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Abstract: Recommender systems help users obtain the content they need from massive amounts
of information. Artwork recommender systems is a topic that has attracted attention. However,
existing art recommender systems rarely consider user preferences and multimodal information at
the same time, while utilizing all the information has the potential to help make better personalized
recommendations. To better apply recommender systems to the artwork-recommendation scenario,
we propose a new neural topic modeling (NTM)-based multimodal artwork recommender system
(MultArtRec), that can take all the information into account at the same time and extract effective
features representing user preferences from multimodal content. Also, to improve MultArtRec’s
performance on monomodal feature extraction, we add a novel topic loss term to the conventional
NTM loss. The first two experiments in this study compare the performances of different models
with different monomodal inputs. The results show that MultArtRec can improve the performance
with image modality inputs by up to 174.8% compared to the second-best model and improve the
performance with text modality inputs by up to 10.7% compared to the second-best model. The third
experiment is conducted to compare the performance of MultArtRec with monomodal inputs and
multimodal inputs. The results show that the performance of MultArtRec with multimodal inputs can
be improved by up to 15.9% compared to monomodal inputs. The last experiment preliminarily tests
the versatility of MultArtRec on a fashion recommendation scenario that considers clothing image
content and user preferences. The results show that MultArtRec outperforms the other methods
across all the metrics.

Keywords: multimodal; recommender system; neural topic modeling

1. Introduction

Recommender systems are designed to assist users in discovering items of interest
in a vast sea of choices. However, no recommender system can be universally applied to
diverse contexts, and as such, recommender systems are often designed to adapt to specific
scenarios and the accompanying datasets.

Artwork recommender system research is a topic of significant academic and com-
mercial value. The artwork recommender systems not only allow users to better dis-
cover their favorites from many artworks but also contribute to the enhancement of
art-education purposes in public institutions and the sales performance of art-selling
websites. There already exist artwork-recommendation applications in numerous public
institutions, such as Europeana (https://www.europeana.eu/en, accessed on 7 January
2024), The Metropolitan Museum of Art (https://www.metmuseum.org/), Rijksmuseum
(https://www.rijksmuseum.nl/en/rijksstudio, accessed on 7 January 2024), Brooklyn
Museum (https://www.brooklynmuseum.org/), etc., and commercial websites, such as
Art.com (https://www.art.com/) and Artsy (https://www.artsy.net/). On these websites,
the recommender systems provide relevant items that may be of interest to the users. For
example, in Europeana, after clicking on a digital heritage item, the user will see items
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that have similar metadata, such as contributors and publishers, to the current digital
heritage item on the detailed page. For another example, in Artsy, if a user clicks on a
certain artwork item, artworks created by the same author and artworks in the same gallery
will appear at the bottom of the detailed page. Many of the artwork recommender system
applications have a very simple recommendation mechanism—text matching—which is
to find similar items by matching the same authors, publisher, gallery, etc. This cannot
meet the needs of users in many cases, such as exploring similar items of visual styles or
cultural backgrounds.

Researchers have noticed the above problem and proposed more advanced recom-
mender systems and content-based (CB) recommendation methods [1,2] for the artwork-
recommendation scenario. CB methods are used to extract the features of the artwork
items and make recommendations based on the similarities between the items. However,
CB methods may not provide recommendations that are well-suited to individual user
preferences because users do not always like the same content. There are two main cate-
gories of recommendation methods: CB methods and collaborative filtering (CF) methods.
CB methods leverage features of item contents (image, text, metadata, etc.) to calculate
similarities between items and then make recommendations based on the descending order
of content similarities. On the other hand, CF methods leverage user–item interaction
matrices to compute similarities between users or items. User–item interaction matrices
are two-dimensional matrices created by users’ historical preferences for items, where the
values in the matrices represent the user’s preference for the item. After the similarities are
calculated, CF methods will recommend preferred items that similar users visited or directly
recommend similar items. In general, compared to the CB methods, CF methods possess
an advantage in that they can provide recommendations that align more closely with user
preferences, as they take into account user preference data. Furthermore, considering the
increasing availability of diverse sources for obtaining users’ historical preferences, CF
methods are promising to have a more pronounced impact in the field of art recommender
systems. Considering the potential possibility of art recommendation applications in the
future, the methods that utilize CF information are more suitable as a proposal method.

In recent years, image-based recommender systems that take into account users’ histor-
ical preferences have attracted significant attention, such as in picture recommendations [3]
and fashion recommendations [4]. These methods have been designed with specific consid-
erations for image features in particular contexts. For instance, picture recommendations
take into account the user’s preferences for the color, layout, and concept of the picture,
while fashion recommendations focus on large-scale or small-scale clothing styles. Com-
pared with the general image-based recommendation, in the field of art recommendation, a
user’s preference is notably affected by the text features of the items (e.g., artwork titles
and descriptions). In this study, we aim to propose a method for an art recommendation
scenario, so we consider using both the image features and text features of the items.

Multimodal technologies are widely used in the computer vision field [5,6] and natural
language processing field [7]. An object in the real world usually does not only have
monomodal information (only image information or only text information). Leveraging
information from more than one modality can enhance the representation of objects in high-
dimensional vector spaces, therefore enabling algorithms to perform more effectively across
various machine-learning tasks. For instance, animals that are visually similar in images
can be more accurately identified by incorporating text that describes their distinguishing
features. Multimodal recommender systems have also attracted increasing attention [8].
One of the reasons is that, in many cases, items have multimodal information, which can
aid recommender systems in more effectively extracting user preferences and creating
more accurate user profiles. Another reason is that the maturation of models that extract
monomodal features [9,10] contributes to the potential enhancement of downstream task
performance. Our proposed method is inspired by multimodal technology, using image
features and text features of artworks to better represent users and artwork items and
extract the relationship between them to provide better recommendation results.
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In this study, the issues to be addressed are stated as follows:

• To help users find the items they are interested in when browsing websites providing
artwork content, propose a recommendation method that can: (1) take into account
multimodal data (e.g., image, text, video, etc.), which is increasingly abundant in
those websites and helpful for extracting user preferences, (2) consider the user–item
interactions for providing precise recommendations.

