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Abstract: Distributed resources at a grid’s end cannot upload operational power data to local centers
due to data transmission and privacy issues. This leaves the centers with incomplete information,
thus impacting decision making. This paper presents a virtual aggregation-based model for such
scenarios. We define four virtual aggregate types based on resource response characteristics. Using
characteristic coefficients, we identify these aggregates’ categories and proportions from bus power.
To address blind source separation in single-channel power signals, we apply the Ensemble Empirical
Mode Decomposition-Fast Independent Component Analysis (EEMD-FastICA) method. This helps
extract and analyze bus power, thereby deriving power curves for different aggregates. Moreover,
we use a graph convolutional network to explore how factors like date, time, weather, and pricing
intertwine with aggregate power. We develop a predictive model with an advanced SpatioTemporal
Graph Convolutional Network (STGCN), thus facilitating proactive power forecasting for virtual
aggregates. Case studies show our method’s efficacy in extracting power curves under limited
information, with the STGCN ensuring accurate, forward-looking predictions.

Keywords: demand response; resource aggregation; virtual aggregation; power prediction; fast
independent component analysis; spatial temporal graph convolutional networks

1. Introduction

Within the aim of carbon neutrality, there are three major trends in China’s energy
system: firstly, there is the electrification of the energy system [1], which means that, by
2050, the proportion of primary energy to electricity conversion and the proportion of
electricity to terminal energy consumption are expected to increase to 80% and 60%, re-
spectively; secondly, the low-carbon power system is expected to increase the proportion
of nonfossil energy generation from the current 33% to 84–90% by 2050 [2]; and thirdly,
the decentralization of energy and power systems is being sought. The mode of energy
development and utilization will shift from centralized to distributed, and the form of
energy systems will undergo profound changes [3]. With the advancement of energy
transformation, the types and quantities of distributed resources in regional power grids
have shown explosive growth, and this mainly includes load-side distributed resources,
which are represented by electric vehicles [4], temperature-controlled loads [5], and energy
storage [6]. Conversely, power-side distributed resources are represented by wind and
photovoltaic power. Compared with traditional adjustable and controllable resources,
such as large water/thermal power units, the abovementioned distributed resources have
advantages such as small individual capacity, numerous quantities, huge potential, green
environmental protection, and flexible economy, which are of great significance for en-
hancing the balance and regulation ability of regional power grids. However, due to the
distributed resources being located at the end of the power grid, the dispatch control center
is unable to achieve the comprehensive observation and control of massive terminal data,
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thereby resulting in a contradiction between scheduling requirements and the efficient
matching of massive distributed resources. In addition, the privacy protection requirements
of distributed resource entities bring about incomplete information, making it difficult
for the scheduling control center to obtain detailed operational characteristics of certain
distributed resources. Therefore, the focus of this article is on how to scientifically model
the equivalence of distributed resources in the presence of incomplete information.

Currently, experts and scholars, both domestically and internationally, have conducted
extensive research in this field, thereby providing valuable insights and models for our
learning and reference.

(1) The Operational Characteristics of Distributed Resources

Scholars, both domestically and internationally, have conducted extensive research
on the operational characteristics of distributed resources. Ref. [7] proposed a multimodel
weighted parameter identification method for modeling user electricity elasticity using
the weighted average of four linear models to establish a comprehensive model for user
elasticity. However, the simulation did not consider the mutual elasticity of users at
different time periods. Ref. [8] established an objective function for market operation
revenue based on the user’s profit function, and they also derived the optimal incentive
price. However, the key parameters in the user’s profit function involve privacy and public
willingness, making it relatively difficult to obtain. The household energy management
system proposed in [9] is based on an energy monitoring module, and it participates in
demand response and provides electrical level energy optimization.

(2) The Extraction of Load Characteristic Parameters

In terms of load characteristic parameter extraction, the extraction methods mainly
include time domain and frequency domain, and the feature extraction objects include
active power, reactive power, voltage, current [10,11], etc. Ref. [12] extracted six parameters,
including load rate, maximum utilization hours, daily peak valley difference rate, and
peak/valley/average load rate, as well as the characteristic indicators of load morphology
for the demand-side load of the Shanghai power grid. Ref. [13] extracted characteristic
parameters such as maximum load occurrence time to achieve daily load curve clustering.
Ref. [14] proposed parameters such as the load regulation coefficient, jump rate, and
load stability to characterize the adjustable characteristics of loads. Ref. [15] adopted
a method that combines time information and active power to achieve load separation
identification; refs. [16–18] extracted harmonic signals and low-power features. In the field
of noninvasive identifications of household electrical loads, researchers have proposed
extraction algorithms for active power fluctuation characteristics and the incremental
characteristics of loads [19].

(3) Load Identification

At present, most of the research on load feature extraction methods has mainly focused
on the fields of electricity load classification in different industries and the noninvasive
identification of household loads, but there has been relatively little research on resource
aggregation feature extraction methods for the characterization of demand response regu-
lation characteristics. In terms of load identification, ref. [15] proposed an industry-typical
feature matrix, as well as obtained an online correction method for the various types of
load composition ratios of daily load curves based on the calculation of feature matrices
and membership degrees. Ref. [16] proposed a load identification method based on the
fuzzy clustering theory for the feature extraction of adjustable/interruptible loads.

