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Abstract: The detection of vehicle targets in infrared aerial remote sensing images captured by drones
presents challenges due to a significant imbalance in vehicle distribution, complex backgrounds, the
large scale of vehicles, and the dense and arbitrarily oriented distribution of targets. The RYOLOv5_D
model is proposed based on the YOLOv5-obb rotation model. Firstly, we reconstruct a new vehicle
remote sensing dataset, BalancedVehicle, to achieve data balance. Secondly, given the challenges of
complex backgrounds in infrared remote sensing images, the AAHE method is proposed to highlight
infrared remote sensing vehicle targets while reducing background interference during the detection
process. Moreover, in order to address the issue of detecting challenges under complex backgrounds,
the CPSAB attention mechanism is proposed, which could be used together with DCNv2. GSConv
is also used to reduce the model parameters while ensuring accuracy. This combination could
improve the model’s generalization ability and, consequently, enhance the detection accuracy for
various vehicle categories. The RYOLOv5s_D model, trained on the self-built dataset BalancedVehicle,
demonstrates a notable improvement in its mean average precision (mAP), increasing from 73.6% to
78.5%. Specifically, the average precision (AP) for large aspect ratio vehicles such as trucks and freight
cars increases by 11.4% and 8%, respectively. The RYOLOv5m_D and RYOLOv5l_D models achieve
accuracies of 82.6% and 84.3%. The Param of RYOLOv5_D is similar to that of the YOLOv5-obb,
while possessing a decrease in computational complexity of 0.6, 4.5, and 12.8GFLOPS. In conclusion,
the RYOLOv5_D model’s superior accuracy and real-time capabilities in infrared remote sensing
vehicle scenarios are validated by comparing various advanced models based on rotation boxes on
the BalancedVehicle dataset.

Keywords: infrared aerial images; vehicle detection; rotation boxes; complex background; YOLOv5-obb

1. Introduction

Infrared light refers to electromagnetic radiation with wavelengths between the red
end of visible light and microwaves, typically in the range of micrometers [1]. Infrared
imaging technology utilizes an object’s thermal radiation, penetrating through weather
conditions such as fog, haze, rain, and dust. It enables imaging in low-light conditions and
even during the night, detecting and acquiring target information based on the differences
in distribution between the background and the target. Infrared imaging offers advantages
such as high camouflage, 24 h day and night operation, and strong anti-interference
capabilities, leading to widespread applications in military, medical, petrochemical, public
safety, and various other fields. Vehicles, as crucial assets for combat and support on the
battlefield, play irreplaceable roles in warfare, whether they are tanks, armored vehicles, or
transport vehicles. The accurate and real-time detection of vehicles is essential for precise
identification, targeting, and tactical planning in military operations [2]. Additionally,
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vehicle detection is pivotal for road traffic monitoring, management, and scheduling,
making it an indispensable component in the construction of intelligent transportation
systems, addressing traffic issues and reducing traffic accidents. The infrared remote
sensing of vehicle targets often involves dense and arbitrarily oriented arrangements.
Using horizontal bounding boxes for detection may result in selecting a significant amount
of background areas and raise issues such as an excessive overlap between bounding
boxes. The process of infrared remote sensing vehicle target detection encounters the
following challenges:

(1) Variability in Vehicle Aspect Ratios: Some vehicle types exhibit a wide range of aspect
ratios, such as truck and freight cars, making it challenging for the model to extract
universal features for these vehicle types. This difficulty in model training results in a
lower accuracy in target detection.

(2) Imbalanced Distribution of Single Vehicle Types: The data are heavily concentrated
towards a single category of vehicles, causing the model training to be biased. This
leads to the low detection accuracy of some vehicle categories and a higher likelihood
of severe overfitting.

(3) Complex Aerial Scene Conditions: Infrared remote sensing images of vehicles in
aerial scenes feature complex backgrounds, including streets, buildings, trees, roads,
crosswalks, pedestrians, and various other background areas. The relatively small
size of vehicle targets, susceptibility to partial occlusion, and the potential confusion
between background and targets pose significant challenges to vehicle detection.

(4) Diverse Drone Shooting Angles: Drones capture ground areas from different heights
and perspectives. Additionally, variations in shooting angles may occur due to wind
conditions during drone flights, resulting in slight deviations in the shooting angles.
These factors contribute to less-than-ideal shooting conditions, which impact the
effectiveness of image capturing.

A common issue in unmanned aerial vehicle (UAV) images is the “long-tail” distribu-
tion problem within datasets. In the context of remote sensing vehicle detection, cars often
dominate in absolute numbers, while other vehicle categories tend to be small samples. This
irregular distribution can cause severe overfitting, jeopardizing the model’s generalization
ability and resulting in significant accuracy differences between the test and validation
sets. Mo et al. [3] proposed a method of combining upsampling and concatenation to
enhance data structure, reducing the impact of imbalances between positive and negative
samples. Wang et al. [4] introduced focal loss to mitigate the skewed loss function caused
by sample imbalance, assigning higher weights to small samples in the loss function to
improve their accuracy. Deng et al. [5] employed a cropping method to avoid overfitting
due to a scarcity of small samples. Wang et al. [6] introduced a progressive and selective
instance switching (PSIS) method, enhancing sample balance through selective resampling
and combined class-balanced loss. Experimental results verified the improved detection
accuracy of different models after data balancing.

In vehicle remote sensing images, vehicle targets are typically small, and the aspect
ratios of some vehicle types vary widely. Additionally, due to the UAV capturing process,
it is challenging to precisely control the angles and heights during shooting, further exac-
erbating the impact of these aspect ratios on the model. Trucks during turns may exhibit
irregular shapes, presenting a challenge for object detection. Zhong et al. [7] designed
two independent networks—the vehicle-regions proposal network (VPN) and the vehicle
detection network (VDN)—aiming to ensure detection speed. The VPN generates candi-
date regions resembling vehicle shapes and the VDN, based on these candidates, obtains
region features and predicts confidence to generate candidate boxes. This dual-network
structure allows for the extraction of more vehicle features for improved vehicle detection.
Deng et al. [5], to better extract vehicle features, proposed the accurate vehicle proposal
network (AVPN), which combines hierarchical feature maps for accurate vehicle detection.
Shen et al. [8] devised a dual-branch structure, which obtained shallow-level vehicle local-
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ization information and deep-level vehicle classification information. Additionally, based
on vehicle size, anchor box sizes suitable for vehicle detection were designed.

Infrared remote sensing images present a complex background, particularly in urban
environments where diverse elements such as streets, buildings, trees, and roads contribute
to the intricate background information. Moreover, the imaging process is susceptible to
noise interference from the external environment, imposing greater demands on object
detection. Musunuri et al. [9] employed a super-resolution (SR) network without batch
normalization (BN) layers to restore low-resolution (LR) images. The restored images
were then used for detection, which reduced the computational complexity introduced
by super-resolution and enhanced detection accuracy. Li et al. [10] combined saliency
maps and feature maps to guide the SR network in generating finer features of target
objects, reducing interference from background information. Mostofa et al. [11] used a
multi-level network to reconstruct a series of multi-scale, different-resolution images. The
MsRGAN network then learned from images of various scales, allowing complementary
information from different scales, reducing image blurring, and restoring challenging
objects. Wan et al. [12] utilized a local weighted scatterplot-smoothing algorithm and a
local minimum value test to adaptively segment the grayscale histogram into multiple
sub-histograms. By distinguishing the foreground and background based on histogram
distribution, they increased the weight of local contrast and maintained proportional
background information, addressing challenges introduced by complex backgrounds,
amplified noise interference, and distorted images caused by infrared image enhancement.

Therefore, this paper proposes improvements based on the YOLOv5-obb model to
addresses challenges like the overfitting issue caused by an excessive number of instances in
a single category, the detection challenges in complex backgrounds, the detection problem
of large vehicles with significant aspect ratios like trucks, and the challenges posed by
varying heights and angles during unmanned aerial vehicle (UAV) capture. The specific
improvements made to the original model in this paper include the following:

• Reconstructing the infrared remote sensing vehicle BalancedVehicle dataset by balanc-
ing the proportion of each type of different vehicle to tackle the problem of significant
imbalances in different vehicle types.

