
Citation: Wang, J.-H.; Lai, Y.-T.; Tai,

T.-C.; Le, P.T.; Pham, T.; Wang, Z.-Y.;

Li, Y.-H.; Wang, J.-C.; Chang, P.-C.

Target Speaker Extraction Using

Attention-Enhanced Temporal

Convolutional Network. Electronics

2024, 13, 307. https://doi.org/

10.3390/electronics13020307

Academic Editor: Janos Botzheim

Received: 25 November 2023

Revised: 18 December 2023

Accepted: 28 December 2023

Published: 10 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Target Speaker Extraction Using Attention-Enhanced Temporal
Convolutional Network
Jian-Hong Wang 1, Yen-Ting Lai 2, Tzu-Chiang Tai 3,*, Phuong Thi Le 4,*, Tuan Pham 5 , Ze-Yu Wang 1,
Yung-Hui Li 6 , Jia-Ching Wang 7 and Pao-Chi Chang 2

1 School of Computer Science and Technology, Shandong University of Technology, Zibo 255000, China;
jhwang@sdut.edu.cn (J.-H.W.); 23505020697@stumail.sdut.edu.cn (Z.-Y.W.)

2 Department of Communication Engineering, National Central University, Taoyuan 32001, Taiwan;
108523080@cc.ncu.edu.tw (Y.-T.L.); pcchang@ce.ncu.edu.tw (P.-C.C.)

3 Department of Computer Science and Information Engineering, Providence University,
Taichung 43301, Taiwan

4 Department of Computer Science and Information Engineering, Fu Jen Catholic University,
New Taipei City 24205, Taiwan

5 Faculty of Digital Technology, The University of Danang—University of Technology and Education,
Danang 550000, Vietnam; ptuan@ute.udn.vn

6 AI Research Center, Hon Hai Research Institute, New Taipei City 236, Taiwan; yunghui.li@foxconn.com
7 Department of Computer Science and Information Engineering, National Central University,

Taoyuan 32001, Taiwan; jcw@csie.ncu.edu.tw
* Correspondence: tctai@pu.edu.tw (T.-C.T.); ptle@csie.fju.edu.tw (P.T.L.)

Abstract: When recording conversations, there may be multiple people talking at once. While our
human ears can filter out unwanted sounds, this can be challenging for automatic speech recognition
(ASR) systems, leading to reduced accuracy. To address this issue, preprocessing mechanisms such as
speech separation and targeted speaker extraction are necessary to separate each person’s speech.
With the development of deep learning, the quality of separated speech has improved significantly.
Our objective is to focus on speaker extraction, which entails implementing a primary system for
speech extraction and a secondary subsystem for delivering target information. To accomplish
this, we have chosen a temporal convolutional network (TCN) architecture as the foundation of
our speech extraction model. A TCN enables convolutional neural networks (CNNs) to manage
time series modeling, and it can be constructed in various model lengths. Furthermore, we have
integrated attention enhancement into the secondary subsystem to provide the speech extraction
model with comprehensive and effective target information, which helps to improve the model’s
ability to estimate masks. As a result, the quality of the target speaker extraction will be greatly
enhanced with a more precise mask.

Keywords: deep learning; target speaker extraction; temporal convolutional network (TCN); convo-
lutional neural network (CNN); automatic speech recognition (ASR)

1. Introduction

Separating the speech segment of the target person from a noisy recording of a party is
part of addressing the cocktail party problem [1,2]. Speech enhancement is used to enhance
the part of human voice or noise reduction is used to filter out unwanted noise. However,
sometimes there are multiple voices, such as in the aforementioned cocktail party problem,
and we use speech separation to separate all individual voices. If the only interest is the
specific target voice, we can provide information to the system to find the target speech,
which is called target speaker extraction.

Engaging in conversation and communicating with others is a crucial aspect of human
social interaction. However, recording conversations can be challenging, particularly in
environments with multiple speakers and background noise. While our ears can naturally

Electronics 2024, 13, 307. https://doi.org/10.3390/electronics13020307 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13020307
https://doi.org/10.3390/electronics13020307
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9225-0191
https://orcid.org/0000-0002-0475-3689
https://orcid.org/0000-0003-3097-4714
https://doi.org/10.3390/electronics13020307
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13020307?type=check_update&version=2

Electronics 2024, 13, 307 2 of 24

distinguish and focus on specific sounds, an automatic speech recognition (ASR) system
may struggle with interference, resulting in reduced accuracy. This is known as the cock-
tail party problem, which highlights the need for preprocessing mechanisms like speech
separation and target speaker extraction to separate speech from each individual speaker
before using an ASR system. Automatic speech recognition (ASR) systems have become
integral in facilitating seamless human–computer interaction, converting spoken words
into machine-readable text using complex algorithms and machine learning techniques.
While ASR technology has seen substantial progress, it is not without its limitations. It is not
only hampered by acoustic interference by background noise such as traffic, crowd noise,
but also speaker variability like accents, dialects, microphone quality and so on. Bartelds
et al. reveal issues such as the diminishing returns of data augmentation in data-rich envi-
ronments and the oversight of sociolinguistic factors, which are critical in diverse linguistic
contexts [3]. Furthermore, Li et al. discuss the challenges faced by ASR systems in han-
dling continuous speech sequences and streaming speech, highlighting the need for more
sophisticated models to tackle these issues [4]. In another paper, Feng et al. underscore the
biases against various speaker groups present in current ASR systems, emphasizing the
necessity for more inclusive and unbiased ASR technologies [5]. These studies collectively
indicate a pressing need for advancements in ASR systems to ensure their efficiency and
fairness across different languages, dialects, and sociolinguistic backgrounds.

Our system is designed to extract the speech of a specific speaker, rather than separat-
ing multiple speakers in a mixture. This is achieved by providing a reference speech, which
can be obtained from a personal smart device. Unlike speech separation, our approach
eliminates the need to determine the number of speakers in the mixture and avoids the
mask permutation problem. Our system generates a mask that exclusively targets the
desired speaker and ignores all other voices.

We utilize a time domain model based on a temporal convolutional network (TCN) [6]
in practical applications. This enables convolutional neural network (CNN) to handle
time series modeling and be constructed with varying model lengths. Our proposed
attention enhancement method enhances the system’s ability to generate target embedding
vectors with more comprehensive information from the reference speech. To measure
reconstruction loss, instead of the scale-invariant signal-to-distortion ratio (SI-SDR), we
used the scale-dependent signal-to-distortion ratio (SD-SDR) [7]. Our experimental results
demonstrate that the above-mentioned methods significantly improve the quality of the
extracted speech.

2. Background of Target Speech Extraction

Target speaker extraction is a specialized form of speech separation technique. It aims
at isolating and enhancing the speech of a specific individual from a complex acoustic
mixture. This technology is crucial in scenarios where the clarity of a particular speaker’s
voice is paramount amidst a backdrop of other speakers, ambient noise, or various sound
sources. The process involves several stages, including the identification of the target
speaker, often through a reference voice sample, followed by the extraction of distinctive
audio features. Sophisticated algorithms, frequently employing deep learning methods,
are then used to separate the target speaker’s voice from the surrounding audio. This
separation is achieved by leveraging the unique characteristics of the speaker’s voice
as compared to other sounds in the environment. The final output is an audio stream
where the target speaker’s voice is prominently featured, with other noises and voices
substantially reduced. This technology has seen significant advancements, particularly
with the advent of neural network models adept at processing time series data, such as
recurrent neural networks (RNNs) [8] and convolutional neural networks (CNNs) [9]. It
has wide-ranging applications, including in telecommunications, voice-activated devices,
and hearing aids [10]. In this section, we will first introduce recent advancements in
speech separation techniques based on deep learning methods. We will also highlight the
challenges encountered in speech separation and discuss relevant processing methods.

Electronics 2024, 13, 307 3 of 24

Subsequently, we will introduce target speaker extraction, which is proposed to address
the difficulties in separation tasks. This approach can overcome some of the practical
challenges encountered in real-world applications. With advancements in technology and
the widespread availability of personal portable electronic devices, achieving target speaker
extraction has become much easier. It can be effectively used as a preprocessing step for
other natural language processing or speech processing techniques, thereby improving
overall performance. Additionally, as both speech separation and target speaker extraction
rely on estimating effective masks for speech separation, we will also discuss estimation
methods based on time frequency or time domain analysis.

2.1. Mask-Based Separation Method in Time Frequency Domains

Whether in speech separation or target speech extraction, the purpose of training
neural network models is to produce effective tools for separating target audio. The most
common approach is to use masking to separate the audio. In general, audio signals are
one-dimensional signal vectors, and directly partitioning the signal to extract different
speakers’ speech is challenging. Therefore, a common practice is to transform the signal
into the time frequency domain for analysis. This can be achieved by performing short
time Fourier transforms (STFTs) to convert the signal into the time frequency domain [11].

First, the speech signal is framed by dividing the signal into segments based on a spec-
ified window size. Then, each segment undergoes a fast Fourier transform (FFT) to obtain a
spectrogram, which represents the time frequency variations and serves as a representation
in both the time and frequency domains [12]. Equation (1) describes the computation of
STFT, where x[n] represents the audio signal and w[n] represents the window function
with a length of N. Common forms of window functions include rectangular window,
Hamming window, Hanning window, and triangular window, among others. Here, we
take the rectangular window as an example, and Equation (2) shows its definition. By
applying STFT, we can generate time frequency information for N time segments.

X[f , k] = ∑ N
n=0 x[n]w[n − k]Wkn

N , 0 ≤ f ≤ N
2

, 0 ≤ k ≤ N (1)

w[n] =
{

1, |n| ≤ N
2

0 (2)

The commonly used approach for separating signals using STFT is to compute the
absolute values of each time frequency bin in the spectrogram, resulting in an energy
spectrogram. The mask separation technique involves generating a matrix of the same size
as the spectrogram, where the values represent weights corresponding to the proportion
of desired signal energy at each time frequency position. This matrix is referred to as the
mask. The estimated mask aims to closely resemble the ideal ratio mask (IRM) [13], which
is defined in Equation (3).

IRM =

(
S(t, f)2

X(t, f)2

)0.5

(3)

where S(t, f) represents the spectrogram of the target signal, and X(t, f) represents the
spectrogram of the mixed signal. Using element-wise multiplication of the mask and spec-
trogram, we can obtain the estimated spectrogram of the target signal. Finally, performing
inverse STFT allows us to reconstruct the estimated target signal.

2.2. Deep Learning-Based Speech Separation Techniques

The accurate estimation of masks has become a crucial issue in the context of sepa-
rating speech signals using mask-based approaches. In recent years, with the application
of deep learning methods in various research fields, there have been studies focusing on
utilizing deep learning methods to estimate masks for speech separation. Ha et al. propose
to achieve mask estimation for speech separation by using a node encoder to generate inter-
mediate features, which are then processed through a deep clustering method to construct

Electronics 2024, 13, 307 4 of 24

the estimation mask. The innovative part of their approach is the use of squash-norm,
a non-linear function that normalizes input and output vectors to amplify their differ-
ences, thus enhancing feature discrimination and improving mask construction for speech
separation [14]. Luo et al. estimate masks for speech separation through a temporal convo-
lutional network that employs stacked one-dimensional dilated convolutional blocks [15].
These masks, applied to the linear encoder’s output, allow the model to effectively model
long-term dependencies in the speech signal, achieving superior performance in separat-
ing speakers from two- and three-speaker mixtures while maintaining a smaller model
size and shorter minimum latency compared to previous methods. Tan et al. introduce
SeliNet, a lightweight and efficient network for single-channel speech separation, which
stands out for its one-dimensional convolutional architecture with bottleneck modules and
atrous temporal pyramid pooling, balancing high performance with low computational
cost and small model size [16]. Wang et al. investigate speaker-independent continuous
speech separation algorithms, likely employing techniques such as signal processing, deep
learning, or a combination thereof to estimate masks for separating overlapping speech
signals in the LibriCSS dataset [17]. Lee et al. suggest a complex-valued deep recurrent
neural network (C-DRNN) designed for singing voice separation, operating in the complex-
valued short-time discrete Fourier transform (STFT) domain with complex activations and
weights [18]. The C-DRNN aims to reconstruct singing voices and background music from
mixed signals, using CR-calculus for complex-valued gradient calculation and incorpo-
rating two constraints in its objective function: an additional masking layer for source
summation accuracy and a discriminative term to maintain the distinctiveness between
separated sources. The following subsections will introduce other methods based on either
time frequency domain models or time domain models, and then address the challenges
encountered in speech separation.