(4) Dynamic Electricity Pricing Management

Dynamic electricity price management is one of the main management methods that
is based on distribution system operators (DSOs), and electricity price signals are an
important way through which to motivate distributed energy resources (DERs) in order to
participate in power grid regulation. By replacing direct control commands with electricity
price signals, DERs can actively participate in the management of power grids. Dynamic



Electronics 2024, 13, 315 3 of 22

electricity price management is often used in distribution network congestion management,
and the electricity price mechanism that motivates DERs involves dynamic tariff (DT) and
the distribution local marginal price (DLMP) [20]. Ref. [21] proved that the strategy of
DSOs in pursuing the optimal DLMP is consistent with the strategy of electric vehicle
aggregators pursuing the lowest charging cost, thereby indicating that the DLMP is an
effective distribution network congestion management method. Ref. [22] incorporated
the cost of reactive power regulation in distribution networks, the cost of insufficient
charging capacities for electric vehicles, and the cost of distributed generation into the
objective functions of the DLMP; in addition, they, respectively, obtained active and reactive
DLMPs [23]. Therefore, the power prediction of resource aggregates is greatly influenced
by electricity prices. When seeking to grasp the rules of the power curve of resource
aggregates, comprehensive consideration should be given to electricity prices and other
external factors.

In summary, in the case of incomplete information, the scientific equivalent modeling
of distributed resources requires the consideration of resource feature extraction, and
the accurate prediction of resource aggregation power also requires the consideration of
various external factors, such as electricity prices. In order to match the work of resource
aggregation with scheduling requirements and to support scheduling control centers’
observable and controllable business in massive distributed resources, this paper focuses
on the key business scenario of distributed resources participating in demand response
adjustment, as well as proposes a virtual aggregation-based resource aggregation modeling
and power prediction method for use in incomplete information conditions. The main
contributions of this article are as follows:

(1) Based on demand response businesses, this article summarizes the regulatory char-
acteristics of distributed resources that participate in demand response, as well as
performs a virtual aggregation of distributed resources and defines four types of
virtual aggregates;

(2) This article designs algorithms to recognize and extract the power of each virtual
polymer, as defined earlier, and this is conducted only from bus power in scenarios
with incomplete information;

(3) Based on the power curve of virtual aggregates, this article delves into the various
environmental and electricity price factors that affect the operation power of virtual
aggregates, constructs an artificial intelligence virtual aggregate power prediction
model, and achieves advanced predictions of virtual aggregate power;

(4) The numerical analysis shows the effectiveness and superiority of the method proposed
in this article, which can help dispatch control centers grasp the operating power of
distributed resource aggregates in scenarios with incomplete information. This method
also helps to provide controllable means (electricity prices) and a fitting mapping
relationship between virtual aggregate power, which can provide effective decision
making for dispatch control centers, such that they can carry out economic dispatches
and demand responses, as well as deliver bus load power prediction businesses.

2. The Resource Aggregation Architecture and Power Prediction Model

Parts of the distributed resources under regional buses are aggregated and integrated
into power grid dispatch systems through third-party aggregators. Aggregators usually use
certain technical means to manage distributed resources, organize resources to participate
in demand response and market transactions, and support the safe operation of power
grids while obtaining certain benefits. A power dispatch control center can obtain the
basic operational characteristics of aggregated resources from an aggregator, including
regulating capacities, regulating speeds, ramp rates, etc. In such scenarios, the historical
operational data and future predictive data of resource aggregates that dispatch control cen-
ters can grasp are relatively complete, thus making it easier to support power grid dispatch
decisions. However, distributed resources that are scattered at the end of electrical grids are
often unable to upload their operational power data to local power dispatch control centers
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due to constraints in data transmission and the need for privacy protection. Consequently,
dispatch control centers, as they lack visibility into the composition and operational power
of terminal distributed resources, face scenarios of incomplete information, which hinder
their ability to make informed dispatch decisions. In recent years, power grid dispatches
have been plagued by a serious shortage of the flexible resources available to support their
systems. Therefore, establishing an equivalent model of resource aggregates in scenarios
with incomplete information, tapping into the regulating potential of massive distributed
resources, and enriching and improving the dispatch methods of dispatch control centers
is of great significance for the safe, stable, and economic operation of power grids.

In order to explore an effective method for obtaining the operational characteristics of
distributed resource aggregates from bus power in scenarios with incomplete information,
this paper focuses on demand response businesses and proposes a resource aggregate
modeling and power prediction method based on virtual aggregation for incomplete infor-
mation conditions. Different types of virtual aggregates were defined and divided based on
the differences in the regulation characteristics of distributed resource execution demand
responses. The operating characteristics of various virtual aggregates were extracted from
bus power using single-channel blind source separation technology. The architecture of
distributed resource aggregation for regional buses is shown in Figure 1.

aggregator

complete information 

scenario

virtual aggregate 1 virtual aggregate N...

Virtually aggregate 

Incomplete information 

scenario

Get resource 

information

Issue dispatch 

instructions

Power dispatch 
control center

Distributed resources at 
the end

Distributed resources that have 
been aggregated and managed

Regional bus

Figure 1. Distributed resource aggregation architecture for regional buses.

After obtaining the power curves of various virtual aggregates, in order to seek
controllable means for the power regulation of virtual aggregates and to provide auxiliary
references for power grid scheduling decisions, this paper uses artificial intelligence to
delve deeply into the various environmental and electricity price factors that affect the
operation power of virtual aggregates. In addition, a virtual aggregate power prediction
model is constructed: one that is able to provide a fitting mapping relationship between
controllable means (electricity price) and virtual aggregate power, as well as one that helps
to realize advanced predictions of virtual polymer power.