• Introducing the automatic adaptive histogram equalization (AAHE) method during
the model’s data loading phase, computing local maxima and minima as dynamic
upper and lower boundaries in order to highlight the infrared vehicle target while
inhibiting background interference.

• Incorporating the Deformable Convolutional Networkv2 (DCNv2) [13] module to let
our model obtain stronger spatial transformation capabilities and enable adaptive
adjustment of the convolutional kernel’s scale. This could address issues related
to variability in vehicle aspect ratios and significantly reduce the impact of UAV
capturing problem.

• Proposing a convolutional polarized self-attention block (CPSAB), which is different
from the original polarized self-attention (PSA) [14] module, as the average and
max pooling modules are further added to the PSA, making the information better
integrated so that it can better enhance the model’s target detection capabilities in
various complex backgrounds.

• Utilizing the lightweight convolutional GSConv [15], which combines standard con-
volution (SC) and depth-wise separable convolution (DWConv) together, so as to
reduce model parameters while achieving noticeable accuracy, facilitating the practical
deployment of the model in subsequent stages.

The following is the organization of this paper: related works regarding rotation-based
object detection algorithms based on deep learning are introduced in Section 2. Section 3
describes the RYOLOv5_D model, data pre-processing, data augmentation, and added
modules like DCNv2, CPSAB, and GSConv. In Section 4, we detail the vehicle object
detection evaluation metrics. Section 5 includes the experimental configuration, related
datasets, and some experimental results. Finally, Section 6 draws the conclusions.
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2. Related Works

With the continuous development of deep learning, various challenges can be effec-
tively addressed, as deep learning models possess powerful feature extraction capabilities
which can capture deep-level features from images [16], leading to an improved accuracy
in target detection. By summarizing and categorizing current domestic and international
rotation-based object detection algorithms based on deep learning, it can be observed that
these methods can be classified into two types: anchor-based and anchor-free methods.
Anchor-based methods can be further divided into two-stage detection algorithms and
one-stage detection algorithms.

2.1. Anchor-Free Rotation-Based Detection Methods

Anchor-free rotation-based object detection methods eliminate the need for anchor box
generation, utilizing key points instead of anchor boxes to reduce computational complexity.
These anchor-free methods have been widely applied to the detection of vehicle targets.
O2-DNet [17] proposed an object detection approach based on key points, converting the
coordinate system into a polar coordinate system. Lin et al. [18] introduced the IENet
model by incorporating a new branch for angle prediction into the structure of the FCOS
network. They utilized IOU to guide model learning and enhanced perception by adding
an attention module (IE) to enable the model to predict angles based on object features.
RTMDet [19] adopted the novel CSPNext as its backbone, employing large-kernel depth
convolutions in both the backbone and neck to enhance global contextual understanding.
An optimal balance in full-size range accuracy in various application scenarios was achieved
in this design. Moreover, RTMDet excels in both rotation object detection and instance
segmentation tasks, outperforming mainstream detectors in terms of performance.

2.2. One-Stage Rotation-Based Detection Methods

One-stage rotation-based object detection algorithms, also known as single-stage
detectors, eliminate the need for generating candidate regions and directly predict the
category and positional information of objects within the predicted boxes. These algo-
rithms are known for their high detection speed. R3Det [20] addresses the drawback of
feature misalignment in existing single-stage detectors by introducing a feature refinement
module. The core idea involves pixel-wise feature interpolation, re-encoding the posi-
tion information of the refined bounding boxes into corresponding feature points. This
approach achieves feature reconstruction and alignment. S2Anet [21] employs a feature
alignment module (FAM) to generate high-quality anchor points through an anchor refine-
ment network (ARN). Aligning convolution (AlignConv) adaptively aligns features based
on various object shapes and positions, ensuring a better fit to the shape of rotated objects.

2.3. Two-Stage Rotation-Based Detection Methods

Two-stage rotation-based object detection algorithms require the extraction of can-
didate boxes from images, followed by the generation of prediction boxes from these
candidates. While these methods generally achieve high accuracy, the trade-off is a slower
detection speed. RRCNN [22] addresses multiple-class scenarios by extracting features
related to rotated targets. It employs different Non-Maximum Suppression (NMS) tasks for
different classes and regresses the boundaries of rotated target boxes. R2CNN [23] utilizes
a region proposal network (RPN) to generate horizontally oriented boxes in different direc-
tions. By cascading features, the model simultaneously predicts scores for text or non-text,
horizontal boxes, and the smallest inclined bounding boxes. The final results are obtained
using NMS, allowing for effective target detection while maximizing the utilization of text
features. RRPN [24] introduces a rotation proposals network (RPN) to incorporate rotation
information into the process of text detection. RoI Transformer [25] focuses on spatially
transforming rotated regions of interest (RRoI) and learning transformation parameters
under the supervision of oriented bounding box (OBB) annotations. Based on a horizontal
box detection algorithm, YOLOv5 is widely used due to its fast speed, small model size, and
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high accuracy. The YOLOv5-obb [26] model is a variant that supports rotation-based object
detection tasks, enabling real-time and efficient target detection. Zhao et al. [27] proposed a
method called YOLO-ViT, which combines the lightweight model MobileViT [28], reducing
a large number of parameters while maintaining high precision. Bao et al. [29] designed
Dual-YOLO to extract the information on both infrared images and visible images.

3. Materials and Methods
3.1. RYOLOv5_D Model
3.1.1. Model Framework

This section includes the model framework, data pre-processing, data augmentation,
and the added DCNv2 module, the CPSAB module, and the GSConv module. RYOLOv5_D
is suitable for detection of rotated objects while retaining the strengths of the original model.
RYOLOv5_D is shown in Figure 1. RYOLOv5_D and YOLOv5-obb have five versions
categorized by model complexity: N, S, M, L, and X. The model parameters increase with
the depth of the model, resulting in continuous improvements in accuracy. This paper
focuses on introducing the S, M, and L versions of the RYOLOv5_D model.
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The RYOLOv5_D model consists of four main components: the input part, the back-
bone, the neck, and the head. The input part employs mosaic data augmentation and
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adaptive anchor boxes to adapt to the vehicle scene, enhancing the model’s robustness.
Before entering the backbone, the AAHE algorithm is applied to enhance infrared images,
followed by the focus module’s slice operation, which increases the channel numbers
to obtain a feature map with twice the downsampling without losing information. The
model’s backbone adopts the CSPDarknet53 structure, and the neck includes the FPN
for transmitting high-level semantic features from the top to the bottom and the PAN for
transmitting low-level localization features from the bottom to the top. The combination
of FPN and PAN integrates semantic and localization features. The SPP module performs
feature extraction and encoding on the image at four scales, and the C3 module incorporates
the DCNv2 module, introducing learnable offset values in the receptive field to closely
match the actual shape of the objects and cover the surrounding areas. This addresses the
issue of excessively large aspect ratios for some vehicles in remote sensing effectively. The
lightweight convolution GSconv module, constructed by mixing SC, DWC, and shuffle,
replaces traditional CNN structures, reducing model parameters without additional opera-
tions and achieving noticeable accuracy gains. Three CPSAB attention modules are added
between the neck and the output end, maintaining high resolution and computational
efficiency while effectively connecting global information to obtain the detection results.
The output end produces three different-scale M ×M (19 × 19, 38 × 38, 76 × 76) outputs.
Finally, the three feature layers of different scales are concatenated, resulting in a detection
head capable of detecting objects of large, medium, and small scales.

RYOLOv5_D utilizes MetaAconC as an activation function. The backbone of RY-
OLOv5_D, CSPDarknet53, loads pre-trained weights trained on the standard COCO dataset.
The model employs the circular smooth label (CLS) method [30] for circular smooth label
encoding. This method utilizes labels with periodic circular encoding, transforming the
continuous regression problem of angle prediction into a discrete classification problem.

