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Abstract: Pedestrians, bicyclists, and scooterists are Vulnerable Road Users (VRUs) in traffic accidents.
The number of fatalities and injuries in traffic accidents involving vulnerable road users has been
steadily increasing in the last two decades in the U.S., even though road vehicles now have percep-
tion sensors like cameras to detect risk and issue collision warnings or apply emergency braking.
Perception sensors like cameras are highly affected by lighting and weather conditions. Cameras,
radar, and lidar cannot detect vulnerable road users in partially occluded and occluded situations.
This paper proposes the use of Vehicle-to-VRU communication to inform nearby vehicles of VRUs on
trajectories with a potential collision risk. An Android smartphone app with low-energy Bluetooth
(BLE) advertising is developed and used for this communication. The same app is also used to collect
motion data of VRUs for training. VRU motion data are smoothed using a Kalman filter, and an
LSTM neural network is used for future motion prediction. This information is used in an algorithm
comparing Time-To-collision-Zone (TTZ) for the vehicle and VRU, and issues driver warnings with
different severity levels. The warning severity level is based on the analysis of real data from a
smart intersection for close vehicle and VRU interactions. The resulting driver warning system is
demonstrated using proof-of-concept experiments. The method can easily be extended to a VRU
collision-mitigation system.

Keywords: vulnerable road user safety; vehicle-to-VRU communication; pedestrian collision warning

1. Introduction

A significant number of traffic accidents occur each year and result in a large number
of injuries and deaths [1]. To reduce these incidents, researchers have introduced new and
better active and passive protection measures each year to improve passenger and other
road user safety [2–4]. In traffic, pedestrians are among the most vulnerable road users
(VRUs) [5–7], and pedestrian safety is a priority for the U.S. Federal Highway Adminis-
tration’s (FHWA) Office of Safety [8]. The City of New York, for example, is testing new
technologies to improve the safety of pedestrians [9]. According to National Highway
Traffic Safety Administration (NHTSA) statistics, more than 6000 pedestrians are killed in
traffic accidents every year in the U.S. Although pedestrians are the most common VRU
type, other VRUs, such as bicyclists [10] and scooter users [11], are also very susceptible to
high-collision-risk scenarios and crashes.

To improve the safety of VRUs as they interact with autonomous and non-autonomous
vehicles, an important tool that can be utilized is vehicle-to-everything (V2X) communi-
cation [12–15]. This can be achieved on an individual basis, where each road user carries
a message-broadcasting device, and on an infrastructure basis, where an intersection is
designed as a smart intersection that detects VRUs as well as vehicles, and publishes
information for them as if they are all connected [16,17], or through the over-the-air sharing
of relevant Connected Vehicle (CV) data in centralized servers. Although an automated ve-
hicle can obtain more accurate information about the VRUs using its own sensors, there are
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conditions in which this is not reliable or possible, such as bad weather (heavy fog, rain) or
a no-line-of-sight (NLOS) situation in which the target of interest is blocked by an obstacle
or another vehicle [18]. When the information is transferred via wireless communication,
these types of situations can be remedied. Since Bluetooth advertising mode and Blue-
tooth 5.0 technology are now more widely available in current mobile phones [19,20], it is
now a feasible communication method between VRUs and other road users [21]. VRUs
can carry their mobile phones in their hands or in their pockets, which affects the range
of communication. Current mobile phones possess a large number of sensors that can
be used for tracking or predicting the motion and behavior of pedestrians, bicyclists, or
scooters [22,23]. Using, for example, the Android Bluetooth Low Energy (BLE) application
programming interface (API) [24], it is possible to develop an Android app that can be
used for this purpose. It is possible to achieve different benefits when using this approach,
depending on the different modes of Bluetooth communication [25].

Pedestrian safety systems need knowledge of the possible future path of nearby pedes-
trians to determine the possibility of a near-future collision risk [26–28]. Even with the
correct information transfer from a pedestrian’s phone using Bluetooth or other communi-
cation means, predicting the path of a VRU can be tricky, especially for pedestrians [29].
Different types of methods, such as grid-based ones [30], constant velocity models [31],
and neural networks [32], have been utilized in the literature to predict pedestrian paths.
Generative Adversarial Networks (GANs) [33] and Long Short-Term Memory (LSTM)
networks [34] have been used and observed in the literature to provide reliable results for
prediction. The memory-based feedback nature of the LSTM network helps with the mo-
tion patterns of pedestrian movements, especially at intersections. The prediction method
can be combined with the data obtained from sensors or wireless communication. One
problem posed here could be the low-frequency update rate of normal GPS sensors of
1 Hz if a pedestrian is the source of information. However, the GPS, acceleration, and gyro
sensors available on a phone can be utilized with a Kalman Filter [35] for higher-frequency
location-tracking. Utilizing the sensors in a pedestrian’s mobile phone is very beneficial
when combined with Bluetooth advertisement capabilities. This approach helps ensure
information transfer between road users and, most importantly, allows us to implement a
safety application that can be installed conveniently on mobile phones and can be used by
both the driver of a vehicle and a VRU.

This paper focuses on VRU safety using V2P communication. The methods and results
presented in the paper are applicable to all VRUs, but the experimental results reported
here are for pedestrians. The contributions of the paper are as follows:

• The development of an Android app for collecting mobile phone sensor data of VRUs;
• Using the collected data to predict the future motion of a VRU using Kalman filtering

and LSTM-based motion prediction;
• Converting the future motion and localization data of the VRU to a Personal Safety

Message (PSM);
• Broadcasting the PSM using Bluetooth advertising or over-the-air using internet

connectivity to nearby vehicles;
• Further developing and using the same Android app to receive PSM data in a vehicle;
• Developing and implementing programs in a Bluetooth board to similarly broadcast

and receive PSM data if needed;
• Developing and implementing a pedestrian collision warning system using the

PSM data;
• Analyzing available vehicle and pedestrian interactions in a smart intersection to

calibrate the pedestrian collision warning system;
• Experimentally developing and demonstrating a full pedestrian collision avoidance

system.