2.2.1. Time Frequency Domain-Based Model

Networks are designed to mimic the biological neural system. In this subsection, we
will introduce a neural network model based on the time frequency domain, called the
Deep Attractor Network (DANet) [19] as an example. The inspiration for the DANet model
comes from a psychological auditory phenomenon in humans known as the perceptual
magnet effect [20]. This effect explains how the human brain establishes perceptual attrac-
tors for familiar sounds, so that when encountering similar sounds again, the brain can
quickly make connections through these attractors, leading to memory and familiarity with
the sound.

Figure 1 shows the overall architecture of DANet. Initially, the mixed audio (mix-
ture) undergoes STFT to obtain the time frequency spectrogram. Then, a neural network
consisting of four layers of bidirectional long short-term memory (BLSTM) [21] and fully
connected layers is used to record the mapping from the time frequency spectrogram to an
embedding space. In this embedding space, the mapping of the spectrogram is represented
using an embedding matrix V, and k represents the dimensionality of the embedding space.

Inspired by the perceptual magnetic effect in humans, attractors can be constructed
in the embedding space to serve as reference points for finding speakers with similar
characteristics. The construction of attractor A is illustrated in Equation (4).

Ac,k =
∑ f ,t Vk, f t × Yc, f t

∑ f ,t Yc, f t
(4)

where c ∈ C represents the number of source speakers, f ∈ F represents the frequency
dimension, and t ∈ T represents the time dimension. Y is the source relationship function,
which takes a value of 1 when source c has the maximum energy at time t and frequency
f, and 0 otherwise. In the embedding space, parts belonging to the same speaker will be

Electronics 2024, 13, 307 5 of 24

closer to their corresponding attractor, while non-corresponding attractors will be relatively
farther away. Exploiting this characteristic, the mask M can be estimated using Equation (5).

M f ,t,c = Sigmoid
(
∑ k Ac,k × Vf t,k

)
(5)

By estimating the masked audio, it is possible to separate the audio signals using the
method described in Section 2.1.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 24

𝐴 , = ∑ , , × ,∑ , , (4)

where 𝑐 ∈ 𝐶 represents the number of source speakers, 𝑓 ∈ 𝐹 represents the frequency
dimension, and 𝑡 ∈ 𝑇 represents the time dimension. Y is the source relationship func-
tion, which takes a value of 1 when source c has the maximum energy at time t and fre-
quency f, and 0 otherwise. In the embedding space, parts belonging to the same speaker
will be closer to their corresponding attractor, while non-corresponding attractors will be
relatively farther away. Exploiting this characteristic, the mask M can be estimated using
Equation (5). 𝑀 , , = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 ∑ 𝐴 , × 𝑉 , (5)

By estimating the masked audio, it is possible to separate the audio signals using the
method described in Section 2.1.

Mixture

Clean
Reference

Mask

Attractor

Ideal Mask/
K-means

LSTM
Layer

Embedding

Network

Figure 1. DANet Architecture.

2.2.2. Time Domain-Based Model
In the previous subsection, we introduced a type of speech separation model based

on the time frequency domain. These methods operate on the energy spectrogram and
estimate masks, resulting in the loss of some phase information. Consequently, the re-
constructed signal in the time domain may not achieve the best quality. Additionally,
performing STFT requires selecting a suitable frame size, as choosing a frame size that is
too small can compromise the effectiveness of the model. This also makes it challenging
for the model to achieve real-time processing. As a result, some research has explored
alternative approaches that directly utilize the time domain signal, leading to the devel-
opment of time domain-based model architectures.

Taking the Time-domain Audio Separation Network (TasNet) [22] as an example,
Figure 2 illustrates its architecture. The encoder consists of one-dimensional gated con-
volutional layers, while the decoder corresponds to one-dimensional deconvolutional
layers. In the middle, there is a mask estimation model composed of BLSTM layers and
fully connected layers. This architecture allows for the use of smaller time frames and
avoids the loss of phase information.

Figure 1. DANet Architecture.

2.2.2. Time Domain-Based Model

In the previous subsection, we introduced a type of speech separation model based on
the time frequency domain. These methods operate on the energy spectrogram and estimate
masks, resulting in the loss of some phase information. Consequently, the reconstructed
signal in the time domain may not achieve the best quality. Additionally, performing
STFT requires selecting a suitable frame size, as choosing a frame size that is too small
can compromise the effectiveness of the model. This also makes it challenging for the
model to achieve real-time processing. As a result, some research has explored alternative
approaches that directly utilize the time domain signal, leading to the development of time
domain-based model architectures.

Taking the Time-domain Audio Separation Network (TasNet) [22] as an example,
Figure 2 illustrates its architecture. The encoder consists of one-dimensional gated convolu-
tional layers, while the decoder corresponds to one-dimensional deconvolutional layers.
In the middle, there is a mask estimation model composed of BLSTM layers and fully
connected layers. This architecture allows for the use of smaller time frames and avoids the
loss of phase information.

Electronics 2024, 13, 307 6 of 24

Electronics 2024, 13, x FOR PEER REVIEW 6 of 24

The encoder, composed of convolutional layers, can be seen as a spatial domain
mapping concept that maps the temporal domain signals to a learned latent space. In this
space, the neural network model can better discriminate features and estimate masks.
The design of the gating mechanism highlights important information. In the middle
separation module, several layers of LSTM are used to filter and retain features. Then,
through fully connected layers, masks are estimated. The audio signals are mapped to a
matrix in the latent space, and a point-wise multiplication is performed to obtain the
separated speech signals of each speaker. Finally, the decoder reconstructs the signals
back to the temporal domain.

The authors of [22] state that the audio segmentation size of TasNet is 5 ms, which is
much smaller than the typical frame size of 32 ms used in STFT. Therefore, TasNet can
achieve real-time processing, and the performance of the estimated separated signals in
terms of signal-to-noise ratio (SNR) is superior to that of the DANet. Since then, many
related studies on speech separation have leaned towards developing methods based on
the time domain.

ReLu

FC

Speaker1

Speaker2

Decoder

δ

×

Encoder Separation

Mixture

Decoder

Segmentation Normalization

Deep
LSTMl-D

Conv

Figure 2. TasNet Network Architecture.

2.2.3. Discussion on the Challenges of Above Technology
The previous two subsections provide examples to illustrate speech separation

techniques based on different feature domains. However, when it comes to applying
these techniques to real-world applications, there are several challenges that need to be
overcome.

The first challenge is to separate the individual parts of each speaker from the mixed
audio, which requires prior knowledge of the total number of speakers. However, in re-
al-life situations, people can move around and the number of speakers can vary, making
it difficult to determine an exact number in advance. This issue further extends to the
problem that the trained models cannot generalize well to different numbers of speakers.
For example, a model trained on mixed audio from two speakers may not work well for
three speakers.

The second challenge involves the permutation problem of the generated masks. For
instance, if the produced masks are labeled 1 and 2, it is necessary to know whether these
masks correspond to speaker A or B. Incorrect permutations can lead to poor results.
Some research has addressed this problem, such as permutation invariant training [23],
which exhaustively enumerates all possible combinations to find the permutation with
the lowest loss as the correct solution. However, the computational complexity signifi-
cantly increases as the number of speakers grows. Another approach, recursive speech
separation [24], assumes N speakers and separates one speaker from the remaining N − 1
speakers, then repeats the same step for the remaining N − 1 speakers until all speakers
are separated. However, this approach can result in decreasing quality for speakers sep-
arated later in the process.

2.3. Target Speech Extraction Technique Based on Deep Learning Methods
In Section 2.2.3, discussions were held on some issues encountered in speech sepa-

ration. As a result, some researchers approached the problem from a different perspective
and proposed a method called target speech extraction, which aims to separate the

Figure 2. TasNet Network Architecture.

The encoder, composed of convolutional layers, can be seen as a spatial domain
mapping concept that maps the temporal domain signals to a learned latent space. In
this space, the neural network model can better discriminate features and estimate masks.
The design of the gating mechanism highlights important information. In the middle
separation module, several layers of LSTM are used to filter and retain features. Then,
through fully connected layers, masks are estimated. The audio signals are mapped to
a matrix in the latent space, and a point-wise multiplication is performed to obtain the
separated speech signals of each speaker. Finally, the decoder reconstructs the signals back
to the temporal domain.

The authors of [22] state that the audio segmentation size of TasNet is 5 ms, which
is much smaller than the typical frame size of 32 ms used in STFT. Therefore, TasNet can
achieve real-time processing, and the performance of the estimated separated signals in
terms of signal-to-noise ratio (SNR) is superior to that of the DANet. Since then, many
related studies on speech separation have leaned towards developing methods based on
the time domain.

2.2.3. Discussion on the Challenges of above Technology

The previous two subsections provide examples to illustrate speech separation tech-
niques based on different feature domains. However, when it comes to applying these
techniques to real-world applications, there are several challenges that need to be overcome.

The first challenge is to separate the individual parts of each speaker from the mixed
audio, which requires prior knowledge of the total number of speakers. However, in
real-life situations, people can move around and the number of speakers can vary, making
it difficult to determine an exact number in advance. This issue further extends to the
problem that the trained models cannot generalize well to different numbers of speakers.
For example, a model trained on mixed audio from two speakers may not work well for
three speakers.

The second challenge involves the permutation problem of the generated masks. For
instance, if the produced masks are labeled 1 and 2, it is necessary to know whether these
masks correspond to speaker A or B. Incorrect permutations can lead to poor results. Some
research has addressed this problem, such as permutation invariant training [23], which
exhaustively enumerates all possible combinations to find the permutation with the lowest
loss as the correct solution. However, the computational complexity significantly increases
as the number of speakers grows. Another approach, recursive speech separation [24],
assumes N speakers and separates one speaker from the remaining N − 1 speakers, then
repeats the same step for the remaining N − 1 speakers until all speakers are separated.
However, this approach can result in decreasing quality for speakers separated later in
the process.

2.3. Target Speech Extraction Technique Based on Deep Learning Methods

In Section 2.2.3, discussions were held on some issues encountered in speech separa-
tion. As a result, some researchers approached the problem from a different perspective
and proposed a method called target speech extraction, which aims to separate the speech

Electronics 2024, 13, 307 7 of 24

of a single target speaker. The advantage of targeting only one speaker is that it avoids
certain problems, such as permutation ambiguity, and eliminates the need to know the
total number of speakers, as various scenarios can be considered with the target and other
interfering sources.

Figure 3 illustrates the basic architecture of the target speech extraction model [25].
The role of the embedder is to map the time domain signal to a feature domain, similar to
the STFT or an encoder. To achieve target speech extraction, information about the target
is required, typically a short segment of clean speech from the target speaker. Similarly,
this speech segment is mapped using the embedder, and then the target information can
be summarized using methods like mean pooling to obtain an embedding vector. This
embedding vector, along with the input, is fed to the extractor, which utilizes the clues
provided by the embedding vector to generate a mask related to the target speaker and
ultimately extract the target speech.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 24

speech of a single target speaker. The advantage of targeting only one speaker is that it
avoids certain problems, such as permutation ambiguity, and eliminates the need to
know the total number of speakers, as various scenarios can be considered with the target
and other interfering sources.

Figure 3 illustrates the basic architecture of the target speech extraction model [25].
The role of the embedder is to map the time domain signal to a feature domain, similar to
the STFT or an encoder. To achieve target speech extraction, information about the target
is required, typically a short segment of clean speech from the target speaker. Similarly,
this speech segment is mapped using the embedder, and then the target information can
be summarized using methods like mean pooling to obtain an embedding vector. This
embedding vector, along with the input, is fed to the extractor, which utilizes the clues
provided by the embedding vector to generate a mask related to the target speaker and
ultimately extract the target speech.