3.1.2. Loss Function

The total loss is defined as the sum of four individual losses,

Loss total = Loss theta + Loss box + Loss obj + Loss cls (1)

Loss box, Loss obj, Loss cls, and Loss theta, where each term corresponds to the angle
loss, bounding box loss, confidence loss, and classification loss, respectively.

• Angle Loss:

Loss theta = −∑M×M
i=0 ∑B

j=0 Iobj
ij ∑90

k=−90

[
θ̂k log(θk) +

(
1− θ̂k

)
log(1− θk)

]
(2)

Here, the input image is segmented into M×M cells, and each cell generates B-
predicted bounding boxes. It is necessary to traverse through M×M×B candidate boxes
of output cells. Iobj

ij represents that the object in the i-th cell has the j-th candidate box as

a positive sample. θ̂ is the ground truth of the predicted angle θ. Binary cross-entropy is
used to obtain the loss for the angle.

• Boundary Box Loss: Employ complete IoU (CIoU) to calculate the boundary box
loss, Loss box, incorporating the overlap area, center point distance, and aspect ratio si-
multaneously in the computation to enhance training stability and convergence speed.

Loss box = IoU− (x− x̂)2 + (y− ŷ)2

c2 − αν (3)

ν =
4
π2 (arctan

ŵ
ĥ
− arctan

w
h
)

2
(4)

IoU =
SA ∩ SB

SA ∪ SB
(5)



Electronics 2024, 13, 319 7 of 23

α =
ν

1− IoU + ν
(6)

Here, (x̂, ŷ, ŵ, ĥ) represents the ground truth of (x, y, w, h). c are the similarity of the
diagonal length and aspect ratio of the minimum surround rectangle of boxes A and B,
respectively. SA and SB are the areas of boxes A and B; ν is the influence factor; α is the
weight parameter. IoU is the intersection of the two boxes, and the larger the IoU, the
greater the effect on ν.

• Confidence Loss:

Loss obj = −∑M×M
i=1 Iobj

i p̂i log(pi) + (1− p̂i) log(1− pi) (7)

pi is the confidence degree of the prediction box, and p̂i is the ground truth of pi. Iobj
i

represents the fact that the object is a positive sample in i cells.

• Classification Loss: Considering that a target may belong to multiple categories, a
binary cross-entropy loss is used to treat each category.

yi = sigmoid(xi) = 1/
(
1 + e−xi

)
(8)

Loss cls = −∑M×M
i=1 Iobj

ij ŷi log(yi) + (1− ŷi) log(1− yi) (9)

xi represents the current predicted value for the category; yi represents the sigmoid-
transformed probability for the category, and ŷi is the ground truth for the category yi.

3.2. Data Pre-Processing

First, select the images of four vehicle classes (car, truck, bus, and freight car) from the
DroneVehicle dataset [31] and the VEDAI dataset [32]. Then, operations such as filtering,
skewing, rotating, scaling, translating, mirroring, etc., are performed on the selected images
(mixed transformations if necessary). Priority is given to images containing a higher
proportion of small-sample vehicles to increase the proportion of small-sample vehicles
while suppressing the proportion of large-sample vehicles, achieving data-balancing effects
and reducing the severe overfitting caused by the “long-tail” distribution of the data. Since
the transformations preserve straight lines on the images before and after the operation
and maintain a balanced relationship, these operations can be equivalently considered to
be affine transformations, which could expressed by the following formula:x′

y′

1

 =

a11 a12 a13
a21 a22 a23
0 0 1

x
y
1

 = A

x
y
1

 (10)

A is the affine transformation matrix; (x, y, 1) represents the original pixel coordinates,
and (x′, y′, 1) represents the pixel coordinates after the affine transformation. In the specific
image processing procedure, the rotation angle is arbitrary; the skew angle is assumed
to be (0◦, 45◦) by default, and the scaling factors are assumed to be (0.7, 1.3) by default.
Figure 2 illustrates the sample image after having undergone the pre-processing steps.

After undergoing skewing, flipping, cropping, scaling, and other affine transforma-
tions, the dataset was reannotated to create a new self-built dataset named BalancedVehicle.
Due to the overwhelming quantity of cars, forcibly undersampling may lead to inefficient
data utilization and the high cost of manual annotation. Therefore, the image pre-processing
in the above figure is carried out to some extent to improve the composition of the im-
ages, without forcefully reducing the absolute balance of certain vehicle classes. Figure 3
illustrates the comparison of the vehicles’ distribution in different datasets.
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3.3. Data Augmentation for Infrared Images

An infrared image FD(x, y) can be considered as a superposition of target FT(x, y) and
background FB(x, y), as shown in the following equation:

FD(x, y) = FT(x, y) + FB(x, y) (11)

This paper employs the automatic adaptive histogram equalization (AAHE) method
during the image loading process to enhance infrared images. By computing the local
maxima and minima adaptively as dynamic upper and lower bounds, the original image is
equalized. This approach highlights vehicle targets while suppressing complex background
information. Applying data augmentation AAHE methods during the model’s data loading
stage in training helps one mitigate the issue of insufficient model training caused by
various complex urban and road environments in infrared images. The AAHE algorithm is
shown in Algorithm 1.
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Algorithm 1. Implementation steps of the AAHE algorithm.

1:
Input: Original image {(img1),(img2), ....., (imgN)}, Grayscale M,
R=Q=([0.,0.,...])M*1

2: Output: Enhanced image {(img1′), (img2′), (img3′), ....., (imgN’)}
3: Begin:
4: For img(x) in [1,N] do
5: Im_h,Im_w← img(x).shape [0], img(x).shape[1]
6: For j in [1,Im_h] do
7: For k in [1,Im_w] do
8: R[img(i,j)]← R[img(i,j)]+1, End For
9: N← R[R>0], M← N.shape, Max_sum = Min_sum = Max=Min← 0, End for

10: For k in [0,N-2] do

11:
Obtain local maxima and statistical maxima

If (N[k+1] > N[k+2]) &(N[k+1] > N[i]) then
12: Max_sum←Max_sum + N[k+1], Max←Max + 1

13:
Obtain local minimum values and count the number of minimum

values
If (N[k+1] <N[k+2]) &(N[k+1] < N[k]) then

14: Min_sum←Min_sum + N[k+1], Min←Min + 1

15:
up_boundary←Max_sum/Max, down_boundary←Min_sum/Min,

End for
16: For m in [1,M] do
17: If R[m] > up_boundary then Q[m]← Q[m] + Up_boundary
18: else down_boundary < R[m] < Up_boundary then Q[m]← Q[m] + R[m]

19:
else R[m] <down_boundary then Q[m]← Q[m] + down_boundary, End

for
20: For i in [1,Im_h] do
21: For j in [1,Im_w] do

22:
Obtain a new histogram of the gray-scale distribution

Q[i, j]← 255 * R[img(i,j)]/Q[m], End for, End for
23: End for

To quantify the enhancement effect of AAHE on the infrared images, entropy (EN),
standard deviation (SD) and spatial frequency (SF) are selected as objective evaluation
indicators. One hundred images are randomly selected, and the arithmetic mean of each
indicator is calculated before and after enhancement. The results of each indicator before
and after enhancement are presented in Table 1. Larger values of information entropy,
contrast, and spatial frequency indicate clearer edges and finer details of the image’s target.
It is evident in Figure 4 that the contours of the vehicles are more distinct and that the
overall image has a clearer sense of hierarchy. The formulas for EN, SD, and SF are defined
as follows:

EN = −
N−1

∑
i=0

P(xi) logb P(xi) (12)

SD =

√√√√ 1
N

N−1

∑
i=0

(xi − x)2 (13)

SF =

√√√√ 1
WH

W−1

∑
i=0

H−1

∑
j=0

[(
xi,j − xi,j+1

)2
+

(
xi,j − xi+1,j

)2
]

(14)
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Table 1. Comparison of index results after infrared image enhancement.

Images Entropy
(EN)

Standard Deviation
(SD)

Spatial Frequency
(SF)

Before 7.62 54.45 16.11
After 7.93 69.69 20.65
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N represents 256 gray levels; xi represents the i-th gray level; P(xi) represents the
probability of the i-th gray level; W and H are the length and width of the image; x
represents the mean value of all the gray levels in the image, and xi,j+1, xi+1,j represents the
grayscale values below and to the left of the position (i, j).