• Design a part in the proposed method to effectively extract multimodal features of
items. Among the existing multimodal recommender systems, there are already
methods that can effectively extract one type of multimodal feature (e.g., image-only
or text-only) at one time. Based on these existing methods, the purpose is to propose a
method that can effectively extract multiple multimodal features at the same time and
can best extract better features from monomodal input.

To address these issues, we propose a multimodal artwork recommender system, Mul-
tArtRec. The source code of MultArtRec can be downloaded from GitHub
(https://github.com/blueorris/MultArtRec). Our research has the following novelties:

• In contrast to typical multimodal models utilizing only image + CF information or
text + CF information, MultArtRec can take into account multimodal information and
CF information at the same time. Therefore, MultArtRec is considered to be more
effective and flexible than conventional multimodal models.

• To our best knowledge, we are the first to adopt neural topic modeling (NTM) for
multimodal feature extraction in recommendation tasks. We also propose to add a
novel topic loss term to the conventional NTM loss function that both ensures the
symmetry of the encoder–decoder architecture and better extracts monomodal or
multimodal features from the inputs.

This paper is structured as follows. Section 2 states the work related to our research.
Section 3 introduces the background knowledge to understand the NTM model. Section 4
states the methodology of our proposed MultArtRec. Section 5 introduces the experiments,
and Section 6 concludes the paper.

2. Related Work

This study involves a wide range of backgrounds. We introduce some representative
studies in this section. They are divided into 3 categories: (1) background of recommender
systems, (2) recommender systems based on monomodal or multimodal information, and
(3) the encoder–decoder structured recommender systems that are most similar to our
proposed MultArtRec.

2.1. Recommender Systems

Presently, recommender systems have been widely used in various commercial ap-
plications, such as e-commerce website Amazon (https://www.amazon.com/), food de-
livery platform Uber Eats (https://www.ubereats.com/), music streaming service Spotify
(https://open.spotify.com/), etc. These applications employ recommender systems to
provide convenience to the users and have gained popularity.

As well as being applied as commercial applications, recommender systems are also
active in various fields. Some research focuses on making people’s lives more convenient.
For example, literature [11] states the approaches for food recommendation. Research [12]
proposed a method to recommend tourist destinations. The article [13] concentrates on
recommending people to users in the social media and career development context.

Some studies focus on contributing to public utilities. For example, literature [14]
shows the implementations of recommender systems that provide support to educational
endeavors. Literature [15] summarizes research that contributes to healthcare, which makes
recommendations for lifestyle, nutrition, and health information. In the COVID-19 era,
recommender systems also show their viability of facilitating human beings in overcoming
the challenge. Research [16] proposed a method for medical staff recommendation under

https://github.com/blueorris/MultArtRec
https://www.amazon.com/
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the scenario of limited resources, and research [17] provides a method for recommend-
ing vaccines.

These applications and studies show that recommender systems have been widely
used. It is considered that the recommender systems have the potential to participate in a
wider range of fields.

2.2. Recommender Systems Based on Monomodal or Multimodal Information

In this section, we introduce various recommender systems that recommend images
or artworks, and we classify them based on the information type they use. Table 1 shows
the information types that are designed to be used in each method.

Table 1. Different information types that are designed to be used by different methods in related work.

Method Semantic Image Text CF

Wang et al. [18] ✓

Deladiennee et al. [19] ✓

Strezoski et al. [1] ✓

Messina et al. [2] ✓

Frost et al. [20] ✓

Qiu et al. [21] ✓ ✓

Messina et al. [22] ✓ ✓

Yilma et al. [23] ✓ ✓

Wang et al. [24] △ △ ✓

Li et al. [25] △ △ ✓

MultArtRec ✓ ✓ ✓
(1) The symbol “✓” indicates that all the information types can be used at the same time. (2) The symbol “△”
indicates that the information types cannot be used at the same time (e.g., either image + CF or text + CF).

2.2.1. Semantic-Based Recommender Systems

A semantic network is a graphical representation of relationships between entities
(concepts). It is often used to represent the relationship among the metadata of artworks.
Therefore, many of the studies in the field of artwork recommendation concentrate on
taking semantic information into account.

Wang et al. [18] is one of the first efforts to contribute to artwork recommender
systems. They implemented a recommendation framework, CHIP, for the Rijksmuseum.
CHIP utilizes the semantic network of cultural heritages and includes a cultural heritage
recommender system, a tour wizard, and a tour guide. This study shows that the proposed
recommender system using semantic networks can deal with the cold-start and sparsity
problems and can explain the recommendation results.

Deladiennee et al. [19] introduced a semantic-based recommender system that relies on
an ontological formalization of knowledge. The study also noted the abundant multimodal
data in museums, such as painting, video, and audio, which can describe and contextualize
an item by its history and creator. This work is mainly to solve the problem of information
overload while helping visitors find interesting content from a large amount of content and
helping museums target users’ interests when introducing their exhibits.

Although semantic information does often exist in artwork data, there are also many
artworks, especially newly created artworks, that do not have semantic information. Fur-
thermore, website visitors who are interested in semantic information often have profes-
sional knowledge to some degree, but many of the visitors do not have that knowledge.
Considering these factors, we do not consider semantic information in our proposed
artwork recommender system for this time.
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2.2.2. Image-Based Recommender Systems

Strezoski et al. [1] proposed TindART, aimed at analyzing users’ tastes in visual art.
They employed a multi-task learning deep neural network to extract content features from
artworks. Through real-time artwork preference selections, users can express and explore
their art style preferences.

Messina et al. [2] proposed CuratorNet, a model that utilizes ResNet [26] to extract
image content features and employs a triplet training strategy to learn users’ visual pref-
erences. The triplet training strategy optimizes item representations by ensuring high
similarity between artworks liked by a user and low similarity between liked and disliked
artworks. This can intuitively capture the representation of artwork image contents and is
able to recommend items for users who come to the system for the first time (cold-start case).

As mentioned in Section 1, the two studies above utilized CB methods, which will fail
to provide precise recommendations to the user preferences.