In this paper, V2P communication is used to improve the safety of VRUs, especially
pedestrians, using a driver warning system. The VRU mobile phone sensors are used to
predict future motion to better assess the risk of collision with nearby vehicles and issue
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warning messages. These warnings can also be used to begin the automated slowing down
and braking of the vehicle. The organization of the rest of the paper is as follows. The
V2P app’s development and implementation are presented in Section 2. V2P communica-
tion using the developed app is investigated in Section 3. The V2P-communication-based
pedestrian safety system is developed in Section 4. Simulation and experimental results are
presented and discussed in Section 5. The paper ends with conclusions and recommenda-
tions in Section 6.

2. V2P App Development and Implementation

To the determine collision risk and execute the necessary safety precautions, pedestrian
motion information needs to be obtained by the vehicle. By transferring this over a wireless
link, we also ensure that, even if there is NLOS and perception sensors are not able to
detect the pedestrian, the vehicle would still be able to detect the pedestrian and track
their location, speed and direction. Therefore, the main enablers of this implementation
are its relatively wide availability and the Bluetooth 5.0 capabilities of recent Android
phone models. However, it should be noted that the algorithms and methods developed
in this paper for vehicle and pedestrian interaction analyses, driver alerts and warnings,
pedestrian motion and intent prediction, and collision risk determination are independent
the communication method that is used.

Bluetooth communication technology was experimented with to analyze the prac-
tical abilities of its implementation in smartphones. First, communication experiments
were carried out on the nRF52840-DK Bluetooth development board [36]. Afterwards,
an Android application was coded using the BLE module in Android API 28. This soft-
ware has the ability to encode, transmit, receive, and decode messages via Bluetooth 5.0
through extended advertisement. PSM from the Society of Automotive Engineers (SAE)
J2735 standard [37] was used to establish the pedestrian information message structure.
Experiments were first carried out using the extended advertisement mode to achieve a
long-range and large data-carrying capacity, and very good results were obtained. The
mode of communication was later switched to normal advertisement, as this is available in
more smartphones. As well as using the location, speed, acceleration and heading fields
to calculate the collision possibility and issue a warning, PSM also has fields such as user
type, device use state, cross request, cluster size, and attachment. These fields will be
useful for improving the algorithm in the future for pedestrian group clustering, pedestrian
behavior prediction, and more accurate collision predictions for a VRU with pets, carts, or
a wheelchair. The standard is designed to allow for this message to be published at 10 Hz,
which is a reasonable frequency for our calculations. The pedestrian transmits the PSM, and
the vehicle receives it via the driver warning implementation. The PSM communication
between the VRU and vehicle(s) is illustrated in Figure 1. The PSM-populated fields are the
location (latitude and longitude), heading, speed, and acceleration, as shown in Figure 2.
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Figure 2. PSM over Bluetooth V2P app running on a smartphone.

An Android phone can be used in the vehicle to obtain the pedestrian’s information,
handle the warning calculations, and show a warning and the recommended speed profile
(if desired) to the driver. If the vehicle is autonomous, a Bluetooth receiver board such
as the nRF52840-DK can be used to obtain the messages and transfer the information to
computing unit(s) for comfortable braking and stopping, as well as for collision avoidance.
This board has a serial interface. This was combined with a W5500 Ethernet shield [38] to
transfer the information received via Bluetooth through the Ethernet connection to achieve
better results. A picture of the combined BLE-receiving board can be seen in Figure 3.
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3. V2P Communication Experiments

After the implementation of V2P into the smartphone, some initial testing for
determining communication range was conducted. This testing involved both nRF52840-
DK Bluetooth boards and Android smartphones in obstructed and non-obstructed cases
along with normal and extended Bluetooth advertisement modes. The results obtained
are presented in Table 1. The Bluetooth board has the longest communication range, of
more than 250 m, in the extended advertising mode. This corresponds to the first row of
the table. The obstruction of the smartphone by the pedestrian body results in the lowest
communication range in normal Bluetooth advertising mode when communicating with
another smartphone in the vehicle. This corresponds to the last row of the table. Data trans-
fer over WebSocket [39] functionality was also implemented in the application. However,
this was changed later to internal storage during the experiments because the WebSocket
connection required constant internet access. Moreover, due to GPS sensor updates being
paused when the phone screen is locked, GPS callback was tied to a background process to
ensure regular updates. The process flow diagram of the application is shown in Figure 4.

Table 1. Bluetooth communication range experiments.

Device Condition Distance in Normal
Advertisement (m)

Distance in Extended
Advertisement (m)

nRF52840-DK No obstructions 191 253
Android No obstructions 78 114
Android Intentionally obstructed by pedestrian body 27 55Electronics 2024, 13, x FOR PEER REVIEW 6 of 30 
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Along with the V2P broadcasting mobile application discussed above, a data collection
application was developed and implemented in the Android phone. This application was
developed separately from the previous app to support older model Android phones which
do not have Bluetooth 5.0. The application, running on an Android phone, is displayed
in Figure 5. This application receives data from several sensors built in the Android phone
and records them locally with timestamps in the form of csv files. The sensors used are
acceleration, gyro, step counter, GPS, orientation, proximity, and light sensor. A feature
for uploading the data into a remote server was also implemented. Data plots after initial
testing of the app are shown in Figure 6.
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4. V2P-Communication-Based Pedestrian Safety Warnings