Mean
Pooling

Concatenation

Embedder

Embedder

Extractor

Single Embedding Vector

Target Speaker's
Profile

Mixed Speech

Target Speaker's Mask

Figure 3. Basic architecture of the target speech extraction model.

Target speech extraction can be implemented using models based on either the time
frequency domain or the time domain, similar to speech separation. In this paper, a time
domain model architecture is used, as the problem setting has been modified to avoid
some of the challenges encountered in speech separation. Additionally, if information
about each speaker is known, separation of all speakers’ audio can be achieved by exe-
cuting target speech extraction separately for each speaker.

3. Proposed Architecture
3.1. System Architecture

Figure 4 shows the overall system architecture proposed in this paper, which inte-
grates deep learning techniques to achieve target speech extraction. The system archi-
tecture can be divided into two stages: the training stage and the testing stage. In the
training stage, we will introduce the source and generation methods of the speech da-
taset, as well as some preprocessing steps before entering the neural network model.
Next, we introduce the overall neural network model, which can be divided into four
blocks according to their functions: speech encoder, speaker encoder, speaker extractor,
and speech decoder. This model structure is based on the SpEx+ [26] baseline model. The

Figure 3. Basic architecture of the target speech extraction model.

Target speech extraction can be implemented using models based on either the time
frequency domain or the time domain, similar to speech separation. In this paper, a time
domain model architecture is used, as the problem setting has been modified to avoid some
of the challenges encountered in speech separation. Additionally, if information about each
speaker is known, separation of all speakers’ audio can be achieved by executing target
speech extraction separately for each speaker.

3. Proposed Architecture
3.1. System Architecture

Figure 4 shows the overall system architecture proposed in this paper, which integrates
deep learning techniques to achieve target speech extraction. The system architecture can
be divided into two stages: the training stage and the testing stage. In the training stage,
we will introduce the source and generation methods of the speech dataset, as well as some
preprocessing steps before entering the neural network model. Next, we introduce the
overall neural network model, which can be divided into four blocks according to their
functions: speech encoder, speaker encoder, speaker extractor, and speech decoder. This
model structure is based on the SpEx+ [26] baseline model. The difference is that we have

Electronics 2024, 13, 307 8 of 24

additionally added attention-enhancing mechanisms, delay-reducing methods, and used
different loss functions. During the training stage, the loss function will be calculated using
clean speech, and then the gradient will be updated through backpropagation to minimize
the loss function. Additionally, the model’s hyperparameters will be adjusted through
validation to facilitate effective learning of the model. In the testing stage, the process is
similar to the training stage, but backpropagation and loss function calculation will not be
performed. We will use some objective evaluation indicators to measure the quality and
efficiency of the system after processing the testing dataset.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 24

difference is that we have additionally added attention-enhancing mechanisms, de-
lay-reducing methods, and used different loss functions. During the training stage, the
loss function will be calculated using clean speech, and then the gradient will be updated
through backpropagation to minimize the loss function. Additionally, the model’s hy-
perparameters will be adjusted through validation to facilitate effective learning of the
model. In the testing stage, the process is similar to the training stage, but backpropaga-
tion and loss function calculation will not be performed. We will use some objective
evaluation indicators to measure the quality and efficiency of the system after processing
the testing dataset.

Encoder
(short)

Encoder
(middle)

Encoder
(long)

SI-SDR loss

Decoder
(short)

Decoder
(middle)

Estimated
Mask

Estimated
Mask

Estimated
Mask

Extractor Network

Concatenation

Encoder
(short)

Encoder
(middle)

Mixture
Data

Attention

Target
Data

CE Loss
S(t)

Target
Label

X

X1 X2 X3

x(t)y(t)

Y1

Y1 Y2 Y3

Y
C

Speaker

Embedding

Embedding

Context Dependent

M1 M2 M3

S1(t) S2(t) S3(t)

Speaker Encoder

Prediction

Softmax

Linear

Decoder
(long)

Encoder
(long)

Reference
Speech

Concatenation

Y1 Y2 Y3

Figure 4. Proposed system architecture. The system architecture is divided into two stages: the
training stage and the testing stage. In the training stage, the source and generation methods of the
speech dataset, preprocessing steps, and the overall neural network model are introduced. The
neural network model is divided into four blocks: speech encoder, speaker encoder, speaker ex-
tractor, and speech decoder. The model structure is based on the SpEx+ baseline model, with addi-
tional attention-enhancing mechanisms and delay-reducing methods. In the testing stage, objective
evaluation indicators are used to measure the quality and efficiency of the system after processing
the testing dataset.

3.2. Training Stage
For the training stage, we first introduce the source and generation of the speech

dataset and the preprocessing steps. Then, we introduce various components of the
neural network model, which have their own functions and different network structures.
Finally, we introduce various types of loss functions, which are used to update the pa-
rameters in the model through the calculation of the loss function. Table 1 lists the pa-
rameters setting for the training model. After multiple experiments and parameter ad-
justments, the model is able to converge successfully.

Figure 4. Proposed system architecture. The system architecture is divided into two stages: the
training stage and the testing stage. In the training stage, the source and generation methods
of the speech dataset, preprocessing steps, and the overall neural network model are introduced.
The neural network model is divided into four blocks: speech encoder, speaker encoder, speaker
extractor, and speech decoder. The model structure is based on the SpEx+ baseline model, with
additional attention-enhancing mechanisms and delay-reducing methods. In the testing stage,
objective evaluation indicators are used to measure the quality and efficiency of the system after
processing the testing dataset.

3.2. Training Stage

For the training stage, we first introduce the source and generation of the speech
dataset and the preprocessing steps. Then, we introduce various components of the neural
network model, which have their own functions and different network structures. Finally,
we introduce various types of loss functions, which are used to update the parameters in
the model through the calculation of the loss function. Table 1 lists the parameters setting
for the training model. After multiple experiments and parameter adjustments, the model
is able to converge successfully.

Electronics 2024, 13, 307 9 of 24

Table 1. Parameters setting for the training model.

Batch size 14

Learning rate 0.001

Learning rate decay 0.5

Epoch 50

Optimizer Adam optimizer

3.2.1. Preprocessing of the Speech Dataset

In this study, the LibriSpeech database [27] was used as the dataset, which contains
speech data from audiobooks recorded by LibriVox [27]. The recordings were segmented
into clips of 5 to 15 s in length, with a sampling rate of 16KHz. The clips were classified
and organized according to the speaker, with a total of 5466 speakers, including males and
females of different ages.

We randomly selected 95 speakers for training, validation, and testing datasets. The
speakers in the three datasets were not duplicated, making our experiments under opening
condition. Two different speakers, one as the target and the other as the interfering speaker,
were randomly selected from the dataset. One speech clip in each speaker’s folder was
randomly selected for synthesis. The strength of the interference was determined using a
signal-to-noise ratio (SNR) between 0 and 5 decibels (dB). In addition, another clean speech
clip of the target speaker was randomly selected, as the extraction of the target speech
requires a clean speech signal. Both speakers in the synthesized speech clips were used
as targets during the dataset composition, doubling the dataset size and balancing the
model’s learning.

Finally, the training, validation, and testing datasets contained 37,828, 7188, and
3648 clips, respectively. All audio signals were downsampled to 8 kHz to reduce computa-
tional complexity.

3.2.2. Speech Encoder

The speech encoder is the first block in the overall neural network model that receives
the audio input, as shown in Figure 5. As there are two segments of audio input, namely
the mixture and the reference, there are corresponding encoders for each. The speech
encoder is key, initially processing the mixed audio into an abstract form. In parallel, a
reference input, a distinct and singular speech signal, is processed using a similar speech
encoder. This encoder shares weights with the first, ensuring uniformity in the features it
extracts, thus maintaining a balanced audio mapping. The speaker encoder then examines
the reference signal to identify unique speaker traits, essential for the following separation
phase. These distinctive traits are channeled into the speaker extractor, which employs
them to isolate the target speaker’s voice from the mixed audio. The process concludes
with the speech decoder, which reconstitutes the estimated speech output, converting the
abstract features back into the distinct, isolated audio signal of the target speaker. This
complex procedure is fine-tuned through a shared-weight strategy among the encoders
during training, fostering consistency and boosting the system’s proficiency in singling out
and extracting the desired speech from a noisy backdrop.

Since speech signals contain a wealth of information, the speech encoder is de-
signed to encode the audio at multiple time scales in order to extract more information.
Figure 6 shows the architecture of the speech encoder, which consists of three parallel
one-dimensional convolutional layers with different kernel lengths, ranging from short to
long, denoted as L1, L2, and L3, respectively. The layer with the shortest kernel, L1, is finely
tuned to pick up the minutest aspects of speech, like the tiny tremors in a voice or the rapid
pace of speech sounds. This layer is essential for detecting the rapid, transient features in
speech. The medium kernel, L2, serves as a bridge, capturing the fundamental elements
of spoken language, such as the distinct sounds of vowels and consonants that combine

Electronics 2024, 13, 307 10 of 24

to form words. The longest kernel, L3, captures the broad, sweeping features of speech,
such as the rhythm and pitch, which convey the overarching narrative and emotions of the
speaker. After processing, the individual feature maps from each layer are combined. This
fusion produces a detailed representation of the speech, enabling the encoder to handle
complex speech processing by capturing everything from the finest details to the most
extensive speech patterns. The different kernel lengths can be considered a type of frame
size. The kernel length setting is shown in Table 2.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 24

combine to form words. The longest kernel, L3, captures the broad, sweeping features of
speech, such as the rhythm and pitch, which convey the overarching narrative and emo-
tions of the speaker. After processing, the individual feature maps from each layer are
combined. This fusion produces a detailed representation of the speech, enabling the
encoder to handle complex speech processing by capturing everything from the finest
details to the most extensive speech patterns. The different kernel lengths can be consid-
ered a type of frame size. The kernel length setting is shown in Table 2.

Speaker Encoder

Speech Decoder

Speaker Extractor

Speech Encoder Speech Encoder

Mixture Reference

Estimated
Speech

Figure 5. The role of speech encoder. In the core of this system, the speech encoder plays a crucial
role. It acts as the primary entry point, taking in the mixed audio and converting it into a concep-
tual representation. Simultaneously, a reference input, consisting of a clear, isolated speech signal,
undergoes processing using another speech encoder. This second encoder uses the same weights as
the first, ensuring that the features it extracts are consistent and aligned. The speaker encoder
identifies unique characteristics from the reference, aiding the speaker extractor in isolating the
target speaker’s voice. Finally, the speech decoder reconstructs this voice into clear, separated au-
dio, with a weight-sharing strategy across encoders enhancing the system’s effectiveness in noisy
environments.

Concatenation

1D-conv
(short)

1D-conv
(middle)

1D-conv
(long)

Speech

Figure 6. Architecture of speech encoder outlines an advanced speech encoder framework that
precisely extracts features from speech by employing three specialized convolutional layers, each
with a unique kernel size. These sizes correspond to different temporal scales: short, medium, and
long, allowing the encoder to capture a wide range of speech characteristics.

After the audio is encoded using the three parallel encoders, the results are concat-
enated, and the stride of the convolutional kernel is set to L1/2 to ensure that the resulting
dimensions are consistent. In addition, a stride smaller than the kernel size ensures that
important features are not easily lost by providing an opportunity for features to be re-
peatedly scanned. The audio that needs to be encoded is the mixture audio y(t) and the
target reference audio x(t). The encoding process can be represented by Equations (6) and
(7), where e(·) is the encoding function, e(·), Y and X are the feature matrices concatenated
from the mixture and reference audio encodings, θ is the convolutional layer parameter,
and N is the dimension size. 𝑌 = 𝑌 , 𝑌 , 𝑌 = 𝑒 𝜃|𝑦, 𝐿 ,𝐿 ,𝐿 ,𝑁 (6)

Figure 5. The role of speech encoder. In the core of this system, the speech encoder plays a crucial
role. It acts as the primary entry point, taking in the mixed audio and converting it into a conceptual
representation. Simultaneously, a reference input, consisting of a clear, isolated speech signal,
undergoes processing using another speech encoder. This second encoder uses the same weights
as the first, ensuring that the features it extracts are consistent and aligned. The speaker encoder
identifies unique characteristics from the reference, aiding the speaker extractor in isolating the target
speaker’s voice. Finally, the speech decoder reconstructs this voice into clear, separated audio, with a
weight-sharing strategy across encoders enhancing the system’s effectiveness in noisy environments.