Frost et al. [20] proposed a method that focuses on the image features of artworks that
the users do not like and only avoids recommending items that are similar to those disliked
ones. This can give the recommendations a broader range. This method can effectively
prevent the filter bubble phenomenon. The filter bubble phenomenon refers to the fact that
always providing similar recommendations to users will prevent them from accessing other
perspectives of information. This study did very meaningful work, but the purpose of our
work is to help users precisely obtain the content in which they are interested; therefore, it
is not consistent with the purpose of our research.

Qiu et al. [21] proposed a recommender system, CausalRec, for fashion products.
It introduced an observation that users, when purchasing clothes in online shops, are
influenced not only by the products’ visual factor but also by other non-image factors,
such as brand and material, when buying clothes. To address this issue, they employed
causal graphs to identify and analyze the visual bias of some existing methods, and they
proposed a debiased visually aware recommender system, CausalRec. This method is
designed to eliminate this spurious relationship that misleads the prediction of the user’s
real preference. The proposed method outperforms methods with visual biases [27,28]
on the Amazon product datasets. In addition to image features, CausalRec also takes
image information and CF information into account. CausalRec is used in the comparative
experiments with image modality input in this research.

2.2.3. Multimodal Recommender Systems

Messina et al. [22] proposed a CB method that uses metadata and image features of
artworks. Some of the image features were created manually, and some were extracted
using a neural network. However, comparative experiments showed that the features
extracted using neural networks were far superior to the features extracted automatically
and manually in the task of recommending works of art. They also indicated that the
hybrid approach combining visual features and textual attributes (e.g., artist, title, style,
etc.) yields a performance improvement and that using only image features yields better
results than using only metadata. This study provides a very valuable conclusion for our
research, i.e., (1) using both image and text information to recommend artworks is effective,
and (2) using neural networks to extract image features is effective.

Yilma et al. [23] adopted neural networks to extract image features and text features
(e.g., title, artist, description, etc. of artworks) and used the combination of them to create
embeddings of artworks. They also created combination embeddings for each user to
represent their preferences. Finally, the similarities between the artworks and the users are
calculated, and recommendations are made. This study stated that user evaluation data are
very important. This research also provides valuable experience for our research, i.e., using
both image and text features is effective in art recommendation.

Both of the above studies used multimodal data, especially image and text data,
and obtained good results, which gave us great inspiration. However, they did not con-
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sider the user–item interaction matrix, so they considered it to be difficult to provide
personalized recommendations.

2.2.4. Encoder–Decoder Architectured Multimodal Recommender Systems

In the field of multimodal recommender systems, there is a class of methods based on
the encoder–decoder architecture. Since such architecture can be flexibly applied to various
data and modalities, it is very suitable for our recommendation scenarios.

Wang et al. [24] proposed collaborative deep learning for recommender systems
(CDL). The CDL model is designed to utilize auxiliary information to alleviate the sparsity
problem and cold-start problem, which are common problems in recommender systems.
The CDL model extracts the latent features of the items’ auxiliary information with an
encoder–decoder architectured deep-learning neural network part and then integrates the
latent features into a CF probabilistic framework. This model is considered to effectively
capture the similarity and implicit relationship between items and users. In addition,
the CDL model has a denoise layer in it, thus having better effects on sparse data. The
deep-learning part that extracts latent features can be applied to any auxiliary information
that can be represented as vectors, therefore ensuring that the CDL model has flexibility for
various data modalities.

Li et al. [25] proposed a collaborative variational autoencoder for recommender sys-
tems (CVAE). Similar to CDL, CVAE also utilizes auxiliary information to alleviate the
sparsity problem as well as the cold-start problem, extracts item latent features, and then
integrates them into a CF framework. The CVAE model extracts item latent features by the
variational autoencoder (VAE) [29]. As mentioned in this study, the main reason CVAE’s
feature extraction structure is better than CDL is that the denoising layer added to CDL
makes the features lose their Bayesian nature, which is difficult for Bayesian inference
or requires high computational cost, while CVAE avoids this problem. This study also
provided variants of the CVAE model, allowing it to have room for improvement with
image input or sequential input.

2.3. Neural Topic Modeling

Among neural network models with encoder–decoder, the neural topic models (NTMs)
are considered to be capable of extracting topics from input vectors. This provides a
promising method for neural networks to understand the focus of features.

NTMs [30] are a kind of topic modeling technique that includes various neural network
structures. One of the basic NTM model structures is mentioned in [31] (in the subsequent
text, the basic NTM model is denoted as NTM). The neural network structure of NTM is
very similar to VAE, which is also developed with a neural variational inference framework.
The NTM model has been verified to be able to effectively extract topics from documents.

Compared with the classic topic modeling method latent Dirichlet allocation (LDA) [32],
NTM is easier to combine with other neural networks, which can easily achieve more com-
plex tasks, such as recommendation tasks. LDA assumes that documents are mixtures of
topics and words are generated from these topics with a certain probability distribution.
It was at first used to extract document topics, but later, LDA also showed superiority in
extracting image topics for image classification task [33]. In [34], Hörster et al. also pointed
out that the topic modeling method, latent semantic analysis, has a strong ability to extract
coherent topics from image features. Inspired by these studies, we propose to use the NTM
model to extract the latent topics from the image and text contents of the artwork items.

3. Introduction of Basic Models

In this section, we aim to introduce the technical background that is related to our
proposed NTM-based multimodal recommendation method to better explain the rationality
and effectiveness of its application in art recommendation.
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3.1. Introduction of Variational Autoencoder (VAE)

Dimensionality reduction is a technique in machine learning and statistics that aims
to reduce the number of input features while retaining as much relevant information as
possible. High-dimensional data, where each data point has many features, can pose
challenges such as increased computational complexity, increased risk of overfitting, and
the curse of dimensionality.

An autoencoder is a typical model with encoder–decoder architecture that is designed
to learn efficient representations of data, often for dimensionality reduction. The structure
of an autoencoder is shown in Figure 1.

Figure 1. The model structure of an autoencoder.

The encoder of the autoencoder is denoted as e(·), and the decoder is denoted as
d(·) in the figure. The latent features that are obtained after dimensionality reduction are
denoted as h. The loss function of the autoencoder, Lrecon(x, x′), is to measure the difference
between the input x and the reconstructed x′, which is also called the reconstruction error.
Common loss functions for calculating reconstruction error include mean squared error
(MSE) and binary cross-entropy.

