
Citation: Agrawal, G.; Kaur, A.;

Myneni, S. A Review of Generative

Models in Generating Synthetic

Attack Data for Cybersecurity.

Electronics 2024, 13, 322. https://

doi.org/10.3390/electronics13020322

Academic Editors: Irfan Awan, Amna

Qureshi and Muhammad Shahwaiz

Afaqui

Received: 11 December 2023

Revised: 7 January 2024

Accepted: 9 January 2024

Published: 11 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Review

A Review of Generative Models in Generating Synthetic Attack
Data for Cybersecurity
Garima Agrawal 1,* , Amardeep Kaur 2 and Sowmya Myneni 1

1 School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA;
smyneni2@asu.edu

2 School of Physics, Mathematics and Computing, The University of Western Australia,
Perth, WA 6009, Australia; amardeep.kaur@uwa.edu.au

* Correspondence: garima.agrawal@asu.edu

Abstract: The ability of deep learning to process vast data and uncover concealed malicious patterns
has spurred the adoption of deep learning methods within the cybersecurity domain. Nonetheless, a
notable hurdle confronting cybersecurity researchers today is the acquisition of a sufficiently large
dataset to effectively train deep learning models. Privacy and security concerns associated with using
real-world organization data have made cybersecurity researchers seek alternative strategies, notably
focusing on generating synthetic data. Generative adversarial networks (GANs) have emerged as a
prominent solution, lauded for their capacity to generate synthetic data spanning diverse domains.
Despite their widespread use, the efficacy of GANs in generating realistic cyberattack data remains a
subject requiring thorough investigation. Moreover, the proficiency of deep learning models trained
on such synthetic data to accurately discern real-world attacks and anomalies poses an additional
challenge that demands exploration. This paper delves into the essential aspects of generative
learning, scrutinizing their data generation capabilities, and conducts a comprehensive review to
address the above questions. Through this exploration, we aim to shed light on the potential of
synthetic data in fortifying deep learning models for robust cybersecurity applications.

Keywords: cybersecurity; GANs; network security; cyberattacks; adversarial attacks; generative
models; generative nets; synthetic attack data

1. Introduction

The use of machine learning for cybersecurity has become increasingly prominent over
recent years, as it offers a way to defend against constantly evolving cyber threats. However,
one of the significant challenges of applying machine learning methods in anomaly or
intrusion detection systems is the need for more realistic cyberattack datasets. Given
privacy and security concerns, real-world organizations cannot share their data. Thus, most
cybersecurity datasets are created using simulated attacks conducted by red–blue teams or
hackathons. These simulations can provide some attack data, but the attack scenarios are
often limited and specific to the simulation environment. The attack data must be more
diverse and realistic to train models and estimate system security. To effectively defend
against a constantly changing threat landscape, there is a need for automated methods
of generating diverse and realistic attack data without impacting the regular operation
of an organization’s production environment. One possible approach for automating the
generation of diverse and realistic attack data is that of using generative models to generate
synthetic data.

Generative adversarial networks (GANs) have been widely used to generate synthetic
data, especially image generation and text manipulation. GANs can fool the defender
into believing that the synthetic data are the actual data [1,2]. The success of adversarial
networks in different domains [3] has intrigued the cybersecurity research community into

Electronics 2024, 13, 322. https://doi.org/10.3390/electronics13020322 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13020322
https://doi.org/10.3390/electronics13020322
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4383-7850
https://orcid.org/0000-0003-4058-4883
https://doi.org/10.3390/electronics13020322
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13020322?type=check_update&version=1

Electronics 2024, 13, 322 2 of 31

using GANs in cybersecurity. GANs have been used in cybersecurity in different ways.
The most common application is to improve the intrusion detection and security of the
systems. There is also research to explore how adversarial systems can use GANs to spoof
security systems like fingerprints, passwords, face detection, etc. [4,5]. GANs are also
used to generate malware and cyberattack data [6]. While the development of GAN-based
privacy and security methods seems promising and has opened new research avenues [5],
the quality of synthetic attack data generated by GANs needs to be determined. It is still
unclear whether the artificial attack data are realistic as the actual cyberattack data and
whether these contains the signature attack vector. Also, when the intrusion detection
systems and deep learning models are trained on the synthetically generated attack data,
there is a need to further analyze whether these models can detect new or unseen real-world
attacks. In this paper, we did a survey and critical analysis on the application of GANs in
generating cyberattack data while making the following contributions:

1. We explored the critical features of generative learning and the capabilities of gen-
erative models, highlighting their effectiveness in creating new data compared to
discriminative models [7]. This comparison is further enriched by a detailed examina-
tion of how generative models operate.

2. We provide a concise overview of GANs, focusing on their data generation capabili-
ties and architecture. This includes examining various models and techniques that
generate diverse image and text data across domains using GANs.

3. Next, we comprehensively review various methods for generating synthetic cyberat-
tack data using GANs.

4. Finally, we assess the value of synthetically generated attack data by conducting
experiments with the NSL-KDD dataset. Specifically, we examine the characteristics
of DoS attacks and gauge how well GAN-generated data can improve the training of
intrusion detection systems for real-world cyberattack mitigation.

This paper is organized as follows. The next section discusses the different modeling
techniques and generative models. The GAN architecture is presented in Section 3. Section 4
overviews models and techniques for generating synthetic data in images and text. In
Section 5, we present a detailed literature survey of methods to generate cyberattack data
using GANs. Furthermore, in Section 6, we present a critical analysis of GANs’ capability
to generate realistic attack data and the usefulness of this synthetic attack data in training
intrusion detection classifiers. Finally, we provide the discussion in Section 7 and conclude
the paper in Section 8.

2. Modeling Techniques

In this section, we will discuss the various modeling techniques, with a specific
focus on an in-depth examination of the crucial facets of generative learning [8]. We also
analyze the mechanisms through which generative models adeptly generate data. The
modeling techniques are of two types, generative and discriminative modeling [9]. The
below subsections give a brief overview of each modeling type.

2.1. Generative and Discriminative Models

a. Generative models: The Generative modeling has been widely used in statistics.
When applied to machine learning, it has been useful in various fields like natural
language processing, visual recognition, speech recognition, and data generation
tasks [10]. Naive Bayes [11], Bayesian networks [12], Markov random fields [13],
hidden Markov models [14], and linear discriminant analysis (LDA) [15] are some of
those generative modeling techniques. The advent of deep learning [16] has sparked
the development of the deep generative models like Boltzmann machines [17], re-
stricted Boltzmann machines [18], deep belief networks [19], and deep Boltzmann ma-
chines [20] including graphical models like sigmoid belief networks [21], differentiable
generator networks [22], variational autoencoders [23] etc. Generative adversarial
network [1], which is as popular as GAN, is a type of generative model that received

Electronics 2024, 13, 322 3 of 31

massive attention in recent years due to its remarkable success in generating synthetic
data [24].
b. Discriminative Models: Discriminative models, as their name indicates, are capa-
ble of understanding the boundaries amongst the given data points using probability
estimates, and are thus widely used in classification approaches. The supervised
learning [25] approaches such as logistic regression [26], support vector machine [27],
neural networks [28], and nearest neighbor [29] are based on discriminative modeling.
When provided with sufficient labeled data, these methods have succeeded in classifi-
cation tasks [30]. They can learn to discriminate between different types of data and
output the instance that belongs to a particular class.
c. Difference between Generative and Discriminative Models: The generative and
discriminative modeling differs in their approach to solving the learning tasks [31].
The discriminator plays more of a classifier role by creating the decision boundary
between the different classes. It does not attempt to learn the actual distribution of the
data but tries to learn the mapping between the data vector and the label vector, given
enough labeled mapping samples. It is more challenging when the generative family
handles the modeling of the data distribution and suggests how likely it is that an
example belongs to a distribution.Since the model knows the data and its distribution,
it is generative and can produce new examples. It is also possible for them to model
a distribution by producing convincingly “fake” data that look like they were drawn
from that distribution.

Mathematically, any classifier must estimate the function f : x → y, or p(y|x) for a
given dataset x with the corresponding labels y. The discriminative models [32] use the con-
ditional probability and model the posterior p(y|x) directly or learn a direct mapping from
input, x to the class labels, y. However, the generative models [33] learn the distribution
of the input x and the label y, or just p(x), if there are no labels, from the joint probability
p(x, y). They estimate the parameters of p(x|y) and p(y) directly from the training data
and make the predictions by using Bayes’ rules to calculate p(y|x) and pick the most likely
label y. Table 1 provides a concise summary comparing generative and discriminative
modeling techniques.

Table 1. Comparison between generative and discriminative modeling techniques.

Generative Models Discriminative Models

Learn the underlying data distribution Learn the decision boundary between different
classes of the data

Model the joint probability distribution between the
input and output data

Model the conditional probability distribution of the
output given the input

Can generate new data from the learned distribution Cannot generate new data from the learned decision
boundary

Used for tasks such as image and audio synthesis,
text generation, and anomaly detection

Used for tasks such as classification, regression, and
object recognition

Make no assumptions about the data Use prior assumptions about the data

Examples include VAE, GAN, and RBM Examples include logistic regression, SVM, and neu-
ral networks

2.2. Why Generative Models?

Generative models have a significant role to play. When it comes to tasks like generat-
ing new data examples, determining how likely it is for any event to occur, or handling
missing values by making use of available unlabeled data, or the ability to infer information
from related activities, the discriminative models or the supervised learning algorithms
require a considerable amount of labeled data to perform such tasks with reasonable accu-
racy. It is usually tough and expensive to label the data; in fields like cybersecurity [34],
where the data are limited, it is even harder to train the model. The most likely approaches

Electronics 2024, 13, 322 4 of 31

used in such situations are the unsupervised [35] and semi-supervised [36] learning. How-
ever, only some have achieved the level of accuracy as the supervised algorithms. The
unsupervised algorithms have to deal with the high dimensionality of random variables.
This enforces both the statistical and computational challenges to generalize the number
of configurations and solve a problem in a tractable way as the number of dimensions
grows exponentially. One of the ways of dealing with the high dimensionality of intractable
computations is to approximate them or design them in a way that does not require such
computations. Generative modeling techniques have proved promising [37] in providing
the latter design approach.

How Do Generative Models Work? Given the training data and the set of parame-
ters, θ, a model can be built to estimate the probability distribution. The likelihood is the
probability that a model assigns to the training data for a dataset containing m samples
of x(i),

m

∏
i=1

pmodel(x(i); θ) (1)

The maximum likelihood provides a way to compute the parameters, θ, that can
maximize the likelihood of the training data. To simplify θ, the log is taken in Equation (1)
to express the probabilities as a sum rather than the product

θ∗ = arg max
θ

m

∑
i=1

logpmodel(x(i); θ) (2)

If pdata lies within the family of distributions of pmodel(x; θ), the model can precisely
find the pdata. In the real world, there is no access to pdata, and only the training data
are available for modeling. The models must define their density function and find the
pmodel(x; θ) that maximizes the likelihood. The generative models which can explicitly
represent the probability distribution of the data are called explicit density models [38].
The fully visible belief networks (FVBNs) [39] and nonlinear independent component
analysis [40] are a few such explicit density models which can successfully optimize
directly on the log-likelihood of the training dataset. However, their use is limited in terms
of solving simple problems and imposing design restrictions. As the data become complex
and the dimensionality of the data grows, it becomes computationally intractable to find the
maximum likelihood. Then, approximations are made on the maximum likelihood, either
by using deterministic approximations, as in variational methods like variational autoencoder
(VAE) [23], or by using stochastic approximations such as Monte Carlo methods [41] The
variational autoencoder is a popular semi-supervised generative modeling technique, but
it suffers from low-quality samples.

Another family of deep generative nets, called implicit density models [42], do not
explicitly represent the probability distribution over the space where data lie but provide
some indirect means of interacting with the probability distribution pmodel . In indirect ways,
they can draw samples from the distribution. One of the methods used by implicit density
models is Markov chain [43], which stochastically draws samples from pmodel distribution
and transforms an existing sample to obtain another sample from the same distribution.
Another strategy is to directly generate the samples in a single step from the distribution
represented by the model. The generative model in GANs is based on implicit density
models and uses the latter strategy to generate the samples directly from the distribution
represented by the model.

How Can Generative Models Generate Data? Any information can be processed if
it is well represented. In the case of machine learning tasks, it is critical to represent the
information so that the model can efficiently perform the subsequent learning tasks [44].
The choice of representation varies in function of the learning strategy of the model. For
instance, a feedforward network trained using supervised learning criteria learns specific
properties at every hidden layer. The network’s last layer is usually a softmax layer, which
is a linear classifier. The features in the input may not represent linearly separable classes,

Electronics 2024, 13, 322 5 of 31

but they may eventually become separable until the last hidden layer. Also, the choice of
the classifier in the output layer impacts the properties learned by the last hidden layer.
The supervised learning methods do not explicitly pose any condition on the intermediate
features that the network should learn. Whereas, in cases where the model wants to
estimate density, the representation should be designed to facilitate the density estimation.
In such a case, it may be appropriate to consider the distributed representations which are
independent and can be easily separated from each other. Representation learning [45]
plays an integral role in the unsupervised and semi-supervised models, which try to learn
from unlabeled data by capturing the shape of the input distribution. A good representation
would be one that can help the learning algorithm identify the different underlying factors
causing variations in the data and help them separate these factors from each other. This
would result in the different features or directions in the feature space corresponding to
the different causes disentangled by the representation. In the classic case of supervised
learning, the label y presented with each observation x is at least one of the essential factors
directly providing variation. In the case of unlabeled data, as in unsupervised and semi-
supervised [46], the representation needs to use other indirect hints about these factors.
The learning algorithm can be designed to represent these hints in the form of implicit
prior beliefs to guide the learner. For a given distribution p(x), let h represent many of the
underlying causes of the observed x and let the output y be one of the most silent causes of
x. The p(x) and p(y|x) should be firmly tied, and a good representation would allow us
to compute p(y|x). Once it is possible to obtain the underlying explanations, i.e., h for the
observed x, it is easy to separate the features or directions in feature space corresponding
to the different causes, and it is consequently easier to predict y from h.