The two applications that were previously discussed regarding V2P communication
and data recording were later combined into a single application built for recent Android
phones with Bluetooth 5.0. The user interface was also improved. Then, a custom J2735
library was prepared to encode and decode PSM messages. Several quality-of-life changes
were implemented later. These include manual or automatic user selection, manual or
random PSM ID, easier file access for recorded data, a debug mode for developers, and
a user mode for end-users. The new app screen is shown in Figure 7. PSM decoding,
encoding, broadcasting and data collection were combined in this final application. The
user interface was simplified and improved. Icons were added to warn the driver in case of
a collision risk. The warning design, parameters and the user interface are discussed in
more detail later in the paper.
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4.1. Safety Approach

The overall architecture of the V2P-communication-based pedestrian safety approach
of this paper is illustrated in Figure 8. The vehicle is approaching a crosswalk that a
pedestrian is intending to cross in Figure 8. The elements that make up this architecture are
explained. The first element in the approach is pedestrian path prediction and tracking.
This is utilized to predict the pedestrian’s location in the near future with LSTM neural
networks, as well as to track his/her motion at a higher sampling rate utilizing the Kalman
filter. This is used to make safety warnings and action decisions. These include how to
warn the driver or how to adjust the speed of the vehicle if it is autonomous.
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The second element in the architecture, communication, or information transfer focuses
on wireless communication to provide information about the pedestrian, especially in cases
involving reduced visibility or NLOS, to the nearby vehicle. Mobile phone Bluetooth
or extended Bluetooth are used in this paper due to the enhanced support they provide
when carrying larger chunks of information over longer distances. On top of that, with
the dual-frequency GPS technology that is recently starting to be implemented in mobile
devices, localization accuracies of a few decimeters can be achieved [40]. Most importantly,
mobile phones are very common and can be utilized in non-autonomous vehicles, as well to
warn the driver. Because of this, the means of wireless communication, as a way to discuss
and demonstrate the VRU safety approach, is chosen as Bluetooth in this paper. However,
it should be noted that the VRU collision warning and avoidance braking methods of this
paper do not depend on the communication method used.

The next two elements of the architecture, real-world data analysis and driver warn-
ings, are intertwined. The warning system was designed to allow for non-autonomous
vehicles to utilize this safety system by showing the driver warnings, of varying degrees
of severity, of a collision risk situation. Real-world data analysis plays a very important
role in determining the severity of these warnings. An analysis of real interactions between
vehicles and pedestrians at an intersection was used to achieve a naturalistic slowing
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down and stopping of the vehicle by providing the driver with the correct warnings at the
right times.

4.2. Pedestrian Path-Tracking and Prediction

The path-tracking and prediction system is designed to be a combination of Kalman fil-
tering and neural-network-based path prediction. While neural-network-based prediction
predicts motion information multiple seconds into the future, Kalman filtering increases the
frequency of location to above the 1 Hz GPS update rate in mobile phones. The diagram of
the neural network and the Kalman filter path-tracking and prediction algorithm is shown
in Figure 9. The mobile phone GPS sensor is utilized at its maximum rate of 1 Hz to obtain
location and velocity information, which are then fed into the LSTM neural network that
predicts the future location of the pedestrian. Although a single neural network can be
used to predict multiple locations of the pedestrian path, multiple neural networks were
trained separately to ensure a better prediction accuracy, along with a smaller network size.
Therefore, the algorithm uses multiple small neural networks to predict future location
within a timeframe of a few seconds. Naturally, the further in the future the algorithm
tries to predict, the less accurate it becomes. Along with the neural network prediction, the
Kalman filter uses GPS information at 1 Hz, as well as other higher update rate sensors
such as orientation and acceleration, to track the pedestrian location at higher sampling
than 1 Hz.
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The LSTM type recurrent neural network was used because of its memory, since
pedestrian movement patterns highly benefit from both short- and long-term memory,
especially at an intersection. LSTM was also tested in other research in the field [34]
and shown to perform better for pedestrian path prediction compared to other options.
These networks were trained with both real-world data collected from mobile phones
and synthetically generated pedestrian data from the Vissim environment. Some of these
samples are presented in Figure 10. The trained neural network can be transferred into
mobile devices using the TensorFlow Lite library for runtime operation [41].
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4.3. Pedestrian Behavior Prediction

Android phones have numerous sensors that provide high-frequency data. Some
of these sensors were utilized to predict pedestrian behavior. An LSTM-based neural
network structure was created, with these sensor readings used as multiple inputs. The first
structuret that was experimented with had a single output with values ranging between
0 and 1. Different intervals within this range were trained as different behaviors. This
structure, along with the inputs and outputs, is illustrated in Figure 11.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 30 
 

 

 
Figure 11. Pedestrian behavior prediction’s initial structure. 

To train the neural network of Figure 11, real-world data were collected with the data 
collection application that was explained earlier. Afterwards, the data were manually la-
beled by utilizing a custom data-labeling tool, developed in MATLAB version 2022 spe-
cifically for this purpose. Using the sensor information visualization features of the label-
ing tool, the labeling process was significantly shortened. The network was trained using 
the labeled data and then tested. The first designed structure, as mentioned before, had a 
single output with different value intervals indicating different behavior. With repeated 
experiments, the sensors that resulted in unnecessary noise or inconsistent measurements 
and that provided minimal benefit to the detection, such as acceleration and step count 
sensors, were removed from the input for better accuracy. Figure 12 shows the testing 
results of the trained neural network structure. 

 
Figure 12. Single output prediction results. 

As indicated in Figure 12, different colored areas indicate different behavior. When 
the output is between 0.5 and 0.75, the pedestrian is making a right turn. If the output is 
between 0.5 and 0.25, the pedestrian is making a left turn. Finally, an output between 0 
and 0.25 means the pedestrian is moving forward. The graph in Figure 12 shows that the 
prediction results (green line) are very close to the ground truth (blue line), and always 
fall within the range of correct behavior. The second structure that was experimented with 
was created by modifying the first structure to incorporate multiple outputs to increase 
learning capacity, scalability, and compatibility with the literature. These outputs were 
then assigned to different modes of behavior, and interpreted as confidence levels. The 

Figure 11. Pedestrian behavior prediction’s initial structure.