It is difficult for an autoencoder to produce new content. The reason is that the
autoencoder does not learn the distribution of the input in the latent space, so it cannot
sample from the latent space to generate new content. Moreover, autoencoders will easily
cause overfitting problems because they have not learned the real distribution of the latent
space, thus affecting the quality of latent features.

VAE assumes the latent space as a standard multivariate normal distribution, making
the model better express the latent space. The model structure of VAE is shown in Figure 2.

In the VAE model, the input x is at first encoded into a multivariate normal distribu-
tion with mean µ and covariance matrix ∑, which are obtained through e1(·) and e2(·),
respectively. Next, the model samples latent variables h from the distribution N (µ, ∑).
Finally, it decodes h to reconstruct x′ through d(·), which is the same as the autoencoder.

VAE’s loss function includes a reconstruction term and a regularization term. The
reconstruction term is the same as that in the autoencoder. The regularization term en-
courages the distribution of the latent space N (µ, ∑) to be close to a standard normal
distribution N (0, I). It is expressed as the Kullback–Leibler divergence (KL divergence). In
summary, VAE’s loss function LVAE can be denoted as:

LVAE = Lrecon(x, x′) + KL(N (µ, ∑),N (0, I)). (1)
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Figure 2. The model structure of VAE.

Because the KL divergence is often intractable to compute directly, VAE uses evidence
lower bound (ELBO) to approximate the KL loss. The equation of ELBO is:

ELBO = Eqϕ(h|x)[log pθ(x | h)]− KL
(
qϕ(h | x)∥p(h)

)
. (2)

with this design, VAE can model more expressive latent space than the autoencoder, which
is an advantage for expressing rich item content.

3.2. Introduction of Neural Topic Modeling (NTM)

NTM is a model designed based on VAE. The NTM’s encoder qΦ and decoder pθ

structure is shown in Figure 3. In this model, the encoder infers a doc–topic distribution
that encodes the original documents into a latent topic space z. The decoder infers a
topic-doc distribution that generates documents from the latent topics.

Figure 3. The model structure of NTM.
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Structurally, NTM has one more latent variable z than VAE, which intuitively encodes
the input into a space where each dimension represents a topic word. It is obtained by:

z = ReLU(h). (3)

In the loss function, both NTM and VAE have a reconstruction term and a regulariza-
tion term. The difference lies in that NTM utilizes the invariance of KL divergence under
deterministic mapping between h and z, that is:

KL
(
qϕ(z | x)∥p(z)

)
= KL

(
qϕ(h | x)∥p(h)

)
. (4)

The NTM is superior in its ability to describe documents well and to produce topics
that carry coherent semantic meaning, as well as offer a flexible framework to integrate
into other neural networks.

4. Methodology

This section introduces our proposed NTM-based method, MultArtRec. The structure
of MultArtRec is illustrated in Figure 4. Table 2 explains the notations in the structure
figure. This model is divided into two parts: the NTM part and the CF part. The NTM part
is used to extract topics of an item’s content. Since the NTM part cannot predict user–item
ratings, the CF part is adopted to do that. The CF part is the same as that in the CVAE
method and CDL method. After combining these two parts, we can also easily compare
our proposed MultArtRec with two classic multimodal recommendation models, CVAE
and CDL.

Figure 4. The model structure of our proposed method MultArtRec.

Table 2. Notations for MultArtRec.

Symbol Description

x input
µ mean vector of latent features
∑ covariance matrix of latent features
h latent features
z latent topics
x′ reconstructed x
u embedding of users
v embedding of items
r rating predictions

fMLP multi-layer perceptron
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In the NTM part, Let x ∈ RN be the input vector. It can be the embedding of any
item content, and N is the dimension of the input features. Let z ∈ RK be the latent topic
variable, where K is the number of topics. The encoder of the NTM part is represented
as qϕ(z | x), and the decoder of the NTM part is represented as pθ(x | z). In the encoder,
fMLP refers to a multi-layer perceptron that can include any number of layers. Generally,
an input with a larger number of dimensions requires more layers of MLP for better feature
extraction. In the CF part, let v ∈ RK be the embeddings of items, and u ∈ RK be the
embeddings of users. The rating prediction is calculated by the inner product of u and v.

In MultArtRec, item embeddings are represented as v in the CF part. They are obtained
by first sampling from N (µ, ∑) to obtain h, then encoding h into a space z where each
dimension represents an image or text topic, and finally, through the linear transformation
between z and v. User embeddings are represented as u in the CF part. They are randomly
initialized at first. The rating r is the inner product of item embeddings and user embed-
dings. Both item embedding v and user embedding u are updated during the training
phase so that they have better expression in the corresponding tasks. The specific tasks are
specified in the loss function.

The loss function of our proposed MultArtRec LMultArtRec is constructed with five
losses: reconstruction loss Lrecon, regularization loss Lregu, item loss Litem, rating loss Lrating,
and topic loss Ltopic. By minimizing the loss, all the parameters in the neural network,
including user embedding u, will be updated. The loss function can be denoted as:

LMultArtRec = λn · Lrecon + λr · Lregu + λv · Litem + λc · Lrating + λt · Ltopic, (5)

where λn, λr, λv, λc, λt are manually set parameters that are used to control the proportion
of each loss.

To be more specific, reconstruction loss is calculated as the squared error between the
input and the reconstruction. It can ensure that the extracted topic still retains the main
features of the input after dimension reduction so that it can be reconstructed. The formula
of the reconstruction loss is:

Lrecon =
N

∑
i=1

||xi − x′i ||2. (6)

Regularization loss is the same as that in VAE and NTM, adopting ELBO to minimize
the divergence between the latent feature distribution and a standard multivariate normal
distribution. It satisfies the assumption that h is sampled from a standard multivariate
normal distribution. The formula of the regularization loss is:

Lregu = ∑ log pθ(x | z)− KL(qϕ(h | x)||pθ(h)). (7)

The item loss is adopted in the CVAE’s and CDL’s CF parts, i.e., the squared error
between the latent topic z and the item embedding v. It extracts more specific features from
topic z for rating prediction. The formula for the item loss is:

Litem =
K

∑
i=1

||zi − vi||2. (8)

The rating loss is also adopted in CVAE’s and CDL’s CF part, i.e., the squared error
between the predicted ratings r and the ground truth ratings r̂. This is an important
term that helps to obtain item embeddings and user embeddings that can represent user
preferences. The formula for rating loss is:

Lrating =
N

∑
i=1

||ri − r̂i||2. (9)
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The topic loss is a new improvement we propose, which calculates the squared error
between latent features h and latent topics z:

Ltopic =
K

∑
i=1

||hi − zi||2. (10)

The reason we propose topic loss is stated below. In VAE practical implementations,
symmetrical matrices in the model are sometimes set to be the same to ensure the symmetry
of encoder–decoder architecture. CVAE is also implemented in this way. However, CVAE
shows limited performance in recommendation tasks. We assume that the reason for this is
because of the inappropriate symmetrical design, and that is why we propose the topic loss.
Topic loss can be intuitively understood as reducing the difference between the middle
symmetry layers.