The whole process of constructing the resource aggregation modeling and a power
prediction method based on the virtual aggregation that is proposed in this paper is shown
in Figure 2. First, four types of virtual aggregates are defined according to the demand
response characteristics of resources, and the characteristics were constructed to identify
the categories and proportions of the four types of aggregates from the busbar power.
The identified results are used as the number of source signals for the busbar power
analysis. Secondly, to solve the problem of single-channel blind source separation, the
underdetermined blind source separation method, which is based on EEMD-FastICA, was
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used to analyze the power of buses, and the power curves of each virtual polymer were
obtained. Finally, based on an artificial intelligence method, this paper mined the nonlinear
mapping relationship between the date, time period, weather, electricity price data, etc.,
and the behavior law of the aggregate, as well as constructed a power prediction model of
virtual aggregates based on an improved STGCN. Moreover, an advanced prediction of the
output of virtual aggregates so as to help dispatching control centers grasp the operation
characteristics of idle distributed resources was realized.
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3. Distributed Resource Virtual Aggregation Based on EEMD-FastICA
3.1. Virtual Aggregates

The distributed resources, based on their operational characteristics and the char-
acteristics of execution demand responses, were divided into four categories: discrete
adjustable resources, flexible adjustable resources, time-varying resources, and nonad-
justable resources. The loads or generator sets belonging to each type of resource were
subjected to virtual aggregation, thereby forming four types of virtual aggregates. These
were called virtual polymers due to the fact that the resources within each polymer were
not limited by industry and region, as well as because they were only used as a demand
response aggregation method under incomplete information. The study of the operational
and response characteristics of virtual aggregates can be used for scenarios such as bus
load forecasting, demand responses, and electricity market trading decisions.

(1) Class I virtual aggregates

Class I virtual aggregates include various distributed resources with discrete adjustable
resource characteristics. Discrete adjustable resources have bidirectional adjustment ability,
which can quickly adjust operating power, as well as help to approximate the instantaneous
adjustment of operating power. The adjustment is flexible but the adjustment range is
small, and it cannot be adjusted frequently. The response characteristic curve of discrete
adjustable resources is shown in Figure 3. The black line in the figure represents the curve
when the discrete adjustable resources are not adjusted, and the red line represents the
power curve of the discrete adjustable resources after response adjustment.
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Figure 3. Adjustment characteristic curve of the discrete adjustable resources.

Discrete adjustable resources have the characteristic of discrete adjustment, which
manifests as follows: (1) possessing a certain adjustable space; (2) the adjustment speed
is fast within limited adjustment capacity ranges; (3) and, once adjusted, it is necessary
to ensure that the power is maintained for a limited time and that it cannot respond to
frequent adjustment needs.

(2) Class II virtual aggregates

Class II virtual aggregates include various distributed resources with flexible and
adjustable resource characteristics. Flexible and adjustable resources have bidirectional
continuous adjustment ability, flexible resource adjustment, and smooth climbing character-
istics. The response characteristic curve of flexible adjustable resources is shown in Figure 4.
The black line in the figure represents the curve when the flexible adjustable resources
are not adjusted, and the red line represents the power curve of the flexible adjustable
resources after response adjustment.
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Figure 4. The adjustment characteristic curve of flexible and adjustable resources.

Flexible and adjustable resources have the characteristic of continuous adjustment,
which manifests as follows: (1) they can be continuously adjusted within a certain capacity
adjustment range; (2) they have no power stability duration requirement constraint; and
(3) they can respond to adjustment needs at any time.

(3) Class III virtual aggregates

Class III virtual aggregates include various distributed resources with time-varying
resource characteristics, and they can achieve daily regulation. According to the require-
ments of power grid scheduling, the response speed of their power regulation can reach
the millisecond level. The response speed of time-shifted resources is fast, and this is
without adjusting time constraints. Time-shifted resources can change the operating period
to achieve power transfer. A characteristic of it is that its total electricity energy within the
day is constant, and only its operating power period changes. The response characteristic
curve of time-shifted resources is shown in Figure 5. The black line in the figure represents
the curve when the time-shifted resources are not adjusted, and the red line represents the
power curve of the time-shifted resources after response adjustment.
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Figure 5. The adjustment characteristic curve of time-shifted resources.

Time-shifted resources have the characteristic of being adjustable, which manifests
as follows: (1) being continuously adjustable within a certain capacity adjustment range;
(2) able to respond to adjustment needs and can adjust speed quickly and flexibly through
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output transfer; (3) it can transfer the time of load electricity consumption by responding
to peak and valley electricity prices; and (4) it can also ensure that the total electricity
consumption remains unchanged within the days before and after load transfer.

Class I virtual aggregates and Class II virtual aggregates increase or decrease electric-
ity consumption in specific time periods through different forms of regulation (discrete
regulation, continuous regulation, etc.), while time-shifted resources transfer electricity
consumption in specific time periods.

(4) Class IV virtual aggregates.

Class IV virtual aggregates include various distributed resources with nonadjustable
resource characteristics. Nonadjustable resources generally do not participate in demand
responses due to their particularity, and their operating characteristics do not change under
electricity prices or incentive measures. The operating curve before and after adjustment
is an overlapping curve. The response characteristic curve of nonadjustable resources is
shown in Figure 6. The black line represents the curve when the nonadjustable resources
are not adjusted, and the red line represents the power curve of the nonadjustable resources
after response adjustment.
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Figure 6. Nonadjustable resources.