To train the neural network of Figure 11, real-world data were collected with the
data collection application that was explained earlier. Afterwards, the data were manually
labeled by utilizing a custom data-labeling tool, developed in MATLAB version 2022 specif-
ically for this purpose. Using the sensor information visualization features of the labeling
tool, the labeling process was significantly shortened. The network was trained using the
labeled data and then tested. The first designed structure, as mentioned before, had a
single output with different value intervals indicating different behavior. With repeated
experiments, the sensors that resulted in unnecessary noise or inconsistent measurements
and that provided minimal benefit to the detection, such as acceleration and step count
sensors, were removed from the input for better accuracy. Figure 12 shows the testing
results of the trained neural network structure.
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Figure 12. Single output prediction results.

As indicated in Figure 12, different colored areas indicate different behavior. When
the output is between 0.5 and 0.75, the pedestrian is making a right turn. If the output is
between 0.5 and 0.25, the pedestrian is making a left turn. Finally, an output between 0
and 0.25 means the pedestrian is moving forward. The graph in Figure 12 shows that the
prediction results (green line) are very close to the ground truth (blue line), and always
fall within the range of correct behavior. The second structure that was experimented with
was created by modifying the first structure to incorporate multiple outputs to increase
learning capacity, scalability, and compatibility with the literature. These outputs were then
assigned to different modes of behavior, and interpreted as confidence levels. The network
was trained with same data as before, although these data were now labeled for multiple
outputs. The test results shown in Figure 13 have three different outputs, as opposed to one
output in the previous figure. Each output has a confidence level between 0 and 100. The
predicted behavior has the highest confidence level value. It can be seen that the prediction
(orange line) follows the ground truth (blue line) closely. Although there is some noise in
certain sections, the predictions were correct in almost all the test data.
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4.4. Pedestrian–Vehicle Interaction

The base scenario geometry for pedestrian–vehicle interaction assumes that the vehicle
and the pedestrian are moving straight along paths that are perpendicular to each other.
This is similar to one of the configurations in a recent National Highway Traffic Safety
Administration (NHTSA) report on the causes of accidents [8]. The base scenario geometry
and variables are illustrated in Figure 14. The collision risk zone is defined at the crosswalk
as an area of potential conflict, where vehicle speed is vv, pedestrian speed vp, and distances
to the collision zone dv, and dp, for the vehicle and pedestrian, respectively, are defined
as the significant variables. This configuration was created as a base scenario to be used
throughout the paper for driver warning discussions. The scenario geometry can easily be
modified to include left and right turns, as well with similar variables, where distance will
be circular rather than linear. Using the variables mentioned above, Time to Zone (TTZ)
can be calculated as:

TTZv =
dv

vv
TTZp =

dp

vp
, (1)

where TTZv, and TTZp are vehicle and pedestrian time to zones, respectively. The cal-
culations for pedestrians can be combined with the tracking and prediction algorithm
to calculate a more accurate TTZp, especially if the pedestrian is about to turn onto the
crosswalk. Depending on how many seconds into the future the location is predicted,
TTZp can be completely replaced or extrapolated using a constant-velocity or other, similar
motion model [31].
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After the TTZ values are obtained, we can state the high collision risk condition as

TTZp − ts < TTZv < TTZp + ts, (2)

or ∣∣TTZv − TTZp
∣∣ < ts. (3)

ts is the safety margin time, and is either constant or a dynamic value based on GPS accuracy
and driver preferences. If the conditions in Equations (2) or (3) are satisfied, there is a
possible collision in the future. This condition is further investigated in the next subsection
where this correspondence is visualized, and parameters are defined and determined
using real-world interaction data. TTZ can be calculated and used to determine a possible
collision risk in the future and its severity. For each second from the start of the interaction
(depicted as interaction time), there will be TTZv and TTZp values. An interaction diagram,
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such as that presented in Figure 15, can be created using the correspondence of TTZ values
for the pedestrian and the vehicle.
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Figure 15. Pedestrian (VRU) and vehicle interaction diagram.

TTZ values for the vehicle and pedestrian are shown as small colored circles in the
example in Figure 15, where the color of the circle determines the interaction time, with
the legend provided on the right-hand-side vertical axis. Since both TTZ values are equal
to zero, i.e., an interaction at the origin means collision, the closer the correspondence for
the ordered pair (TTZv, TTZp) is to the origin, the more severe the collision risk. Severity
margins can be defined as circular areas around the origin indicating different levels of
severity. Defining the severity margins is highly important for non-autonomous vehicles,
since the severity of the situation should be properly conveyed to the human drivers to
allow for them to react correctly in a timely manner. Therefore, values for these margins
were used as the main design parameters for the warning calculation. Another important
parameter is the safety margin time, which represents the difference between the TTZ
values for the vehicle and the pedestrian, like ts, defined in the previous subsection. If the
TTZ values are reasonably different from each other, either the vehicle or the pedestrian
would cross the zone first, without any risk of collision. Therefore, the warning system only
considers the correspondences that occur within this safety margin time region in Figure 15.

To better visualize how the interaction graph would look with corresponding vehicle
and pedestrian behavior, Figure 16 was created as an illustration. A vehicle approaching
the crosswalk at the same time as a pedestrian is illustrated in Figure 16. Steps 1, 2, and 3
represent the vehicle and pedestrian locations as the vehicle is slowing down. The vehicle
TTZ is shown to be moving towards zero at first, but because the vehicle is slowing down,
the values start to increase and the corresponding points move beyond the critical part of
the diagram as the vehicle stops. The final image at the right side of Figure 16 shows the
overall TTZ correspondence trajectory.
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Figure 16. Illustration of vehicle and pedestrian behavior with successive interaction diagrams.