Previous content in this section introduces the model structure and loss function for
monomodal modality input. When using multimodal data as input, the model can be
understood as having multiple NTM parts. Each NTM part extracts latent topics from
different modalities. In this case, the item loss consists of multiple terms that calculate
differences between latent topics of different modalities and the item embedding v, and
each term has a bias. The following formula defines the item loss of a model with two
NTM parts:

Litem−multimodal = λa

K

∑
i=1

||zi
a − vi||2 + λb

K

∑
i=1

||zi
b − vi||2. (11)

where the bias λa and λb can be manually set, za and zb are the latent topics extracted from
different modalities, v stands for item embeddings. Except for item loss, other loss terms
are the same as that used in the monomodality input case.

Study [31] mentioned that the NTM model can extract coherent topics from inputs.
Considering that, the NTM part in the proposed MultArtRec can be understood as extract-
ing coherent topics from multimodal features, and item embeddings are further generated
from the latent topics. In the CF part, the rating predictions are calculated for recommenda-
tion tasks that obtain the inner product of the item embeddings and user embeddings.

5. Experiments

To verify the effectiveness of our proposed method, we conducted different compar-
ative experiments on a public dataset. This section introduces the experimental dataset,
experimental settings, and experimental results in detail.

5.1. Dataset

We use two datasets to evaluate our proposed method: (1) WikiArt Emotions
Dataset [35], and (2) Amazon Clothing Dataset. Since we do not use all the contents
of these two datasets, below we describe how we use these two datasets separately.

5.1.1. WikiArt Emotions Dataset

The dataset we use to evaluate our proposed method is the WikiArt Emotions Dataset.
This dataset was created after a survey that asked 307 annotators to annotate 4105 artworks
(mainly paintings). The selected artworks are famous artworks selected from 22 categories
from the WikiArt.org collection. Each of the categories contains 200 artworks. Each artwork
was annotated by at least 10 annotators. The survey asks the annotators to rate (the score is
−3 to 3) and tag emotions to the artworks when shown the pictures, the titles, and both
pictures and titles. One of the annotation examples is shown in Figure 5 and Table 3.
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Table 3. The emotion tags and rating from one annotator for “Dance at the Spring” in original WikiArt
Emotions Dataset.

Emotion Tag for
Image Emotion Tag for Title Emotion Tag for Both

Image and Title
Rating for the

Artwork

happiness,
anticipation happiness happiness 1

Figure 5. The image of artwork “Dance at the Spring” in original WikiArt Emotions Dataset.

WikiArt Emotions Dataset includes images and text information about the artworks,
as well as the emotion tags and ratings obtained from the annotators. Some studies use
WikiArt Emotion Dataset for emotion recognition [36] or style and color representation
analysis [37]. Our purpose is to propose a method that can be broadly applicable to artwork
recommendation and use the WikiArt Emotion Dataset to evaluate the proposed method.
Since emotion tags are rarely collected in existing online artwork services, and emotion
tags are not easy to obtain, we do not include emotion tags for the experiments. In addition,
our research focuses on the particularity of artwork images and titles. In order to keep
the initial experiment simple, we do not include other text information (e.g., artist, genre,
year) in the WikiArt Emotion Dataset but only use titles of the artworks. Therefore, we
created a new dataset based on the WikiArt Emotions Dataset. It includes 63,425 user–item
ratings and 4105 artwork images and titles. An example of the created dataset is shown in
Tables 4 and 5.

Table 4. An example of user–item rating in the created dataset for experiments.

Annotator ID Artwork ID Rating

18 577284a7edc2cb3880fe813a 1

Table 5. An example of artwork image and title in the created dataset for experiments.

Artwork Image Artwork Title

Dance at the Spring

5.1.2. Amazon Clothing Dataset

The Amazon Clothing Dataset is created by the recommender system evaluation
framework Cornac [38] (https://github.com/PreferredAI/cornac, accessed on 7 January
2024) based on Amazon product data (http://jmcauley.ucsd.edu/data/amazon/, accessed
on 7 January 2024), and can be obtained through functions built in Cornac. This makes

https://github.com/PreferredAI/cornac
http://jmcauley.ucsd.edu/data/amazon/
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it easier to evaluate and compare the recommendation methods. The original Amazon
product data includes various information on the users’ purchasing activity. The Amazon
Clothing Dataset makes sure that all the items have three types of auxiliary data: text,
image, and context (item-item relationships), including data of the user–item interactions,
product review text, product image features, item-item relationships, including 5377 users,
3393 products and 13,689 user–item ratings.

5.2. Input Feature Extraction Models

We use pre-trained models or finetuned models to extract image features and text
features of the artwork item content in the WikiArt Emotion Dataset, then use these features
as the input for the recommendation models. The information on the feature extraction
models is summarized in Table 6.

Table 6. Pre-trained models and finetuned models for input feature extraction.

Notation Base Model Modality Feature
Dimension

Pre-Training or
Finetuning Dataset Model URL

BERT-base BERT [10] Text 768 BooksCorpus and
Wikipedia

https://huggingface.co/bert-base-
uncased

BERT-
emotion BERT Text 768 Twitter Sentiment

Analysis
https://huggingface.co/bhadresh-
savani/bert-base-uncased-emotion

BERT-poem BERT Text 768 Poem Sentiment https://huggingface.co/nickwong64/
bert-base-uncased-poems-sentiment

ResNet ResNet50 [26] Image 2048 ImageNet
https://www.tensorflow.org/api_docs/
python/tf/keras/applications/resnet50/
ResNet50

VGG VGG16 [9] Image 4096 ImageNet
https://www.tensorflow.org/api_docs/
python/tf/keras/applications/vgg16/
VGG16

All the model URLs are accessed on 7 January 2024.