The true generative process would be

p(h, x) = p(x|h)p(h) (3)

and, the marginal probability for data, x, can be computed from the expectation of h, as:

p(x) = Eh p(x|h) (4)

If the representation is made in such a way that it is possible to recover h, then it is
easy to predict y from such a representation and using Bayes’ rule, it is possible to find p(y|x)

p(y|x) = p(x|y)p(y)
p(x)

(5)

The marginal probability, p(x), is tied to conditional probability, p(y|x), and the
knowledge of the structure of p(x) would help us learn p(y|x). Here, latent factors are
the underlying causes h of the observed x. The latent factors or variables are the variables
that are not directly observed but rather inferred from other variables that are directly
measured. The latent variables are meaningful but not observable. The latent variables can
capture the dependencies between different observed variables, x. They help reduce the
dimensionality of data and provide different ways of representing the data. So they can
give a better understanding of the data.

Many probabilistic models, like linear factor models, use latent variables and compute
the marginal probability of data, p(x), as described in Equation (4). A linear factor model
can be defined as a stochastic linear decoder function that can generate x by adding noise
to a linear transformation of h. It is possible to find some explanatory independent factors
h, which have a similar joint distribution and are sampled from the given distribution like
h p(h), where p(h) is a factorial distribution, with

p(h) = ∏
i

p(hi) (6)

Then, the real-valued observable variables can be sampled as

Electronics 2024, 13, 322 6 of 31

x = Wh + b + noise (7)

where W is the weight matrix and the noise is Gaussian and diagonal, which means it is
independent of dimensions.

The unsupervised learning algorithm would try to learn a representation that captures
all the underlying factors of variation and then try to disentangle them from each other.
A brute force solution may not be feasible to find all or most of such factors, so a semi-
supervised approach can be used to determine the most relevant factors of variation and
only encode those salient factors. The autoencoder and generative models can be trained to
optimize fixed criteria like the mean square error to determine which ‘causes’ or factors
should be considered salient. For instance, if a group of pixels follows a highly recognizable
or distinct pattern, that pattern could be considered extremely salient. However, the models
trained on the mean square error have limited performance and failed to reconstruct the
images completely [47]. Another method to identify features’ salience is using GANs [48].
In this approach, a generative model is trained to fool a classifier which is a discriminative
model. The classifier should recognize all the samples from the training data as accurate
and the samples from the generative model as fake. Any structured pattern recognized
by the discriminator can be considered salient, which makes the generative adversarial
networks better at finding which factors should be represented.

Thus, summarizing the above discussion, there are two essential aspects that make the
generative way of learning powerful. First, they try to learn the underlying causal factors
from cause–effect relationships via the hidden factors that can explain the data. Secondly,
they use the distributed representations to identify these factors, which are independent
and can be set separately from each other. Each direction in the distributed representation
space can correspond to a different underlying causal factor, helping the system identify
the salient features.

The advantage of learning the underlying causal factors [49] is that, if the exact genera-
tive process learns to model from x, which is the effect, and y, which is the cause, then p(x|y)
is adaptive to change in p(y). Also, the causal relationships are invariant to any change in
the problem domain, type of tasks, or any non-stationary temporal variations in the dataset.
The learning strategy of generative models attempting to recover the causal factors, h and
p(x|h), is robust and generalizes to any feature changes. Various regularization strategies
have been suggested in the literature to find the underlying factors of the variations [50].
Some of the popular strategies used by different learning algorithms are the smoothness,
linearity, multiple explanatory factors, depth, or hierarchical organization of explanatory
factors, shared factors across tasks, manifolds, natural clustering, sparsity, simplicity of
factor dependencies, temporal and spatial coherence, etc. but causal factors [51] are the most
advantageous for semi-supervised learning and make the model more robust to any change
in the distribution of underlying causes or while using the model for a new task [52].

The second advantage of the underlying causal factors is that the distributed repre-
sentations are more potent in representing the underlying causal factors than the symbolic
factors. The symbolic or one-hot representations are non-distributed, representing only n
mutually exclusive regions, whereas distributed representations can represent 2n config-
urations for a vector of n binary features. Each direction in the representation space can
correspond to the value of a different underlying configuration variable.

Different learning algorithms like k-means clustering [53], k-nearest neighbors [54],
decision trees [55], Gaussian mixtures, kernel machine with the Gaussian kernel [56], and
language or translation models based on n-grams [57] are based on non-distributed repre-
sentations. These algorithms break the input space into different regions with a separate set
of parameters for each region. Suppose there are enough examples in the dataset that rep-
resent each different region. In that case, the learning algorithm can fit the training dataset
well without solving any complicated optimization problem. However, these models suffer
as the number of dimensions grows and if there are insufficient examples in the dataset
to represent each dimension. They fail miserably if the number of parameters exceeds the
number of examples that explain each region. Also, the non-distributed representation

Electronics 2024, 13, 322 7 of 31

needs a different degree for each region that does not allow them to generalize to new
regions when target functions are not smooth and may increase or decrease several times
in many different regions.

On the other hand, the distributed representations [58] use the shared attributes and
introduce the concept of similarity space by representing the inputs as semantically close if
they are close in the distance. They can compactly represent complicated structures using a
small number of parameters and generalize better over shared attributes. For example, a
‘truck’ and ‘car’ both have common attributes like “number_o f _tyres” and “has_steering”
and many other things that are valid for cars and generalizations to trucks as well. The
distributed representation uses separate directions in the representation space to capture
the variations between the different underlying factors [59]. These features are discovered
automatically by the network and are not required to be fixed beforehand or labeled. The
generative models learn from the distributed representation to disentangle the various
features, even when the model has never seen the feature before. Each direction or vector
represents a new feature. Adding or subtracting these representation vectors can possibly
generate new features. For instance, in the famous example of generating new images
using GAN [60], the distributed representation disentangles the concept of gender from the
concept of wearing glasses. Given the image of a man with glasses, if the representation
vector of the man is subtracted and the representation of a woman without glasses is
added, it would give the vector representation of the woman with glasses, and a generative
model can correctly generate the image corresponding to the resulting representation vector.
Therefore, it is successfully able to generate new and unseen synthetic data.

3. Generative Adversarial Networks (GANs)

In this section, we give a detailed description of GANs and their training process. The
generative adversarial networks or GANs [1] are the type of generative models based on
differentiable generator networks [61]. The differentiable generator networks are the class of
networks that either only trains a generator network or pairs a generator network with
any other network. For example, variational autoencoders can have a pair of generators
with an inference network. Similarly, in GANs, there is a pair of a generator network with a
discriminator network, which is a discriminative model.

The two networks in GAN compete like adversaries in a two-player game. The
generator network produces samples that intend to come from the training data distribution.
The discriminator tries to correctly classify whether the sample is drawn from the training
data or the generator. The generator can only win the game when it has learned to create
samples as if they were drawn from the same distribution as training data, whereas the
discriminator should learn to distinguish whether the sample is real or fake.

3.1. Construction of Networks

The generator network is the parameterized generative model designed to generate
samples. The model can be a simple neural network that transforms the sample of latent
variables z to training sample x or to a distribution of training samples over x, using a dif-
ferentiable function. The network architecture provides the choice of possible distributions
from which samples can be drawn, and the parameters select the desired distribution from
within that family. The network can be represented by a function, G, which is differentiable
for its input z and has parameters θ(G). When z is sampled from some prior distribution,
G(z) yields a sample of x drawn from pmodel. The generator network thus produces the
samples, x = G(z; θ(G)) where the dimensions of z are at least as large as the dimensions of x.

The discriminator network is the traditional supervised classifier, and it can be repre-
sented by a function D that takes input x, parameterized by θ(D). The discriminator outputs
a probability D(x; θ(D)), which is the probability that x is a real training example rather
than a fake sample drawn from the generator model.

Electronics 2024, 13, 322 8 of 31

3.2. Cost Function

The cost function, J, for both networks can be defined in terms of the parameters of
each. The discriminator tries to minimize J(D)(θ(D), θ(G)) while it can only control its own
parameters θ(D). At the same time, the generator tries to minimize J(G)(θ(D), θ(G)) but only
has control over θ(G).

This framework is designed like a zero-sum game where the minimax technique is
applied, and both players compete for a fixed and limited pool of total resources. These
resources can be denoted by a value function, V(G, D). Each makes a move such that the
player’s best move is disadvantageous for the opponent. Both the generator and discriminator
try to minimize their cost, which depends on the other’s parameters, while they have no
control over it. Both try to improve and make the best move to win such that at least
all the neighboring costs are greater or equal to their cost. One is trying to minimize the
value function, and the other is trying to maximize it. The goal is to make both of them as
good as possible so that both reach their peak ability and there is no winner. This state is
called Nash equilibrium [62], where each network is at its best for the other. So, the Nash
equilibrium will be the tuple (θ(D), θ(G)) for a local minimum of J(D) with respect to θ(D)

and a local minimum of J(G) with respect to θ(G). After certain epochs, both distributions
should gradually converge.

The cost of the discriminator, J(D), can here be computed as the standard cross-entropy
cost minimized for a standard binary classifier with a sigmoid output

J(D)(θ(D), θ(G)) = −1
2

Ex∼pdata [log(D(x))]

− 1
2

Ez∼pmodel [log(1 − D(G(z)))]

To formulate the zero-sum game for these two players, the generator and discriminator,
the sum of the total cost should be set to zero.

J(G) + J(D) = 0 (8)

J(G) = −J(D) (9)

Now, for the discriminator, the reward or the pay-off is given by V(θ(D), θ(G)),

V(θ(D), θ(G)) = J(D)(θ(D), θ(G)) (10)

whereas the generator receives −V(θ(D), θ(G)) as its pay-off

V(θ(D), θ(G)) = −J(D)(θ(D), θ(G)) (11)

Each player tries to maximize its pay-off, so using the minimax technique, the solution
can be given by minimizing the generator and maximizing the discriminator value

θ(G)∗ = arg min
θ(G)

max
θ(D)

V(θ(D), θ(G)) (12)

3.3. Training of Networks

Both the generator and discriminator networks can be defined by multi-layer percep-
tion neural networks and trained using backpropagation. There is no constraint on the
form that any of the two networks should take; they do not need to be of the same form. A
support vector machine (SVM) [63] can be used for both the generator and discriminator
or SVM for the generator and a neural network for the discriminator. However, using
anything other than neural networks may increase the bias of the model [64].

Say, if stochastic gradient descent (SGD) is performed on the mini-batch of m samples
of data from distribution pdata(x) and m samples of noise from distribution pmodel(z), then

Electronics 2024, 13, 322 9 of 31

for every iteration, the loss functions of the generator and discriminator can be defined
as below:

The generator is updated by decreasing its gradient

Lossg = ∆θg
1
m ∑ log(1 − D(G(z))) (13)

The discriminator is updated by increasing its gradient

Lossd = ∆θd
1
m ∑[log D(x) + log(1 − D(G(z)))] (14)

Here, the log is again taken as it is numerically more stable and it simplifies the
computation.

During training, there can be following scenarios:

• False negative—The input is real but the discriminator gives the output as fake: The
real data are given to the discriminator. The generator is not involved in this step. The
discriminator makes a mistake and classifies the input as fake. This is a training error
and the weights of the discriminator are updated using backpropagation.

• True negative—The input is fake and the discriminator gives the output as fake:
The generator generates some fake data from random noise in latent space. If the
discriminator recognizes this as fake, there is no need to update the discriminator. The
weights of the generator should be updated using backpropagation using the loss
function value.

• False positive—The input is fake but the discriminator gives the output as real. The
discriminator should be updated. The loss function is used to update the weights
of the discriminator.

The generator produces the fake distribution pmodel(x), and the actual distribution
from the sample data pdata(x) is known. There is an associated divergence between the
two because they are not identical distributions, so our loss function is non-zero. This
divergence can be computed by minimizing either the Jensen–Shannon [65] or KL (Kullback–
Leibler)-divergence) [66] between the data and the model distribution, and updating the
policy of both the players until they reach convergence.

The discriminator training aims to estimate the ratio of densities at every point x.
When the discriminator becomes the input from the generated and the true distribution,
if it can classify correctly, the loss function value is propagated to the generator, and the
generator weights are updated. However, if the discriminator cannot correctly distinguish
between the two distributions, then the discriminator weights are updated.

pdata(x)
pmodel(x)

(15)

Only one of the networks is trained at a time. Although the two compete as adversaries,
they can also be seen as cooperative since the discriminator shares the estimated ratio with
the generator, allowing it to improve. Both the networks continue until the generated
distribution gets close to the true distribution, and the networks reach the NASH equilibrium.

4. Generating Data Using GANs

The goal of unsupervised learning is not to provide a mapping between the inputs and
targeted output but rather to learn the structure of the input data. Most of the unsupervised
methods do that to make use of the unlabeled data to improve the accuracy of supervised
learning methods.

GANs are one such generative network that can discover the structure of the data
and generate realistic samples. As discussed in Section 2, the generative models use cause–
effect relationships via the latent factors and distributed representations to disentangle the
independent features to discover the data structure. GANs can exploit these properties of

Electronics 2024, 13, 322 10 of 31

generative models to identify the salient features and learn the representations. They can
represent the learned features as vectors which can be manipulated using vector arithmetic
to generate new data samples with different semantics.

4.1. Different Techniques in GAN for Generating Data

GANs have made a significant impact in terms of generating synthetic data, especially
in the field of computer vision. They were also successful in generating tabular and
structured data. This section discusses the various techniques and frameworks used to
generate different data types. The process of generating synthetic data in GAN models is
illustrated in Figure 1.

Figure 1. Synthetic data generation process in GANs.