4.5. Real World Data Processing

To gain insight from real-world interactions, data from a real-world intersection
at Marysville, Ohio, U.S., were collected and processed. This intersection is a smart
intersection where four cameras were set up [16] to detect vehicles and pedestrians and
send this information to the roadside unit (RSU) installed at the intersection. This RSU
broadcasted basic safety messages (BSM) for each pedestrian as well as for each vehicle,
along with their respective location and speed information, as if they were carrying a
dedicated short-range communication (DSRC) broadcasting device. Although these data
are very large and would not be practical to physically listen to and record, the City of
Marysville made them available for public use through the Smart Columbus Operating
System (SCOS) database [40]. The data were downloaded and processed to extract the
vehicle and pedestrian interactions that fit the base scenario. This data contained eight
months of BSM messages; some months contained more interactions than others.

Extracted interactions were processed to calculate TTZ for interacting vehicles and
pedestrians. Then, interaction graphs were created showing all these interactions combined.
To understand the similarities within all the interaction data, a heatmap graph was also
created. These graphs can be seen in Figure 17. The interaction graph on the left side
of Figure 17 shows each different interaction with a different color. Since the number of
interactions is very high, it is difficult to interpret this, and a vehicle–pedestrian interaction
density heatmap is used for better readability on the right-hand side of Figure 17. The
yellow area shows the densest points in the graph. When the vehicle is slowing down,
vehicle TTZ stays at around similar values for a while as pedestrian TTZ steadily decreases.
The dense area in the heatmap graph corresponds to the area in which vehicles are slowing
down when they see a pedestrian close to the intersection. Using this information, captured
from real-world data, allows for us to design our warning system to mimic the natural
behavior of drivers when they encounter nearby pedestrians.
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Figure 17. Nearby vehicle and pedestrian interaction graph (left) and heatmap (right) based on
real-world data.

Interactions were divided according to the sunset time for each respective month, and
are plotted again in Figure 18 for a comparison of night and daytime interactions. As seen
in this figure, drivers at this intersection behaved more cautiously at nighttime, resulting in
an approximately 0.5 s shift in the dense area in the heatmap. This information can also be
incorporated into safety algorithms, either as a preference or to provide a more comfortable
and cautious experience during the evening and night.
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Using the design parameters and real-world behavior information discussed in the
previous section, driver warnings were designed for a safe stop. The warning system was
designed with different severity values to convey the level of danger to the driver. This will
help the driver decide how to slow down and stop. The main criteria used to determine the
severity of the warning are the severity margins discussed in the previous section. With the
current approach, which uses the TTZ as the main criteria to determine the current severity,
we incorporate speed along with the remaining distance, as well as the TTZ correspondence
for the pedestrian and vehicle. This prevents us from warning the driver unnecessarily in
cases where either the pedestrian or the vehicle will be able to pass the crosswalk without
the need to stop. Three margins were defined for the driver warning—Inform, Warn, and
Emergency—with increasing degree of severity. The color-coding and explanations of these
margins are shown in Figure 19.
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Figure 19. Warning severities and meanings.

Initially, there are no warnings, even though there may be the possibility of a collision
in the distant future. As the risk of a future collision becomes higher, and as the value
of TTZv reduces below a pre-determined threshold value, the warning system enters the
Inform state. The Inform state corresponds to the lightest severity, where a future collision
could easily be avoided by a comfortable speed reduction. As the risk of future collision
increases, and as the TTZv value decreases below another pre-determined threshold, the
system enters the Warn state, which means that the vehicle should start slowing down as
soon as possible, using a relatively uncomfortable amount of deceleration to stop safely.
These two margins can be chosen as constant values, and can later be modified adaptively
or manually by the driver. To determine the value of these margins, the processed real-
world behavior data that were discussed above were used. A histogram graph of the data
was used to determine a base value ranging from 1 to 3.3 s for the Inform margin. After
determining the base value for this first margin, a Vissim simulation environment with
the base scenario was constructed to further test and adjust this value in simulations. An
attention lag was also added to incorporate the driver reaction time. The test was conducted
with a very comfortable deceleration to obtain a value that results in a conservative driver
warning. The general flow of the simulations is illustrated in Figure 20.
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Figure 20. Flow of Vissim simulation to adjust the Inform margin.

As stated above, the simulations were conducted at a constant start speed and time
where the only changing values were the random attention lag, and the Inform margin
value. Interaction diagrams for multiple simulations, run across different Inform margin
start values, are shown in Figure 21. When the diagram data were shifted by 1 s (diagram on
left), there appear to be certain cases when the vehicle cannot stop in time with comfortable
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braking and needs to resort to emergency braking. When the data were shifted by 1.5 s
(graph in the middle of Figure 21), although there were no accidents and vehicles were able
to slow down and stop comfortably, an unexpected increase in reaction time still resulted
in some unwanted situations. Therefore, the value shifted by 2 s (diagram on the right side
of Figure 21) was selected, as this is the most conservative value, while still being close to
the base value. This adjustment brought the Inform margin into the range of from 3 to 5.3 s.
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Figure 21. Simulation results for adjusted Inform margin (gray area) values. The color-coded severity
areas are for the default values assigned before the Vissim simulation study. The gray area for the
inform margin is adjusted afterwards so that the most conservative case on the right subplot is
between 3 s and 5.3 s.