Electronics 2024, 13, x FOR PEER REVIEW 10 of 24

combine to form words. The longest kernel, L3, captures the broad, sweeping features of
speech, such as the rhythm and pitch, which convey the overarching narrative and emo-
tions of the speaker. After processing, the individual feature maps from each layer are
combined. This fusion produces a detailed representation of the speech, enabling the
encoder to handle complex speech processing by capturing everything from the finest
details to the most extensive speech patterns. The different kernel lengths can be consid-
ered a type of frame size. The kernel length setting is shown in Table 2.

Speaker Encoder

Speech Decoder

Speaker Extractor

Speech Encoder Speech Encoder

Mixture Reference

Estimated
Speech

Figure 5. The role of speech encoder. In the core of this system, the speech encoder plays a crucial
role. It acts as the primary entry point, taking in the mixed audio and converting it into a concep-
tual representation. Simultaneously, a reference input, consisting of a clear, isolated speech signal,
undergoes processing using another speech encoder. This second encoder uses the same weights as
the first, ensuring that the features it extracts are consistent and aligned. The speaker encoder
identifies unique characteristics from the reference, aiding the speaker extractor in isolating the
target speaker’s voice. Finally, the speech decoder reconstructs this voice into clear, separated au-
dio, with a weight-sharing strategy across encoders enhancing the system’s effectiveness in noisy
environments.

Concatenation

1D-conv
(short)

1D-conv
(middle)

1D-conv
(long)

Speech

Figure 6. Architecture of speech encoder outlines an advanced speech encoder framework that
precisely extracts features from speech by employing three specialized convolutional layers, each
with a unique kernel size. These sizes correspond to different temporal scales: short, medium, and
long, allowing the encoder to capture a wide range of speech characteristics.

After the audio is encoded using the three parallel encoders, the results are concat-
enated, and the stride of the convolutional kernel is set to L1/2 to ensure that the resulting
dimensions are consistent. In addition, a stride smaller than the kernel size ensures that
important features are not easily lost by providing an opportunity for features to be re-
peatedly scanned. The audio that needs to be encoded is the mixture audio y(t) and the
target reference audio x(t). The encoding process can be represented by Equations (6) and
(7), where e(·) is the encoding function, e(·), Y and X are the feature matrices concatenated
from the mixture and reference audio encodings, θ is the convolutional layer parameter,
and N is the dimension size. 𝑌 = 𝑌 , 𝑌 , 𝑌 = 𝑒 𝜃|𝑦, 𝐿 ,𝐿 ,𝐿 ,𝑁 (6)

Figure 6. Architecture of speech encoder outlines an advanced speech encoder framework that
precisely extracts features from speech by employing three specialized convolutional layers, each
with a unique kernel size. These sizes correspond to different temporal scales: short, medium, and
long, allowing the encoder to capture a wide range of speech characteristics.

Table 2. Kernel length setting for speech encoder.

Setting Kernel Length (Samples/Time)

L1 20 (2.5 ms)

L2 80 (10 ms)

L3 160 (20 ms)

After the audio is encoded using the three parallel encoders, the results are concate-
nated, and the stride of the convolutional kernel is set to L1/2 to ensure that the resulting
dimensions are consistent. In addition, a stride smaller than the kernel size ensures that

Electronics 2024, 13, 307 11 of 24

important features are not easily lost by providing an opportunity for features to be repeat-
edly scanned. The audio that needs to be encoded is the mixture audio y(t) and the target
reference audio x(t). The encoding process can be represented by Equations (6) and (7),
where e(·) is the encoding function, e(·), Y and X are the feature matrices concatenated from
the mixture and reference audio encodings, θ is the convolutional layer parameter, and N is
the dimension size.

Y = [Y1, Y2, Y3] = e(θ|y, L1,L2,L3,N) (6)

X = [X1, X2, X3] = e(θ|x, L1,L2,L3,N) (7)

3.2.3. Speaker Encoder

The goal of the speaker encoder is to generate appropriate target-embedding vectors
to assist the extractor in mask estimation. These embedding vectors can be seen as critical
clues with target speaker information, and they can be divided into speaker-embedding
vectors and context-dependent embedding vectors.

First, we will explain the generation of speaker-embedding vectors. Figure 7 shows
the encoder architecture to generate speaker-embedding vectors. The target feature matrix
X, which is generated by the audio encoder, is used as input. Layer normalization (LN) [28]
is performed first. The operation normalizes all feature dimensions of each individual
sample. Then, a 1 × 1 convolutional layer (1 × 1 CNN) is applied, which is a convolutional
layer with a kernel size of 1. Its function is to adjust the dimensionality, which can reduce
or increase dimensions and allow information to flow between channels. After passing
through the 1 × 1 convolutional layer, a residual network (ResNet) [29] is used as the
main architecture of the encoder. In this paper, three ResNet blocks are used, and the
internal structure of the block is shown in Figure 8. These blocks are designed to help the
network learn an identity function, which ensures that the higher layers of the network can
perform at least as well as the lower layers, and thus, can avoid the problem of vanishing
gradients in deep networks. After the ResNet blocks, another 1 × 1 CNN layer is used to
further refine the features extracted via the network. The use of 1 × 1 convolutions helps
in reducing the dimensionality and adding non-linearity to the model without affecting
the receptive field of the convolutional layers. Finally, mean pooling calculates the mean
of the elements in the window of the feature map. Embedding vector (v) captures the
characteristics of the speaker’s voice.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 24

𝑋 = 𝑋 , 𝑋 , 𝑋 = 𝑒 𝜃|𝑥, 𝐿 ,𝐿 ,𝐿 ,𝑁 (7)

Table 2. Kernel length setting for speech encoder.

Setting Kernel Length (Samples/Time) 𝐿1 20 (2.5 ms) 𝐿2 80 (10 ms) 𝐿3 160 (20 ms)

3.2.3. Speaker Encoder
The goal of the speaker encoder is to generate appropriate target-embedding vectors

to assist the extractor in mask estimation. These embedding vectors can be seen as critical
clues with target speaker information, and they can be divided into speaker-embedding
vectors and context-dependent embedding vectors.

First, we will explain the generation of speaker-embedding vectors. Figure 7 shows
the encoder architecture to generate speaker-embedding vectors. The target feature ma-
trix X, which is generated by the audio encoder, is used as input. Layer normalization
(LN) [28] is performed first. The operation normalizes all feature dimensions of each in-
dividual sample. Then, a 1 × 1 convolutional layer (1 × 1 CNN) is applied, which is a
convolutional layer with a kernel size of 1. Its function is to adjust the dimensionality,
which can reduce or increase dimensions and allow information to flow between chan-
nels. After passing through the 1 × 1 convolutional layer, a residual network (ResNet) [29]
is used as the main architecture of the encoder. In this paper, three ResNet blocks are
used, and the internal structure of the block is shown in Figure 8. These blocks are de-
signed to help the network learn an identity function, which ensures that the higher lay-
ers of the network can perform at least as well as the lower layers, and thus, can avoid the
problem of vanishing gradients in deep networks. After the ResNet blocks, another 1 × 1
CNN layer is used to further refine the features extracted via the network. The use of 1 × 1
convolutions helps in reducing the dimensionality and adding non-linearity to the model
without affecting the receptive field of the convolutional layers. Finally, mean pooling
calculates the mean of the elements in the window of the feature map. Embedding vector
(v) captures the characteristics of the speaker’s voice.

Mean Pooling

1×1 CNN

Resnet Blocks

1×1 CNN

Normalization

v

X
Figure 7. Architecture of speaker encoder to generate speaker-embedding vectors. Figure 7. Architecture of speaker encoder to generate speaker-embedding vectors.

Electronics 2024, 13, 307 12 of 24
Electronics 2024, 13, x FOR PEER REVIEW 12 of 24

1D-MaxPool

PReLU

BN

1×1 CNN

BN+PReLU

1×1 CNN

Figure 8. Structure of ResNet block. The ResNet block employs a residual function to capture the
difference between learned features and input, ensuring that important information is preserved
and preventing degradation in deep networks. The block incorporates 1x1 convolution layers,
batch normalization, and PReLU to enhance learning and convergence, while the skip connection
adds the input to the learned residual to obtain features. Additionally, a maximum pooling layer is
used to remove silent parts of the audio, contributing to the overall effectiveness of the target
speech extraction process.

The concept of the residual network is to use skip connections to prevent degrada-
tion in deep networks. We use H(x) to represent the features learned by a general neural
network, where x is the input. The residual function R(x) can be defined as the difference
between H(x) and x, as shown in Equation (8). In other words, the features can be treated
as the sum of the residual and the input, as shown in Equation (9). 𝑅(𝑥) = 𝐻(𝑥) − 𝑥 (8)𝐻(𝑥) = 𝑅(𝑥) + 𝑥 (9)

Thus, if the learning in a layer has no effect, i.e., the residual is zero, the input will be
passed to the next layer, preventing degradation. As shown in the structure in Figure 8,
two 1 × 1 convolution layers are used to learn the residual, with batch normalization and
PReLU interleaved to avoid gradient vanishing and aid convergence. The skip connection
adds the input to the learned residual to obtain features, which are then limited in value
range using PReLU. At the end of the block, a maximum pooling layer with convolution
kernel size of 1 × 3 is used to remove silent parts of the audio. After passing through the
ResNet, the dimensions of features are adjusted to be consistent with that of the target
speaker-embedding vector using a 1 × 1 convolution layer, and mean pooling is applied
along the time dimension to convert the feature matrix into an embedding vector v.

Next, we will introduce the context-dependent embedding vector [25]. Since the
speaker-embedding vector is a single one-dimensional vector, its information-carrying
capacity is limited. In addition, its vector operations are irrelevant to the model’s input,
meaning that the same vector is used regardless of variations in the mixed audio. There-
fore, using only this as the target, the embedding vector cannot achieve the best results.
In this paper, a method of attention enhancement is proposed to increase the infor-
mation-carrying capacity of the target embedding vector, which involves adding con-
text-dependent embedding vectors to supplement it. Equations (10)–(12) list the opera-
tions of context-dependent embedding vectors. 𝑑 , = 𝑌 , 𝑋 , (10)

Figure 8. Structure of ResNet block. The ResNet block employs a residual function to capture the
difference between learned features and input, ensuring that important information is preserved
and preventing degradation in deep networks. The block incorporates 1x1 convolution layers, batch
normalization, and PReLU to enhance learning and convergence, while the skip connection adds
the input to the learned residual to obtain features. Additionally, a maximum pooling layer is used
to remove silent parts of the audio, contributing to the overall effectiveness of the target speech
extraction process.

The concept of the residual network is to use skip connections to prevent degradation
in deep networks. We use H(x) to represent the features learned by a general neural
network, where x is the input. The residual function R(x) can be defined as the difference
between H(x) and x, as shown in Equation (8). In other words, the features can be treated
as the sum of the residual and the input, as shown in Equation (9).

R(x) = H(x)− x (8)

H(x) = R(x) + x (9)

Thus, if the learning in a layer has no effect, i.e., the residual is zero, the input will be
passed to the next layer, preventing degradation. As shown in the structure in Figure 8,
two 1 × 1 convolution layers are used to learn the residual, with batch normalization and
PReLU interleaved to avoid gradient vanishing and aid convergence. The skip connection
adds the input to the learned residual to obtain features, which are then limited in value
range using PReLU. At the end of the block, a maximum pooling layer with convolution
kernel size of 1 × 3 is used to remove silent parts of the audio. After passing through the
ResNet, the dimensions of features are adjusted to be consistent with that of the target
speaker-embedding vector using a 1 × 1 convolution layer, and mean pooling is applied
along the time dimension to convert the feature matrix into an embedding vector v.