3.2. Virtual Aggregate Identification
3.2.1. The Demand Response Characteristic Coefficient

We defined the characteristic coefficients that characterize the demand response of
virtual aggregates based on the operation and response characteristics of the various virtual
aggregates detailed in Section 3.1. This was performed in order to achieve the differentiation
and identification of the various virtual aggregates, and we then used them to analyze and
extract the operational characteristic curves of the various virtual aggregates in bus power.

This article designed the five characteristic coefficients of responsivity, response depth,
response duration, response fluctuation entropy, and the response time-shift coefficient
as follows:

(1) Responsiveness

According to the above analysis, the biggest difference between the first three types
of virtual polymers and the fourth type of virtual polymer is that there is no difference in
the operating power curve of the fourth type of virtual polymer before and after demand
response adjustment; meanwhile, the operating power curves of the other three types of
virtual polymers all changed. Therefore, the responsiveness I1 was designed as the first
characteristic indicator, which is defined as the Pearson correlation coefficient of the power
curve before and after the response of the virtual polymer.
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In statistics, the Pearson correlation coefficient can represent the linear correlation
strength between two variables. The Pearson correlation coefficient of the two variables
was calculated using Formula (1):

r =
cov(U, V)

ξUξV
=

E(UV)− E(U)E(V)√
E(U2)− E2(U)

√
E(V2)− E2(V)

, (1)

where cov( ) is the covariance function; E is the mathematical expectation function; ξ is
the mean square deviation; and U and V are the two variables. If the absolute value of the
correlation coefficient is greater than 0.5, then it is considered that the two variables have a
strong correlation. According to the definition of the Pearson correlation coefficient, the
correlation coefficient between the preadjustment standardized virtual polymer operating
power Pa and the postadjustment standardized virtual polymer operating power Pb can be
obtained. The mathematical expression of the response coefficient I1 is as follows:

I1 = r(Pa, Pb). (2)

(2) Response depth

The response depth I2 is defined as the maximum value of the power change during
the operation of the virtual polymer before and after adjustment, and this is mathematically
expressed as follows:

I2 = max
t∈T

∣∣Pt
b − Pt

a
∣∣, (3)

where Pt
a is the standardized virtual polymer operating power adjusted for the t period;

Pt
b is the standardized virtual polymer operating power during the adjusted time period t;

and T is the total number of time slots during the day.

(3) Response duration

According to the response characteristics of the Class I and Class II virtual polymers,
the obvious difference between the two was that Class I virtual polymers can maintain a
stable operation for a period of time after response, while Class II virtual polymers can
be flexibly adjusted with large changes in power. Therefore, the response duration I3 was
selected as the third indicator, which is mathematically expressed as follows:

I3 =
1

m + ε ∑ T{
∣∣Pt

b − Pt
a
∣∣ ≥ 0.01}, (4)

where I3 is the average value s of the operating power of the virtual polymer before and
after adjustment during the adjustment period; m is the total number of time periods,
where the difference between the two curves is greater than 0.01; T{

∣∣Pt
b − Pt

a
∣∣ ≥ 0.01} is

the period when the difference between the two curves is greater than 0.01; and ε = 10−6

is a positive number with an especially small value so as to avoid the situation where the
denominator is zero.

(4) Response fluctuation entropy

Considering the fact that the fluctuation of the running power curves of various virtual
polymers before and after adjustment is different, the response fluctuation entropy was
thus introduced as the fourth index I4. First, we introduced statistics Ø(t) as follows:

Ø(t) = Pt
b/ max

t∈T
Pt

b. (5)

The statistic Ø(t) reflects the fluctuation degree of the running power curve of the
virtual polymer before and after adjustment, and its value range is [0, 1]. If the value range
[0, 1] is divided into k equal parts, then the k interval can be expressed as ( k

n , k+1
n ]. One can

run through statistics Ø(t) at every moment of the day, and it falls into the time points of
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each interval. Let the moment point of the Ø(t) distributed over the k-th interval be mk,
then the probability that the Ø(t) is located in the interval is as follows:

v(t) = mk/T. (6)

Define the response fluctuation entropy I4 to be the following:

I4 = −
n

∑
k=0

ν(k) ln ν(k). (7)

According to the definition of response fluctuation entropy, when the Ø(t) all fall in
the same interval, the response wave entropy is the smallest and its value is equal to 0.
When no Ø(t) of any period are in the same interval, the response fluctuation entropy is
the largest.

(5) Response time-shift coefficient

The response time-shift coefficient I5 is defined as the ratio of the sum of the power
changes in each period before and after the adjustment of the virtual polymer to the sum of
the absolute value of the power changes in each period of the virtual polymer. This reflects
the changes in each period of the two curves. Its mathematical expression is as follows:

I5 =

[
T

∑
t=0

(
Pt

b − Pt
a
)
+ ε

]
/
[∣∣Pt

b − Pt
a
∣∣+ ε

]
. (8)

Considering the fact that the absolute sum of the power change before and after the
regulation of the Class IV virtual polymer was zero, in order to avoid the situation where
the denominator is zero, a minimal positive number ε was added to both the numerator
and denominator of the expression; as such, ε = 10−6 was taken. In this case, the response
time-shift coefficient was 1.

For the Class III virtual polymers, the time-shift coefficient was close to 0, while for
the other three virtual polymers, the time-shift coefficient was close to 1.

3.2.2. Characteristic Extraction of the Demand Response of Typical Virtual Aggregates

This section adopts the clustering method, based on the demand response feature
coefficient proposed in Section 3.2.1, to extract the demand response features of various
virtual aggregates.