3.4. Deformable Convolution Network (DCN)

The deformable convolution operation can flexibly extract information from different
types of input images. This information can be understood as image features, which are
manifested by each pixel in the image through a combination or an independent manner.
Examples include texture features and color features in images. DCNv1 is shown in Figure 5.
The formula for deformable convolution DCNv1 [33] is as follows:

y
(
p0

)
= ∑

pn∈R
w(pn)× x

(
p0 + pn + ∆Pn

)
(15)
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p0 is the coordinate position of the center of the convolution core; pn is the relative
position of the center of the convolution core; R = {(−1, −1), (−1, 0),..., (0, 1), (1, 1)}; w is
the coordinate point weight, and ∆Pn is the learned floating-point data value.

The deformable convolution v1 (DCNv1) does not expand the convolutional kernel,
actually; instead, it reorganizes the pixels in the input image before convolution. It obtains
coordinate values with offset values after each convolution, effectively achieving the



Electronics 2024, 13, 319 11 of 23

expansion of the convolutional kernel. This offset value is based on coordinate pixel
points and needs to be obtained through bilinear interpolation to correspond to the image
coordinates. This new feature map with a coordinate offset will be output as the input
for the next layer. A convolution with offsets can better conform to the shape and size
of complex objects, adapting to the demands of large aspect ratios and multi-scale object
detection without requiring additional supervised learning. The formula for deformable
convolution v2 (DCNv2) [13] is as follows:

y
(
p0

)
= ∑

pn∈R
w(pn)× x

(
p0 + pn + ∆Pn

)
× ∆mn (16)

In this article, we use DCNv2 to strengthen our model. DCNv2, built upon DCNv1,
introduces weight coefficients in the range [0, 1]. These coefficients increase the weight
information for each sampled point’s offset, assigning weights based on their relevance
to the contextual semantic information of the sampled point. The modulated deformable
convolution has a total of 3k offset channels, where 2k corresponds to learned biases and
1k corresponds to modulated biases, both of which are separated. This weight allocation
mechanism allows for more accurate feature extraction. Additionally, DCNv2 can enhance
the precision of offset correction by stacking multiple blocks, providing stronger spatial
transformation capabilities. Figure 6 compares the addition of DCNv2 heatmaps in the
neck part of the model. It is evident that the model’s perception of vehicle targets has been
improved, with the region of interest closer to the area where vehicles are located. The
model also pays more attention to vehicles with larger aspect ratios, resulting in improved
accuracy compared to the baseline.
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3.5. Convolutional Polarized Self-Attention Block (CPSAB)

We propose a novel attention module in this paper called CPSAB based on the po-
larized self-attention block (PSA) [14]. PSA is a refined dual-attention mechanism that
operates on the input tensor X to highlight or suppress features, similar to the filtering
of light through an optical lens, hence the name “polarized filtering”. PSA excels in both
channel and spatial dimensions without significant compression. It maintains dimensions
of C/2 on the channel component and [H, W] on the spatial component, reducing the infor-
mation loss caused by the dimension reduction. The convolutional polarized self-attention
block (CPSAB) extends the PSA mechanism by adding average and max pooling modules
to it. This makes the information better integrated. We then use a SC with a kernel of
size 7 to connect them. The structure of the CPSAB module is illustrated in Figure 7. The
spatial-wise self-attention in the CPSAB module employs a 1 × 1 convolution to trans-
form the input features into two parts, denoted as wq1 and wv1. For the wq1 features, the
channel dimension is compressed to 1, while the channel dimension of the wv1 features
is maintained at C/2. Subsequently, softmax information enhancement is applied to the
wq1 features, and the matrix multiplication of wq1 and wv1 yields C. This result undergoes
a 1 × 1 convolution operation, followed by layer normalization, increasing the channel
number to C, and, finally, is normalized through a sigmoid for the ease of subsequent
operations. Channel-wise attention is similar to the spatial-wise attention steps. The final
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obtained w features, due to the two independently operated steps in the channel and
spatial dimensions, cannot truly achieve the fusion of the channel and spatial informa-
tion. To address this, the obtained w features undergo an average pooling module and a
max pooling module. Subsequently, SC operations are applied to enhance the correlation
between the channel and spatial features, resulting in the generation of a final uniformly
blended feature.

w1 = fsg
[
wz1

(
(σ1(wv1(xi))×

(
fsm

(
σ2(wq1(xi)

)))]
⊙ x (17)

w2 = fsg
[
σ3

(
fsm

(
σ1(fgp(wq1(xi)

)))
× (σ2(wv2(xi))]⊙ x (18)

xo = σ(f(AvgPool(w) + MaxPool(w))) (19)
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Among them, w = w1 + w2; σ represents the sigmoid function; fsm represents the
softmax operation; fsg represents the sigmoid operation; “∗” represents the convolution
operation; ⊙ represents the multiplication operator; fgp represents the global average
pooling; AvgPool represents the average pooling, and MaxPool represents the max pooling.

3.6. Lightweight Module (GSConv)

The GSConv [15] module, commonly utilized in the visual systems of autonomous
driving vehicles, enhances model accuracy while reducing model complexity, achieving a
balance between precision and speed. Figure 8 illustrates the overall structure of GSConv.
In the transfer process of CNN within the backbone, spatial information gradually propa-
gates through the channels. However, each spatial compression and channel expansion of
the feature map results in semantic loss. GSConv maximally preserves channel connections,
which may be lost with DWConv. GSConv is primarily used in the neck part of the network,
as excessive usage can increase inference time. In the GSConv structure, the input image
undergoes standard convolution (SC) for the number of channels, followed by depth-wise
separable convolution (DWConv) for the number of channels and concatenation. Chan-
nel shuffling is applied to enable mutual communication between the two convolutional
feature channels, allowing information from the shuffle module to be fully integrated into
the output of the DWConv. This strategy ensures the even exchange of local feature infor-
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mation between different channels. Importantly, it avoids introducing additional model
computational overhead, and the time complexity remains only O[w·h·k1·k2·c2/2(c1 + 1)].

Xo = fshuffle(concat(fconv(Xi), fdsc(fconv(Xi))) (20)
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4. Vehicle Object Detection Evaluation

The commonly used evaluation metrics for vehicle object detection can be roughly
divided into three categories: model size evaluation metrics, model accuracy evaluation
metrics, and model real-time evaluation metrics.

4.1. Model Size Evaluation Metrics

Model size evaluation metrics primarily include parameters (Param).
Param refers to the total number of parameters that need to be trained during model

training and is used to measure the model’s size (i.e., compute space complexity).

4.2. Model Size Evaluation Metrics

Model accuracy evaluation metrics include the following: precision, recall, average
precision (AP), F1, and mean average precision (mAP).

Precision represents the proportion of correctly identified positive samples to the total
number of predicted positive samples, while recall indicates the proportion of correctly
identified positive samples in the total number of actual positive samples. Precision and
recall often involve trade-offs; as precision increases, recall may decrease and vice versa.
When evaluating model performance, both precision and recall need to be considered
simultaneously. The calculation formulas are as follows:

P =
TP

TP + FP
(21)

R =
TP

TP + FN
(22)

True positives (TP) are predicted as positive and are actually positive; false positives
(FP) are predicted as positive but are actually negative; false negatives (FN) are predicted
as negative but are actually positive. True negatives (TN) are predicted as negative but are
actually positive.