For text feature extraction, we chose the commonly used BERT-base model, which is
trained on a large corpus and can fit various tasks. The BERT-emotion model and the BERT-
poem model are finetuned on sentiment-related short-text datasets, so they are considered
better for extracting the title features of artworks. For image feature extraction, we chose
the commonly used ResNet model and VGG model, which can fit various tasks.

5.3. Evaluation Metrics

In the comparative experiments, precision@k, recall@k, and NDCG@k are used to
evaluate the methods. These metrics are often used to measure whether the recommenda-
tion results satisfy the users. Among them, NDCG@k considers the ranking order of the
recommendation results. The metrics are stated below:

Precision@k =
hits

k
, (12)

Recall@k =
hits

relevant items
, (13)

NDCG@k =
∑k (actual order)

i=1
hits

log2(i+1)

∑k (ideal order)
i=1

hits
log2(i+1)

, (14)

where k refers to the number of top-ranked recommended items that are retrieved. In the
comparative experiments, k = {10, 20, 50}. The evaluation metrics emphasize the quality
of top-k recommendation results because, in many practical scenarios, the users will only
browse part of (often few of) the results provided by the recommendation algorithm. In all

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://huggingface.co/bhadresh-savani/bert-base-uncased-emotion
https://huggingface.co/bhadresh-savani/bert-base-uncased-emotion
https://huggingface.co/nickwong64/bert-base-uncased-poems-sentiment
https://huggingface.co/nickwong64/bert-base-uncased-poems-sentiment
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50
https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet50/ResNet50
https://www.tensorflow.org/api_docs/python/tf/keras/applications/vgg16/VGG16
https://www.tensorflow.org/api_docs/python/tf/keras/applications/vgg16/VGG16
https://www.tensorflow.org/api_docs/python/tf/keras/applications/vgg16/VGG16
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the metrics, the term hits refers to the number of correctly recommended items. In recall@k,
the term relevant items refers to the number of liked items for each user in the test data. In
NDCG@k, the term actual order refers to the actual recommendation order. The term ideal
order refers to the best recommendation order.

5.4. Comparative Experiments

In this section, we conduct experiments on two aforementioned datasets. The results
are illustrated in Section 5.4.1 and Section 5.4.2, respectively.

5.4.1. Experiments on WikiArt Emotions Dataset

We use the recommendation algorithms provided in the comparative framework
Cornac to compare with our proposed MultArtRec on the WikiArt Emotions Dataset.

For all the experiments in this section, when splitting the training data and the test
data, we used the RatioSplit method in Cornac to set the ratio of the training set to the test
set as 8:2 and set the same splitting random seed for each experiment. Finally, the training
set includes 307 users, 4105 artworks, and 49,603 user–item ratings. The test set includes
307 users, 3751 artworks, and 12,611 user–item ratings. Other experimental settings are
stated before each experiment.

The rest of this section illustrates the experiments that use image modality, text modal-
ity, and multimodal modality as input, respectively.

Image Modality Input

To verify the effectiveness of MultArtRec on image modality, we compared it with
CausalRec, CVAE, and CDL. The input of each model is the artwork image features ex-
tracted by ResNet and VGG. The experiment results of using VGG features and ResNet
features are shown in Table 7 and Table 8, respectively.

For MultArtRec, CVAE, and CDL, we set the rating threshold as 0.5, which means
that only the items with rating predictions larger than 0.5 can be recommended. Because
the CausalRec method must use a dataset with ratings of 1 to 5, for CausalRec, we first
normalize the ratings from −3 to 3 to 1 to 5 and then set the rating threshold to 3, which
is equivalent to 0.5 in the −3 to 3 scope. Because MultArtRec has a similar structure
to CVAE and CDL, for comparison, the size of the latent topic layer K in MultArtRec is
set as 50, which is the same as the size of latent feature layers in CVAE and CDL. The
number of training epochs is set as 300. The remaining parameters remain the default in
the Cornac examples.

Table 7. Comparison of our proposed model MultArtRec with CDL, CVAE, and CausalRec using
only VGG image features as input.

Metric CasualRec CDL CVAE MultArtRec

NDCG@50 0.0747 0.0716 0.0708 0.0773 *
NDCG@20 0.0487 0.0533 0.0554 0.0617 *
NDCG@10 0.0384 0.0466 0.0508 0.0588 *

Precision@50 0.0558 * 0.0284 0.0288 0.0305
Precision@20 0.0484 * 0.0365 0.0398 0.0427
Precision@10 0.0415 0.0406 0.0462 0.0515

Recall@50 0.0975 0.1446 0.1379 0.1463 *
Recall@20 0.0280 0.0575 0.0556 0.0618
Recall@10 0.0129 0.0205 0.0219 0.0285 *

(1) Bold and underlined results show the best performance for each metric when inputting VGG image features.
(2) Results with asterisks show the best performance for each metric across all kinds of image feature inputs.
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Table 8. Comparison of our proposed model MultArtRec with CDL, CVAE, and CausalRec using
only ResNet image features as input.

Metric CasualRec CDL CVAE MultArtRec

NDCG@50 0.0524 0.0693 0.0709 0.0766
NDCG@20 0.0349 0.0547 0.0553 0.0607
NDCG@10 0.0286 0.0513 0.0508 0.0572

Precision@50 0.0418 0.0277 0.0288 0.0314
Precision@20 0.0346 0.0386 0.0396 0.0431
Precision@10 0.0320 0.0482 0.0462 0.0521 *

Recall@50 0.0607 0.1312 0.1380 0.1425
Recall@20 0.0226 0.0562 0.0556 0.0621 *
Recall@10 0.0114 0.0224 0.0219 0.0257

(1) Bold and underlined results show the best performance for each metric when inputting ResNet image features.
(2) Results with asterisks show the best performance for each metric across all kinds of image feature inputs.