Power curve samples of typical virtual aggregates before and after adjustment were
selected to calculate the characteristic coefficient of the demand response of each sample.
The vector Ri of the characteristic coefficient of the demand response of the i-th power
curve sample is shown as follows:

Ri = [I1,i, I2,i, I3,i, I4,i, I5,i], (9)

where I1,i, I2,i, I3,i, I4,i, and I5,i correspond to the respective five characteristic coefficients of
the calculated demand response.

The clustering center of the demand response characteristic coefficients of all N sam-
ples of a typical virtual aggregate was calculated. In this paper, a fuzzy C clustering
algorithm was adopted, and its basic steps are as follows:

(1) Select the number of clustering centers.
(2) Randomly initialize the clustering center from the sample points as follows:

vj = [vj,1, vj,2, vj,3, vj,4, vj,5], (10)

where vj is the j-th cluster center vector.
(3) Initialize the membership matrix, as shown in the above formula.
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(4) Update the cluster center and membership matrix, as shown in the following formula:

U = [uij] (11)

uij =

(
dij
)−1

C
∑

l=1
(dil)

−1
(12)

dij =
5

∑
m=1

((
Ri,m − vj,m

)2
)1/2

, (13)

where m is the fuzzy parameter (which is usually greater than 1).
(5) When the change in the cluster center is less than the set threshold, or if it reaches

the preset maximum number of iterations, the algorithm terminates; otherwise, the
iteration continues.

In summary, the fuzzy C clustering algorithm was used to extract the demand response
features of the various typical virtual aggregates by setting the number of clustering centers
to C = 1.

3.2.3. Category Identification and Proportion Determination of the Virtual Aggregates in
Busbar Power

This paper modeled a hybrid bus with four types of virtual aggregates for the hybrid
buses with unclear components in their distributed resources and unknown output. In
this section, the demand response characteristic coefficient of the hybrid bus is calculated,
and the membership degree of the hybrid bus characteristic coefficient to the four types
of typical virtual aggregates is obtained by using the mapping relationship between the
membership degree and the proportion of virtual aggregates. The category identification
and proportion determination of the virtual aggregates are completed. The specific methods
used are as follows:

Firstly, the characteristic coefficient of the demand responses of a hybrid bus was calcu-
lated according to the running power curve of the hybrid bus before and after adjustment.

Secondly, via the method detailed in Section 3.2.2, the clustering centers of each
typical virtual polymer v1, . . . , v4 were ascertained, and the membership degree of the
hybrid bus characteristic coefficient for the four typical virtual polymers of utar,1, . . . , utar,5
was calculated.

Finally, a machine learning model based on XGboost was constructed to learn the
mapping relationship between the membership degree and the proportion of virtual aggre-
gates; in addition, the category identification and proportion determination of the virtual
aggregates was completed. The mapping is shown in Figure 7.

Xgboost

    

    

Regressor

,2taru ,2taru

,1taru ,1taru

,2taru ,2taru

,2taru ,2taru

The proportional content 

of virtual aggregate 1

The proportional content 

of virtual aggregate 2

The proportional content 

of virtual aggregate 3

The proportional content 

of virtual aggregate 4

Figure 7. Virtual aggregate proportion identification model.
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3.3. Virtual Polymer Running Power Curve Extraction

The categories and proportions of the virtual aggregates of mixed buses were obtained
by means of the methods in Section 3.2. Furthermore, the operating power curves of the
virtual aggregates were extracted and are detailed in this section. Since there was only one
observable power curve for a mixed bus, while there were multiple operating power curves
for the extracted virtual aggregates, this problem belongs to the single-channel blind source
separation problem. This kind of problem is an underdetermined blind source problem,
and it is impossible to directly separate the operating power curve of virtual aggregates.
Therefore, this paper uses Ensemble Empirical Mode Decomposition (EEMD) to separate
the single-channel mixed bus power signal into several Intrinsic Mode Function (IMF)
components. Furthermore, according to the number of possible sources for a single-
channel signal (i.e., the number of categories of virtual aggregates that were identified), an
appropriate IMF component was selected in order to compose a new observation quantity,
which was performed so as to realize the blind source separation of a single-channel mixed
bus power curve signal.

3.3.1. EEMD

Ensemble Empirical Mode Decomposition (EEMD) is an extended version of Empirical
Mode Decomposition (EMD). The mode aliasing problem in EMD is solved by adding a set
of white noise to the raw data. The following is a basic introduction to the EEMD algorithm.

(1) Add a series of different white noises to the original data X(t) to create the multiple
data sets Xi(t) = X(t) + ωi(t), where ωi(t) is white noise.

(2) For each Xi(t) application of EMD decomposition, carry out the decomposition into a
series of IMFs.

(3) For each IMF, the average of all noisy instances is calculated to obtain the final IMFs,
i.e., the k− th IMF is the average of the k− th IMFs, which is obtained by decomposing
all Xi(t).

Here are the steps for EMD decomposition:

(1) For the input data Xi(t), identify all the local maximum and minimum values.
(2) Create an envelope of maximum and minimum values by interpolation.
(3) Calculate the mean m(t) of the envelope and subtract it from the raw data to obtain

h(t) = Xi(t)−m(t).
(4) Check whether h(t) meets the conditions of the IMFs. If satisfied, then h(t) is an IMF.

If it is not satisfied, repeat the above steps for h(t) as new data.

IMF is a function that satisfies two basic conditions: in the whole data set, the number
of maximum values and the number of minimum values must be equal to or no more than
1 difference; at any point, the mean of the envelope defined by the local maximum and the
envelope defined by the local minimum is zero.