After the Inform margin is determined with both lower and upper threshold values,
the Warn margin (pink area) does not need a range determination, since this becomes
the area between the dynamically calculated Emergency margin and the constant Inform
margin. The third and final severity margin is the red Emergency margin. In this case,
the vehicle must perform an emergency braking to stop safely. The threshold value that
is used will be dynamic. It will depend on the vehicle speed and distance. It should be
computed at each step to issue a warning to the driver, if necessary. The minimum amount
of deceleration amin that is needed to stop the vehicle at a given distance from the conflict
zone at the given vehicle speed can be calculated as:

amin =
v2

v
2dv

(4)

When the minimum deceleration is below the braking deceleration limit, the driver
is required to apply full braking to stop the vehicle. This will result in the red Emergency
severity zone.

5. Simulation and Experimental Results and Discussion

This section discusses the evaluation and testing of the VRU safety warning system
that was developed. The evaluations include pedestrian path prediction evaluation, Vissim
simulations, and real-world testing.

5.1. Kalman Filter and LSTM Pedestrian Path Prediction Testing

As discussed previously, a system with LSTM neural networks in combination with
Kalman filtering was developed for pedestrian path prediction and tracking. The test
results and discussion are presented here, starting with the Kalman filter. The Kalman
filter was first implemented in MATLAB and tested using real-world data recorded from
an Android mobile device. Android location data from GPS, and acceleration data from its
accelerometer sensor, were integrated together to achieve higher-resolution tracking. Since
the mobile device GPS updates at 1 Hz, the use of the Kalman filter is highly beneficial for
the calculations and for broadcasting messages, since the SAE J2735 standard messages are
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published at 10 Hz. Initial testing was conducted offline by replaying the recorded data
through the algorithm. Some of the test results are plotted in Figure 22. GPS points are
represented by blue circles, while Kalman filter updates are represented by red cross signs.
As seen in Figure 22, the filter can successfully track the pedestrian at a higher frequency
with fewer errors. Error calculations were also carried out to determine the accuracy of
the algorithm, and the results were found to be satisfactory. The values are presented
in Table 2 as the Average Displacement Error (ADE) in meters. After initial testing, the
Kalman filtering algorithm was implemented in the Android device and was tested in
a real-world setting. The results are plotted on top of a satellite image and are shown
in Figure 23. As seen in the figure, the algorithm can provide higher-resolution location
information compared to the Android GPS sensor. More importantly, it prevents sudden
jumps in location, which can be seen in the top right corner of the plots.
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Table 2. Tracking error for Kalman filter testing.

Test ADE (m)

A 0.2866
B 0.2112
C 0.3109
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The results in Figure 23 show that future motion prediction has problems when the
pedestrian makes sudden turns at a relatively high speed. A constant turn or another motion
model may be more useful in those cases than a constant-velocity model during Kalman
filtering. Errors in phone-GPS-based location also cause problems and will influence
the TTZ computations, which may result in an inadequate warning. Tuning the TTZ
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based warnings based on real data will help improve this. It is also expected that the
localization accuracy of mobile phones will keep improving, meaning that this will be a
smaller problem in the future. The possibility of these errors needs to be considered in
real-world deployments.

The LSTM neural network for pedestrian future path prediction was trained and tested
offline using data collected with an Android mobile device. Pedestrian location and speed
data were collected and fed to the network to test 1 s future prediction first. The validation
data were not included in the training dataset. The results for some of the tests are plotted
in Figures 24 and 25. Collected pedestrian path test data are plotted as a blue line, while
the neural network predictions for each step are plotted on top of these data as an orange
line. The predictions of 1 s into the future are very accurate for both test cases: A and B.
Along with the path prediction plots, the calculated prediction error is presented in Table 3.
The error is smaller than that obtained with the Kalman filter.

Table 3. Prediction error for LSTM.

Test ADE (m)

A 0.1132
B 0.1556
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5.2. Vissim Simulation Testing

A Vissim simulation environment was constructed with the base scenario geometry
discussed above. As the vehicle speed is controllable in the simulation, several aspects of
the driver warning design during slowing down and stopping were tested. First, speed
information from real-world data was extracted and fed into the simulation to test the safe
stop algorithm. The main idea of this simulation test was to see if the interactions obtained
from the simulation were like the real-world interactions. Some differences were expected,
since the design of the timings was more conservative, and deceleration was set to a very
comfortable, constant, 0.15 g value in the simulations. Finally, the simulation structure was
created with the flow illustrated in Figure 26. Vehicles start with a random speed profile
selected from a random real-world vehicle in the data, where the Inform state is issued
at 5.3 s. This is followed by a random attention lag. At the end, the vehicle starts to slow
down and stops with 0.15 g deceleration.

Electronics 2024, 13, x FOR PEER REVIEW 22 of 30 
 

 

 
Figure 25. LSTM pedestrian path prediction test B. 

Table 3. Prediction error for LSTM. 

Test ADE (m) 
A 0.1132 
B 0.1556 

5.2. Vissim Simulation Testing 
A Vissim simulation environment was constructed with the base scenario geometry 

discussed above. As the vehicle speed is controllable in the simulation, several aspects of 
the driver warning design during slowing down and stopping were tested. First, speed 
information from real-world data was extracted and fed into the simulation to test the safe 
stop algorithm. The main idea of this simulation test was to see if the interactions obtained 
from the simulation were like the real-world interactions. Some differences were expected, 
since the design of the timings was more conservative, and deceleration was set to a very 
comfortable, constant, 0.15 g value in the simulations. Finally, the simulation structure 
was created with the flow illustrated in Figure 26. Vehicles start with a random speed 
profile selected from a random real-world vehicle in the data, where the Inform state is 
issued at 5.3 s. This is followed by a random attention lag. At the end, the vehicle starts to 
slow down and stops with 0.15 g deceleration. 

 
Figure 26. Simulation flow for Vissim interaction testing. Figure 26. Simulation flow for Vissim interaction testing.