AP =
∫ 1

0
P(R)dR (23)

The PR curve is plotted with precision on the y-axis and recall on the x-axis. The
higher the precision and recall of the model, the better its performance, corresponding
to a larger area under the PR curve. The area under the PR curve, denoted as AUC-PR,
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is defined as the integral of the PR curve. A larger AUC-PR indicates a higher average
precision of the model. As shown in Figure 9 below, the PR test curves are presented.
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F1 is the harmonic mean of precision and recall, with a range of (0, 1). When precision
(P) and recall (R) approach 1, the F1 score also approaches 1, indicating better model
performance. The formula for this calculation is as follows:

F1 =
2× Precison× Recall

Precison + Recall
=

2
1

Precison + 1
Recall

(24)

mAP refers to the mean precision across different types of object detection accuracies.
In the detection of multiple object classes, AP is calculated for each individual category and
then mAP is computed by averaging all the AP values. mAP serves as a comprehensive
measure of the average accuracy of the detected targets, where m represents the number of
categories of targets in the dataset. The calculation formula is as follows:

mAP =
∑ AP

m
(25)

4.3. Model Real-Time Performance Metrics

The evaluation metrics for the model real-time performance include frames per second
(FPS) and giga floating-point operations per second (GFLOPS):

FPS is the number of image frames processed per second. A higher frame rate results
in smoother motion. Typically, a minimum of 30 frames per second is required to avoid
choppy motion. FPS is used to measure the speed of the model.

GFLOPS is the number of floating-point operations per second, measured in billions
giga. It can be understood as the computational complexity of the model, representing the
algorithm’s complexity. GFLOPS is commonly used to assess the computational load of
an algorithm.

5. Experiment
5.1. Experimental Configuration

Table 2 provides detailed information about the hardware, software platforms, and
dataset used in our experimental environment, while Table 3 outlines the parameters
configured during the experimental process.
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Table 2. Configurations.

Hardware

CPU 12th Gen Intel Core i7-12700
Memory 32 G

GPU NVIDIA 3080Ti
Graphic memory 16 G

Software
System Win 10

Deep learning framework Pytorch 1.10, Python 3.8, Pycharm 2022,
C++(2019), MMRotate 0.3.4

Dataset BalancedVehicle
Train set: 2132 images

Val set: 850 images
Test set: 288 images

Table 3. Experimental parameter settings.

Training Parameters Parameter Values

Epoch 300
Batch size 8

IOU threshold 0.4
NMS (non-maximum suppression) 0.5

Batch size 8
Learning rate 0.0025

Data augmentation method Mosaic
Optimizer SGD

The input image size is based on the standard size of the dataset. For the BalancedVehi-
cle dataset, the standard size is 820 × 712 pixels, and the output size is set to be the same as
the input image size. The training is configured with a maximum of 300 epochs, although
the model typically converges around 120 epochs, and the accuracy tends to exhibit minor
fluctuations beyond that point.

5.2. Related Dataset
5.2.1. DroneVehicle Dataset

The DroneVehicle dataset is created by Tianjin University. As is shown in Figure 10,
the DroneVehicle dataset is a large RGB-T remote sensing vehicle dataset captured by
unmanned aerial vehicles (UAVs). The dataset comprises a total of 56,878 aerial images,
with 452,570 visible light vehicle targets and 500,517 infrared vehicle targets, totaling
953,087 annotated vehicle targets. The higher count of infrared targets compared to visible
light targets is due to the dataset covering various times of the day, including daytime,
evening, and nighttime, capturing complex road information. The images were taken
at different angles (15◦, 30◦, 45◦) and heights (80 m, 100 m, 120 m), featuring diverse
environments such as highways, streets, parking lots, and other scenarios.
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5.2.2. VEDAI Dataset

The VEDAI dataset is designed for multi-class vehicle detection in aerial images and
was captured using the HRO 2012 6-inch kit. The VEDAI dataset is shown in Figure 11. It
consists of 3708 objects across the following nine categories: boat, car, camping car, plane,
van, tractor, truck, freight car, and others. The dataset’s images were collected during the
spring of 2012, with each image having two color images, including an RGB color image
and a near-infrared (NIR) image. The dataset contains a total of 2538 aerial remote sensing
images at two different scales (1024 × 1024 and 512 × 512) from the Utah AGRC. There are
1210 images each for infrared and visible light remote sensing, with a spatial resolution of
12.5 cm. The dataset includes annotations for the center point and orientation of the objects,
and it also indicates whether an object is occluded.
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5.2.3. BalancedVehicle Self-Built Dataset

By selecting images from the DroneVehicle dataset and a small portion of the VEDAI
dataset as the data samples, various affine transformations are applied to balance the
dataset. The dataset comprises a total of 3000 aerial images, featuring the following four
vehicle categories: cars, trucks, buses, and freight cars. The dataset was split into training
(2132 images), validation (850 images), and testing (288 images) sets in a ratio of 7:2:1.
Table 4 shows the distribution of various vehicles. It includes diverse road scenarios
captured at different times of the day, including daytime, dusk, and nighttime, as well as
complex road information captured at various shooting heights and angles.

Table 4. Distribution of various vehicle categories in the BalancedVehicle dataset.

Category Infrared Image Vehicle Count

Car 30,374
Truck 5584
Bus 3998

Freight car 2946
All 42,902

5.3. Ablation Experiments

From Table 5, it is clear that the accuracy of YOLOv5s-obb for cars and buses is already
high.; the added modules mainly enhance the accuracy for trucks and freight cars.

It is vividly shown in Table 5, using the AAHE algorithm, which highlights infrared
vehicle targets while suppressing background interference, that the AP for trucks increases
by 3.4% and that for freight cars increases by 3.2%, with no additional Param increases.
Next, with the addition of the CSPAB module, the model can focus on key vehicle target
areas, resulting in a 4.9% increase in AP for freight cars and a 5.7% increase for trucks.
Furthermore, by adding the DCNv2, which enlarges the receptive field and enhances the
geometric transformation ability of the convolution, a better fitting of vehicle targets is
achieved. The AP for trucks and freight cars, which have large aspect ratios, increases
by 9.1% and 5.1%, respectively, demonstrating that deformable convolution can adapt
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to challenging vehicle targets and improve detection accuracy. Finally, to meet real-time
detection requirements and achieve a superior accuracy, the GSConv module is added.
This addition operation reduces Param by 1.29M. With an increase of only 0.23M in the
Param compared to the original YOLOv5s-obb and increases of 11.4% and 8% in the AP
for trucks and freight cars, respectively, the mAP and mAP0.5:0.95 increase by 4.9% and
5.5%. From Table 6, it is evident that, with increasing depth, the RYOLOv5_D models show
improved accuracy, making them suitable for real-time detection needs. Figure 12 visually
demonstrates that the modified RYOLOv5s_D model enhances detection performance in
challenging scenarios. Figure 13 depicts four loss curves during the training process.

Table 5. Results of the ablation experiments for comparison.

Methods YOLOv5s-obb YOLOv5s_Im1 YOLOv5s_Im2 YOLOv5s_Im3 RYOLOv5s_D

AAHE -
√ √ √ √

CSPAB - -
√ √ √

DCNv2 - - -
√ √

GSConv - - - -
√

Car AP (%) 93.5 93.0 93.3 93.9 94.4
Truck AP (%) 58.4 61.8 61.5 67.5 69.8
Bus AP (%) 91.5 89.8 90.8 91.3 91.8

Freight car AP (%) 50.0 53.2 55.7 55.1 58.0

mAP (%) 73.6 74.4 75.3 76.9 78.5
mAP0.5:0.95 (%) 48.8 49.4 50.4 52.2 54.3

Param (M) 7.64 7.64 8.21 9.16 7.87

“
√

” means that the module or trick in the first column is used in the corresponding model; “-” means that this
trick is not used.
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Figure 12. Detection performance comparison between YOLOv5s-obb and RYOLOv5s_D. The
subfigures (a) show scenes with complex backgrounds, (b) depict situations with large vehicle aspect
ratios, (c) demonstrate scenarios with densely distributed and rotated vehicles, and (d) present drones
captured from different angles.



Electronics 2024, 13, 319 18 of 23
Electronics 2024, 13, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 13. Loss function curves during the training phase of the model. 

Table 6. Scores for different depths of RYOLOv5s_D models on Param, GFLOPS, FPS, mAP, and F1. 
The FPS and GFLOPS are measured during inference with a fully loaded 3080Ti, using an input 
image size of (840, 712). 