3.3.2. FastICA Algorithm

FastICA is an efficient Independent Component Analysis (ICA) algorithm that is used
for extracting statistically independent components from multivariable signals. FastICA is
designed to extract independent components from the observed signal x(t). The observed
signal can be represented as a linear mixture of the unknown independent source signal
s(t) as follows:

x(t) = As(t). (14)

In the above formula, A is an unknown mixed matrix. The goal of FastICA is to find a
unmixing matrix W that renders the following:

s(t) ≈Wx(t). (15)
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The iterative formula of the FastICA algorithm that takes negative entropy as the
objective function is as follows:{

W∗ = E
{

Xρ
(
WTX

)}
− E

{
ρ′
(
WT I

)}
W

W = W∗
‖W∗‖ , (16)

where ρ is a nonlinear activation function, such as the tanh function, and ρ′ is the derivative
of ρ.

The FastICA algorithm is widely used in signal processing, EEG analysis, financial
data analysis, and other such fields because of its fast speed and good effects. By optimizing
non-Gaussianity, FastICA is able to efficiently extract independent source signals from
mixed signals.

3.3.3. Blind Source Separation of Single-Channel Hybrid Bus Power Signals Based on
EEMD-FastICA

In this section, a blind source separation model for single-channel mixed bus power
signals, based on EEMD-Fastica, is detailed. First, the single-channel mixed bus power
signals were separated into several IMF components using the EEMD method, and a corre-
lation analysis was performed between all the IMF components and the original mixed bus
power signals. Secondly, according to the number of virtual aggregates identified n, the
n IMF components with the highest correlation were selected to compose the new obser-
vations. Finally, the FastICA algorithm was applied to realize the blind source separation
of single-channel hybrid bus power signals by taking the newly formed observations as
the input so as to extract the running power curves of virtual aggregates. The blind source
separation process of single-channel hybrid bus power signals based on EEMD-FastICA is
shown in Figure 8.

IMF2

IMF3

IMF4

Virtual aggregate 

1 power

Virtual aggregate 

1 power

Virtual aggregate 

2 power

Virtual aggregate 

3 power

Virtual aggregate 

4 power

Single channel 

hybrid bus power

Single channel 

hybrid bus power
EEMD FastICA

IMF1IMF1

Figure 8. A flow chart of single-channel hybrid bus power signal blind source separation.

4. Virtual Polymer Power Prediction Based on Improved STGCN

Virtual aggregates contain many types of distributed resources, such as electric vehi-
cles, temperature-controlled loads, etc. Therefore, their behavior characteristics are subject
to the coupling effect of multiple factors, such as date, time period, weather, electricity
price, etc. In order to fully perceive the complex coupling factors affecting the output of
virtual aggregates and to master the future output characteristics of virtual aggregates, a
virtual polymer power prediction method based on improved STGCN is proposed and
detailed in this section.
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4.1. Improved STGCN Prediction Model

The graph topology is defined as G = (V, E, A), where V = {v1, v2, . . . , vN} represents
the set of nodes in the graph, N is the number of nodes, and E represents the set of edges
in the graph. Furthermore, in the graph node, vi is connected with vj, and the connected
edge is recorded as εij ∈ E as follows:

A =


a11 a12 · · · a1N

a21
. . . a2N

...
. . .

...
aN1 aN2 · · · aNN

,

which represents the adjacency matrix of the graph. In addition, depending on the topology
of the graph, if the node vi is connected to vj in the graph, then aij takes 1; if there is no aij,
then it takes 0.

The core of graph convolutional networks (GCNs) is the neighborhood aggregation
mechanism. Through a Laplacian matrix, the nodes in the graph can aggregate informa-
tion, and the new feature of each node is the aggregation of its own features and those
of its neighbors. This enables each node to extract the whole graph node feature and
topological feature.

GCNs are neural networks consisting of multiple layers, each of which performs
neighborhood aggregation operations. As the number of layers increases, the range of
aggregated information for each node becomes broader. The mode of propagation between
layers is as follows:

H(l+1) = σ
(

D̃−
1
2 ÃD̃−

1
2 H(l)W(l)

)
. (17)

In the above formula, l represents the number of layers; H is the feature of the middle
layer of the neural network, that is, the spatial feature of the whole map extracted by each
layer of the neural network; H(0) is the initial feature information given to each node;
Ã = A + I, A is the adjacency matrix above; I is the identity matrix; D̃ is the degree matrix
of Ã, that is, D̃ii = ∑

j
Ãij, which, like the adjacency matrix, depends on the topology of the

graph; W(l) is the weight matrix of each layer; and σ is a nonlinear activation function.
Gated Recurrent Units (GRUs) are a kind of special recurrent neural network, which

are mainly designed to solve the problem of gradient disappearance and gradient explosion
during long sequence training. Simply put, GRUs can perform better in longer sequences
than ordinary recurrent neural networks, and GRU networks are simpler and faster than
other variants of recurrent neural networks. The calculation process of GRUs is as follows:

rt = σ(xtWxr + ht−1Whr + br) (18)

zt = σ(xtWxz + ht−1Whz + bz) (19)

h′t = tanh(xtWxh′ + (rt � ht−1)Whh′ + bh′) (20)

ht = (1− zt)� ht−1 + zt � h′t, (21)

where xt is the current input; ht−1 is the hidden state passed down from the previous node,
which contains the relevant information of the previous node; yt is the output of the current
node; ht is an implicit state passed to the next node; r is the reset door; z is the update
door; σ, tanh is the activation function; W and b are the weight and bias of each calculation
module, respectively; and � is the matrix dot product calculation.
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The combination of GCNs and GRUs can extract the time features of graph structure
data and can effectively expand the parameter scale of the model. The combined model is
called the SpatioTemporal Graph Convolution Network (STGCN).

