFE
emulsion–paraffin separation automatic detection system on the integrated PTFE emulsion–
paraffin separation detection test queue. In the end, we achieved an accuracy of 99.12%,
an average accuracy of 99.46%, and a micro-average F1 score of 99.23%. This indicates that
our PTFE emulsion–paraffin separation detection model is applicable to real industrial
production scenarios.

Finally, we encapsulated the PTFE emulsion–paraffin separation detection model into
a system and applied it to the real production process at the production base of Ju Sheng
Fluorine Chemical Co., Ltd., a subsidiary of Quzhou Juhua Group. This implementation
aimed to achieve automated control of PTFE emulsion–paraffin separation. Through a
survey and statistical analysis of the results of 7 days of production activities, we found
that within the week, the system accurately detected all instances of occlusion and issued
timely alerts. Simultaneously, the system also accurately identified all occurrences of the
PTFE emulsion, providing timely alarms and replacing manual visual inspections, thereby
enhancing the factory’s production efficiency. Regarding the paraffin state, the system
experienced one false positive. This was attributed to instances where manual intervention
closed valves after the appearance of emulsion in the collected data, resulting in situations
where the liquid volume was too small to be reliably determined. In future work, similar
errors can be mitigated by controlling the occurrence of manual interventions.

5. Conclusions

In this paper, we propose a novel framework, PatchRLNet, for the automated detection
of PTFE emulsion–paraffin separation. The results demonstrate significant progress in the
automatic detection of paraffin separation during PTFE emulsion production, achieved via
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the integration of a vision transformer and reinforcement learning. By incorporating the
reinforcement learning framework into the embedding layer of a vision transformer, we
successfully enhance the accuracy of paraffin separation, enabling the model to more pre-
cisely focus on the critical features of the target while ignoring surrounding environments
and background noise. This framework also incorporates an adaptive feature selection
mechanism, ensuring the model’s flexible adaptation to input data.

We constructed a large-scale research queue for the detection of PTFE emulsion–
paraffin separation based on real data from China’s largest PTFE material production base.
To our knowledge, this is the only work in the current research community using such a
dataset. Leveraging this research queue, we conducted extensive testing and validation
of the proposed method. The experimental results demonstrate remarkable performance
with an accuracy exceeding 0.99, showcasing high reliability and practicality in real-world
applications. Furthermore, our study represents the first application of reinforcement
learning and a vision transformer to PTFE emulsion–paraffin detection and separation,
providing new perspectives and methodologies for further research in related fields.

In practical applications, as mentioned in Section 4.4, we have recognized the potential
adverse effects of human interference on our detection results. To further enhance the
model’s detection performance in such scenarios, we have incorporated the consideration
of human interference as a pivotal aspect into our new research agenda. This proactive step
aims to adapt and optimize the model to address potential external disturbances compre-
hensively. In addressing situations with lower water flow, we are actively contemplating
the introduction of a fine-grained recognition task mechanism. The objective of this strategy
is to elevate the model’s performance, fostering stronger robustness and reliability across
a broader range of scenarios. By exploring fine-grained recognition tasks in future work,
we anticipate that the model will more precisely capture and distinguish different features,
thereby further enhancing its overall performance. This avenue of research is poised to con-
tribute to the model’s improved adaptability to diverse real-world environments, enabling
it to excel under various complex conditions. Finally, we conducted tests and validations
on additional PTFE emulsion–paraffin separation sites at the production facility. The re-
sults underscore that our model consistently demonstrates excellent detection capabilities,
highlighting the robust generalization ability of our approach. This observation suggests a
consistently high level of detection accuracy across various scenarios.

While our method demonstrates outstanding performance and reliable generalization
capabilities, the incorporation of reinforcement learning significantly increases the training
costs of the model, including computational expenses and time requirements. This, to some
extent, impacts the applicability of the proposed method outlined in this paper. In our
ongoing work, we are actively exploring ways to optimize the training process of the
reinforcement learning framework, aiming to efficiently reduce the training costs associated
with the proposed method and enhance its overall effectiveness.

Overall, the PatchRLNet has achieved significant success in improving separation
detection accuracy and model interpretability, providing robust support for the automation
and intelligence of PTFE emulsion production industries. Future research could further
optimize the framework, expand its applicability, and delve into its potential applications
in other industrial production processes.
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