Next, we will introduce the context-dependent embedding vector [25]. Since the
speaker-embedding vector is a single one-dimensional vector, its information-carrying
capacity is limited. In addition, its vector operations are irrelevant to the model’s input,
meaning that the same vector is used regardless of variations in the mixed audio. Therefore,
using only this as the target, the embedding vector cannot achieve the best results. In
this paper, a method of attention enhancement is proposed to increase the information-
carrying capacity of the target embedding vector, which involves adding context-dependent
embedding vectors to supplement it. Equations (10)–(12) list the operations of context-
dependent embedding vectors.

dt,i = Yn,t
TXn,i (10)

Electronics 2024, 13, 307 13 of 24

wt,i =
exp(dt,i)

∑Tr
j=1 exp

(
dt,j
) (11)

Ct = ∑ Tr
i=1wt,iXn,i (12)

The target feature matrix Xn ∈ RK×Tr and mixed speech feature matrix Yn ∈ RK×Tm

represent the encoded target reference information and the mixed audio, respectively,
where n = 1, 2, 3 corresponds to short, medium, and long encoders, respectively, Tr and Tm
are the sizes of the time dimension for the target and mixed features, respectively, and K
is the vector dimension. Firstly, an inner product is performed between the two feature
matrices based on the feature dimension, resulting in the output dt,i at the corresponding
time point (t, i). Then, the weight vector wt,i is computed based on dt,i using Equation (11).
Finally, the weight vector is multiplied by the corresponding vector in Xn, based on the
time point t, and summed to obtain the context-dependent embedding vector Ct at the
corresponding time point t.

The overall operation can be viewed as considering which part of the reference in-
formation to enhance and which part to suppress based on the input mixed speech. That
is, using the available information to strengthen the embedding vector. Additionally, the
context-dependent embedding vector changes over time and carries richer and varying
information, which is expected to help improve performance. We concatenate the speaker-
embedding vector v and context-dependent embedding vector Ct based on time to form
the target embedding vector, as shown in Figure 9.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 24

𝑤 , = ,∑ , (11)

𝐶 = ∑ 𝑤 , 𝑋 , (12)

The target feature matrix 𝑋 ∈ 𝑅 × and mixed speech feature matrix 𝑌 ∈ 𝑅 ×
represent the encoded target reference information and the mixed audio, respectively,
where n = 1, 2, 3 corresponds to short, medium, and long encoders, respectively, 𝑇 and 𝑇 are the sizes of the time dimension for the target and mixed features, respectively,
and K is the vector dimension. Firstly, an inner product is performed between the two
feature matrices based on the feature dimension, resulting in the output 𝑑 , at the cor-
responding time point (𝑡, 𝑖). Then, the weight vector 𝑤 , is computed based on 𝑑 , us-
ing Equation (11). Finally, the weight vector is multiplied by the corresponding vector in 𝑋 , based on the time point t, and summed to obtain the context-dependent embedding
vector 𝐶 at the corresponding time point t.

The overall operation can be viewed as considering which part of the reference in-
formation to enhance and which part to suppress based on the input mixed speech. That
is, using the available information to strengthen the embedding vector. Additionally, the
context-dependent embedding vector changes over time and carries richer and varying
information, which is expected to help improve performance. We concatenate the
speaker-embedding vector v and context-dependent embedding vector 𝐶 based on time
to form the target embedding vector, as shown in Figure 9.

C1 v

Ct v

CTm v

…
…

Concatenation

Figure 9. The process of concatenating the speaker-embedding vector and the context-dependent
embedding vector to form the target-embedding vector. This step is a crucial part of the target
speech extraction process, as it combines speaker-specific features with context-dependent infor-
mation to create a comprehensive representation of the target speech, ultimately contributing to the
effectiveness of the system.

3.2.4. Speaker Extractor
The purpose of the speaker extractor is to use the target embedding vector to esti-

mate the target mask. Figure 10 shows its architecture, which starts with layer normali-
zation and dimension adjustment using a 1 × 1 convolution layer. The input signal y is
first normalized to ensure consistency in the range and distribution of input data values,
which is crucial for the effective training of neural networks. After normalization, the
data is passed through a 1-dimensional convolutional neural network (1D-CNN) layer,
which applies a series of filters to extract time-invariant features from the signal. The “1 ×
1” refers to the kernel size, meaning that the convolution is applied to each point indi-
vidually along the time axis. The main body is composed of a temporal convolutional
network (TCN) architecture proposed by Conv-TasNet [30], including four stacked
TCNs. The stacked TCNs receive the target embedding vector as an additional input to
filter the target features. Each TCN block is followed by another 1D-CNN layer, which
serves to refine and transform the features further. Each stacked TCN is composed of
eight TCN blocks. The rectified linear unit (ReLU) activation function is applied after
each 1D-CNN layer. ReLU introduces non-linearity to the model, allowing it to learn
more complex functions. Finally, the network outputs multiple embeddings (M1, M2, M3),

Figure 9. The process of concatenating the speaker-embedding vector and the context-dependent
embedding vector to form the target-embedding vector. This step is a crucial part of the target speech
extraction process, as it combines speaker-specific features with context-dependent information to
create a comprehensive representation of the target speech, ultimately contributing to the effectiveness
of the system.

3.2.4. Speaker Extractor

The purpose of the speaker extractor is to use the target embedding vector to estimate
the target mask. Figure 10 shows its architecture, which starts with layer normalization
and dimension adjustment using a 1 × 1 convolution layer. The input signal y is first
normalized to ensure consistency in the range and distribution of input data values, which
is crucial for the effective training of neural networks. After normalization, the data is
passed through a 1-dimensional convolutional neural network (1D-CNN) layer, which
applies a series of filters to extract time-invariant features from the signal. The “1 × 1”
refers to the kernel size, meaning that the convolution is applied to each point individually
along the time axis. The main body is composed of a temporal convolutional network
(TCN) architecture proposed by Conv-TasNet [30], including four stacked TCNs. The
stacked TCNs receive the target embedding vector as an additional input to filter the target
features. Each TCN block is followed by another 1D-CNN layer, which serves to refine
and transform the features further. Each stacked TCN is composed of eight TCN blocks.
The rectified linear unit (ReLU) activation function is applied after each 1D-CNN layer.
ReLU introduces non-linearity to the model, allowing it to learn more complex functions.

Electronics 2024, 13, 307 14 of 24

Finally, the network outputs multiple embeddings (M1, M2, M3), which are speaker-specific
features at various levels of abstraction, corresponding to three encoder lengths.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 24

which are speaker-specific features at various levels of abstraction, corresponding to
three encoder lengths.

Stacked TCNs

Stacked TCNs

Stacked TCNs

Stacked TCNs

Normalization

ReLU

1D-CNN

ReLU ReLU

1D-CNN 1D-CNN

M1 M2 M3

[Ct,v]

Y

1×1 CNN

Figure 10. Architecture of speaker extractor. This figure presents a multi-stage neural network ar-
chitecture designed for extracting speaker-specific features from an audio input. The process starts
with normalization to standardize input data. It is followed by a sequence of 1D-CNN layers,
which apply convolutional filters to extract time domain features. These features are then pro-
cessed through stacked temporal convolutional networks (TCNs), which are adept at capturing
long-range temporal dependencies. Post each TCN block, a 1D-CNN layer refines the features
further. ReLU activation functions introduce non-linearity, essential for modeling complex
patterns. The architecture concludes with multiple output embeddings M1, M2, M3, representing
different levels of feature abstraction, which can be utilized for identifying or verifying speakers.

Figure 11 shows the structure of TCN blocks. Only in the first block is the original
input concatenated with the target embedding vector as a new input, and this is not done
for the other blocks. The process starts with a concatenation step, where an external em-
bedding vector is combined with the block’s input data. This embedding vector typically
carries additional information that conditions the layer normalization process. The con-
catenated output is then passed through a 1-dimensional convolutional neural network
(1D-CNN) with a kernel size of 1 × 1. This layer applies a set of filters to learn local
patterns within the data. Following the 1 × 1 CNN, the parametric rectified linear unit
(PReLU) activation function introduces non-linearity, allowing the model to learn more
complex patterns. The activation is followed by a gated layer normalization (gLN), which
normalizes the data based on the learned parameters and conditions from the embedding
vector, stabilizing the learning process. Next, a depthwise convolutional layer (De-CNN)
processes the data. Unlike standard convolutions, depthwise convolutions apply a single
filter per input channel, which can efficiently learn spatial hierarchies. The output of the
De-CNN goes through another non-linear activation with PReLU followed by gated layer
normalization, further refining the features. Another 1 × 1 CNN layer is applied, which
can change the dimensionality of the data if necessary and aid in feature transformation.

Figure 10. Architecture of speaker extractor. This figure presents a multi-stage neural network
architecture designed for extracting speaker-specific features from an audio input. The process
starts with normalization to standardize input data. It is followed by a sequence of 1D-CNN layers,
which apply convolutional filters to extract time domain features. These features are then processed
through stacked temporal convolutional networks (TCNs), which are adept at capturing long-range
temporal dependencies. Post each TCN block, a 1D-CNN layer refines the features further. ReLU
activation functions introduce non-linearity, essential for modeling complex patterns. The architecture
concludes with multiple output embeddings M1, M2, M3, representing different levels of feature
abstraction, which can be utilized for identifying or verifying speakers.

Figure 11 shows the structure of TCN blocks. Only in the first block is the original input
concatenated with the target embedding vector as a new input, and this is not done for the
other blocks. The process starts with a concatenation step, where an external embedding
vector is combined with the block’s input data. This embedding vector typically carries
additional information that conditions the layer normalization process. The concatenated
output is then passed through a 1-dimensional convolutional neural network (1D-CNN)
with a kernel size of 1 × 1. This layer applies a set of filters to learn local patterns within
the data. Following the 1 × 1 CNN, the parametric rectified linear unit (PReLU) activation
function introduces non-linearity, allowing the model to learn more complex patterns. The
activation is followed by a gated layer normalization (gLN), which normalizes the data
based on the learned parameters and conditions from the embedding vector, stabilizing
the learning process. Next, a depthwise convolutional layer (De-CNN) processes the
data. Unlike standard convolutions, depthwise convolutions apply a single filter per input
channel, which can efficiently learn spatial hierarchies. The output of the De-CNN goes
through another non-linear activation with PReLU followed by gated layer normalization,
further refining the features. Another 1 × 1 CNN layer is applied, which can change the
dimensionality of the data if necessary and aid in feature transformation. Finally, the

Electronics 2024, 13, 307 15 of 24

processed data is outputted through a residual connection, indicated by the circle with a
plus sign. This means that the original input before the block is added to the output, which
helps in mitigating the vanishing gradient problem and allows the network to learn an
identity function.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 24

Finally, the processed data is outputted through a residual connection, indicated by the
circle with a plus sign. This means that the original input before the block is added to the
output, which helps in mitigating the vanishing gradient problem and allows the net-
work to learn an identity function.

1×1 CNN

Target
Embedding

Vector

PReLU+gLN

De-CNN

PReLU+gLN

1×1 CNN

Concatenation

Figure 11. This figure displays structure of TCN block (cLN) within a neural network, employing
conditional layer normalization for context-specific processing. An embedding vector conditions
the input, which then passes through alternating layers of 1 × 1 CNNs and PReLU+gLN for feature
extraction and normalization. The structure concludes with a residual connection to ensure smooth
training and information flow.