Methods Backbone Param (M) GFLOPS FPS Map F1 
RYOLOv5s_D CSPDarknet-S 7.87 16.8 59.52 78.5 0.759 
RYOLOv5m_D CSPDarknet-M 22.48 46.1 44.64 82.6 0.806 
RYOLOv5l_D CSPDarknet-L 48.70 98.0 29.85 84.3 0.822 

5.4. Comparison of Detection Performance on the BalancedVehicle Dataset 
Figure 14 shows the detection results of nine different advanced algorithms, includ-

ing (c) CFA, (d) Faster R-CNN-O, (e) FCOS, (f) Gliding vertex, (g) Oriented RepPoints, (h) 
R3Det, (i) R-CNN-O, (j) Roi Transformer, and the proposed (k) RYOLOv5l_D, in the fol-
lowing four challenging scenarios: ① complex background, ② intensively distributed 
and rotated vehicles, ③ detection of vehicles with large aspect ratios, and ④ drones cap-
tured from different angles. In the detection results of scenario ①, it can be observed that 
most algorithms can detect vehicles even when they are partially obscured by trees on the 
left side. However, when four or five vehicles are closely arranged, it becomes easier to 
lose targets. Roi Transformer, Gliding vertex, and RYOLOv5l_D adapt better to this oc-
cluded environment than the other algorithms. In the detection results of scenario ②, all 
the algorithms perform well when vehicles are continuously clustered. However, if a sin-
gle vehicle appears in the middle of the clustered vehicles, FCOS fails to detect the two 
vehicles in the middle and CFA, R3Det, and Roi Transformer mistakenly detect these two 
vehicles as trucks. RYOLOv5l_D exhibits some instances of duplicate bounding boxes. In 
the detection results of scenario ③, Oriented RepPoints and FCOS show poor detection 
performances, especially in missing truck detections. Gliding vertex’s bounding boxes do 
not tightly fit the vehicle bodies, resulting in suboptimal detection. Faster R-CNN-O, Roi 
Transformer, R-CNN-O, and R3Det exhibit false positives, misclassifying trucks as freight 
cars. RYOLOv5l_D achieves good detection results but may have instances of duplicate 
bounding boxes. In the detection results of scenario ④, RYOLOv5l_D can accurately 
frame closely arranged vehicles. Other algorithms encounter significant issues with both 
false negatives and false positives when dealing with such densely arranged vehicles cap-
tured from different angles. 

    
(a) Original image 

Figure 13. Loss function curves during the training phase of the model.

Table 6. Scores for different depths of RYOLOv5s_D models on Param, GFLOPS, FPS, mAP, and
F1. The FPS and GFLOPS are measured during inference with a fully loaded 3080Ti, using an input
image size of (840, 712).

Methods Backbone Param (M) GFLOPS FPS Map F1

RYOLOv5s_D CSPDarknet-S 7.87 16.8 59.52 78.5 0.759
RYOLOv5m_D CSPDarknet-M 22.48 46.1 44.64 82.6 0.806
RYOLOv5l_D CSPDarknet-L 48.70 98.0 29.85 84.3 0.822

5.4. Comparison of Detection Performance on the BalancedVehicle Dataset

Figure 14 shows the detection results of nine different advanced algorithms, including
(c) CFA, (d) Faster R-CNN-O, (e) FCOS, (f) Gliding vertex, (g) Oriented RepPoints, (h) R3Det,
(i) R-CNN-O, (j) Roi Transformer, and the proposed (k) RYOLOv5l_D, in the following
four challenging scenarios: 1⃝ complex background, 2⃝ intensively distributed and rotated
vehicles, 3⃝ detection of vehicles with large aspect ratios, and 4⃝ drones captured from
different angles. In the detection results of scenario 1⃝, it can be observed that most
algorithms can detect vehicles even when they are partially obscured by trees on the
left side. However, when four or five vehicles are closely arranged, it becomes easier
to lose targets. Roi Transformer, Gliding vertex, and RYOLOv5l_D adapt better to this
occluded environment than the other algorithms. In the detection results of scenario 2⃝,
all the algorithms perform well when vehicles are continuously clustered. However, if a
single vehicle appears in the middle of the clustered vehicles, FCOS fails to detect the two
vehicles in the middle and CFA, R3Det, and Roi Transformer mistakenly detect these two
vehicles as trucks. RYOLOv5l_D exhibits some instances of duplicate bounding boxes. In
the detection results of scenario 3⃝, Oriented RepPoints and FCOS show poor detection
performances, especially in missing truck detections. Gliding vertex’s bounding boxes do
not tightly fit the vehicle bodies, resulting in suboptimal detection. Faster R-CNN-O, Roi
Transformer, R-CNN-O, and R3Det exhibit false positives, misclassifying trucks as freight
cars. RYOLOv5l_D achieves good detection results but may have instances of duplicate
bounding boxes. In the detection results of scenario 4⃝, RYOLOv5l_D can accurately frame
closely arranged vehicles. Other algorithms encounter significant issues with both false
negatives and false positives when dealing with such densely arranged vehicles captured
from different angles.
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Figure 14. Comparison of detection performance in four challenging scenarios for nine advanced
object detection algorithms.

5.5. Experimental Comparison of Different Models on the BalancedVehicle Dataset

During training, the default input image size is set to 840 × 712 pixels. Multi-scale
training and testing methods are not used in this experimental process. Table 7 displays the
result of different network methods. GFLOPS and Param represent the model’s inference
speed and the model’s scale, respectively. “+” indicates modifications to the model’s depth
in order to distinguish it from the original model.

The experimental results reveal that RYOLOv5_D, RTMDet, and YOLOv5s-obb out-
perform the other algorithms in detecting infrared remote sensing vehicle targets. Among
them, RYOLOv5l_D exhibits the best detection performance for the car and bus vehicle
categories, achieving high levels of accuracy for the truck and freight car categories as
well. The accuracy of the RYOLOv5_D series’ algorithms surpasses that of most algorithms,
especially as the model depth increases. They have advantages in both accuracy and
computational complexity, making them well-suited for various detection tasks involving
infrared images in complex urban and road backgrounds with large vehicle aspect ratios
and varying shooting angles. RYOLOv5s_D, with an input image size of 840 × 712, has
a Param of only 7.87 M, second only to YOLOv5s-obb. Its Param corresponds to 10% of
the RoI Transformer+’s Param and 13% of the Faster R-CNN-O’s Param. The model’s
computational load is only 16.8 GFLOPS, which is 49.7% of the lightweight ReDet model’s
load. Moreover, RYOLOv5l_D achieves an accuracy of 84.3%, with a Param of 4.56 M less
than that of RTMDet-L. The model’s computational load is also 24.9 GFLOPS less than
that of RTMDet-L, striking a balance between high accuracy and speed, making it highly
practical for deployment. In the end, RYOLOv5m_D and RYOLOv5l_D only increase
the Param count from that of the original model by 0.87 M and 1.6 M, respectively, with
decreases in computational complexity of 4.5 GFLOPS and 12.8 GFLOPS.
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Table 7. Result of different network methods on the BalancedVehicle dataset (rotated bounding
boxes).