4.2. Generating Images

GANs were able to produce realistic images [1,67]. The framework, deep convolution
generative adversarial networks (DCGAN) [60] demonstrated the capability of GANs to
learn reusable feature representations of an image. In DCGAN, both the generator and
discriminator were able to learn the hierarchy of feature representations. GANs can be
first used to build any image representation, while the discriminator does the classification
task, parts of the generator and discriminator can act as feature extractors. The convolution
GANs were trained to build a good image representation for unlabeled data. It used salient
features or filters learned by the generator to draw specific objects. In DCGAN, vector
arithmetic manipulation was applied to the latent space results to generate new images
and transfer styles between images by adding or removing new objects.

While GANs could generate synthetic images, the images’ quality may sometimes
be low. It may take a long time to map the complex relationship between the latent space
and generated images, often resulting in low-quality images. As the generator begins from
random noise, it may start generating a random image from a domain. Sometimes, the
generator needs help exploring the possible solution space to find the real solution. It is one
of the limitations of basic GANs, called mode collapse [1]. To improve the training stability
of GANs, conditional generative adversarial networks (CGANs) [68] were introduced as
an extension of GANs. They suggested that, instead of randomly generating samples

Electronics 2024, 13, 322 11 of 31

from noise with no control over the data mode, applying a condition on the generator and
discriminator by feeding some additional information, y, to the network is possible. This
conditioning could be based on any auxiliary information, such as class labels or data from
other modalities. In the generator, the prior input noises pz(z) and y are combined in joint
hidden representation as log(1 − D(G(z|y))), whereas, in the discriminator, x and y are
given as inputs to the discriminative function, log(D(x|y)). CGANs have been widely used
to improve the quality of new examples, but they could only be used for labeled datasets.

Different variants of GANs have recently been proposed, especially in computer
vision, to improve image quality. LAPGAN [69] was a kind of conditional GAN that
used the Laplacian pyramid framework to produce high-resolution image samples. The
Laplacian pyramid [70] is a technique for image encoding equivalent to sampling the image
with Laplacian operators of many scales. In LAPGAN, a series of generative convolution
network models were used. At each level of the Laplacian pyramid, a separate generative
convnet was trained using conditional GAN. Each level would capture the image structure
at a particular scale of the Laplacian pyramid, generating samples from coarse to fine,
commencing on a low-frequency residual image. LAPGAN breaks the original problem
into a sequence of more manageable stages, with each subsequent stage conditioning the
output from the previous scale on the sampled residual until the final level is reached.
They successfully generated high-resolution, realistic images of CIFAR10 [71] and large-
scale scene understanding (LSUN) [72] datasets. The generated images were evaluated
by estimating the log-likelihoods which were high on both datasets. Also, sample images
were drawn from the model, and they were found to be slightly sharper than the original
images. The human-user study did a quantitative measure of the quality of samples to
see whether participants could distinguish the samples from real images and were also
compared against the images generated by the standard GANs [1]. The results from the
study showed that the LAPGAN models produced images that were far more realistic than
the standard GANs.

Similarly, the progressive growing of GANs (PGGAN) [67] was suggested to produce
high-quality synthetic images. The PGGAN starts with low-resolution images and adds
new layers to the generator and the discriminator as training progresses. The resolution
increases as the growing network models the fine details. This kind of architecture allows
the network to learn the large-scale structure of the image distribution and then gradually
focus on finer-scale details instead of learning all the scales at once. PGGAN proved to be
a more stable and balanced network regarding the training speed and output concerning
the quality and variations in generated images. The experiments were conducted on
CIFAR10 and CelebA [73] datasets, and the quality of the images generated was evaluated
using multi-scale statistical similarity [74] to see whether the local image structure of the
generated image is similar to the training set over all scales. PGGANs were also used to
augment the training data to derive synthetic images similar to actual images in the field of
medical imaging [75].

RenderGAN [76] was proposed to generate realistic labeled data to eliminate the need
for cost and time-extensive manual labeling. The framework was used in the BeesBook
project [77] to analyze the social behavior of honeybees. A barcode-like marker is used
to identify honeybees with limited labeled data, and it is difficult to annotate the new
barcode markers. The labeled data generated from RenderGAN was of high quality. It
was used to train a supervised deep convolution neural network (DCNN) to predict the
labels from input data. A 3D model that can generate a simple image of the tag based
on position, orientation, configuration, etc., was embedded into the generator network of
RenderGAN to produce samples from the corresponding input labels. Now, the generated
samples may lack many factors of the actual data, such as blurring, lighting, background,
etc., so a series of augmentation functions were introduced for the generator to adapt and
learn the image characteristics from unlabeled data. Five million tags were generated
using the RenderGAN framework, which was indistinguishable from actual data for a
human observer.

Electronics 2024, 13, 322 12 of 31

StackGANs [78] was another type of GAN proposed to generate the images from a text
description. The StackGAN synthesized high-quality photo-realistic images conditioned on
a text description. They used two stages. The first stage sketches the primary object’s shape
and colors based on the text description and produces low-resolution images. The second
stage takes the results of the first stage and the given text description as input and generates
high-resolution images with realistic photo details. The text description is first encoded by
an encoder, giving text embedding [79]. The text embedding needs to be transformed to
generate the latent conditioning variables as the input of the generator. The latent space for
text embedding may grow into a high dimensional space, so conditional augmentation was
used to produce an additional conditioning variable, ĉ, which supports a smooth latent
data manifold using a small number of image–text pairs and generates images from a
linearly interpolated sentence embedding. The noise vector, z, is fixed, so the generated
image is only inferred from the given text description. The StackGAN framework was
used to generate images for the CUB [80], COCO [81], and Oxford-102 [82] datasets to
generate the images of bird species using the five-to-ten text descriptions given for each.
The generated images were evaluated using inception score (IS) [83], a metric commonly
used to assess the quality of images produced by GANs. The IS measures the diversity and
quality of generated images by comparing their predicted class probabilities to those of real
images using a pre-trained image classifier, such as Inception-v3 [84]. The IS is obtained
by calculating the KL divergence between the two distributions and then exponentiating
the result. Human evaluation was also conducted, and their observations were correlated
with the IS.

Another exciting variant, InfoGAN [85], was suggested to improve the interpretation
and representations learned by a regular GAN. InfoGAN used the mutual information
between a small subset of latent variables and the observations to disentangle the feature
representations in an unsupervised manner. The latent information or latent code, c, was
provided to the network to give some semantically meaningful information about the
factors of variation. For example, when generating images from the MNIST digits (0–9)
dataset [86], two continuous variables that represent the digit’s angle and the thickness
of the digit’s stroke were used; whilst pose information for CelebA; background digits
for housing number images; and the Street View House Number (SVHN) dataset [87]
were used as latent code. The mutual information, I, between the noise, z, and the latent
code, c, was maximized; the generator becomes a function of G(z, c), and the mutual
information, I(c; G(z, c)) should be high. The images generated by InfoGAN showed that
this modification in the architecture helped the generator disentangle variations like the
presence or absence of glasses, hairstyles, and emotions, demonstrating that the model
acquired a certain level of visual understanding without any supervision.

4.3. Generating Tabular Synthetic Data

The above discussion shows that various frameworks of GANs, with or without
some modifications, could successfully generate realistic image data. However, in many
real-world business applications, the data combine categorical and numerical features
with missing or unknown values, making it more challenging to use GANs. Different
approaches were proposed to adapt to such data types and generate realistic synthetic
data, which can be used to train a supervised classifier. Two of the popular approaches are
discussed below:

4.3.1. Airline Passenger Name Record (PNR) Generation

The passenger name records (PNRs) airlines store traveler information. They can be a
good data source for building commercial business applications such as client segmentation
and adaptive product pricing [88]. The paper on airlines PNR generation [89] showed
that the passenger record data could be synthetically generated using GANs and used
these data to predict clients and nationality. Access to PNR data are limited, as it contains
personally identifiable information (PII), and it falls under EU General Data Protection

Electronics 2024, 13, 322 13 of 31

Regulation (GDPR) [90] strict data privacy regulations. In this situation, synthetic data,
which has the original data structure and follows the same distribution, should be sufficient
to train the supervised classifier.

A variant of GANs, called Cramer GANs [91] with a generator/critic architecture
that combines feedforward layers with the Cross-Net architecture [92], was used. Cramer
GANs were suggested as an improvement over original GANs [1] and Wasserstein GANs
(WGANs) [93]. The original GAN model used Jensen–Shannon divergence (JSD) or KL
divergence, which finds the similarity between the probability distributions of data and
the model. It keeps updating the generator and discriminator until they converge. The
Wasserstein GANs (WGANs) used the Wasserstein distance, which is the Earth mover (EM)
distance, and it computes the distance between two probability distributions. It produces
a better sample quality than the original GANs. When batch training uses stochastic
gradient descent (SGD)-based methods, WGANs suffer from biased gradients [94]. They
may converge to the wrong minimum while estimating the Wasserstein distance from the
batch samples. To overcome this problem and provide unbiased sample gradients, the
Cramer distance [95], which measures the energy distance between the two distributions,
is used to build the GAN networks. In the Cramer GANs [91], the discriminator, also
called critic, has a trainable loss function, which combines the energy distance with the
transformation function to map the input space to the hyper-parameter space. The critic or
discriminator seeks to maximize the energy. In contrast, the generator tries to minimize
the energy of the transformed variables and is designed to penalize the functions with
a high gradient.

The PNR data contain numerical, categorical, and date data. It has missing or NaN
values. The input embedding layer was used to process the categorical features in PNR
data. In GANs, the generator is differentiable, so it cannot generate discrete data such as
one-hot encoded values or character representations [1]. Either the discrete or categorical
columns need to be encoded into numerical columns [1] or represented as continuous
vectors [96]. The latter method is called embedding. It reduces the dimensionality of
categorical variables and meaningfully represents the categories in the transformed space.
The weighted average of the embedded representation was used, and the embedding layer
was shared between the generator and the discriminator, ensuring a fully differentiable
process. The embedding layers increase the representational power, so different layers were
used per each categorical feature.

All the missing values in numerical features were f0illed by some random value
taken from the same column. For all the categorical features, the missing values were
replaced with a dummy new level, ‘UNK’. Then, a new binary column was added, whose
values are 1 for all the filled-in rows and 0 otherwise. One such column was added per
numerical column with missing values. These auxiliary binary columns were treated as
categorical columns and encoded using the embedding process. Multiple feedforward
neural networks were used to learn the complex feature interactions. Both the generator
and discriminator were composed of fully connected layers, and N cross-layers were
stacked [92] to automatically compute up to N-degree cross-feature interactions.

The quality of synthetic data generated was evaluated by computing the multivariate
measure using the Jensen–Shannon divergence (JSD) to see how the two empirical distri-
butions of actual and synthetic data differ. Then, a classifier was trained to discriminate
the difference between the real and the generated samples, labeling the actual samples
0 and the synthetic ones 1. Also, the Euclidean distance between each generated point
and its nearest neighbor in the training and test data was calculated to determine whether
the generative model is learning the original distribution and not simply memorizing
and reproducing the training data. The distribution of distances was compared using the
Kolmogorov–Smirnov (KS) [97] two-sample test to determine whether they differ. The
results [89] showed that the models trained on synthetic data could successfully classify
both the business cases, client segmentation, and product pricing.

Electronics 2024, 13, 322 14 of 31

4.3.2. Synthesizing Fake Tables

Tabular data are the most common structured data type, which can be clearly defined
using rows and columns and conform to the data for models. Some of the tabular datasets
like employee, hospital, or travel datasets contain private information like social security
numbers (SSNs), salaries, health conditions, or other personally identifiable information
(PII), which may raise a security concern if data are shared with partners or made publicly
available to train the models. Anonymization techniques can be used to remove sensitive
information. However, they are prone to attacks and can be recovered by adversaries if they
possess other users’ background information. Secondly, these modifications negatively
impact the usability of data.

To overcome these challenges, table-GANs [98] were proposed to synthetically gen-
erate fake tables that are statistically similar to the original table structure. Four types of
datasets from different domains were considered, namely the LACity dataset [99], contain-
ing the records of Los Angeles government employees (salary, departments, etc.); Adult
dataset [100], containing personal records (nationality, education level, occupation, etc.);
Health dataset [101], containing information such as blood test results, diabetes, etc.; and
Airline dataset [102], containing passenger travel information. All these datasets contain
categorical, discrete, and continuous values.

The table-GANs were designed to have three convolutional neural networks (CNNs)
compared to two networks in the original GANs, a discriminator to distinguish between
the actual and synthetic records, a generator to generate realistic records, and a classifier
to increase the semantic integrity of the synthetic records. The classifier was added to
determine whether the synthetic records were correct and close to the real-world scenario.
For example, a person with a low cholesterol level may not be diagnosed with diabetes,
and there will be no such record in the original table. The classifier discards all such records
generated by the generator.

In addition to the original GAN objective loss function, two other additional loss
functions, information loss and classification loss, were computed. The information loss finds
the discrepancy between the statistical characteristics, the mean, and the standard deviation
of synthetic and original record features using the L-2 norm or Euclidean distance. Suppose
that the value of this difference is zero. In that case, the actual and synthetic records have
statistically the same features, and the discriminator may not be able to distinguish whether
the inputs are from training data or synthetically generated. The classification loss is used
to check the semantic integrity and balance the privacy and usability of the synthetic data
generated. It finds the discrepancy between the label of a generated record and the label
predicted by the classifier for that record and will remove the semantically incorrect records.

The security and privacy concerns were addressed as the entire table was synthetically
generated by the table-GANs, and none of the actual records were directly disclosed. These
synthetic tables are strong against the re-identification attack and attribute disclosure issues,
as attackers cannot reveal any original identification.

The adversary’s access may be limited to black-box queries that return the model’s
output on a given input. The adversary may train many attack models as shadow models
based on the generator’s behavior by making inferences about the members of the synthetic
tables. This attack is called a membership inference attack [103]. The table-GAN was
attacked with various hinge-loss configurations to evaluate the impact of the membership
attack. Hinge loss slightly disturbs the training process of table-GAN, so it converges
to the point that balances synthesis quality and the possibility of being attacked. The
paper showed that the attack performance decreased by increasing the hinge loss. Finally,
model compatibility, which is the difference in the performance of data trained on actual
and synthetic data, was used to assess the quality of the generated data. The models
trained using the synthetic tables exhibited a similar performance to those trained using
the original table.