Real-world speed data, along with measurement noise, helped to ensure the observed
behavior was similar to the real-world data-processing. Extracted interactions from the
simulation results are shown in Figure 27. One main feature is obvious when we look
at the graph on the left compared to the previously discussed real-world data displayed
in Figure 17. Vehicle TTZ values do not come as close to zero as those in the graph, obtained
from real-world data. This behavior indicates more conservative behavior. On the right
side, in the heatmap graph, the area of dense points is like the real-world counterpart, while
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they are also farther from the origin point than the real data, indicating more conservative
vehicle behavior. The more conservative but similar behavior observed in these simulations
shows that the fundamental approach is correct. This method is useful for capturing the
interactions, and can be modified to obtain a better fit later, if desired.
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The Vissim simulations and real-world data are qualitatively compared in Figures 17
and 27. The results were observed to be similar. Quantitatively, the vehicle–pedestrian inter-
actions never entered the red emergency zone in Vissim, while this happened many times in
the experimental data. The yellow area of high density in the real data showed that vehicles
kept about 2 s of TTZ when a pedestrian was at the intersection. In contrast, Vissim vehicles
kept a TTZ of about 4.5 s in the same situation, showing the conservativeness of the Vissim
simulations. This should be adjusted in future work. It is also recommended to use real
data in Vissim simulations in the future for the better replication of real-world experiments.

All three states of Inform, Warn and Emergency were enabled in the simulation to test
the design parameters at different reaction times, as shown in Figure 28. The three different
driver reaction times of 0.75 s, 1.25 s, and 2.5 s were tested with a random starting speed
and random deceleration within a determined range, to see how reaction times affect the
safe approach speed and what the limits are. The results are shown in Figure 29, where
each graph shows multiple simulations with the vehicle starting at different speeds (y axis).
The circles correspond to the severity state that caused the vehicle to stop. If the circle is
gray, this means the vehicle comfortably stopped in the Inform state. If it is pink, stopping
was a bit harder and the vehicle stopped in the Warn state. Lastly, if there is a red circle,
this means the vehicle had to perform an emergency brake and stopped suddenly in order
to not hit the pedestrian. With the current values for the design parameters, in terms of
the maximum approach speed for safe stopping, without resorting to emergency braking,
a 0.75 s reaction time results in approximately 100 km/h, a 1.25 s reaction time results in
approximately 85 km/h, and a 2.5 s reaction time results in approximately 50 km/h when
approaching the collision risk zone. Given that 1.25 s is a reasonable value for the average
reaction time of a driver, the maximum approach speed for the current safe stop design is
seen to be reasonable.
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5.3. Real-World Testing of Driver Warning System for Pedestrian Collision Avoidance

The mobile phone app was used to test the driver warnings in the real world. We cre-
ated an NLOS situation at the uncontrolled intersection behind our lab building, illustrated
in Figure 30, to demonstrate the efficacy of generating driver warnings for pedestrian
collision avoidance. The blue arrow in Figure 30 shows the vehicle’s motion towards the
intersection while the green arrow shows the pedestrian’s motion. The orange rectangle
in Figure 30 shows the collision risk zone, which is used to calculate the TTZ values for
the vehicle and the pedestrian. The vehicle had one phone and the pedestrian also had a
similar phone, with both running the application during the testing. The app was used for
communication between the phones, for driver warning computations, and for recording
data. The forward-looking camera inside the vehicle was used to record the driver’s view
and the heads-up display (HUD), which was used to display the pedestrian safety warnings.
Figure 31 shows different instances of the test, as recorded by the forward-looking camera.

The HUD is shown in Figure 31, with the phone screen facing upward and reflecting
the driver warning generated by the app. The numbers from 1 to 4 correspond to different
instances of the vehicle moving towards the intersection. The vehicle starts its forward
motion while there is no warning, as shown in the first frame. The phone in the vehicle
keeps receiving PSM over V2P, even during NLOS, as in frame 2, and a yellow-colored
warning corresponding to the Inform state is displayed on the HUD. This indicates that
there is a pedestrian approaching the intersection. The vehicle is closer to the intersection
without slowing down in frame 3, when the warning becomes orange, corresponding to the
Warn state. The vehicle stops in a safe manner as the crossing pedestrian is seen in frame
4. The HUD does not display a warning, as the vehicle has stopped, which successfully
completes the real-world testing of the VRU safety application.
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The data recorded by the phone app are summarized visually in Figure 32. The garage
building forming the obstruction for NLOS is the gray rectangle in the middle of Figure 32.
The pedestrian motion is shown with light blue circles. The vehicle positions are shown,
with the color-coding corresponding to the warnings that were issued. Dark blue represents
no warning. Yellow represents Inform and orange represents Warn. The vehicle starts with
no warning while the pedestrian is in an NLOS position. The vehicle locations that are
shown are its GPS measurements. The yellow warning is issued while the pedestrian is
still behind the garage building. The orange warning is then issued as the vehicle moves
closer to the collision zone without slowing down. The vehicle stops safely at the end, and
warnings are disabled at the dark blue circle in Figure 32. The pedestrian continues their
motion in a cross-path and passes in front of the stopped vehicle.

The experiment in Figure 32 had only one VRU, a pedestrian. Both mobile phones used,
the one in the vehicle and the one held by the pedestrian, had some GPS localization errors,
which were not large enough to affect the collision warning system in this experiment.
VRUs carrying their mobile devices in their pockets have a shorter communication range,
which would affect this NLOS experiment and reduce its performance. The vehicle would
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determine the presence of a dangerously moving pedestrian later in that case, and the
driver would have to slow down faster. Multiple pedestrians and a combination of multiple
pedestrians and bicyclists are also difficult situations as there will be more data. Currently,
the VRU safety app calculates TTZ-based warnings simultaneously for each VRU, and the
worst-case warning is used. Considering the combined dynamics of multiple VRUs may be
useful in such cases to allow for the better prediction of future collision risk and reduce the
computation time.
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The Human–Machine Interface (HMI) used in Figure 32 was finalized for our proof-of-
concept testing after many iterations, using different choices to improve the attentiveness
of the driver. It was finally decided to use a very simple flashing graphical warning with no
text information. The experiment shown in Figure 32 and other similar experiments were
repeated many times and the driver reaction times were seen to be adequate. Future pilots
and larger-scale deployments will enable us to obtain a better understanding of driver
reaction times.