The final feature H(lN) extracted by the graph convolutional network at each moment
was used as the timing input of the GRU network, and the output results were synthesized
into the fully connected layer to output the steady-state prediction results of the model.
The full-connection layer used bilinear mapping for a second-order pooling method of
the graph to further extract the feature representation and reduce the dimension of the
output result. Compared with the conventional pooling method, which directly compacts
the feature dimension to one dimension, the second-order pooling method can reduce the
number of model parameters and enhance the performance of graph pooling by extracting
the second-order information. In addition, the second-order pooling method has the permu-
tation invariance of graph nodes, that is, for the same network (albeit with different node
numbers), the second-order pooling module can obtain consistent feature representation.
The calculation method of bilinear mapping for a second-order pooling is shown as follows:

Y = flatten
(

WTXT
h XhW

)
, (22)

where flatten is a one-dimensional function; Xh is the feature representation matrix of the
graph obtained through the fully connected layer; and WT is a linear mapping matrix in the
second-order pooling method. After the second order pooling of the Xh, the final model
prediction result Y is obtained by one-dimensional processing of the flatten function.

The structure diagram of the improved STGCN multitemporal joint prediction model
is shown in Figure 9.

Figure 9. Improved flow chart of the virtual polymer output prediction for STGCNs.

4.2. Graph Structure Modeling

(1) Node
In the virtual aggregate output prediction based on improved STGCNs, the node
modeling, as shown in the figure, was divided into five categories, namely the virtual
aggregate output, date label, time label, weather factor, and the electricity price signal.
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(2) Edges and their weights
In this section, the Maximal Information Coefficient (MIC) was used to model and
weight the edges between all of the above nodes, and the correlation coefficient
matrix was transformed into the adjacency matrix A, which is used by the graph
convolutional network. Meanwhile, in order to improve the model performance of the
graph convolutional network, it was necessary to control the sparsity of the adjacency
matrix. The adjacency matrix A is expressed as follows:

aij =

{
MICij , i 6= jor exp

(
−MICij

)
≤ ε

0, other
, (23)

where aij represents the weight of the edge, and ε is used to control the sparsity of the
adjacency matrix. When i = j or exp(−MICij) > ε, aij = 0, the reference will be set to
0.8, and when the nonzero value of the adjacency matrix A accounts for about 36% of
the total, the model has the best prediction effect.

(3) Graph
In the improved STGCN virtual aggregate output prediction, the status of t at each
moment was modeled as a graph structure G = (V, E, A), and the status data of the
virtual aggregate time sequence were modeled as a set of the time sequence graph
structures Gt, Gt+1, . . . , Gt+h.

This section is devoted to the advanced prediction of the output of the virtual aggre-
gates. Ht and xt represent the graph signals at t time. The STGCN model was improved
through training, and the features of the m graph signals at a past time were mapped to the
graph signals 1∼h steps ahead as follows:

[Ht−m, . . . , Ht−1]
GRU−STGCN−−−−−−−−→ [xt, . . . , xt+h−1]. (24)

The constructed experimental data set was divided into a training set, verification set,
and test set according to the ratio of 8:1:1. The training set was used to train the model; the
verification set was used to verify the results and performance of the model training; and,
finally, the model was compared with the other models in another set of data, i.e., the test
set, to verify the superiority of the model.

The root mean square error (RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE) were used as the test criteria for predicting the accuracy of the
model. The smaller the values of the RMSE, MAE, and MAPE, the higher the prediction
accuracy of the model.

5. Example Analysis
5.1. Data Simulation Generation

Due to the confidentiality of the power grid operation data and demand response data,
this paper adopted an open data set for simulation and example analysis. First of all, we
needed a busbar power data set that shows the various components for training the model
and for verifying the effectiveness of the proposed method. In this paper, the load data set
of New England in 2022 was selected, as it contains the total load of the region and the
load of eight partitions, which conforms to the application scenario of this paper. Secondly,
we needed to simulate the demand response behavior of the power grid and construct the
historical data before and after the demand response to meet the technical scenario set in
this paper, as well as to conform the input data to the format required by the model. Finally,
we looked for environmental data and electricity price data to complement our data set.

5.2. Input Data

A hybrid bus containing Class I, Class III, and Class IV virtual polymers was simulated
and generated. The power of the hybrid bus is shown in Figure 10.
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Figure 10. The power curves of the actual hybrid bus and the actual virtual aggregate.

By simulating and generating the data of the typical virtual aggregates, we calculated
the demand response characteristic coefficients of the four types of typical virtual aggre-
gates, as well as calculated the clustering centers of these characteristic coefficients, as
shown in Table 1.

Table 1. The clustering center of the demand response characteristic coefficients of the typical virtual
aggregates.