Global layer normalization (gLN) is used in the process, which can be represented
by Equations (13)–(15). 𝐸 𝐹 = ∑ 𝐹 (13)

𝑉𝑎𝑟 𝐹 = ∑ (𝐹 − 𝐸 𝐹) (14)

𝑔𝐿𝑁(𝐹) = ⨀𝜆 + 𝜏 (15)

where F represents the features of the samples, N is the dimension size of the features, T
is the size of the time dimension, λ and τ are parameters obtained through training, and ε
is a very small value to prevent division by zero. Equations (13)–(15) compute the mean
and variance of each sample dimension before normalization.

The dilated convolutional layers (De-CNN) [31] is also employed in the model. The
special feature of the dilated convolutional layer is that it allows for interval subsampling
of the input, meaning that the spacing of each point in the convolutional kernel can be
adjusted to create sparse variations. The spacing size is controlled by the dilation factor d,
which is 1 in normal convolutional layers. In the TCN module, the dilation factor is set to 𝑑 = 2 for the eight blocks, where b = 0, 1, 2,…, 7, as shown in Figure 12. The deeper the
block, the larger the spacing, which means that the receptive field expands and the
computation cost is reduced. By using different receptive field sizes, the convolutional
neural network can learn different combinations of feature variations and understand the
degree of temporal changes, enabling the network to have the ability to interpret tem-
poral significance.

Figure 11. This figure displays structure of TCN block (cLN) within a neural network, employing
conditional layer normalization for context-specific processing. An embedding vector conditions
the input, which then passes through alternating layers of 1 × 1 CNNs and PReLU+gLN for feature
extraction and normalization. The structure concludes with a residual connection to ensure smooth
training and information flow.

Global layer normalization (gLN) is used in the process, which can be represented by
Equations (13)–(15).

E[F] =
1

NT ∑ NT F (13)

Var[F] =
1

NT ∑ NT (F − E[F])2 (14)

gLN(F) =
F − E[F]√
Var[F] + ϵ

⊙
λ + τ (15)

where F represents the features of the samples, N is the dimension size of the features, T is
the size of the time dimension, λ and τ are parameters obtained through training, and ε is a
very small value to prevent division by zero. Equations (13)–(15) compute the mean and
variance of each sample dimension before normalization.

The dilated convolutional layers (De-CNN) [31] is also employed in the model. The
special feature of the dilated convolutional layer is that it allows for interval subsampling
of the input, meaning that the spacing of each point in the convolutional kernel can be
adjusted to create sparse variations. The spacing size is controlled by the dilation factor
d, which is 1 in normal convolutional layers. In the TCN module, the dilation factor is set
to d = 2b for the eight blocks, where b = 0, 1, 2, . . ., 7, as shown in Figure 12. The deeper
the block, the larger the spacing, which means that the receptive field expands and the
computation cost is reduced. By using different receptive field sizes, the convolutional
neural network can learn different combinations of feature variations and understand
the degree of temporal changes, enabling the network to have the ability to interpret
temporal significance.

Electronics 2024, 13, 307 16 of 24Electronics 2024, 13, x FOR PEER REVIEW 16 of 24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d=1

d=2

d=4

Figure 12. Dilated convolutional layer with increasing dilation rates at different levels. It allows the
network to aggregate information over larger receptive fields without losing resolution. At the
bottom level (d = 1), the convolution has no dilation, operating on adjacent data points. As we move
up, the dilation rate increases, with d = 2 skipping one data point and d = 4 skipping three, enabling
the layer to cover more extensive data spans effectively.

The baseline model used in this study employs non-causal convolutions in its di-
lated convolutional layers, which cover feature information from future time steps, re-
quiring some delay in computation to obtain future information. This paper proposes a
latency reduction method that can be flexibly adjusted. The extractor includes four TCN
modules, with eight TCN blocks in each module, making it a deep neural network model
with many layers. Using non-causal convolution, the delay for each layer accumulates to
a considerable amount of time. To speed up computation, we can replace dilated con-
volutions with causal convolutions, which only cover present and past time steps, and
padding is used to facilitate the operation. The 1 × 1 convolution layer remains un-
changed because its kernel size is 1, so it does not use past or future information. In ad-
dition, we also change the global layer normalization to cumulative layer normalization
(cLN) [32] to accommodate causal convolutions. The computation of cLN is represented
by Equations (16)–(18). 𝐸 𝑓 = ∑ 𝑓 (16)

𝑉𝑎𝑟 𝑓 = ∑ (𝑓 − 𝐸 𝑓) (17)

𝑐𝐿𝑁(𝑓) = ⨀𝜆 + 𝜏 (18)

where 𝑓 represents the feature F from the beginning of time to time point k. The rest of
the calculation is the same as normal layer normalization, i.e., only normalizing the in-
formation from the past to the present.

When the temporal convolutional network is composed of causal convolutions, the
latency can be reduced, but since it only utilizes past information, its performance may be
slightly worse than non-causal convolutions. By adjusting the ratio of the TCN blocks
with non-causal and causal convolutions in the temporal convolutional network of the

Figure 12. Dilated convolutional layer with increasing dilation rates at different levels. It allows
the network to aggregate information over larger receptive fields without losing resolution. At the
bottom level (d = 1), the convolution has no dilation, operating on adjacent data points. As we move
up, the dilation rate increases, with d = 2 skipping one data point and d = 4 skipping three, enabling
the layer to cover more extensive data spans effectively.

The baseline model used in this study employs non-causal convolutions in its dilated
convolutional layers, which cover feature information from future time steps, requiring
some delay in computation to obtain future information. This paper proposes a latency
reduction method that can be flexibly adjusted. The extractor includes four TCN modules,
with eight TCN blocks in each module, making it a deep neural network model with many
layers. Using non-causal convolution, the delay for each layer accumulates to a considerable
amount of time. To speed up computation, we can replace dilated convolutions with causal
convolutions, which only cover present and past time steps, and padding is used to facilitate
the operation. The 1 × 1 convolution layer remains unchanged because its kernel size is
1, so it does not use past or future information. In addition, we also change the global
layer normalization to cumulative layer normalization (cLN) [32] to accommodate causal
convolutions. The computation of cLN is represented by Equations (16)–(18).

E[ft≤k] =
1

Nk ∑ Nk ft≤k (16)

Var[ft≤k] =
1

Nk∑ Nk (ft≤k − E[ft≤k])
2 (17)

cLN(fk) =
ft<k − E[ft≤k]√

Var[ft≤k] + ϵ

⊙
λ + τ (18)

where ft≤k represents the feature F from the beginning of time to time point k. The rest
of the calculation is the same as normal layer normalization, i.e., only normalizing the
information from the past to the present.

When the temporal convolutional network is composed of causal convolutions, the
latency can be reduced, but since it only utilizes past information, its performance may be
slightly worse than non-causal convolutions. By adjusting the ratio of the TCN blocks with
non-causal and causal convolutions in the temporal convolutional network of the extractor,

Electronics 2024, 13, 307 17 of 24

we can obtain the trade-off between latency and performance, and obtain the most suitable
state based on the application requirements.

3.2.5. Audio Decoder

In the speaker extractor, three masks corresponding to different lengths of audio
encoders are generated as the final output, as shown in Figure 13. Then, we use these
masks and three parallel 1D convolutional layers corresponding to the respective audio
encoders as the decoder to separate the target speech from the mixed speech. The operation
of the decoder, de(·), can be expressed as Equation (19).

si = de
(

Mi
⊗

Yi

)
, i = 1, 2, 3 (19)

where ⊗ denotes element-wise multiplication between matrices, Mi represents the mask
for the corresponding encoder–decoder of different lengths, and si is the estimated target
speech obtained via the corresponding encoder–decoder operation. The final estimated
speech is then used to calculate the loss function to assist in updating the parameters of the
neural network model.

Electronics 2024, 13, x FOR PEER REVIEW 17 of 24

extractor, we can obtain the trade-off between latency and performance, and obtain the
most suitable state based on the application requirements.

3.2.5. Audio Decoder
In the speaker extractor, three masks corresponding to different lengths of audio

encoders are generated as the final output, as shown in Figure 13. Then, we use these
masks and three parallel 1D convolutional layers corresponding to the respective audio
encoders as the decoder to separate the target speech from the mixed speech. The opera-
tion of the decoder, de(·), can be expressed as Equation (19). 𝑠 = 𝑑𝑒(𝑀 ⨂𝑌), 𝑖 = 1, 2, 3 (19)

where ⨂ denotes element-wise multiplication between matrices, 𝑀 represents the mask
for the corresponding encoder–decoder of different lengths, and 𝑠 is the estimated tar-
get speech obtained via the corresponding encoder–decoder operation. The final esti-
mated speech is then used to calculate the loss function to assist in updating the param-
eters of the neural network model.

1D-conv
(middle)

1D-conv
(short)

S1(t) S2(t) S3(t)

1D-conv
(long)

Y1

M1

Y2

M2

Y3

M3

Estimated Masks

Figure 13. Architecture of audio decoder (Y3 is missing). It is responsible for differentiating and
isolating a target speaker’s voice from a mixture of speech. Within this component, three masks are
generated, each associated with convolutional layers of varying lengths—short, middle, and long.
These masks play an essential role in the speech separation process.

3.2.6. Loss Function
In the speaker extractor, three masks corresponding to different lengths of audio

encoders are generated as the final output, as shown in Figure 13. Then, we use these
masks and three parallel 1D convolutional layers corresponding to the respective audio
encoders as the decoder to separate the target speech from the mixed speech. The opera-
tion of the decoder, de(·), can be expressed as Equation (19).

In the training process of the neural network model, the calculation of the loss func-
tion is an important step. The result of the loss function is used for backpropagation to
update the model’s parameter weights. In this subsection, we introduce the loss function
used in the proposed neural network model. The neural network model can be viewed as
a multi-task learning model, where there are two tasks. One is to generate effective
speaker-embedding vectors, and the other is to extract high-quality target speech.
Therefore, suitable loss functions are set for these two tasks, and then combined to form
the overall loss function of the model.

Firstly, we introduce the loss function used to evaluate speaker-embedding vectors.
We adopt the cross-entropy loss (CE loss), represented by Equation (20). 𝐿 = − ∑ 𝐼 𝑙𝑜𝑔 (𝜎(𝑊 ⋅ 𝑣)) (20)

where 𝑁 is the total number of speakers, 𝐼 represents the correct label for the speaker,
σ(⋅) is the softmax function, and W is the weight matrix. The entire calculation is a
speaker recognition task, where the softmax function is used to predict the probability of
each speaker, and the sum of all predicted probabilities is equal to 1. Finally, the

Figure 13. Architecture of audio decoder (Y3 is missing). It is responsible for differentiating and
isolating a target speaker’s voice from a mixture of speech. Within this component, three masks are
generated, each associated with convolutional layers of varying lengths—short, middle, and long.
These masks play an essential role in the speech separation process.

3.2.6. Loss Function

In the speaker extractor, three masks corresponding to different lengths of audio
encoders are generated as the final output, as shown in Figure 13. Then, we use these
masks and three parallel 1D convolutional layers corresponding to the respective audio
encoders as the decoder to separate the target speech from the mixed speech. The operation
of the decoder, de(·), can be expressed as Equation (19).

In the training process of the neural network model, the calculation of the loss function
is an important step. The result of the loss function is used for backpropagation to update
the model’s parameter weights. In this subsection, we introduce the loss function used
in the proposed neural network model. The neural network model can be viewed as a
multi-task learning model, where there are two tasks. One is to generate effective speaker-
embedding vectors, and the other is to extract high-quality target speech. Therefore,
suitable loss functions are set for these two tasks, and then combined to form the overall
loss function of the model.

Firstly, we introduce the loss function used to evaluate speaker-embedding vectors.
We adopt the cross-entropy loss (CE loss), represented by Equation (20).

LCE = −∑ Ns
i=1 Iilog(σ(W · v)i) (20)

where Ns is the total number of speakers, Ii represents the correct label for the speaker, σ(·)
is the softmax function, and W is the weight matrix. The entire calculation is a speaker
recognition task, where the softmax function is used to predict the probability of each

Electronics 2024, 13, 307 18 of 24

speaker, and the sum of all predicted probabilities is equal to 1. Finally, the cross-entropy
loss function is calculated to measure whether the embedding vector v can correctly identify
the target speaker.