6. Conclusions and Recommendations

A V2P-communication-based driver warning system for pedestrian safety was de-
veloped and evaluated in this paper. The paper also considered possible problems and
developed methods to remedy these problems. These methods were evaluated in several
ways, including realistic simulation environments and real-world testing. By utilizing
mobile phone sensors and Bluetooth communication on the Android smartphones, a V2P
safety application was developed to broadcast information for pedestrian motion while
providing warnings to the human driver, when necessary, using the developed driver
warning system. This application allows for easy access to a pedestrian safety system for
public use. The developed application was also used for data collection from the sensors on
the Android phone. With these sensors, the capabilities of the data collection application,
and the virtual environments created in Vissim, neural network structures were trained
and experimented for pedestrian path and behavior predictions. Kalman Filtering was also
utilized for higher-frequency pedestrian motion-tracking.



Electronics 2024, 13, 331 25 of 28

One of the key contributions of the paper was the utilization of real-world data to create
a baseline for driver safety warning system design parameters, with the goal of achieving
more natural interaction behavior. In addition to this, some interesting observations were
made while comparing several aspects of driver behavior, such as approach direction or
the time of day. It was observed that drivers were more cautious while approaching an
intersection with a pedestrian at times when sunlight is limited or not available. The data
that were analyzed and used had a span of several months and included a large amount
of BSM messages that were published for all vehicles and pedestrians approaching or
crossing the street at the chosen smart intersection, as well as signal phase and timing
(SPaT) messages.

Among the current limitations that need to be further explored in detail is how to
treat crowds of pedestrians (VRUs). Although the way in which the application is currently
designed to work will not create problems in terms of providing a warning when there are
multiple pedestrians, problems may arise due to the highly increased processing load and
congestion in the Bluetooth communication band. Another limitation of the system that
should be mentioned is the GPS accuracy of the Android phones. Although the accuracy
was satisfactory for the provision of reliable data and warnings in many data collection
and warning system experiments, this might not always be the case. The dynamics of the
vehicle [41] on a road may also affect GPS accuracy. However, the Kalman Filter in the
current implementation helps with this issue, especially for irregular jumps in the GPS
location. One of the expected improvements is dual-frequency GPS. As dual-frequency GPS
smartphones become more common, the GPS accuracy issue will be reduced. On top of this,
RTK GPS chips are getting smaller and cheaper over time, while providers are building
stations to publish RTK correction messages over the internet for better accessibility. With
the RTK GPS technology becoming more widely available, the GPS accuracy for small
devices like smartphones will be significantly improved. This will help to successfully
implement the V2P-communication-based pedestrian safety system presented here.

As the work reported here is a proof-of-concept, only Android phones with Bluetooth
connectivity were considered. The authors experimented with the different phones avail-
able to them, ranging from relatively old and simple ones to more recent ones with more
enhanced capabilities. The Android application was developed and checked to make sure
that it worked on different versions of Android and for the different mobile phones that
were available to the authors. For real-world deployments with many users, an iOS imple-
mentation of the app is also necessary, considering the large number of iPhone users. There
are also many VRUs who do not have a mobile phone or who use basic mobile phones, on
which the app cannot be installed. It is recommended to use low-cost wearable devices that
only act as a beacon broadcasting the presence of the VRU in such cases. Nearby vehicles
should also use their perception sensors to detect and track VRUs in cases where the VRU
does not have a mobile phone, or where the app cannot be installed on their mobile phone.

Communication delays between the VRU and vehicle mobile phones (communication
devices) are also an important factor that needs to be considered. Here, the communication
occurred at a 10 Hz rate, and the communication delay in the experiments reported here
and the other tests that the authors conducted showed that this was not a serious problem
for the Vehicle-to-VRU-communication-based VRU safety approach presented in this paper.
All PSM messages are time-stamped such that the communication delay value is known
when the message is received on the vehicle side. The use of a Kalman filter and the
neural-network-based prediction of the future motion of the VRU and vehicle also help in
alleviating the effect of the communication delay.

While this paper focused on a driver warning system, a collision avoidance system
with collision-free trajectory computations and trajectory-tracking control [3] are also
needed and will be the focus of future work. The parameter-space-based robust control
methods [42,43] can be used for robust trajectory-tracking control for a collision mitigation
system to reject disturbances in the presence of model uncertainty. Future work can also
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focus on the fused use of V2P communication and AV perception sensors [44], and the use
of socially acceptable VRU collision avoidance in low-speed campus-like deployments [45].

Future work should focus on improving the applicability of this Vehicle-to-VRU-
communication-based VRU safety system. An iOS implementation of the app should
also be developed for iPhone users. Pilot and larger-scale deployments and further data
analyses are necessary to improve the app for practical use and user acceptance. It will
then be possible to make the app freely available to users. Android Auto [46] and Apple
CarPlay [47] allow for mobile phones to be connected to the displays of current vehicles. It
will be useful to use this connectivity to display VRU safety warnings using the vehicle
display, instead of using an HUD. It would be best to further improve this method for
automated braking, and braking and steering, to establish a more comprehensive VRU
safety system in the future. The addition of communication devices that can communicate
with both the vehicles and the VRUs at intersections will be helpful to improve the range
of communication and reduce latency problems due to multiple simultaneous actors. In
addition to Bluetooth and direct and over-the-cloud internet connectivity, ultra-wide band
(UWB) connectivity can also be used [48].
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