Table 2 gives a summary of the different techniques and methods used to generate
image and tabular data.

Electronics 2024, 13, 322 15 of 31

Table 2. Different models used to generate image and tabular synthetic data using GAN.

Data Type Model Method Generated Data Quality

Images

DCGAN [60] Vector arithmetic manipulation Low, suffers from mode collapse
CGAN [68] Label as condition Improved quality

LAPGAN [69] Conditional GAN with Laplacian pyramid High-resolution realistic images
PGGAN [67] Focus on finer-scale details High-quality synthetic images

RenderGAN [76] Image augmentation Realistic labeled images

StackGANs [78] Generate images from a text description using
text embedding Good quality images, evaluated using inception score

InfoGAN [85] Use mutual information as condition Model can disentangle variations, improved
generated images

Tabular
PNR generation [89] Use Cramer GAN [91] Evaluated using Jensen–Shannon divergence (JSD),

realistic data generated

Table-GANs [98] Use 3 CNNs, additional classifier to increase synthetic
records integrity Models trained using synthetic data performed well

5. Generating Cyberattack Data Using Generative Models

Cyber security is one of the major business concerns today for organizations world-
wide. With systems being connected via the Internet and as the Internet of Things (IoT)
emerges as the latest technology, there is a need to protect the networks, systems, and
programs from digital attacks. Every industry like telecommunication, manufacturing,
healthcare, education, finance, government, etc., is being exposed to cyberattacks. These
cyberattacks are usually designed to access, change, or destroy sensitive information; to
extort money from users; or disrupt usual business processes. There are different ways
of attacking a system. For instance, a denial-of-service (DoS) attack attempts to restrict the
access of resources for the host or prevent the utilization of resources. Other attacks like
vulnerability exploitation obtain privileged access to a host network by taking advantage of
known vulnerabilities. The unauthorized attempt or threat to deliberately access or manip-
ulate information, or disable the system, is defined as intrusions, and the methods used to
monitor and detect this aberration are called intrusion detection systems (IDSs) [104].

The IDS tries to find exceptional patterns in network traffic that do not conform to
the expected normal behavior. These non-conforming patterns are usually referred to as
anomalies or outliers. The IDS monitors the network for such malicious acts or security
protocol violations and raises an alarm or sends an alert to the administrator if any anomaly
is detected. However, the IDS may not necessarily take any other action. There are two
types of IDS, network intrusion detection systems (NIDSs), which monitor network packets
moving in and out of the network, and host intrusion detection systems (HIDSs), which
monitor the activities of a single host such as a computer or clients connected to that
computer. The IDS algorithms are classified based on their detection approach, with
signature-based detection and anomaly-based detection being the two main categories.

Signature-based detection is a traditional method that relies on a pre-programmed
list of known attack behaviors. It uses a database of previously identified bad patterns to
report an attack and is only as effective as its database of known signatures. On the other
hand, anomaly-based detection techniques use statistical and machine learning methods to
detect malicious behaviors that deviate from known normal behaviors. These approaches
have gained widespread attention from researchers over the past decade, and several
models have been proposed in the literature to detect intrusions into the network [105–107].
However, the increasing complexity of attacks and attackers’ skills have made these models
only as good as the datasets on which they were developed. Obtaining a complete and
real dataset is challenging in the realm of cybersecurity, as the information needed to
develop models is held in various logs and network traffic of an organization that faces a
cyberattack. Additionally, these logs and network traffic carry private information about
the organization and cannot be released to the public. Even when a realistic dataset is
obtained, it captures only one of the several possible attacks for that organization’s topology
and is therefore incomplete.

Electronics 2024, 13, 322 16 of 31

Alternative approaches to creating a dataset have been proposed in the literature,
including semi-synthetic and synthetic data generation techniques. In the semi-synthetic
data generation approach, a network is set up, simulating a realistic network topology,
and human penetration testers penetrate the network [108,109]. The dataset is then built
by capturing the normal user behavior and the simulated attack behavior, followed by
appropriately labeling those behaviors for developing statistical and machine learning
models. Synthetic data generation techniques do not require any humans to penetrate
the network; rather, the attack data are simulated by models that learn how attacks can
be performed. Synthetic data generation approaches, specifically using GANs, have been
gaining increasing attention in recent years due to their applicability to different types of
topologies and the possibility of creating a dataset that can represent different attack sets
on a given topology.

Various approaches, including supervised, semi-supervised, and unsupervised learn-
ing, have been used for anomaly detection [110]. In semi-supervised techniques, the model
is trained using only the normal training dataset, and the likelihood of the test dataset
is compared against the learned model. However, these algorithms assume that normal
instances are more frequent than anomalies in the test data, which can lead to false alarms
or the blocking of the normal data packets as anomalies. Moreover, these methods may not
be suitable for dynamic and sequential responses to new or deformed cyber threats.

On the other hand, supervised anomaly classifiers learn from labeled datasets that
contain normal or anomaly classes. In network systems, the dataset consists of recorded
samples with pre-assigned labels in the form of a feature vector of network features. The
supervised learning algorithm’s goal is to learn from the labeled dataset and predict
whether a new instance is normal or an anomaly, and to raise an alert when an anomaly
is detected. Although state-of-the-art supervised algorithms can be effectively applied to
solve this type of problem, they face several challenges. The datasets are highly imbalanced,
with a low number of anomalous packets, and prediction accuracy is generally reported to
be low, while the training time is very high. In addition, large datasets with high variance
are required to train these algorithms to build robust intrusion detection systems. The
available datasets are often limited and outdated, or they may have missing ground truth
values. The manual labeling of real networks containing millions to billions of flows is also
a challenging task for security experts. Additionally, most organizations do not want to
disclose their network traffic and attack data information, making it difficult to collect or
label such datasets.

Unsupervised learning methods, on the other hand, do not require labeled data for
training, making them suitable for anomaly detection when labeled data are scarce. How-
ever, they have some limitations in the context of cybersecurity. Unsupervised methods are
based on the assumption that anomalies are rare events and can be identified as deviations
from normal data distribution. However, in cybersecurity, it is often challenging to define
what is normal behavior, as cyber threats are constantly evolving and changing. Moreover,
unsupervised methods may not be able to completely exploit the spatial-temporal corre-
lation and multiple variable dependencies, which are essential for accurately detecting
anomalies in complex cyber systems. Ideally, it would be best if such datasets could be
synthetically generated, as explained in Section 4. In this situation, GAN can be of great use
for anomaly detection [111]. Table 2 illustrates how GANs were recently used to generate
synthetic data in a variety of domains. In this section, we discussed the different methods
proposed by researchers for generating various types of cyberattacks using GANs.

5.1. Flow-Based Network Traffic Generation

To develop, analyze, and evaluate secure networks and cyber monitoring systems like
IDS, network traffic flows are essential. However, obtaining real network traffic that is
appropriate for such purposes is challenging due to privacy and security concerns. Publicly
available real traffic is often inconsistent, insufficient, or incomplete, making it less useful.
Therefore, synthetic traffic generation techniques have been developed [112–114]. These

Electronics 2024, 13, 322 17 of 31

techniques involve extracting key features from real traffic and using them to create similar
network traffic flows. Various traffic generation techniques have been developed over time
and GANs have emerged as a promising approach in synthetic traffic generation.

Ring et al. [115] proposed a GAN model to generate synthetic flow-based network
traffic to evaluate an NIDS. The Wasserstein GANs (WGANs) [93] were used to generate
the synthetic flow-based network data based on the CIDDS-001 [116] dataset. The flow-
based network traffic contains header information about the network connections between
two end-point device-like servers, workstation computers, or mobile phones. Each flow
is an aggregated information containing the source IP address, source port, destination
IP address, destination port, and transport protocols of the transmitted network packets.
Most of these attributes like IP address, ports, and transport protocols are categorical and
cannot be processed by GANs, since the generator is differentiable [1]. These attributes
need to be encoded into numerical or continuous vectors. IP2Vec [117], based on the
Word2Vec method [118], was used to transform IP addresses into a continuous feature
space such that the standard similarity measures can be applied. IP2Vec was extended
to learn the embeddings for other attributes, like ports, transport protocols, duration,
bytes, and packets, and a neural network based on backpropagation was used to train
the embedding layer. For the preprocessing of these attributes, other alternatives such as
numeric and binary transformations were also experimented with. The results showed that,
although numeric transformations were straightforward to implement, they were not able
to truly represent the distributions and capture the similarities. The binary transformation
of these categorical and numerical attributes of flow-based data did pretty well and was
able to capture the internal structure of the traffic and subnet, except in a few cases. On
average, the embeddings based on IP2Vec transformations gave the best results.

To evaluate the quality of data generated by GAN, approaches like inception score (IS)
cannot be used for flow-based data, as inception score is based on Inception Net v3 [84]
and can classify only the images. There is no standard method to evaluate the quality of
network traffic, so different methods were proposed to assess the quality from different
views. To evaluate the diversity and distribution of the generated data, the temporal
distributions of generated flows for each week’s traffic were visually analyzed to see
whether they represented the internal structure of the original traffic and subnets. Secondly,
the distribution of the generated and real traffic data in each attribute was independently
compared by computing the Euclidean distance between the probability distributions of
the generated and weekly traffic input for each attribute. Thirdly, the domain knowledge
checks were used to assess the intrinsic quality of the generated data. Some heuristics
based on the properties of flow-based network data were tested to check the sanity and see
whether the generated data are realistic or not. For instance, whether the transport protocol
is UDP, then the flow must not have any TCP flags; if the multi-or broadcast IP address
appears in the flow, then it must be the destination IP address. The flows generated by both
the binary and IP2Vec embeddings transformation were realistic and showed good results
for all the evaluation methods.

Cheng et al. [119] proposed and developed a novel GAN model called PAC-GAN,
which generates realistic network traffic at the IP packet level. PAC-GAN encodes each
network packet into a gray-scale image and generates IP packets using CNN GANs. The
network traffic generator uses an encoding scheme that converts and maps network traffic
data into images using image-based matrix representations. By learning and manipulating
the byte values of data packets, the PAC-GAN can generate realistic variants of different
types of network traffic, such as ICMP pings, DNS queries, and HTTP GET requests, that
can be transmitted through real networks.

Shahid et al. [120] proposed a method for generating synthetic traffic sequences that
closely resemble actual bidirectional flows in IoT networks. They combined an autoencoder
with a Wasserstein GAN to learn latent vectors that can be decoded into realistic sequences
of packet sizes. The generated bidirectional flows mimic the characteristics of genuine ones,
which can deceive anomaly detectors into identifying them as real. However, the quality of

Electronics 2024, 13, 322 18 of 31

synthetic traffic sequences heavily depends on the training data used. During the training
phase, the generator can only reproduce sequences that were observed in the training data.
The authors tested their model using a small amount of data, which may have led to over
fitting. Yin et al. [121] developed an end-to-end framework, NetShare, for generating test
traffic using GANs which focus on tackling the fidelity, scalability, and privacy challenges
and trade-offs in existing GAN-based approaches [113].

Mozo et al. [122] proposed a WGAN-based approach to generate synthetic flow-based
network traffic, addressing privacy concerns and providing a viable alternative to real
data in ML training processes. Demonstrated in a crypto-mining attack scenario, the study
explores diverse neural network architectures and proposes enhancements to improve the
quality of synthetic data.

Meanwhile, software-defined networking (SDN) [123] is evolving as a cost-effective
paradigm, involving the separation of the control plane from the data plane to oversee
next-generation networks. Duy et al. [124] introduced the Fool-IDS framework, utilizing
WGAN-GP, WGAN-GP with a two-timescale update rule [125], and AdvGAN [126] to
generate adversarial samples for ML-based IDS in SDN-enabled networks. The generated
attack samples maintain network flow functionality, aiming to assess and enhance IDS
resilience through continuous evaluation and adversarial training. The study explores the
evasion performance under the varying ratios of modifying non-functional features and
presents a prototype integrating Fool-IDS with ML-based IDS for robustness evaluation in
SDN environments.

5.2. Cyber Intrusion Alert Data Synthesis

Cyber intrusion alert data plays an important role in detecting and profiling anoma-
lous activities and behaviors, as well as identifying network vulnerabilities. However,
the cyberattack data are highly imbalanced as the intrusions are rare events and often
difficult to identify [108]. Moreover, the absence of ground truth and the organizations’
reluctance to share such data further hinder experimentation and research. Additionally,
these datasets exhibit non-homogeneous characteristics, further complicating the analysis
and development of effective defense mechanisms. Given the complex and dynamic nature
of cyberattacks, innovative approaches are required to generate realistic and diverse data
that accurately captures the intricacies of real-world intrusions.

GANs demonstrated their capacity to learn intricate data distributions, aiming to
generate data that are progressively more realistic and align with the underlying patterns
and characteristics of real intrusion alerts [127]. The generator part of the GAN learns to
generate synthetic intrusion alerts while the discriminator part evaluates the authenticity of
the generated alerts. Using GANs to generate synthetic cyber intrusion alerts helps address
the challenges posed by imbalanced and non-homogeneous data in cybersecurity. These
generated alerts not only aid in characterizing intrusion features but also complement the
existing data, ensuring a more diverse and representative dataset for robust analysis and
defense against cyber threats.

Recent work by Sweet et al. [127,128] investigated the effectiveness of GANs in gen-
erating synthetic intrusion alerts by learning the sparsely distributed categorical features
from the samples of malicious network intrusions. Their proposed framework for synthetic
cyber-intrusion alert data utilizes Wasserstein GAN models [93] with some modifications.
Two variants were investigated: WGAN with gradient penalty (WGAN-GP) [129] and
WPGAN-MI [130], which integrates the gradient penalty with mutual information con-
straint. WGAN-GP incorporates a gradient penalty term in the discriminator loss function,
enhancing the utility of gradients and improving the training stability. WPGAN-MI, on
the other hand, introduces a mutual information term in the generator’s loss, aiming to
approximate the mutual information between the generator’s noise input and the generated
output samples. To estimate mutual information, a neural network is employed to compute
the Donsker–Varadhan (DV) representation of KL divergence. As discussed in Section IV,

Electronics 2024, 13, 322 19 of 31

the InfoGANs [85] also used the mutual information constraint, which helped the generator
explore the full domain of the data while generating new samples.