From the results shown in the tables above, we can see that CausalRec+VGG per-
forms the best in precision@50 and precision@20 when using VGG features, and Causal-
Rec+ResNet performs the best in precision@50 when using ResNet features, MultArtRec
is optimal in the remaining metrics. However, CausalRec+ResNet performs worse than
either MultArtRec+VGG or MultArtRec+ResNet on average. This shows that MultArtRec
is more robust than CausalRec in extracting effective features from different image features.
Moreover, most of the best results across all metrics are achieved when using VGG fea-
tures, indicating that VGG features are more appropriate for this recommendation task.
Compared with CausalRec, MultArtRec can at most improve 174.8% with ResNet features
on recall@20.

Text Modality Input

As for the verification of MultArtRec’s effectiveness on text modality, we compare it
with CVAE and CDL. The input of each model is the text features extracted from artwork
titles by BERT-base, BERT-emotion, and BERT-poem. The experiment results of using three
kinds of features are shown in Table 9, Table 10, and Table 11, respectively. The setting of
the rating threshold, the latent topic layer size K, and the training epochs are the same as
the image-only modality experiments.

Table 9. Comparison of our proposed model MultArtRec with CDL and CVAE using only BERT-base
text features as input.

Metric CDL CVAE MultArtRec

NDCG@50 0.0746 0.0711 0.0780 *
NDCG@20 0.0620 * 0.0555 0.0609
NDCG@10 0.0550 0.0509 0.0575 *

Precision@50 0.0304 0.0289 0.0316
Precision@20 0.0427 0.0398 0.0416
Precision@10 0.0465 0.0462 0.0512

Recall@50 0.1393 0.1386 0.1442 *
Recall@20 0.0637 0.0556 0.0605
Recall@10 0.0238 0.0219 0.0230

(1) Bold and underlined results show the best performance for each metric when inputting BERT-base text features.
(2) Results with asterisks show the best performance for each metric across all kinds of text feature inputs.

From the results shown in the tables above, we can see that sometimes CDL outper-
forms MultArtRec, especially when using BERT-emotion features as the input. However,
MultArtRec has the best performance across all kinds of text feature inputs. This illustrates
that compared with CDL, MultArtRec can extract better feature extraction capabilities
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when using appropriate inputs. Compared with CDL, MultArtRec can, at most, improve
10.7% with BERT-poem features on precision@50.

Table 10. Comparison of our proposed model MultArtRec with CDL and CVAE using only BERT-
emotion text features as input.

Metric CDL CVAE MultArtRec

NDCG@50 0.0737 0.0712 0.0720
NDCG@20 0.0607 0.0556 0.0596
NDCG@10 0.0575 0.0509 0.0553

Precision@50 0.0300 0.0290 0.0292
Precision@20 0.0404 0.0399 0.0403
Precision@10 0.0479 0.0462 0.0475

Recall@50 0.1269 0.1387 0.1338
Recall@20 0.0596 0.0557 0.0640 *
Recall@10 0.0290 0.0219 0.0283

(1) Bold and underlined results show the best performance for each metric when inputting BERT-emotion text
features. (2) Results with asterisks show the best performance for each metric across all kinds of text feature inputs.

Table 11. Comparison of our proposed model MultArtRec with CDL and CVAE using only BERT-
poem text features as input.

Metric CDL CVAE MultArtRec

NDCG@50 0.0718 0.0712 0.0740
NDCG@20 0.0584 0.0554 0.0583
NDCG@10 0.0573 0.0509 0.0554

Precision@50 0.0289 0.0290 0.0320 *
Precision@20 0.0403 0.0396 0.0436 *
Precision@10 0.0518 * 0.0462 0.0505

Recall@50 0.1287 0.1387 0.1406
Recall@20 0.0576 0.0556 0.0544
Recall@10 0.0300 * 0.0219 0.0245

(1) Bold and underlined results show the best performance for each metric when inputting BERT-poem text
features. (2) Results with asterisks show the best performance for each metric across all kinds of text feature inputs.

From the above two experiments, we can see that an obvious drawback of the CVAE
model is that for the same modality, no matter what input features are used, its perfor-
mances are almost the same. This is also the limitation we found and mentioned in the last
section. By introducing a new topic loss to ensure the symmetric structure in MultArtRec,
the model obviously overcomes this limitation.

Multimodal Modality Input

In the above experiments, we revealed the comparison results of our proposed Mul-
tArtRec and several existing models when taking in monomodal input. Next, we test the
performance of the proposed MultArtRec on multimodal data. The experiment results for
NDCG@k, precision@k and recall@k are shown in Table 12, Table 13 and Table 14, respec-
tively. In order to compare the inputs of different modalities, the previous experiments on
image features and text features are also placed in the corresponding tables.

The setting of the recommendation threshold and the latent topic layer size K are the
same as the image-only modality and text-only modality experiments. As mentioned in
Section 4, Equation (11), when using multimodal data as input, there are multiple NTM
parts in the proposed framework. Each NTM part extracts latent topics of one modality. In
this experiment, we set the bias of the text modality item loss as one and the bias of the
image modality item loss as 0.2.
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Table 12. The performance of the proposed MultArtRec in text modality, image modality, and
multimodality on NDCG@k metric.

Input Feature Modality NDCG@50 NDCG@20 NDCG@10

VGG image 0.0773 0.0617 0.0588
ResNet image 0.0739 0.0609 0.0547

BERT-base text 0.0780 0.0609 0.0575
BERT-emotion text 0.0720 0.0596 0.0553
BERT-poem text 0.0740 0.0583 0.0554

VGG+BERT-base image + text 0.0704 0.0607 0.0572
VGG+BERT-emotion image + text 0.0777 0.0617 0.0572
VGG+BERT-poem image + text 0.0726 0.0583 0.0559
ResNet+BERT-base image + text 0.0717 0.0607 0.0589
ResNet+BERT-emotion image + text 0.0768 0.0624 0.0634
ResNet+BERT-poem image + text 0.0744 0.0619 0.0569

Bold and underlined results show the best performance on NDCG@k when inputting different features to
MultArtRec.

Table 13. The performance of the proposed MultArtRec in text modality, image modality, and
multimodality on precision@k metric.