Next, we introduce the loss function used to evaluate the quality of the generated
speech. We use the multi-scale reconstruction loss function, which can be represented by
Equation (21):

Lreconst = −[(1 − α − β)ρ(s1, s) + αρ(s2, s) + βρ(s3, s)] (21)

In the model, there are three encoders with different time scales, resulting in three
estimated target speech segments. We calculate the loss function of each segment with
respect to the reference ground truth and obtain ρ(si, s), where ρ(·) is a certain time domain
speech loss function. The weighted sum of the three loss functions, with weights α and β,
is calculated as the overall loss.

In the baseline model, the scale invariant signal-to-distortion ratio (SI-SDR) is used as
the loss function for ρ(·). The SI-SDR is calculated as shown in Equation (22).

ρ(ŝ, s) = 20 log10
∥µ · s∥

∥µ · s − ŝ∥ (SI − SDR) (22)

where ŝ denotes the reconstructed signal, ∥ · ∥ represents the absolute-value norm, and
the scaling factor µ = ŝTs/sTs. The difference between SI-SDR and the commonly used
signal-to-noise ratio (SNR) is that SI-SDR uses the scaling factor to stretch or shrink the
reference signal, so that the error vector between the reconstructed signal, and the reference
signal is orthogonal to the reference signal vector. Therefore, the ratio obtained via the
SI-SDR calculation is more objective as it is based on the same reference standard.

However, the scaling factor used relies on the reconstructed signal, so its errors need to
be taken into account. This paper proposes using the scale dependent signal-to-distortion
ratio (SD-SDR) [4] as the loss function. Considering that the scaling factor also has errors,
two types of errors need to be calculated: the error of the scaling factor and the error of the
reconstructed signal, as expressed by Equation (23).

∥µs − ŝ∥2 + ∥s − µs∥2 =∥s − ŝ∥2 (23)

where the scaling factor error is represented as ∥s − µs∥2, and the reconstruction error is
represented as ∥µs − ŝ∥2. Substituting the calculated results into Equation (22), we obtain
the SD-SDR Equation (24).

ρ(ŝ, s) = 20 log10
∥µ · s∥
∥s − ŝ∥ (SD-SDR) (24)

Finally, we combine the multi-scale reconstruction loss function with the cross-entropy
loss function to form the overall loss function, as shown in Equation (25), where γ is a
proportion parameter. Table 3 lists the parameter setting for the loss function.

Ltotal = Lreconst + γLCE (25)

Table 3. Parameter setting for the loss function.

weight parameter α 0.1

weight parameter β 0.1

proportion parameter γ 0.5

Electronics 2024, 13, 307 19 of 24

3.3. Testing Stage

During the testing stage, we used a testing dataset to evaluate the performance of
the trained neural network model. For each testing data point, the input to the model is a
mixture of speech and a reference audio signal of the target, and the model produces an
estimated target speech through forward propagation without computing the loss function.
For evaluation, we selected the best SD-SDR among the results generated via the three
decoders as the representative for calculation. We evaluated the results based on two
commonly used methods in speech processing research: scale-invariant signal-to-distortion
ratio (SI-SDR) and perceptual evaluation of speech quality (PESQ).

PESQ is a method for evaluating the perceived quality of speech. It quantifies the
difference in speech quality between the estimated speech and the clean speech, and the
results are scored using the mean opinion score (MOS) evaluation method in narrowband
conditions, with scores ranging from −0.5 to 4.5, with higher values indicating better
speech quality.

4. Experimental Results and Discussion
4.1. Experimental Environment

We used Pytorch as the framework to construct the neural network model and Matlab
for pre-processing operations on the speech dataset. During the training stage, we utilized
a GPU GeForce GTX 2080 to accelerate the training and convergence of the neural network,
in order to reduce the time spent. Table 4 shows the configuration of the hardware and
software environment for the experiments.

Table 4. Hardware and software environments for the experiments.

CPU Intel Core i7-9700k @ 3.60GHz

GPU RTX 2080

RAM 64GB DDR4-3200 MHz

OS Ubuntu 18.04

Software language Python3.6, Matlab

Neural Network tool Pytorch

4.2. Experimental Results Comparison and Discussion

In this section, we will present comparisons of attention mechanisms using different
sources, comparisons between the proposed system and other methods, comparisons of
the effectiveness of the latency reduction method, and discuss the results separately.

4.2.1. Comparisons of Attention Mechanisms Using Different Sources

In Section 3.2.3, we introduced the proposed attention-enhanced mechanism, which
can use feature matrices generated by audio encoders of different lengths to compute
context-dependent embedding vectors. Since encoders of different lengths map signals to
different latent feature spaces, we conducted experiments to compare the effects of different
sources of embedding vectors on the overall performance. The different sources are feature
matrices corresponding to three encoders. Table 5 shows the comparison results.

Table 5. Comparison results of attention mechanisms using different sources.

SI-SDR (dB) PESQ

Attention (L1) 3.1465 3.1465

Attention (L2) 14.802 3.0877

Attention (L3) 14.515 3.0864

Electronics 2024, 13, 307 20 of 24

The three corresponding feature matrices were generated via short, medium, and
long encoders, denoted as L1, L2, and L3, respectively. The evaluation was presented in
terms of SI-SDR and PESQ. According to the results, the use of feature matrices from the
short-length encoder produced the best results, achieving the highest values in both SI-SDR
and PESQ. This is because the use of very short convolution kernel sizes in the encoder
can scan the signal in detail for each small time frame, obtaining the features it contains. In
particular, the window size of 2.5 ms is much smaller than the commonly used window
size of 32 ms for STFT calculations, which makes it easier to fully perceive the fine-grained
features. After being filtered by the neural network, important information can be better
preserved, which contributes to the improvement of system performance.

4.2.2. Comparisons between the Proposed System and Other Methods

To evaluate the performance of the proposed system, we compared it with other
studies on target speech extraction. The compared models include the baseline model
SpEx+ [26], its predecessor model SpEx [33], and the model SBF-MTSAL-Concat [34].
The baseline model and its predecessor, as well as the proposed system, are all based
on the time domain method, while the SBF-MTSAL-Concat model is based on the time
frequency domain method. There are differences among the three methods, including
the generation of embedding vectors using different methods. SBF-MTSAL-Concat and
SpEx use bidirectional long short-term memory networks (BLSTM) to generate embedding
vectors, while SpEx+ is similar to the proposed method in using residual neural networks
(ResNet) to generate embedding vectors. In addition, the proposed method incorporates
an attention mechanism to enhance the embedding vectors. Regarding the neural network
models for estimating the masks, the time frequency domain method uses a recurrent neural
network architecture, which is BLSTM, while the time domain method uses a convolutional
neural network architecture, which is a TCN. Furthermore, in terms of calculating the loss
function, the time frequency domain method tends to use the spectrogram to compute,
while the time domain method tends to use the reconstructed audio to compute.

Table 6 presents the comparisons between the proposed system and other methods.
In the proposed method, we use the conclusion of Section 4.2.1, where we generate con-
text embedding vectors using the feature matrix obtained via the L1 length encoder, and
compare the results of using SI-SDR or SD-SDR to calculate the reconstruction error loss
in the loss function. It can be observed that using SD-SDR leads to the best performance.
This can be explained by the derivation process and Equation (24) of SD-SDR discussed
in Section 3.2.6. Since SD-SDR takes into account the scaling factor error, it can provide a
more robust performance when comparing the correct signal vector with the error vector.
Moreover, the denominator of the simplified Equation (24) is ∥s − ŝ∥, which is the absolute
value norm of the difference between the correct signal and the reconstructed signal. By
minimizing the loss function, the neural network model can be intuitively encouraged to
produce reconstructed signals that are close to the correct signal. The results also show that
methods based on the time domain generally outperform those based on the time frequency
domain, which is why more recent research tends to focus on time domain methods or a
combination of both.

Table 6. Comparisons between the proposed system and other methods.

Domain ρ Formula SI-SDR (dB) PESQ

Mixture - - 2.486 2.1604

SBF-MTSAL-Concat Freq. - 10.228 2.6142

SpEx Time - 13.136 2.8866

Electronics 2024, 13, 307 21 of 24

Table 6. Cont.

Domain ρ Formula SI-SDR (dB) PESQ

SpEx+ (Baseline) Time SI-SDR 14.267 3.0143

Proposed method

Attention (L1) Time SI-SDR 14.974 3.0732

Attention (L1) Time SD-SDR 15.041 3.1465

4.2.3. Comparisons of the Effectiveness of the Latency Reduction Method

In this subsection, we will compare and discuss the proposed latency reduction
method, without using GPU for computation. Two models are used for comparison, one is
the baseline model SpEx+, and the other is the proposed system using the best settings from
the previous experiments, which is the combination of Attention (L1) and SD-SDR. Table 7
shows the comparison results, where the symbol * indicates that all TCN blocks in the
model use causal dilated convolution and cumulative layer normalization. Processing time
refers to the average time in seconds taken by the model to process one second of audio
from input to output. From the results, we can see that the proposed latency reduction
method can reduce the processing time by about 22%, but the speech quality may degrade.
Also, the processing time does not solely come from TCN blocks, but mostly from audio
and speaker encoders. Furthermore, the table only compares models using either all causal
or all non-causal operations, but the proposed method can adjust the proportion of the
two types of TCN blocks according to need, and the reduction time and the degradation
in quality should be within the range of the values listed in Table 7, which represents the
upper and lower bounds of the performance.

Table 7. Comparisons of the effectiveness of the latency reduction method.

Processing Time (s) SI-SDR (dB) PESQ

SpEx+ (Baseline) 0.1428 14.267 3.0143

SpEx+ (Baseline) * 0.1147 12.581 2.8748

Proposed method

Non-causal block 0.1454 15.041 3.1465

Causal block 0.1135 13.344 2.8977

4.2.4. Comparisons the Effectiveness for Different Numbers of Speakers

In this subsection, we will discuss the differences and effects of different numbers of
speakers in mixed signals. Table 8 shows the performance differences of our proposed
method for different numbers of total speakers. “2-speakers (3-spk-test)” means that the
model is trained with mixed audio containing two speakers, but tested with mixed audio
containing three speakers; “2-speakers” means that the model is trained and tested with
mixed audio containing two speakers; “3-speakers” means that the model is trained and
tested with mixed audio containing three speakers. From the results, we can see that if
the number of speakers in the test mixed audio is different from that in the training data,
the performance will not be as good. Therefore, to extract speech from situations with
different numbers of speakers, a model trained with the corresponding number of speakers
is needed. Additionally, as the number of speakers in the mixed audio increases, the
performance of extracting the target speaker’s speech will also deteriorate. In summary, in
order to have a wider and more convenient application in practical situations, developing a
standardized model that can handle different numbers of speakers can also be a key focus
of future development.

Electronics 2024, 13, 307 22 of 24

Table 8. Comparisons the effectiveness for different numbers of speakers.

SI-SDR (dB) PESQ

2-speakers
(3-spk-test) 7.447 2.2389

2-speakers 15.041 3.1465

3-speakers 11.624 2.5528

4.3. Discussion

The results presented in the tables offer insightful revelations about the performance
of various attention mechanisms and processing methods in target speaker extraction. A
critical aspect of these findings is their implications for human perception, particularly in
how listeners discern and evaluate the extracted speech. Firstly, the comparison of different
attention mechanisms (Table 5) underscores a significant variation in SI-SDR values, with
Attention (L2) achieving the highest score. This suggests its superior capability in reducing
signal distortion, which is crucial for maintaining the integrity of the original speech.

In the broader system comparisons (Table 6), the proposed method with Attention
(L1) demonstrates an enhancement in both SI-SDR and PESQ over the baseline and other
methods. This improvement is pivotal from a human perception standpoint, as it suggests a
more natural and clearer listening experience. The slight variations observed with different
ρ formulas also point to the nuanced ways in which algorithmic changes can impact
perceived audio quality.