To evaluate their framework, Sweet et al. [127] utilized datasets from the National Col-
legiate Penetration Testing Competition (CPTC) [131] held in 2017 and 2018. These datasets
encompassed malicious actions performed by participating teams as they attempted to
compromise the target networks. The features included source and destination IP ad-
dresses, port numbers, attack categories, attack signatures, and alerts. The alerts were
categorized based on the destination IP address, capturing unique attack behaviors for
each target. The fidelity of the generated data was assessed using histogram intersection
and conditional entropy measures, both demonstrating the potential of GANs to generate
diverse artificial attack data reflective of the behaviors observed in the ground truth dataset.
The GAN models were trained to learn the distribution of input data on a per-target IP
basis. The evaluation utilized the histogram intersection score between the ground truth
and generated alerts to assess the GANs’ ability to capture the latent behavior and feature
dependencies of the dataset. The analysis revealed that WPGAN-GPMI, with its mutual
information constraint, outperformed the WGAN-GP model by synthesizing the alerts on
more attack stages and accurately recreating the target-based cyber alert data from the
malicious alert datasets.

Kumar and Sinha [132] proposed a data generation model using the Wasserstein condi-
tional GAN, an XGBoost classifier, and feature reduction via a deep autoencoder which generates
significant attack signatures to tackle the issue of data imbalance in IDS. Mouyart et al. [133]
addressed the challenge of unbalanced datasets by leveraging the conditional tabular gen-
erative adversarial network (CTGAN) [134]. Optimizing CTGAN’s hyper parameters with
the tree-structured Parzen estimator (TPE) [135], they balanced an insider threat tabular
dataset, CMU-CERT [136], containing discrete and continuous columns. Their method
demonstrated minimal mean absolute errors between the actual data probability mass
functions (PMFs) and those generated by CTGAN. They used the optimized CTGAN to
generate synthetic insider threat data, merging it with actual data to balance the dataset.
Employing this balanced dataset in an IDS with reinforcement learning within a multi-agent
framework, they observed significantly improved intrusion detection performance.

5.3. Generating Attack Data Using Adversarial Examples

Machine learning models are commonly employed for detecting spams, malware,
anomalies, network intrusions, and other illegal activities. However, ML models including
deep neural networks (DNNs) have recently been found to be vulnerable to adversarial
attacks, which compromises their robustness [137–139]. This vulnerability poses a signifi-
cant threat to the reliability of machine learning in security-sensitive domains. Adversarial
attacks involve the deliberate creation of malicious inputs by adversaries to deceive the
system. These inputs, known as adversarial examples, are carefully crafted to manipulate
the predictions made by the machine learning model, resulting in erroneous outputs. Even
a minor modification to the input can cause the neural network to misclassify the data, and
these alterations are often imperceptible to the human eye [137].

GANs have been employed to generate synthetic cyberattacks that can bypass security
defenses or exploit vulnerabilities in systems, such as intrusion detection systems or
malware detection models. In this setup, the generator network is trained to produce
adversarial examples capable of deceiving or evading the target system’s defenses, while
the discriminator network learns to differentiate between real and adversarial examples.
GANs play a crucial role in assessing the robustness and effectiveness of security systems,
as well as in developing improved defenses against cyberattacks.

Adversarial attacks can be classified into two types: white-box attacks and black-box
attacks. In white box attacks [140], the adversary has complete knowledge of the model
architecture, learning algorithms, parameters, and access to the training dataset. This
allows them to manipulate the feature vector in the test dataset to cause misclassification.
On the other hand, in black-box attacks [139], the adversary does not know the model

Electronics 2024, 13, 322 20 of 31

architecture, learning parameters, or access to the training dataset. In this scenario, the
attacker can only observe the labels or class outputs of the model when interacting with
it remotely, such as through an API. By continually modifying the input and observing
the corresponding output, the attacker establishes a relationship between the changes in
inputs and outputs. The remote DNN model that the adversary is observing is commonly
referred to as an ‘Oracle’.

To overcome the lack of knowledge in black-box attacks, the adversary can train a local
substitute DNNs with a synthetic dataset. The inputs are synthetic and generated by the
adversary, whereas the outputs are the labels assigned by the oracle or remote DNN when
the adversary was querying the DNN with their synthetic inputs. The substitute model
is designed with similar decision boundaries, and the adversary crafts the adversarial
examples to misclassify the substitute model. These same adversarial examples can then be
used to misclassify the target DNN [141]. Two models, MalGAN [6] and IDSGAN [142],
were proposed to use GANs to generate the synthetic adversarial examples against the
detection system. In this context, we further explore the construction and evaluation of the
capabilities of these models in generating realistic adversarial attack examples.

5.3.1. MalGAN: Generating Malware Adversarial Examples Using GAN

MalGAN, proposed by Hu et al. [6], focuses on creating adversarial examples for mal-
ware detection systems. These detection systems are like black boxes to attackers, meaning
that they do not know their internal workings. So, the attackers can only perform black-box
attacks to understand the features used by the malware detection algorithm. The key
idea behind MalGAN is to trick the malware detection system into misclassifying benign
programs as malware. It uses a dataset of programs with API features represented as binary
vectors. MalGAN incorporates a black-box detection model (oracle) in the discriminator
and generator. The generator creates adversarial examples, while the discriminator tries to
imitate the oracle. The adversarial examples successfully bypass the black-box detector,
showing the transferability [143] across different classifiers. However, when the detector is
retrained with adversarial examples, it becomes more robust against these attacks.

The advantage of MalGAN is that it can generate new adversarial malware examples,
making the detector more robust without needing to collect a large number of actual
malware samples and label them manually. This makes the malware detection system more
effective and helps improve its performance against adversarial attacks.

5.3.2. IDSGAN: Generating Adversarial Examples against Intrusion Detection System

IDSGAN [142] is another GAN model proposed to create adversarial attacks that
deceive and evade the IDS. Similarly to MalGAN, IDSGAN treats the IDS as a black box
and aims to deceive it with adversarial attacks. The IDS is built using a classifier like
DNN or SVM on a cybersecurity dataset like NSL-KDD. IDSGAN uses a generator and
discriminator, where the discriminator emulates the behavior of the black-box IDS. The
generator produces adversarial examples by applying small perturbations only to the non-
functional features of the attack data. IDSGAN successfully generates adversarial examples
that bypass the black-box IDS, leading to lower detection rates and higher evasion rates.
This indicates that the generated adversarial examples can effectively fool the IDS.

The main difference between MalGAN and IDSGAN lies in the types of attacks they
generate, the features of their respective datasets (binary feature vector for MalGAN
and a sequence of features for IDSGAN), and the treatment of constructing adversarial
examples. IDSGAN’s dataset includes both numeric and non-numeric discrete features,
which are categorized into four sets: intrinsic, content, time-based, and host-based features.
When creating adversarial examples, IDSGAN applies random noise only to the non-
functional features of each attack, while keeping the functional features unchanged to
maintain the attack’s nature. This ensures that the attack remains intact and does not break
during perturbation.

Electronics 2024, 13, 322 21 of 31

MalGAN used a malware API dataset consisting of binary feature vectors, the NSL-
KDD dataset used in IDSGAN, which is a sequence of 41 features describing the normal
and the malicious network traffic records. There are 9 discrete and 32 continuous features.
The non-numeric discrete features are one-hot encoded to perform numeric conversion.
As per the meaning of the features, they are categorized into four sets. The features, like
duration, protocoltype, service, f lag, sourcebytes, and destinationbytes, are ‘intrinsic’ as they
show the characteristics of connection in a network. Similarly, the ‘content’ features are
the ones that mark the content of connections and show the behavior related to the attack
if it exists in the traffic. The ‘time-based’ features check for the connections which have
the same destination host or same service as the current, in the past 2 s. The ‘host-based’
traffic features monitor similar connections in the past 100 connections. The malicious data
consist of four types of attacks, probe, U2R, DoS, and R2L. Each category of the attack has
some functional features which represent the basic function of the attack.

While making small perturbations, no change is made in the functional features of
each attack. Otherwise, the attack will be broken. The random noise is only added to the
nonfunctional features to generate adversarial examples. The generator is a simple neural
network with five linear layers and the update to the parameters of the network is made
based on the feedback from the discriminator.

Here, various machine learning algorithms like support vector machine (SVM), logistic
regression (LR), multilayer perceptron (MLP), K-nearest neighbor (KNN), random forest,
and decision trees were used to train the black-box IDS to test the transferability of the
adversarial samples. To show the robustness of the IDS model, the detection rate was
measured. The detection rate gives the proportion of correctly detected malicious traffic
records to the total attack records detected by the black-box IDS. The original detection
rate and the adversarial detection rates were computed. To show the ability of IDS, an-
other metric, called the evasion increase rate, was used. It is the rate of increase in the
undetected adversarial malicious traffic by the IDS as compared to the original malicious
traffic examples. IDSGAN model showed a lower detection rate and high evasion rate
which means more malicious traffic could evade the IDS, showing that the adversarial
examples generated by IDSGAN are realistic and the generator was able to successfully
fool the black-box IDS.

Yang et al. [144] introduced a novel technique for identifying previously unknown
attacks by utilizing a GAN-based approach to learn the hidden distribution of original
data. Their method involves using a DNN for classification and evaluating the perfor-
mance metrics on two distinct datasets. Meanwhile, Lee and Park [145] addressed the
negative impact of the imbalanced data on attack classification by generating new virtual
data that are similar to the existing data using GAN. They were able to achieve better
results with random forest using the newly generated data compared to the original data.
Huang and Lei [146] presented a three-step approach to overcome the negative effects of
labeled imbalanced data in datasets. They first performed feature extraction using the
feedforward neural network (FNN), then generated virtual data using GAN, and evalu-
ated the classification performance of the resulting data on three different datasets using
CNN. Shahriar et al. [147] proposed attack detection in cyber-physical systems (CPS) and
suggested a fix for imbalanced and missing data using GAN-based intrusion detection
system (G-IDS), where the GAN generates synthetic samples, and IDS is trained on them
along with the original ones.

Chauhan et al. [148] employed the GAN model to synthesize adversarial polymorphic
attacks, assessing the vulnerability and improving the robustness of IDS against such
threats. A “polymorphic attack” is an unconventional attack that continuously changes its
features to produce diverse variants, aiming to bypass network detection while maintaining
its functional nature.

Electronics 2024, 13, 322 22 of 31

5.4. Attack Data Generation Using LLMs

Recent advancements in AI, particularly transformer models like large language mod-
els (LLMs), have significantly improved the sequence modeling in cybersecurity [149–151].
They contribute to identifying, analyzing, and rectifying software vulnerabilities before
exploitation by adversaries, and also aid in scrutinizing malware payloads to recognize
their distinct behavioral characteristics [152]. LLMs like ChatGPT demonstrate versatility
in creating advanced attack scenarios such as social engineering attacks [153], phishing
attempts [154], and the generation of malicious software [155,156].

Karanjai [154] demonstrated that LLM models possess the ability to craft convincing
phishing emails that circumvent spam filters and successfully deceive recipients. For
instance, a generated email purportedly originating from a university president solicited
students to fill out a course completion survey. However, the effectiveness of such phishing
attempts varies depending on the specific model and the data used for training.

Recent demonstrations [155,157] have illustrated ChatGPT’s potential in assisting
script kiddies and less technically skilled attackers in crafting malware. This showcases
the LLM’s ability to generate sophisticated and obfuscated malware, including evasive
coding techniques. This suggests its potential applications in generating image instructions
and emphasizes its role in fortifying network defenses against code modifications. Beck-
erich [156] delivered a proof-of-concept where ChatGPT is utilized to covertly distribute
malicious software, avoiding detection while establishing communication with a command
and control (C2) server to receive instructions for engaging with a victim’s system. The
outcomes underscore significant cybersecurity concerns associated with the use of openly
available plugins and LLMs.

6. Analysis of GAN Generated Synthetic Attack Data

The effectiveness of GAN-generated data in cybersecurity remains an open question.
Real-world cyberattacks often involve complex contexts, such as the timing of distributed
denial of service (DDoS) attacks or the intricate patterns of lateral movements in system
breaches. These attacks usually exhibit signatures across multiple traffic units, presenting a
significant challenge for GANs to replicate accurately. Nonetheless, more straightforward,
isolated attack vectors like SQL injection, application scanning, and port scanning have
distinct network flow signatures that GANs can potentially mimic. While GAN-generated
data can augment intrusion detection system (IDSs) training datasets or aid in creating
simulated attack scenarios, it often includes considerable noise. This noise can lead to
trained models under-performing in real-world situations.

In this section, we delve into an analysis to evaluate the fidelity of GAN-generated
cyberattack data. Our study focuses on three key aspects: the similarity of GAN-generated
attack data features to actual attacks; whether GANs preserve the original data distribu-
tion; and the response of classifiers trained on authentic data when exposed to a mix of
original and GAN-generated data. This comprehensive approach provides insights into
the potential and limitations of using GANs for cybersecurity. We chose a DoS attack
from the NSL-KDD dataset [158] for our analysis. Table 3 presents the different attack
categories of the NSL-KDD dataset. With 41 features, among which 9 are discrete values,
and 32 are continuous values, the dataset has both normal and malicious traffic. Using
domain knowledge and the information given by the dataset as depicted in Table 3, we
first identified features that are reflective of a DoS attack, followed by performing statistical
analysis to obtain the range and standard deviation of those identified features across
various DoS and normal traffic.