I1 I2 I3 I4 I5

Class I 0.96 0.43 0.51 1.19 1.00
Class II 0.97 0.44 0.46 1.31 1.00
Class III 0.92 0.82 0.37 1.16 2.00
Class IV 1.00 0.00 0.00 1.13 1.00

As can be seen from the above table, the values of the first two coefficients depend
on the actual regulation depth and regulation frequency of the resource aggregator’s
participation in the demand response, which are related to the generated data in this
example. Compared with the three types of virtual polymers, the response depth coefficient
of the Class III virtual polymers was the largest because the power of the time-shifted
resources could be reduced to 0 in some periods and transferred to other periods, and its
adjustment depth was also the largest. Because Class IV virtual polymers are not adjustable,
the curve before and after adjustment was the same; as such, its adjustment depth was 0,
and the correlation of the curve before and after adjustment was 1. In addition, the response
duration of the Class I virtual polymers was relatively the longest, the response fluctuation
entropy of Class II virtual polymers was the largest, and the time-shift coefficient of the
Class III virtual polymers was the largest, which conformed to the regulatory characteristics
of the various virtual polymers.

Then, the characteristic coefficient of the hybrid bus was calculated, and the virtual
aggregates in hybrid buses were identified according to the clustering center of the charac-
teristic coefficient of the demand response of the typical virtual aggregates. The results are
shown in Table 2.
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Table 2. Identification results of the virtual aggregates in hybrid buses.

Class I Class II Class III Class IV

Hybrid bus 16.16% 1.08% 36.69% 46.07%

As shown in the above table, the content of the Class II virtual polymers in the
identification results was particularly small; as such, it was considered that there were
no Class II virtual polymers in the mixed bus, that is, the mixed bus was generated
by the mixing of the other three types of virtual polymers, which aligns with the actual
situation of the calculation example. Of course, there may be situations where the content of
certain virtual aggregates is extremely low in the actual busbars. However, this paper—by
adjusting the data and repeatedly testing—shows that the mixed buses, under the data set
utilized in this paper (and when the content of a certain type of virtual aggregate in the
identification results exceeds 8%), could be considered to contain such virtual aggregates.

After the above, the power curves of the virtual aggregates were analytically extracted,
the power curves of all of the kinds of virtual aggregates were reconstructed, and the results
were compared with the input data, as shown in Figure 11.

As shown in the figure, the proposed method can be used to effectively separate the
power of the hybrid bus, and the content ratio of each virtual polymer was found to be close
to the actual scenario. When comparing the power curves of each virtual aggregate with
the actual situation and the reconstructed mixed buses with the actual mixed buses, it was
found that there were still some errors in the curves that were extracted from the calculation.
However, considering the incomplete information, the input data of the calculation example
only included the power curves before and after the adjustment of the mixed buses, and
this was without specific information, such as the components of the distributed resources
and historical data. The results of this example, however, were still found to be reasonable
and acceptable.
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Figure 11. The power curves of the separated virtual aggregate and their reconstruction curves were
calculated.
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5.3. Comparison of Prediction Methods

In this section, we detail how we explored the intricate relationships between factors such
as date, time periods, weather, and electricity prices, as well as the power of virtual aggregates.
Additionally, we conducted predictions on the power curve of the virtual aggregates.

Weather and electricity price data, serving as inputs for the prediction model, are
displayed in Figures 12 and 13.

Figure 12. The weather data.

Subsequently, by using the data set generated from the simulations in Section 5.1, we
applied the EEMD-FasiICA method to extract the operational power curve of the virtual
aggregates. By matching and combining data such as date, time periods, weather, and
electricity prices with the operational power curve of the virtual aggregates, we constructed
a data set for advanced forecasting. After dividing the prepared data set into training,
testing, and validation sets in an 8:1:1 ratio, we trained the model algorithm of the improved
STGCN proposed in this paper on the training and testing sets. Additionally, to validate
the effectiveness and superiority of our method, we selected the Multilayer Perceptron
model as a control group and trained it with the same data set.

Finally, the predictive performance of our model and the Multilayer Perceptron model
was evaluated on the validation set, with the results presented in Figure 14.

Figure 13. The electricity price data.
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Figure 14. Comparison of the prediction results.

As shown in the above figure, we tested the prediction effect of the improved STGCN
model with that of the ordinary Multilayer Perceptron model. Since the improved STGCN
model proposed in the text mined the coupling correlation of the time series multivariate
data, it was superior to the traditional neural network model in terms of prediction. The
evaluation indexes of the RMSE, MAE, and MAPE of the two models are shown in Table 3.

Table 3. Evaluation index comparison.

RMSE MAE MAPE

Improved STGCN 0.0787 0.0062 2.47
Multilayer Perceptron 0.1206 0.0145 3.20

6. Conclusions and Future Prospects

This study focuses on demand response businesses. Firstly, the regulatory characteris-
tics of distributed resources participating in demand responses were thoroughly sorted out.
On this basis, the distributed resources were virtually aggregated, and four types of virtual
aggregates were defined. Then, an algorithm was designed to identify and extract the
power of each virtual aggregate from the bus power in the case of incomplete information.
In addition, based on the power curve of the virtual polymer, this paper deeply explored
the various environmental and electricity price factors that affect its operating power, as
well as constructed an artificial-intelligence-based virtual polymer power prediction model
to realize the advanced prediction of virtual polymer power. The example analysis showed
that the proposed method was effective and superior and that it could help dispatching
control centers grasp the operation power of distributed resource aggregation under con-
ditions of incomplete information. In addition, the provided electricity price and virtual
aggregate power fitting mapping relationship provided effective decision support for dis-
patching control centers in terms of economic dispatching, demand responses, and bus
load power predictions.

With respect to the future outlook of this research, an important direction is to further
optimize and refine the classification and power prediction models of virtual aggregates to
adapt to more diverse and dynamically changing energy demand scenarios. In addition,
more types of distributed resources should be explored within the framework of virtual
aggregators to improve the flexibility and adaptability of the overall system.
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