Methods Backbone Car Bus Truck Freight Car Param (M) mAP (%) GFLOPS

Anchor-free method

CFA [34] R101-FPN 0.890 0.864 0.604 0.614 55.60 74.3 165.2
Rotated-FCOS [35] R101-FPN 0.880 0.859 0.656 0.603 50.89 75.0 172.5

Rotated-FCOS+ [35] R152-FPN 0.888 0.870 0.683 0.606 66.53 76.2 219.8
Oriented-RepPoints [36] R101-FPN 0.854 0.501 0.340 0.315 55.60 50.2 165.2

RTMDet-S [19] CSPNext-S 0.899 0.900 0.810 0.701 8.86 82.7 22.1
RTMDet-L [19] CSPNext-L 0.904 0.902 0.832 0.729 52.26 84.4 122.9

Anchor-based one-stage method

R3Det [20] R101-FPN 0.868 0.820 0.581 0.517 55.92 69.6 185.1
R3Det+ [20] R152-FPN 0.884 0.834 0.614 0.540 71.57 71.8 232.4
S2Anet [21] R152-FPN 0.888 0.872 0.754 0.573 73.19 77.2 213.8

Anchor-based two-stage method

ReDet [37] R50-FPN 0.857 0.803 0.651 0.484 31.56 69.9 33.8
ReDet+ [37] R152-FPN 0.862 0.802 0.652 0.493 35.64 70.2 34.1

Gliding vertex R101-FPN 0.809 0.876 0.696 0.622 60.12 75.1 167.9
RoI Transformer [25] Swin Tiny-FPN 0.885 0.865 0.722 0.595 58.67 76.7 123.8

RoI Transformer+ [25] R152-FPN 0.812 0.872 0.788 0.646 74.04 78.0 169.0
O-RCNN [23] R101-FPN 0.889 0.872 0.780 0.612 60.12 78.8 168.1

O-RCNN+ [23] R152-FPN 0.892 0.882 0.789 0.620 75.76 79.6 215.3
Faster R-CNN-O [3] R101-FPN 0.810 0.852 0.756 0.602 60.12 75.5 167.9

Faster R-CNN-O+ [3] R152-FPN 0.890 0.890 0.762 0.631 75.76 79.3 215.3
YOLOv5s-obb [26] CSPDarknet53-S 0.935 0.915 0.584 0.508 7.64 73.6 17.4

RYOLOv5s_D+ (ours) CSPDarknet53-S 0.944 0.918 0.698 0.580 7.87 78.5 16.8
YOLOv5m-obb [26] CSPDarknet53-M 0.947 0.937 0.721 0.641 21.61 81.1 50.6

RYOLOv5m_D+ (ours) CSPDarknet53-M 0.944 0.954 0.757 0.647 22.48 82.6 46.1
YOLOv5l-obb [26] CSPDarknet53-L 0.942 0.948 0.757 0.679 47.10 83.1 110.8

RYOLOv5l_D+ (ours) CSPDarknet53-L 0.954 0.959 0.770 0.699 48.70 84.3 98.0

R50, R101, and R152 correspond to Resnet50, Resnet101, and Resnet152, respectively. Bold ones and underlined
ones represent the best and subbest respectively.

6. Conclusions

This paper presents a novel infrared vehicle remote sensing target detection algorithm,
RYOLOv5_D, designed to address various challenges encountered in the processing of
infrared remote sensing images, such as complex backgrounds, large vehicle aspect ratios,
disproportionate representation of single vehicle classes, and varying shooting angles.
Initially, a self-built image dataset, BalancedVehicle, is introduced to mitigate the issue of
overfitting caused by imbalanced class proportions. Subsequently, prior to model loading,
the infrared image enhancement algorithm AAHE is employed for data pre-processing to
reduce the interference of complex background information and enable thorough model
training. Building upon this foundation, DCNv2 is utilized to enhance the detection accu-
racy of challenging vehicles with large aspect ratios, and the CPSAB module is incorporated
to further improve the detection performance on difficult-to-detect vehicle targets. Finally,
the GSConv module is introduced to reduce the model’s Param while enhancing accuracy.
Compared to the YOLOv5-obb model, RYOLOv5s_D only increases the Param by 0.23M
and improves mAP by 4.9%, specifically achieving notable improvements in the AP for
trucks and freight cars of 11.4% and 8%, respectively. RYOLOv5m_D and RYOLOv5l_D ex-
hibit impressive mAP accuracies of 82.6% and 84.3%, respectively, surpassing the accuracy
of most detection algorithms. Regarding detection speeds, RYOLOv5s_D, RYOLOv5m_D,
and RYOLOv5l_D achieve frame rates of 59.52, 44.64, and 29.58 FPS, respectively, meeting
real-time vehicle detection requirements.

Despite the high accuracy and speed of RYOLOv5_D, there are limitations, including
the occurrence of noticeable overlapping boxes, making visual observations challenging.
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Additionally, the model only utilizes infrared single-source images for object detection.
We aim to explore the following in future works: 1⃝ We prepare to incorporate fusion
with visible light images to complement information from both sources and achieve bet-
ter practical detection results. 2⃝ We notice that zero-shot detection (ZSD) models can
categorize new unseen instances of data. If ZSD models were used for vehicle detection,
they could expand the fine granularity of vehicle detection. However, our RYOLOv5_D
model may have a higher accuracy because it is based on a supervised method. 3⃝This
paper uses the pre-trained weights of the COCO dataset to train the model. However, if the
BigDetection dataset with a larger data volume and more variety was used for pre-training,
we believe that we could better initialize the weight of the dataset and speed-up its training
efficiency. 4⃝ Given the rapid development of large language models (LLMs), adding LLMs
to the detector could strengthen the model’s real-time detection capability with appropriate
parsing and post processing.

Author Contributions: Conceptualization, X.J. and F.W.; methodology, C.Y., F.W. and Y.F.; software,
C.Y., Y.F. and X.L.; validation, C.Y., Y.Z., T.F. and J.P.; formal analysis, C.Y. and F.W.; resources, X.J.;
data curation, C.Y. and X.L.; writing—original draft preparation, C.Y. and X.J.; writing—review and
editing, C.Y. and F.W.; project administration, X.J., Y.F. and T.F.; funding acquisition, X.J. and F.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China, with grant number
2022YFB3902300, and was funded by the National Natural Science Foundation of China, with grant
number 42001345.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and fundamental coding principles of this research are
available at https://github.com/hukaixuan19970627/yolov5_obb (accessed on 7 January 2022) and
https://github.com/VisDrone/DroneVehicle (accessed on 29 December 2021).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Vollmer, M. Infrared. Eur. J. Phys. 2013, 34, S49. [CrossRef]
2. Ajakwe, S.O.; Ihekoronye, V.U.; Akter, R.; Kim, D.-S.; Lee, J.M. Adaptive Drone Identification and Neutralization Scheme for

Real-Time Military Tactical Operations. In Proceedings of the 2022 International Conference on Information Networking (ICOIN),
Jeju-si, Republic of Korea, 12–15 January 2022; pp. 380–384.

3. Mo, N.; Yan, L. Improved Faster RCNN Based on Feature Amplification and Oversampling Data Augmentation for Oriented
Vehicle Detection in Aerial Images. Remote Sens. 2020, 12, 2558. [CrossRef]

4. Wang, B.; Gu, Y. An Improved FBPN-Based Detection Network for Vehicles in Aerial Images. Sensors 2020, 20, 4709. [CrossRef]
5. Deng, Z.; Sun, H.; Zhou, S.; Zhao, J.; Zou, H. Toward Fast and Accurate Vehicle Detection in Aerial Images Using Coupled

Region-Based Convolutional Neural Networks. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2017, 10, 3652–3664. [CrossRef]
6. Wang, H.; Wang, Q.; Yang, F.; Zhang, W.; Zuo, W. Data Augmentation for Object Detection via Progressive and Selective

Instance-Switching. arXiv 2019, arXiv:1906.00358.
7. Zhong, J.; Lei, T.; Yao, G. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks. Sensors

2017, 17, 2720. [CrossRef] [PubMed]
8. Shen, J.; Liu, N.; Sun, H.; Tao, X.; Li, Q. Vehicle Detection in Aerial Images Based on Hyper Feature Map in Deep Convolutional

Network. KSII Trans. Internet Inf. Syst. (TIIS) 2019, 13, 1989–2011.
9. Musunuri, Y.R.; Kwon, O.-S.; Kung, S.-Y. SRODNet: Object Detection Network Based on Super Resolution for Autonomous

Vehicles. Remote Sens. 2022, 14, 6270. [CrossRef]
10. Li, J.; Zhang, Z.; Tian, Y.; Xu, Y.; Wen, Y.; Wang, S. Target-Guided Feature Super-Resolution for Vehicle Detection in Remote

Sensing Images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [CrossRef]
11. Mostofa, M.; Ferdous, S.N.; Riggan, B.S.; Nasrabadi, N.M. Joint-SRVDNet: Joint Super Resolution and Vehicle Detection Network.