Figure 2 shows the features we identify corresponding to various attack categories
in the NSL-KDD dataset. We then performed a statistical analysis to find a correlation
between those different features using Pearson’s coefficient. The GAN-generated attack
traffic can represent the DoS traffic only if the distribution of the data in those identified
features and the correlation among those features is preserved. To this end, we built a
conditional GAN model where the discriminator was trained only on the attack samples. At

Electronics 2024, 13, 322 23 of 31

the same time, the generator was set to challenge the discriminator until the discriminator
could accurately identify the attack traffic. To evaluate the generated attack data, we
(1) built a white-box-model, supervised model using FNN (feedforward neural network)
trained on the NSL-KDD dataset’s training data constituting both normal and attack data;
(2) built the anomaly-detector: a semi-supervised model that is trained only on the normal
data within the NSL-KDD’s training data; and (3) performed a statistical analysis: we
calculated the expected standard deviation (SD) of the features identified in our feature
analysis that reflect a DoS attack. We then tested the performance of the resulting white-box
model and the anomaly detector against the NSL-KDD dataset’s test data to ensure that
its performance meets the accuracy requirements. As expected, the accuracy prediction
obtained was over 99% on the white-box model’s test data, and the anomaly-detector model
could distinguish between normal and attack traffic with an accuracy of over 81%.

Table 3. Attack categories of NSL-KDD.

DoS R2L U2R Probe

back ftp_write buffer_overflow ipsweep

land guess_passwd loadmodule nmap

pod imap perl portsweep

smurf multihop rootkit satan

teardrop phf

spy

warezclient

warezmaster

We then used the white-box model to detect the normal and attack traffic in our
GAN-generated attack data. The white box could accurately report the GAN-generated
attack data were not normal; however, it classified the attack data into one of the attack
categories in Table 3. The anomaly-detector model accurately reported the GAN-generated
attack data were not normal as part of static analysis in our evaluation. We measured the
Euclidean distance between the standard deviation of the feature values from the NSL-
KDD dataset and the standard deviation of the same features from the GAN-generated
attack data. We found that most of the generated samples have inconsistent feature values
that neither correspond to normal traffic nor DoS traffic. Henceforth, our analysis and
evaluation concluded that, while most of the GAN-generated attack data were not normal,
these did not correspond to the expected DoS traffic. Our static analysis of the features
points out that those GAN-generated attacks reported as not normal by the trained models
are neither normal nor attack traffic units as the expected feature correlations are missing
and thus the data represents mere noise. Many solutions have claimed the ability of their
GANs to generate attack data based on their white-box models or their anomaly detectors
reporting them as not normal. However, we would like to point out that “not normal” does
not mean attack data; instead, as we evidenced above, it is often mere noise and not an
unknown attack or a new attack. We believe that our analysis helps researchers to continue
developing GAN-based attack generation models capable of generating the attack data
that represent real-world attacks and thus address the concerns associated with obtaining
real-world attack data due to privacy issues.

Electronics 2024, 13, 322 24 of 31

Figure 2. Feature mapping of NSL-KDD to intrusion patterns.

7. Discussion

GANs, with their unique architecture of a generator and discriminator working in
tandem, have demonstrated remarkable proficiency in generating data that closely mimic
real-world patterns. This capability is particularly advantageous in cybersecurity, where
the availability of diverse and extensive datasets is paramount for the practical training
of models. However, analyzing the authenticity of synthetic data generated by GANs in
the context of cyberattacks is essential. While GANs can produce data that bear statistical
similarity to real-world datasets, it is crucial to study these synthetic data adequately to
analyze whether they represent the complexities and nuances of cyber threats. Also, the
reliability of deep learning models trained solely on synthetic data is still being determined.
These models may not perform well when exposed to real-world attack scenarios, leading
to potential vulnerabilities. Zhou et al. [159] argued that, although the GAN model is ex-
tensively used in cybersecurity to improve adversarial training and handle class imbalance
by producing better attack samples, it encounters difficulties such as complex training
convergence and mode collapse, where the generator struggles to capture the full diversity
of real data.

Our analysis of synthetic data generated for DoS attacks shows that, while GAN-
generated attack data often deviate from normal traffic, it does not align with typical DoS
traffic patterns. Static analysis reveals that these data, flagged as abnormal by trained
models, lack the expected feature correlations, indicating it is neither normal nor genuine
attack traffic but relatively just noise. Recognizing that abnormal data do not necessarily
signify an attack, it may be simply noise in many cases. Our work signifies the need
to further analyze the GAN-based models to generate data that accurately reflect real-
world attacks. In this work, we chose the NSL-KDD dataset as it is one of the most
widely used datasets carrying individual attack vectors that make a good study for our
analysis in terms of generating the data using GANs. The later datasets such as CIC-
IDS2017 [160], CIC-DDoS2019 [161], DAPT2020 [108], Unraveled (DAPT2021) [109], and
CICEV2023 [162] carry attack vectors with complex correlated features. As a future work,

Electronics 2024, 13, 322 25 of 31

we intend to study the capabilities of GANs in generative complex attacks like DDoS, SQL-
Injection, and cross-site scripting using various generative models like LLMs and GANs.
There are other works like attack trees [163], which are popular graphical models that
represent cyberattack scenarios, which pose challenges for organizations due to the need
for advanced security expertise and stakeholder engagement [164]. Currently, automation
methods from system models or attack pattern libraries need more maturity for practical
use [165]. Large language models (LLMs) like PAC-GPT [166] provide a potential solution
by aiding in the automated synthesis of attack trees, leveraging their natural language
generation capabilities [167]. Exploring the synergy between large language models (LLMs)
and GANs for generating synthetic attack data constitute a promising avenue for future
research endeavors. This exploration is poised to uncover new methodologies and insights
in cybersecurity, potentially revolutionizing the field.

8. Conclusions

This comprehensive review of generative models, particularly GANs generating
synthetic attack data for cybersecurity, highlights the potential and challenges of this
approach. GANs have emerged as a powerful tool in addressing the scarcity of large,
diverse datasets, crucial for training robust deep learning models in cybersecurity. The
ability of these models to generate data that mirror real-world scenarios can significantly
enhance the training process, leading to more effective cybersecurity solutions. However,
the effectiveness of models trained on synthetic data in accurately detecting and responding
to real-world cyber threats is an area that requires further investigation. The findings of
this review suggest a need for a balanced approach, combining both natural and synthetic
data, to ensure the robustness and reliability of cybersecurity models. Moreover, the
ethical and privacy considerations associated with using synthetic data in cybersecurity
should be considered. Future research should address these challenges, ensuring that the
development and deployment of these technologies are performed responsibly and with
due consideration of the potential consequences.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014;
pp. 2672–2680.

2. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

3. Shahriar, S. GAN computers generate arts? A survey on visual arts, music, and literary text generation using generative
adversarial network. Displays 2022, 73, 102237. [CrossRef]

4. Yinka-Banjo, C.; Ugot, O.A. A review of generative adversarial networks and its application in cybersecurity. Artif. Intell. Rev.
2020, 53, 1721–1736. [CrossRef]

5. Cai, Z.; Xiong, Z.; Xu, H.; Wang, P.; Li, W.; Pan, Y. Generative adversarial networks: A survey toward private and secure
applications. ACM Comput. Surv. (CSUR) 2021, 54, 1–38. [CrossRef]

6. Hu, W.; Tan, Y. Generating adversarial malware examples for black-box attacks based on GAN. In Proceedings of the Data Mining
and Big Data: 7th International Conference, DMBD 2022, Beijing, China, 21–24 November 2022; Springer: Berlin/Heidelberg,
Germany, 2023; pp. 409–423.

7. Ng, A.; Jordan, M. On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. Adv. Neural
Inf. Process. Syst. 2002, 14, 841.

8. Lee, H.W.; Lim, K.Y.; Grabowski, B.L. Generative learning: Principles and implications for making meaning. In Handbook of
Research on Educational Communications and Technology; Routledge: Abingdon, UK, 2008; pp. 111–124.

9. Nallapati, R. Discriminative models for information retrieval. In Proceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, Sheffield, UK, 25–29 July 2004; pp. 64–71.

http://doi.org/10.1145/3422622
http://dx.doi.org/10.1016/j.displa.2022.102237
http://dx.doi.org/10.1007/s10462-019-09717-4
http://dx.doi.org/10.1145/3459992

Electronics 2024, 13, 322 26 of 31

10. Oussidi, A.; Elhassouny, A. Deep generative models: Survey. In Proceedings of the 2018 International Conference on Intelligent
Systems and Computer Vision (ISCV), Fez, Morocco, 2–4 April 2018; pp. 1–8. [CrossRef]

11. Webb, G.I. Naïve Bayes. Encycl. Mach. Learn. 2010, 15, 713–714.
12. Pearl, J. Bayesian Networks; Department of Statistics, UCLA: Calgary, AB, Canada, 2011.
13. Clifford, P. Markov random fields in statistics. Disorder in Physical Systems: A Volume in Honour of John M. Hammersley; Clarendon

Press: Oxford, UK, 1990; pp. 19–32.
14. Eddy, S.R. Hidden markov models. Curr. Opin. Struct. Biol. 1996, 6, 361–365. [CrossRef]
15. Izenman, A.J. Linear discriminant analysis. In Modern Multivariate Statistical Techniques; Springer: Berlin/Heidelberg, Germany,

2013; pp. 237–280.
16. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
17. Fahlman, S.E.; Hinton, G.E.; Sejnowski, T.J. Massively parallel architectures for Al: NETL, Thistle, and Boltzmann machines. In

Proceedings of the National Conference on Artificial Intelligence, AAAI, Washington, DC, USA, 22–26 August 1983.
18. Fischer, A.; Igel, C. An introduction to restricted Boltzmann machines. In Proceedings of the Iberoamerican Congress on Pattern

Recognition, Buenos Aires, Argentina, 3–6 September 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 14–36.
19. Hinton, G.E. Deep belief networks. Scholarpedia 2009, 4, 5947. [CrossRef]
20. Salakhutdinov, R.; Hinton, G. Deep boltzmann machines. In Proceedings of the Artificial Intelligence and Statistics, PMLR,

Clearwater, FL, USA, 16–18 April 2009; pp. 448–455.
21. Sutskever, I.; Hinton, G.E. Deep, narrow sigmoid belief networks are universal approximators. Neural Comput. 2008, 20, 2629–2636.

[CrossRef] [PubMed]
22. Bontrager, P.; Togelius, J. Fully differentiable procedural content generation through generative playing networks. arXiv 2020,

arXiv:2002.05259.
23. Kingma, D.P.; Welling, M. An introduction to variational autoencoders. Found. Trends® Mach. Learn. 2019, 12, 307–392. [CrossRef]
24. Nikolenko, S.I. Synthetic Data for Deep Learning; Springer: Berlin/Heidelberg, Germany, 2021; Volume 174.
25. Caruana, R.; Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd

International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 161–168.
26. Wright, R.E. Logistic regression. In Reading and Understanding Multivariate Statistics; American Psychological Association:

Washington, DC, USA, 1995; pp. 217–244.
27. Joachims, T. ISVM-Light Support Vector Machine, University of Dortmund. 1999. Available online: http://svmlight.joachims.org/

(accessed on 1 January 2020).
28. Kröse, B.; Krose, B.; van der Smagt, P.; Smagt, P. An Introduction to Neural Networks; The University of Amsterdam: Amsterdam,

The Netherlands, 1993.
29. Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [CrossRef]
30. Phyu, T.N. Survey of classification techniques in data mining. In Proceedings of the International Multiconference of Engineers

and Computer Scientists, Hong Kong, 18–20 March 2009; Volume 1.
31. Bernardo, J.; Bayarri, M.; Berger, J.; Dawid, A.; Heckerman, D.; Smith, A.; West, M. Generative or discriminative? Getting the best

of both worlds. Bayesian Stat. 2007, 8, 3–24.
32. Minka, T. Discriminative Models, Not Discriminative Training; Technical Report, Technical Report MSR-TR-2005-144; Microsoft

Research: Redmond, WA, USA, 2005.
33. Theis, L.; Oord, A.v.d.; Bethge, M. A note on the evaluation of generative models. arXiv 2015, arXiv:1511.01844.
34. Amit, I.; Matherly, J.; Hewlett, W.; Xu, Z.; Meshi, Y.; Weinberger, Y. Machine learning in cyber-security-problems, challenges and

data sets. arXiv 2018, arXiv:1812.07858.
35. Barlow, H.B. Unsupervised learning. Neural Comput. 1989, 1, 295–311. [CrossRef]
36. Zhu, X.; Goldberg, A.B. Introduction to Semi-Supervised Learning; Synthesis Lectures on Artificial Intelligence and Machine

Learning; Springer: Berlin/Heidelberg, Germany, 2009; Volume 3, pp. 1–130.
37. Khosravi, P.; Choi, Y.; Liang, Y.; Vergari, A.; Broeck, G.V.d. On tractable computation of expected predictions. arXiv 2019,

arXiv:1910.02182.
38. Huang, C.W.; Touati, A.; Dinh, L.; Drozdzal, M.; Havaei, M.; Charlin, L.; Courville, A. Learnable explicit density for continuous

latent space and variational inference. arXiv 2017, arXiv:1710.02248.
39. Frey, B.J.; Hinton, G.E.; Dayan, P. Does the wake-sleep algorithm produce good density estimators? In Proceedings of the

Advances in Neural Information Processing Systems. Citeseer, Denver, CO, USA, 2–5 December 1996; pp. 661–670.
40. Karhunen, J. Nonlinear independent component analysis. In ICA: Principles and Practice; Cambridge University Press: Cambridge,

UK, 2001; pp. 113–134.
41. Hammersley, J. Monte Carlo Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
42. Tran, D.; Ranganath, R.; Blei, D. Hierarchical implicit models and likelihood-free variational inference. Adv. Neural Inf. Process.