The effectiveness of the latency reduction method (Table 7) brings to light the trade-off
between processing speed and audio quality. From a user experience perspective, while
faster processing is desirable, it should not come at the cost of noticeably poorer audio
quality. The reduced SI-SDR and PESQ scores in the faster processing settings might lead
to a less satisfactory listening experience, indicating the challenge of balancing efficiency
and quality in real-time applications.

Finally, the performance variation with different numbers of speakers (Table 8) is
particularly relevant to human perception in complex auditory environments. The decline
in performance metrics with an increased number of speakers mirrors the challenges
faced by human listeners in multi-talker situations. The system’s reduced effectiveness in
these scenarios may lead to a less accurate representation of the target speaker, potentially
impacting the listener’s ability to focus on the desired speech amidst background noise
and other speakers. Overall, the results showed that the proposed attention mechanism
using feature matrices from the short-length encoder produced the best results, achieving
the highest values in both SI-SDR and PESQ. This suggests that the use of very short
convolution kernel sizes in the encoder can capture detailed signal features, leading to
improved system performance.

5. Conclusions

This paper proposes a neural network model based on temporal convolutional net-
works and attention-enhanced mechanisms for target speech extraction. In some previous
methods, speech separation was used to address the cocktail party problem. However,
this approach encountered two main challenges: the need to know the total number of
speakers in advance and the permutation problem of masks. Subsequent research efforts
have focused on target speech extraction to overcome these challenges. While frequency
domain methods are limited by phase information loss and frame size restrictions, time
domain methods have also been explored. For target speech extraction, a single normalized
embedding vector cannot provide sufficient information to the model.

Our proposed method builds upon previous research and experience, adopting a time
domain approach. To address the issue of single normalized embeddings, we introduce an
attention-enhanced mechanism that provides context-based and time-varying embeddings,
thereby enhancing the information carried by the model. Experimental results confirm that

Electronics 2024, 13, 307 23 of 24

this mechanism improves speech quality. We also propose a latency reduction method to
mitigate the accumulated delay caused by deep temporal neural networks. This method
demonstrates reduced computation time in the experimental results without sacrificing
speech quality. Furthermore, the method is not fixed and allows for a trade-off between
time and quality depending on the application. In terms of loss function calculation, we
discuss the drawbacks of SI-SDR and propose the use of SD-SDR, which yields better
results in the experimental evaluations.

Author Contributions: Conceptualization, J.-C.W., P.T.L. and P.-C.C.; Methodology, Y.-T.L.; writing—
original draft preparation, Y.-T.L.; writing—review and editing, J.-H.W., T.-C.T., T.P., Z.-Y.W. and Y.-H.L.;
supervision, P.-C.C. All authors have read and agreed to the published version of the manuscript.

Funding: This study was partially supported by the National Science and Technology Council of
Taiwan under Grant 110-2221-E-008-076-MY3.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available at http://www.
openslr.org/12/ (accessed on 15 May 2014) [19].

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Cherry, E.C. Some experiments on the recognition of speech, with one and with two ears. J. Acoust. Soc. Am. 1953, 25, 975–979.

[CrossRef]
2. Pedersen, M.S.; Wang, D.; Larsen, J.; Kjems, U. Two-microphone separation of speech mixtures. IEEE Trans. Neural Netw. 2008, 19,

475–492. [CrossRef] [PubMed]
3. Bartelds, M.; San, N.; McDonnell, B.; Jurafsky, D.; Wieling, M. Making More of Little Data: Improving Low-Resource Automatic

Speech Recognition Using Data Augmentation. arXiv 2023, arXiv:2305.10951.
4. Li, J. Recent advances in end-to-end automatic speech recognition. APSIPA Trans. Signal Inf. Process. 2022, 11, e8. [CrossRef]
5. Feng, S.; Halpern, B.M.; Kudina, O.; Scharenborg, O. Towards inclusive automatic speech recognition. Comput. Speech Lang. 2024,

84, 101567. [CrossRef]
6. Zhang, Y.; Ma, Y.; Liu, Y. Convolution-bidirectional temporal convolutional network for protein secondary structure prediction.

IEEE Access 2022, 10, 117469–117476. [CrossRef]
7. Roux, J.L.; Wisdom, S.; Erdogan, H.; Hershey, J.R. SDR—Half-baked or well done. In Proceedings of the 2019 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 626–630.
8. Luo, Y.; Chen, Z.; Yoshioka, T. Dual-path rnn: Efficient long sequence modeling for time-domain single-channel speech separation.

In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 4–8 May 2020; pp. 46–50.

9. Hu, X.; Li, K.; Zhang, W.; Luo, Y.; Lemercier, J.M.; Gerkmann, T. Speech separation using an asynchronous fully recurrent
convolutional neural network. Adv. Neural Inf. Process. Syst. 2021, 34, 22509–22522.

10. Wang, Z.Q.; Wang, D. Combining spectral and spatial features for deep learning based blind speaker separation. IEEE/ACM
Trans. Audio Speech Lang. Process. 2018, 27, 457–468. [CrossRef]

11. Wang, Z.-Q.; Roux, J.L.; Wang, D.; Hershey, J.R. End-to-end speech separation with unfolded iterative phase reconstruction. arXiv
2018, arXiv:1804.10204.

12. Liu, W.; Liao, Q.; Qiao, F.; Xia, W.; Wang, C.; Lombardi, F. Approximate designs for fast Fourier transform (FFT) with application
to speech recognition. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 4727–4739. [CrossRef]

13. Yan, B.C.; Wu, M.C.; Chen, B. Exploring feature enhancement in the modulation spectrum domain via ideal ratio mask for robust
speech recognition. In Proceedings of the 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and
Conference (APSIPA ASC), Auckland, New Zealand, 7–10 December 2020; pp. 759–763.

14. Ha, M.T.; Liang, K.W.; Lee, Y.S.; Lee, C.T.; Li, Y.H.; Wang, J.C. Speech separation using augmented-discrimination learning on
squash-norm embedding vector and node encoder. IEEE Access 2022, 10, 102048–102063.

15. Luo, Y.; Mesgarani, N. Tasnet: Time-domain audio separation network for real-time, single-channel speech separation. In
Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB,
Canada, 15–20 April 2018; pp. 696–700.

16. Tan, H.M.; Vu, D.Q.; Wang, J.C. SeliNet: A lightweight model for single channel speech separation. In Proceedings of the 2023
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023;
pp. 1–5.

http://www.openslr.org/12/
http://www.openslr.org/12/
https://doi.org/10.1121/1.1907229
https://doi.org/10.1109/TNN.2007.911740
https://www.ncbi.nlm.nih.gov/pubmed/18334366
https://doi.org/10.1561/116.00000050
https://doi.org/10.1016/j.csl.2023.101567
https://doi.org/10.1109/ACCESS.2022.3219490
https://doi.org/10.1109/TASLP.2018.2881912
https://doi.org/10.1109/TCSI.2019.2933321

Electronics 2024, 13, 307 24 of 24

17. Wang, Y.; Narayanan, A.; Wang, D. On training targets for supervised speech separation. IEEE/ACM Trans. Audio Speech Lang.
Process. 2014, 22, 1849–1858. [CrossRef] [PubMed]

18. Lee, Y.S.; Kuo, Y.; Chen, S.H.; Wang, J.C. Discriminative training of complex-valued deep recurrent neural network for singing
voice separation. In Proceedings of the 2017 ACM Multimedia Conference (ACM MM), Mountain View, CA, USA, 23–27 October
2017; pp. 1327–1335.

19. Chen, Z.; Luo, Y.; Mesgarani, N. Deep attractor network for single-microphone speaker separation. In Proceedings of the 2017
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017;
pp. 246–250.

20. Kuhl, P.K. Human adults and human infants show a perceptual magnet effect. Percept. Psychophys. 1991, 50, 93–107. [CrossRef]
[PubMed]

21. Alamsyah, R.D.; Suyanto, S. Speech gender classification using bidirectional long short term memory. In Proceedings of the 2020
3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 10–11
December 2020; pp. 646–649.

22. Luo, Y.; Mesgarani, N. Real-time single-channel dereverberation and separation with time-domain audio separation network. In
Proceedings of the Interspeech 2018, Hyderabad, India, 2–6 September 2018; pp. 342–346.

23. Yu, D.; Kolbak, M.; Tan, Z.H.; Jensen, J. Permutation invariant training of deep models for speaker-independent multi-talker
speech separation. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
New Orleans, LA, USA, 5–9 March 2017; pp. 241–245.

24. Takahashi, N.; Parthasaarathy, S.; Goswami, N.; Mitsufuji, Y. Recursive speech separation for unknown number of speakers. In
Proceedings of the Interspeech 2019, Graz, Austria, 15–19 September 2019; pp. 1348–1352.

25. Xiao, X.; Chen, Z.; Yoshioka, T.; Erdogan, H.; Liu, C.; Dimitriadis, D.; Droppo, J.; Gong, Y. Single-channel speech extraction using
speaker inventory and attention network. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 86–90.

26. Ge, M.; Xu, C.; Wang, L.; Chng, E.S.; Dang, J.; Li, H. SpEx+: A complete time domain speaker extraction network. In Proceedings
of the Interspeech 2020, Shanghai, China, 25–29 October 2020; pp. 1406–1410.

27. Panayotov, V.; Chen, G.; Povey, D.; Khudanpur, S. Librispeech: An ASR corpus based on public domain audio books. In
Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
QLD, Australia, 19–24 April 2015; pp. 5206–5210.

28. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
29. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
30. Luo, Y.; Mesgarani, N. Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech separation. IEEE/ACM

Trans. Audio Speech Lang. Process. 2019, 27, 1256–1266. [CrossRef] [PubMed]
31. Juyal, P.; Kundaliya, A. Multilabel image classification using the CNN and DC-CNN model on Pascal VOC 2012 dataset. In

Proceedings of the 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), Coimbatore, India,
14–16 June 2023; pp. 452–459.

32. Guo, J.I.; Tsai, C.C.; Tseng, C.K. Pvalite CLN: Lightweight object detection with classification and localization network. In
Proceedings of the 2019 32nd IEEE International System-on-Chip Conference (SOCC), Singapore, 3–6 September 2019; pp. 118–121.

33. Xu, C.; Rao, W.; Chng, E.S.; Li, H. SpEx: Multi-scale time domain speaker extraction network. IEEE/ACM Trans. Audio Speech
Lang. Process. 2020, 28, 1370–1384. [CrossRef]

34. Xu, C.; Rao, W.; Chng, E.S.; Li, H. Optimization of speaker extraction neural network with magnitude and temporal spectrum
approximation loss. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Brighton, UK, 12–17 May 2019; pp. 6990–6994.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TASLP.2014.2352935
https://www.ncbi.nlm.nih.gov/pubmed/25599083
https://doi.org/10.3758/BF03212211
https://www.ncbi.nlm.nih.gov/pubmed/1945741
https://doi.org/10.1109/TASLP.2019.2915167
https://www.ncbi.nlm.nih.gov/pubmed/31485462
https://doi.org/10.1109/TASLP.2020.2987429

	Introduction
	Background of Target Speech Extraction
	Mask-Based Separation Method in Time Frequency Domains
	Deep Learning-Based Speech Separation Techniques
	Time Frequency Domain-Based Model
	Time Domain-Based Model
	Discussion on the Challenges of above Technology

	Target Speech Extraction Technique Based on Deep Learning Methods

	Proposed Architecture
	System Architecture
	Training Stage
	Preprocessing of the Speech Dataset
	Speech Encoder
	Speaker Encoder
	Speaker Extractor
	Audio Decoder
	Loss Function

	Testing Stage

	Experimental Results and Discussion
	Experimental Environment
	Experimental Results Comparison and Discussion
	Comparisons of Attention Mechanisms Using Different Sources
	Comparisons between the Proposed System and Other Methods
	Comparisons of the Effectiveness of the Latency Reduction Method
	Comparisons the Effectiveness for Different Numbers of Speakers

	Discussion

	Conclusions
	References