IEEE Access 2020, 8, 82306–82319. [CrossRef]
12. Wan, M.; Gu, G.; Qian, W.; Ren, K.; Chen, Q.; Maldague, X. Infrared Image Enhancement Using Adaptive Histogram Partition

and Brightness Correction. Remote Sens. 2018, 10, 682. [CrossRef]
13. Zhu, X.; Hu, H.; Lin, S.; Dai, J. Deformable Convnets v2: More Deformable, Better Results. In Proceedings of the 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 9308–9316.
14. Liu, H.; Liu, F.; Fan, X.; Huang, D. Polarized Self-Attention: Towards High-Quality Pixel-Wise Regression. arXiv 2021,

arXiv:2107.00782.

https://github.com/hukaixuan19970627/yolov5_obb
https://github.com/VisDrone/DroneVehicle
https://doi.org/10.1088/0143-0807/34/6/S49
https://doi.org/10.3390/rs12162558
https://doi.org/10.3390/s20174709
https://doi.org/10.1109/JSTARS.2017.2694890
https://doi.org/10.3390/s17122720
https://www.ncbi.nlm.nih.gov/pubmed/29186756
https://doi.org/10.3390/rs14246270
https://doi.org/10.1109/LGRS.2021.3112172
https://doi.org/10.1109/ACCESS.2020.2990870
https://doi.org/10.3390/rs10050682


Electronics 2024, 13, 319 23 of 23

15. Li, H.; Li, J.; Wei, H.; Liu, Z.; Zhan, Z.; Ren, Q. Slim-Neck by GSConv: A Better Design Paradigm of Detector Architectures for
Autonomous Vehicles. arXiv 2022, arXiv:2206.02424.

16. Mateus, B.C.; Mendes, M.; Farinha, J.T.; Cardoso, A.J.M.; Assis, R.; da Costa, L.M. Forecasting Steel Production in the
World—Assessments Based on Shallow and Deep Neural Networks. Appl. Sci. 2022, 13, 178. [CrossRef]

17. Wei, H.; Zhang, Y.; Chang, Z.; Li, H.; Wang, H.; Sun, X. Oriented Objects as Pairs of Middle Lines. ISPRS J. Photogramm. Remote
Sens. 2020, 169, 268–279. [CrossRef]

18. Lin, Y.; Feng, P.; Guan, J.; Wang, W.; Chambers, J. IENet: Interacting Embranchment One Stage Anchor Free Detector for
Orientation Aerial Object Detection. arXiv 2019, arXiv:1912.00969.

19. Lyu, C.; Zhang, W.; Huang, H.; Zhou, Y.; Wang, Y.; Liu, Y.; Zhang, S.; Chen, K. Rtmdet: An Empirical Study of Designing
Real-Time Object Detectors. arXiv 2022, arXiv:2212.07784.

20. Yang, X.; Yan, J.; Feng, Z.; He, T. R3det: Refined Single-Stage Detector with Feature Refinement for Rotating Object. In Proceedings
of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 3163–3171.

21. Han, J.; Ding, J.; Li, J.; Xia, G.-S. Align Deep Features for Oriented Object Detection. IEEE Trans. Geosci. Remote Sens. 2021, 60,
1–11. [CrossRef]

22. Liu, Z.; Hu, J.; Weng, L.; Yang, Y. Rotated Region Based CNN for Ship Detection. In Proceedings of the 2017 IEEE International
Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 900–904.

23. Jiang, Y.; Zhu, X.; Wang, X.; Yang, S.; Li, W.; Wang, H.; Fu, P.; Luo, Z. R2CNN: Rotational Region CNN for Orientation Robust
Scene Text Detection. arXiv 2017, arXiv:1706.09579.

24. Nabati, R.; Qi, H. Rrpn: Radar Region Proposal Network for Object Detection in Autonomous Vehicles. In Proceedings of the
2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 3093–3097.

25. Ding, J.; Xue, N.; Long, Y.; Xia, G.-S.; Lu, Q. Learning RoI Transformer for Oriented Object Detection in Aerial Images. In
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–20 June 2019; pp. 2849–2858.

26. Li, X.; Cai, Z.; Zhao, X. Oriented-YOLOv5: A Real-Time Oriented Detector Based on YOLOv5. In Proceedings of the 2022 7th
International Conference on Computer and Communication Systems (ICCCS), Wuhan, China, 22–25 April 2022; pp. 216–222.

27. Zhao, X.; Xia, Y.; Zhang, W.; Zheng, C.; Zhang, Z. YOLO-ViT-Based Method for Unmanned Aerial Vehicle Infrared Vehicle Target
Detection. Remote Sens. 2023, 15, 3778. [CrossRef]

28. Mehta, S.; Rastegari, M. Mobilevit: Light-Weight, General-Purpose and Mobile-Friendly Vision Transformer. arXiv 2021,
arXiv:2110.02178.

29. Bao, C.; Cao, J.; Hao, Q.; Cheng, Y.; Ning, Y.; Zhao, T. Dual-YOLO Architecture from Infrared and Visible Images for Object
Detection. Sensors 2023, 23, 2934. [CrossRef]

30. Yang, X.; Yan, J. Arbitrary-Oriented Object Detection with Circular Smooth Label; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 677–694.

31. Sun, Y.; Cao, B.; Zhu, P.; Hu, Q. Drone-Based RGB-Infrared Cross-Modality Vehicle Detection via Uncertainty-Aware Learning.
IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 6700–6713. [CrossRef]

32. Razakarivony, S.; Jurie, F. Vehicle Detection in Aerial Imagery: A Small Target Detection Benchmark. J. Visual Commun. Image
Represent. 2016, 34, 187–203. [CrossRef]

33. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 764–773.

34. Lee, S.; Lee, S.; Song, B.C. Cfa: Coupled-Hypersphere-Based Feature Adaptation for Target-Oriented Anomaly Localization. IEEE
Access 2022, 10, 78446–78454. [CrossRef]

35. Li, Z.; Hou, B.; Wu, Z.; Ren, B.; Yang, C. FCOSR: A Simple Anchor-Free Rotated Detector for Aerial Object Detection. Remote Sens.
2023, 15, 5499. [CrossRef]

36. Li, W.; Chen, Y.; Hu, K.; Zhu, J. Oriented Reppoints for Aerial Object Detection. In Proceedings of the 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 1829–1838.

37. Han, J.; Ding, J.; Xue, N.; Xia, G.-S. Redet: A Rotation-Equivariant Detector for Aerial Object Detection. In Proceedings of
the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021;
pp. 2786–2795.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app13010178
https://doi.org/10.1016/j.isprsjprs.2020.09.022
https://doi.org/10.1109/TGRS.2021.3062048
https://doi.org/10.3390/rs15153778
https://doi.org/10.3390/s23062934
https://doi.org/10.1109/TCSVT.2022.3168279
https://doi.org/10.1016/j.jvcir.2015.11.002
https://doi.org/10.1109/ACCESS.2022.3193699
https://doi.org/10.3390/rs15235499

	Introduction 
	Related Works 
	Anchor-Free Rotation-Based Detection Methods 
	One-Stage Rotation-Based Detection Methods 
	Two-Stage Rotation-Based Detection Methods 

	Materials and Methods 
	RYOLOv5_D Model 
	Model Framework 
	Loss Function 

	Data Pre-Processing 
	Data Augmentation for Infrared Images 
	Deformable Convolution Network (DCN) 
	Convolutional Polarized Self-Attention Block (CPSAB) 
	Lightweight Module (GSConv) 

	Vehicle Object Detection Evaluation 
	Model Size Evaluation Metrics 
	Model Size Evaluation Metrics 
	Model Real-Time Performance Metrics 

	Experiment 
	Experimental Configuration 
	Related Dataset 
	DroneVehicle Dataset 
	VEDAI Dataset 
	BalancedVehicle Self-Built Dataset 

	Ablation Experiments 
	Comparison of Detection Performance on the BalancedVehicle Dataset 
	Experimental Comparison of Different Models on the BalancedVehicle Dataset 

	Conclusions 
	References