Syst. 2017, 30.
43. Ching, W.K.; Huang, X.; Ng, M.K.; Siu, T.-K. Markov Chains; Models, Algorithms and Applications; Springer: New York, NY, USA,

2006.
44. Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. Machine learning basics. Deep. Learn. 2016, 98–164.

http://dx.doi.org/10.1109/ISACV.2018.8354080
http://dx.doi.org/10.1016/S0959-440X(96)80056-X
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.4249/scholarpedia.5947
http://dx.doi.org/10.1162/neco.2008.12-07-661
http://www.ncbi.nlm.nih.gov/pubmed/18533819
http://dx.doi.org/10.1561/2200000056
http://svmlight.joachims.org/
http://dx.doi.org/10.4249/scholarpedia.1883
http://dx.doi.org/10.1162/neco.1989.1.3.295

Electronics 2024, 13, 322 27 of 31

45. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell. 2013, 35, 1798–1828. [CrossRef]

46. Arora, S.; Khandeparkar, H.; Khodak, M.; Plevrakis, O.; Saunshi, N. A theoretical analysis of contrastive unsupervised
representation learning. arXiv 2019, arXiv:1902.09229.

47. Hodson, T.O.; Over, T.M.; Foks, S.S. Mean squared error, deconstructed. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002681.
[CrossRef]

48. Jiang, B.; Zhou, Z.; Wang, X.; Tang, J.; Luo, B. CmSalGAN: RGB-D salient object detection with cross-view generative adversarial
networks. IEEE Trans. Multimed. 2020, 23, 1343–1353. [CrossRef]

49. Goudet, O.; Kalainathan, D.; Caillou, P.; Guyon, I.; Lopez-Paz, D.; Sebag, M. Causal generative neural networks. arXiv 2017,
arXiv:1711.08936.

50. Zhou, G.; Yao, L.; Xu, X.; Wang, C.; Zhu, L.; Zhang, K. On the opportunity of causal deep generative models: A survey and future
directions. arXiv 2023, arXiv:2301.12351.

51. Kügelgen, J.; Mey, A.; Loog, M.; Schölkopf, B. Semi-supervised learning, causality, and the conditional cluster assumption. In
Proceedings of the Conference on Uncertainty in Artificial Intelligence, PMLR, Tel Aviv, Israel, 22–25 July 2019; pp. 1–10.

52. Han, T.; Tu, W.W.; Li, Y.F. Explanation consistency training: Facilitating consistency-based semi-supervised learning with
interpretability. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35,
pp. 7639–7646.

53. Kanungo, T.; Mount, D.M.; Netanyahu, N.S.; Piatko, C.; Silverman, R.; Wu, A.Y. The analysis of a simple k-means clustering
algorithm. In Proceedings of the Sixteenth Annual Symposium on Computational Geometry, Hong Kong, 12–14 June 2000; pp.
100–109.

54. Kramer, O.; Kramer, O. K-nearest neighbors. In Dimensionality Reduction with Unsupervised Nearest Neighbors; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 13–23.

55. De Ville, B. Decision trees. Wiley Interdiscip. Rev. Comput. Stat. 2013, 5, 448–455. [CrossRef]
56. Cho, Y.; Saul, L. Kernel methods for deep learning. Adv. Neural Inf. Process. Syst. 2009, 22.
57. Sennrich, R. Modelling and optimizing on syntactic n-grams for statistical machine translation. Trans. Assoc. Comput. Linguist.

2015, 3, 169–182. [CrossRef]
58. Hinton, G.E. Distributed Representations; Carnegie Mellon University: Pittsburgh, PA, USA, 1984.
59. Hinton, G.E.; Ghahramani, Z. Generative models for discovering sparse distributed representations. Philos. Trans. R. Soc. Lond.

Ser. Biol. Sci. 1997, 352, 1177–1190. [CrossRef]
60. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.

arXiv 2015, arXiv:1511.06434.
61. Li, T.; Ortiz, J.M. Generative Adversarial Network 1011; Queen’s University: Belfast, UK, 2022.
62. Ratliff, L.J.; Burden, S.A.; Sastry, S.S. Characterization and computation of local Nash equilibria in continuous games. In

Proceedings of the 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL,
USA, 2–4 October 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 917–924.

63. Sun, F.; Xie, X. Deep non-parallel hyperplane support vector machine for classification. IEEE Access 2023, 11, 7759–7767.
[CrossRef]

64. Zhang, X.Y.; Xie, G.S.; Li, X.; Mei, T.; Liu, C.L. A Survey on Learning to Reject. Proc. IEEE 2023, 111, 185–215. [CrossRef]
65. Chen, L.; Deng, Y.; Cheong, K.H. Permutation Jensen–Shannon divergence for Random Permutation Set. Eng. Appl. Artif. Intell.

2023, 119, 105701. [CrossRef]
66. Wildberger, J.; Guo, S.; Bhattacharyya, A.; Schölkopf, B. On the Interventional Kullback–Leibler Divergence. arXiv 2023,

arXiv:2302.05380.
67. Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. arXiv 2017,

arXiv:1710.10196.
68. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784.
69. Denton, E.L.; Chintala, S.; Fergus, R. Deep generative image models using a laplacian pyramid of adversarial networks.

In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015;
pp. 1486–1494.

70. Burt, P.; Adelson, E. The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 1983, 31, 532–540. [CrossRef]
71. Krizhevsky, A.; Nair, V.; Hinton, G. Cifar-10 (Canadian Institute for Advanced Research). 2010. Available online: http:

//www.cs.toronto.edu/kriz/cifar.html (accessed on 10 December 2023).
72. Yu, F.; Seff, A.; Zhang, Y.; Song, S.; Funkhouser, T.; Xiao, J. LSUN: Construction of a Large-scale Image Dataset using Deep

Learning with Humans in the Loop. arXiv 2015, arXiv:1506.03365.
73. Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference

on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3730–3738.
74. Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the

Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; IEEE:
Piscataway, NJ, USA, 2003; Volumr 2, pp. 1398–1402.

http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1029/2021MS002681
http://dx.doi.org/10.1109/TMM.2020.2997184
http://dx.doi.org/10.1002/wics.1278
http://dx.doi.org/10.1162/tacl_a_00131
http://dx.doi.org/10.1098/rstb.1997.0101
http://dx.doi.org/10.1109/ACCESS.2023.3237641
http://dx.doi.org/10.1109/JPROC.2023.3238024
http://dx.doi.org/10.1016/j.engappai.2022.105701
http://dx.doi.org/10.1109/TCOM.1983.1095851
http://www.cs.toronto.edu/kriz/cifar.html
http://www.cs.toronto.edu/kriz/cifar.html

Electronics 2024, 13, 322 28 of 31

75. Bowles, C.; Chen, L.; Guerrero, R.; Bentley, P.; Gunn, R.; Hammers, A.; Dickie, D.A.; Hernández, M.V.; Wardlaw, J.; Rueckert, D.
Gan augmentation: Augmenting training data using generative adversarial networks. arXiv 2018, arXiv:1810.10863.

76. Sixt, L.; Wild, B.; Landgraf, T. Rendergan: Generating realistic labeled data. Front. Robot. 2018, 5, 66. [CrossRef]
77. Wario, F.; Wild, B.; Couvillon, M.J.; Rojas, R.; Landgraf, T. Automatic methods for long-term tracking and the detection and

decoding of communication dances in honeybees. Front. Ecol. Evol. 2015, 3, 103. [CrossRef]
78. Zhang, H.; Xu, T.; Li, H.; Zhang, S.; Wang, X.; Huang, X.; Metaxas, D.N. Stackgan: Text to photo-realistic image synthesis with

stacked generative adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy,
22–29 October 2017; pp. 5907–5915.

79. Reed, S.E.; Akata, Z.; Mohan, S.; Tenka, S.; Schiele, B.; Lee, H. Learning what and where to draw. In Proceedings of the Advances
in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 217–225.

80. Wah, C.; Branson, S.; Welinder, P.; Perona, P.; Belongie, S. The Caltech-ucsd Birds-200-2011 Dataset; California Institute of Technology:
Pasadena, CA, USA, 2011.

81. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 740–755.

82. Nilsback, M.E.; Zisserman, A. Automated flower classification over a large number of classes. In Proceedings of the 2008
Sixth Indian Conference on Computer Vision, Graphics & Image Processing, Bhubaneswar, India, 16–19 December 2008; IEEE:
Piscataway, NJ, USA, 2008; pp. 722–729.

83. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training gans. In
Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 2234–2242.

84. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

85. Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P. Infogan: Interpretable representation learning by
information maximizing generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems,
Barcelona, Spain, 5–10 December 2016; pp. 2172–2180.

86. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

87. Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading digits in natural images with unsupervised feature
learning. In Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain, 12–17
December 2011.

88. Vinod, B. The continuing evolution: Customer-centric revenue management. J. Revenue Pricing Manag. 2008, 7, 27–39. [CrossRef]
89. Mottini, A.; Lheritier, A.; Acuna-Agost, R. Airline passenger name record generation using generative adversarial networks.

arXiv 2018, arXiv:1807.06657.
90. Voigt, P.; Von dem Bussche, A. The eu general data protection regulation (gdpr). In A Practical Guide, 1st ed.; Springer International

Publishing: Cham, Switzerland, 2017.
91. Bellemare, M.G.; Danihelka, I.; Dabney, W.; Mohamed, S.; Lakshminarayanan, B.; Hoyer, S.; Munos, R. The cramer distance as a

solution to biased wasserstein gradients. arXiv 2017, arXiv:1705.10743.
92. Wang, R.; Fu, B.; Fu, G.; Wang, M. Deep & cross network for ad click predictions. In Proceedings of the ADKDD’17, Halifax, NS,

Canada, 14 August 2017; pp. 1–7.
93. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein gan. arXiv 2017, arXiv:1701.07875.
94. Ajalloeian, A.; Stich, S.U. Analysis of SGD with Biased Gradient Estimators. arXiv 2020, arXiv:2008.00051.
95. Székely, G.J. E-Statistics: The Energy of Statistical Samples; Technical Report; Bowling Green State University, Department of

Mathematics and Statistics: Bowling Green, OH, USA, 2003; Volume 3, pp. 1–18.
96. Guo, C.; Berkhahn, F. Entity embeddings of categorical variables. arXiv 2016, arXiv:1604.06737.
97. Lilliefors, H.W. On the Kolmogorov–Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 1967,

62, 399–402. [CrossRef]
98. Park, N.; Mohammadi, M.; Gorde, K.; Jajodia, S.; Park, H.; Kim, Y. Data synthesis based on generative adversarial networks.

arXiv 2018, arXiv:1806.03384.
99. LA. Available online: https://controllerdata.lacity.org/Payroll/City-Employee-Payroll/pazn-qyym (accessed on 1 December

2023).
100. Becker, B.; Kohavi, R. Adult; UCI Machine Learning Repository: Irvine, CA, USA, 1996. [CrossRef]
101. Health. Health Dataset. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/Default.aspx (accessed on 1 December 2023).
102. Airline. US Bureau of Transportation Statistics (BTS). Available online: https://www.transtats.bts.gov/DataIndex.asp (accessed

on 1 December 2023).
103. Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership inference attacks against machine learning models. In Proceedings

of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 3–18.

104. Bhuyan, M.H.; Bhattacharyya, D.K.; Kalita, J.K. Network anomaly detection: Methods, systems and tools. IEEE Commun. Surv.
Tutor. 2013, 16, 303–336. [CrossRef]

http://dx.doi.org/10.3389/frobt.2018.00066
http://dx.doi.org/10.3389/fevo.2015.00103
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1057/palgrave.rpm.5160117
http://dx.doi.org/10.1080/01621459.1967.10482916
https://controllerdata.lacity.org/Payroll/City-Employee-Payroll/pazn-qyym
http://dx.doi.org/10.24432/C5XW20
https://wwwn.cdc.gov/Nchs/Nhanes/Default.aspx
https://www.transtats.bts.gov/DataIndex.asp
http://dx.doi.org/10.1109/SURV.2013.052213.00046

Electronics 2024, 13, 322 29 of 31

105. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.
Cybersecurity 2019, 2, 1–22. [CrossRef]

106. Ahmad, Z.; Shahid Khan, A.; Wai Shiang, C.; Abdullah, J.; Ahmad, F. Network intrusion detection system: A systematic study of
machine learning and deep learning approaches. Trans. Emerg. Telecommun. Technol. 2021, 32, e4150. [CrossRef]

107. Yang, Z.; Liu, X.; Li, T.; Wu, D.; Wang, J.; Zhao, Y.; Han, H. A systematic literature review of methods and datasets for
anomaly-based network intrusion detection. Comput. Secur. 2022, 116, 102675. [CrossRef]

108. Myneni, S.; Chowdhary, A.; Sabur, A.; Sengupta, S.; Agrawal, G.; Huang, D.; Kang, M. DAPT 2020-constructing a benchmark
dataset for advanced persistent threats. In Proceedings of the Deployable Machine Learning for Security Defense: First
International Workshop, MLHat 2020, San Diego, CA, USA, 24 August 2020; Proceedings 1; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 138–163.

109. Myneni, S.; Jha, K.; Sabur, A.; Agrawal, G.; Deng, Y.; Chowdhary, A.; Huang, D. Unraveled—A semi-synthetic dataset for
Advanced Persistent Threats. Comput. Netw. 2023, 227, 109688. [CrossRef]

110. Bulusu, S.; Kailkhura, B.; Li, B.; Varshney, P.K.; Song, D. Anomalous Instance Detection in Deep Learning: A Survey. arXiv 2020,
arXiv:2003.06979.

111. Kumarage, T.; Ranathunga, S.; Kuruppu, C.; Silva, N.D.; Ranawaka, M. Generative Adversarial Networks (GAN) based Anomaly
Detection in Industrial Software Systems. In Proceedings of the 2019 Moratuwa Engineering Research Conference (MERCon),
Moratuwa, Sri Lanka, 3–5 July 2019; pp. 43–48. [CrossRef]

112. Zhang, J.; Tang, J.; Zhang, X.; Ouyang, W.; Wang, D. A survey of network traffic generation. In Proceedings of the Third
International Conference on Cyberspace Technology (CCT 2015), Beijing, China, 17–18 October 2015.

113. Lin, Z.; Jain, A.; Wang, C.; Fanti, G.; Sekar, V. Using GANs for sharing networked time series data: Challenges, initial promise,
and open questions. In Proceedings of the ACM Internet Measurement Conference, Virtual, 27–29 October 2020; pp. 464–483.

114. Xu, S.; Marwah, M.; Arlitt, M.; Ramakrishnan, N. Stan: Synthetic network traffic generation with generative neural models. In
Proceedings of the Deployable Machine Learning for Security Defense: Second International Workshop, MLHat 2021, Virtual, 15
August 2021; Proceedings 2; Springer: Berlin/Heidelberg, Germany, 2021; pp. 3–29.

115. Ring, M.; Schlör, D.; Landes, D.; Hotho, A. Flow-based network traffic generation using generative adversarial networks. Comput.
Secur. 2019, 82, 156–172. [CrossRef]

116. Ring, M.; Wunderlich, S.; Grüdl, D.; Landes, D.; Hotho, A. Flow-based benchmark data sets for intrusion detection. In Proceedings
of the 16th European Conference on Cyber Warfare and Security, Dublin, Ireland, 29–30 June 2017; pp. 361–369.

117. Ring, M.; Dallmann, A.; Landes, D.; Hotho, A. Ip2vec: Learning similarities between ip addresses. In Proceedings of the 2017
IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, USA, 18–21 November 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 657–666.

118. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,
arXiv:1301.3781.

119. Cheng, A. PAC-GAN: Packet Generation of Network Traffic using Generative Adversarial Networks. In Proceedings of the
2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC,
Canada, 17–19 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 728–734.

120. Shahid, M.R.; Blanc, G.; Jmila, H.; Zhang, Z.; Debar, H. Generative deep learning for Internet of Things network traffic generation.
In Proceedings of the 2020 IEEE 25th Pacific Rim International Symposium on Dependable Computing (PRDC), Perth, WA,
Australia, 1–4 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 70–79.

121. Yin, Y.; Lin, Z.; Jin, M.; Fanti, G.; Sekar, V. Practical gan-based synthetic ip header trace generation using netshare. In Proceedings
of the ACM SIGCOMM 2022 Conference, Amsterdam, The Netherlands, 22–26 August 2022; pp. 458–472.

122. Mozo, A.; González-Prieto, Á.; Pastor, A.; Gómez-Canaval, S.; Talavera, E. Synthetic flow-based cryptomining attack generation
through Generative Adversarial Networks. Sci. Rep. 2022, 12, 2091. [CrossRef]

123. Huang, D.; Chowdhary, A.; Pisharody, S. Software-Defined Networking and Security: From Theory to Practice; CRC Press: Boca Raton,
FL, USA, 2018.

124. Duy, P.T.; Khoa, N.H.; Hien, D.T.T.; Do Hoang, H.; Pham, V.H. Investigating on the robustness of flow-based intrusion detection
system against adversarial samples using Generative Adversarial Networks. J. Inf. Secur. Appl. 2023, 74, 103472. [CrossRef]

125. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a
local nash equilibrium. Adv. Neural Inf. Process. Syst. 2017, 30.

126. Xiao, C.; Li, B.; Zhu, J.Y.; He, W.; Liu, M.; Song, D. Generating adversarial examples with adversarial networks. arXiv 2018,
arXiv:1801.02610.

127. Sweet, C.; Moskal, S.; Yang, S.J. On the Variety and Veracity of Cyber Intrusion Alerts Synthesized by Generative Adversarial
Networks. ACM Trans. Manag. Inf. Syst. (TMIS) 2020, 11, 1–21. [CrossRef]

128. Sweet, C.; Moskal, S.; Yang, S.J. Synthetic intrusion alert generation through generative adversarial networks. In Proceedings of
the MILCOM 2019-2019 IEEE Military Communications Conference (MILCOM), Norfolk, VA, USA, 12–14 November 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 1–6.

129. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein gans. In Proceedings of
the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5767–5777.

http://dx.doi.org/10.1186/s42400-019-0038-7
http://dx.doi.org/10.1002/ett.4150
http://dx.doi.org/10.1016/j.cose.2022.102675
http://dx.doi.org/10.1016/j.comnet.2023.109688
http://dx.doi.org/10.1109/MERCon.2019.8818750
http://dx.doi.org/10.1016/j.cose.2018.12.012
http://dx.doi.org/10.1038/s41598-022-06057-2
http://dx.doi.org/10.1016/j.jisa.2023.103472
http://dx.doi.org/10.1145/3394503

Electronics 2024, 13, 322 30 of 31

130. Belghazi, M.I.; Baratin, A.; Rajeswar, S.; Ozair, S.; Bengio, Y.; Courville, A.; Hjelm, R.D. Mine: Mutual information neural
estimation. arXiv 2018, arXiv:1801.04062.

131. Munaiah, N.; Pelletier, J.; Su, S.H.; Yang, S.J.; Meneely, A. A Cybersecurity Dataset Derived from the National Collegiate
Penetration Testing Competition. In Proceedings of the HICSS Symposium on Cybersecurity Big Data Analytics, Maui, HI, USA,
8–11 January 2019.

132. Kumar, V.; Sinha, D. Synthetic attack data generation model applying generative adversarial network for intrusion detection.
Comput. Secur. 2023, 125, 103054. [CrossRef]

133. Mouyart, M.; Medeiros Machado, G.; Jun, J.Y. A Multi-Agent Intrusion Detection System Optimized by a Deep Reinforcement
Learning Approach with a Dataset Enlarged Using a Generative Model to Reduce the Bias Effect. J. Sens. Actuator Netw. 2023,
12, 68. [CrossRef]

134. Xu, L.; Skoularidou, M.; Cuesta-Infante, A.; Veeramachaneni, K. Modeling tabular data using conditional gan. Adv. Neural Inf.
Process. Syst. 2019, 32.

135. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. Adv. Neural Inf. Process. Syst. 2011,
24.

136. Trzeciak, R.; CERT Insider Threat Center, T. The CERT Insider Threat Database; Carnegie Mellon University, Software Engineering
Institute’s Insights (Blog): Washington, DC, USA, 2011.

137. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.
arXiv 2013, arXiv:1312.6199.

138. Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning in adversarial settings.
In Proceedings of the 2016 IEEE European symposium on security and privacy (EuroS&P), Saarbruecken, Germany, 21–24 March
2016; IEEE: Piscataway, NJ, USA, 2016; pp. 372–387.

139. Papernot, N.; McDaniel, P.; Goodfellow, I.; Jha, S.; Celik, Z.B.; Swami, A. Practical black-box attacks against machine learning.
In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, United Arab
Emirates, 2–6 April 2017; pp. 506–519.

140. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572.
141. Moraffah, R.; Liu, H. Query-Efficient Target-Agnostic Black-Box Attack. In Proceedings of the 2022 IEEE International Conference

on Data Mining (ICDM), Orlando, FL, USA, 28 November–1 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 368–377.
142. Lin, Z.; Shi, Y.; Xue, Z. Idsgan: Generative adversarial networks for attack generation against intrusion detection. arXiv 2018,

arXiv:1809.02077.
143. Papernot, N.; McDaniel, P.; Goodfellow, I. Transferability in machine learning: From phenomena to black-box attacks using

adversarial samples. arXiv 2016, arXiv:1605.07277.
144. Yang, Y.; Zheng, K.; Wu, B.; Yang, Y.; Wang, X. Network intrusion detection based on supervised adversarial variational

auto-encoder with regularization. IEEE Access 2020, 8, 42169–42184. [CrossRef]
145. Lee, J.; Park, K. GAN-based imbalanced data intrusion detection system. Pers. Ubiquitous Comput. 2021, 25, 121–128. [CrossRef]
146. Huang, S.; Lei, K. IGAN-IDS: An imbalanced generative adversarial network towards intrusion detection system in ad hoc

networks. Ad Hoc Netw. 2020, 105, 102177. [CrossRef]
147. Shahriar, M.H.; Haque, N.I.; Rahman, M.A.; Alonso, M. G-ids: Generative adversarial networks assisted intrusion detection

system. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid,
Spain, 13–17 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 376–385.

148. Chauhan, R.; Sabeel, U.; Izaddoost, A.; Shah Heydari, S. Polymorphic Adversarial Cyberattacks Using WGAN. J. Cybersecur. Priv.
2021, 1, 767–792. [CrossRef]

149. Renaud, K.; Warkentin, M.; Westerman, G. From ChatGPT to HackGPT: Meeting the Cybersecurity Threat of Generative AI; MIT Press:
Cambridge, MA, USA, 2023.

150. Kaheh, M.; Kholgh, D.K.; Kostakos, P. Cyber Sentinel: Exploring Conversational Agents in Streamlining Security Tasks with
GPT-4. arXiv 2023, arXiv:2309.16422.

151. Gupta, M.; Akiri, C.; Aryal, K.; Parker, E.; Praharaj, L. From chatgpt to threatgpt: Impact of generative ai in cybersecurity and
privacy. IEEE Access 2023, 11, 80218–80245. [CrossRef]

152. Al-Hawawreh, M.; Aljuhani, A.; Jararweh, Y. Chatgpt for cybersecurity: Practical applications, challenges, and future directions.
Clust. Comput. 2023, 26, 3421–3436. [CrossRef]

153. Asfour, M.; Murillo, J.C. Harnessing large language models to simulate realistic human responses to social engineering attacks: A
case study. Int. J. Cybersecur. Intell. Cybercrime 2023, 6, 21–49. [CrossRef]

154. Karanjai, R. Targeted phishing campaigns using large scale language models. arXiv 2022, arXiv:2301.00665.
155. McKee, F.; Noever, D. Chatbots in a botnet world. arXiv 2022, arXiv:2212.11126.
156. Beckerich, M.; Plein, L.; Coronado, S. Ratgpt: Turning online llms into proxies for malware attacks. arXiv 2023, arXiv:2308.09183.
157. McKee, F.; Noever, D. Chatbots in a honeypot world. arXiv 2023, arXiv:2301.03771.
158. NSL-KDD. A Collaborative Project between the Communications Security Establishment (CSE) and the Canadian Institute for

Cybersecurity (CIC). 2009. Available online: https://www.unb.ca/cic/datasets/nsl.html (accessed on 10 December 2023).
159. Zhou, J.; Wu, Z.; Xue, Y.; Li, M.; Zhou, D. Network unknown-threat detection based on a generative adversarial network and

evolutionary algorithm. Int. J. Intell. Syst. 2022, 37, 4307–4328. [CrossRef]

http://dx.doi.org/10.1016/j.cose.2022.103054
http://dx.doi.org/10.3390/jsan12050068
http://dx.doi.org/10.1109/ACCESS.2020.2977007
http://dx.doi.org/10.1007/s00779-019-01332-y
http://dx.doi.org/10.1016/j.adhoc.2020.102177
http://dx.doi.org/10.3390/jcp1040037
http://dx.doi.org/10.1109/ACCESS.2023.3300381
http://dx.doi.org/10.1007/s10586-023-04124-5
http://dx.doi.org/10.52306/2578-3289.1172
https://www.unb.ca/cic/datasets/nsl.html
http://dx.doi.org/10.1002/int.22766

Electronics 2024, 13, 322 31 of 31

160. CIC-IDS2017. A Collaborative Project between the Communications Security Establishment (CSE) and the Canadian Institute for
Cybersecurity (CIC). 2017. Available online: https://www.unb.ca/cic/datasets/ids-2017.html (accessed on 4 January 2023).

161. CIC-DDoS2019. A Collaborative Project between the Communications Security Establishment (CSE) and the Canadian Institute
for Cybersecurity (CIC). 2019. Available online: https://www.unb.ca/cic/datasets/ddos-2019.html (accessed on 4 January 2023).

162. CICEV2023. A Collaborative Project between the Communications Security Establishment (CSE) and the Canadian Institute for
Cybersecurity (CIC). 2023. Available online: https://www.unb.ca/cic/datasets/cicev2023.html (accessed on 4 January 2023).

163. Schneier, B. Attack trees. Dr. Dobb’S J. 1999, 24, 21–29.
164. Gadyatskaya, O.; Trujillo-Rasua, R. New directions in attack tree research: Catching up with industrial needs. In Proceedings of

the Graphical Models for Security: 4th International Workshop, GraMSec 2017, Santa Barbara, CA, USA, 21 August 2017; Revised
Selected Papers 4; Springer: Berlin/Heidelberg, Germany, 2018; pp. 115–126.

165. Wideł, W.; Audinot, M.; Fila, B.; Pinchinat, S. Beyond 2014: Formal Methods for Attack Tree–based Security Modeling. ACM
Comput. Surv. (CSUR) 2019, 52, 1–36. [CrossRef]

166. Kholgh, D.K.; Kostakos, P. PAC-GPT: A novel approach to generating synthetic network traffic with GPT-3. IEEE Access 2023, 11,
114936–114951. [CrossRef]

167. Gadyatskaya, O.; Papuc, D. ChatGPT Knows Your Attacks: Synthesizing Attack Trees Using LLMs. In Proceedings of the
International Conference on Data Science and Artificial Intelligence, Bangkok, Thailand, 27–29 November 2023; Springer:
Berlin/Heidelberg, Germany, 2023; pp. 245–260.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ddos-2019.html
https://www.unb.ca/cic/datasets/cicev2023.html
http://dx.doi.org/10.1145/3331524
http://dx.doi.org/10.1109/ACCESS.2023.3325727

	Introduction
	Modeling Techniques
	Generative and Discriminative Models
	Why Generative Models?

	Generative Adversarial Networks (GANs)
	Construction of Networks
	Cost Function
	Training of Networks

	Generating Data Using GANs
	Different Techniques in GAN for Generating Data
	Generating Images
	Generating Tabular Synthetic Data
	Airline Passenger Name Record (PNR) Generation
	Synthesizing Fake Tables

	Generating Cyberattack Data Using Generative Models
	Flow-Based Network Traffic Generation
	Cyber Intrusion Alert Data Synthesis
	Generating Attack Data Using Adversarial Examples
	MalGAN: Generating Malware Adversarial Examples Using GAN
	IDSGAN: Generating Adversarial Examples against Intrusion Detection System

	Attack Data Generation Using LLMs

	Analysis of GAN Generated Synthetic Attack Data
	Discussion
	Conclusions
	References