Input Feature Modality Precision@50 Precision@20 Precision@10

VGG image 0.0305 0.0427 0.0515
ResNet image 0.0288 0.0413 0.0469

BERT-base text 0.0316 0.0416 0.0512
BERT-emotion text 0.0292 0.0403 0.0475
BERT-poem text 0.0320 0.0436 0.0505

VGG+BERT-base image + text 0.0302 0.0442 0.0495
VGG+BERT-emotion image + text 0.0325 0.0432 0.0525
VGG+BERT-poem image + text 0.0315 0.0417 0.0482
ResNet+BERT-base image + text 0.0317 0.0437 0.0531
ResNet+BERT-emotion image + text 0.0329 0.0437 0.0525
ResNet+BERT-poem image + text 0.0316 0.0452 0.0502

Bold and underlined results show the best performance on precision@k when inputting different features to
MultArtRec.

Table 14. The performance of the proposed MultArtRec in text modality, image modality, and
multimodality on recall@k metric.

Input Feature Modality Recall@50 Recall@20 Recall@10

VGG image 0.1463 0.0618 0.0285
ResNet image 0.1384 0.0652 0.0247

BERT-base text 0.1442 0.0605 0.0230
BERT-emotion text 0.1338 0.0640 0.0283
BERT-poem text 0.1406 0.0544 0.0245

VGG+BERT-base image + text 0.1196 0.0568 0.0287
VGG+BERT-emotion image + text 0.1433 0.0643 0.0270
VGG+BERT-poem image + text 0.1310 0.0529 0.0278
ResNet+BERT-base image + text 0.1214 0.0552 0.0206
ResNet+BERT-emotion image + text 0.1356 0.0522 0.0339
ResNet+BERT-poem image + text 0.1374 0.0620 0.0312

Bold and underlined results show the best performance on recall@k when inputting different features to Mul-
tArtRec.

From the experimental results above, we can see that for precision and all the @10
metrics, MultArtRec using multimodal data always performs the best. This demonstrates
that the multimodal feature can express richer user preferences, allowing it to have a more
accurate expression in vector space, and MultArtRec can effectively extract such richly
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expressed features. MultArtRec using image monomodal data performs well on recall when
k is large. This shows that in the WikiArt Emotions Dataset, when k increases, the image
features extracted by MultArtRec are more representative of a user’s general preferences.
Compared with utilizing monomodal inputs, utilizing multimodal inputs can improve up
to 15.9% on NDCG@10.

Moreover, we found that although MultArtRec performs better on many metrics when
using the image features extracted by VGG than using image features extracted by ResNet,
MultArtRec performs better on the multimodal feature that includes the image feature
extracted by ResNet. This may be because the feature dimension of VGG is much larger
than the dimension of the text feature, which makes the information unbalanced. One
solution is to finetune the parameters to reduce the impact of the image modal input on
the overall loss. Another solution is to design a better feature fusion module to solve
this problem.

All the experiments show that the topic loss we propose is effective. When using
monomodal input, compared with the CVAE model that has similar architecture but
without topic loss, MultArtRec can better utilize appropriate monomodal features, thus
obtaining better recommendation results. When using multimodal input, the loss function
with our proposed topic loss can extract latent topics that are better than monomodal in
recommendation tasks.

5.4.2. Experiments on Amazon Clothing Dataset

We also use the recommendation algorithms provided in the comparative framework
Cornac to compare with our proposed MultArtRec on the Amazon Clothing Dataset. The
purpose of conducting experiments with Amazon Clothing Dataset is to test the versatility
of our proposed MultArtRec method on another recommendation scenario besides artwork
recommendation. The preliminary experiments are conducted with image modality of
product items, utilizing user–item interactions and product image features.

For the experiments in this section, we also use the RatioSplit method in Cornac with
the same random seed, to split the training data and the test data with the ratio of 8:2.
Finally, the training set includes 5081 users, 3326 products and 10,951 user–item ratings.
The test set includes 1868 users, 1453 products, and 2200 user–item ratings.

In this experiment, the comparison models we selected include CDL and CVAE, which
have a similar structure to our model, as well as CasualRec, visual matrix factorization
(VMF) [39] and visual Bayesian personalized ranking (VBPR) [27], which perform well on
image-based recommendation tasks. For all the models, the rating threshold is set as 3 (the
ratings range from 1 to 5) and trained for 100 epochs. The latent feature layer of CDL and
CVAE and the latent topic layer K in MultArtRec are all set to 200. The other parameters of
CasualRec, VMF, and VBPR remain the default in the Cornac examples. The evaluation
methods include precision@k, recall@k and NDCG@k, k = {10, 20, 50}. The experimental
results are shown in Table 15.

Table 15. Comparison of our proposed model MultArtRec with other methods using Amazon
Clothing Dataset’s image features as input.

Metric CasualRec VMF VBPR CDL CVAE MultArtRec

NDCG@50 0.0065 0.0297 0.0611 0.0665 0.0619 0.0685
NDCG@20 0.0031 0.0245 0.0497 0.0587 0.0550 0.0598
NDCG@10 0.0018 0.0194 0.0416 0.0493 0.0473 0.0515

Precision@50 0.0006 0.0020 0.0037 0.0043 0.0039 0.0044
Precision@20 0.0005 0.0035 0.0061 0.0084 0.0079 0.0086
Precision@10 0.0004 0.0048 0.0084 0.0126 0.0122 0.0134

Recall@50 0.0245 0.0851 0.1583 0.1843 0.1695 0.1918
Recall@20 0.0081 0.0591 0.1032 0.1460 0.1367 0.1496
Recall@10 0.0031 0.0400 0.0717 0.1107 0.1075 0.1181

Bold and underlined results show the best performance for each metric.
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From the results, we can see that MultArtRec ranks the best across all the metrics. This
proves the versatility of MultArtRec. Besides artworks, it can also extract effective image
features that represent user preferences from the pictures of the products.

6. Conclusions and Future Work

In this study, we proposed an NTM-based multimodal recommender system, Mul-
tArtRec, for rating prediction for user–item pairs. It can theoretically effectively extract
latent topics for the recommendation task from any item content that can be expressed
by vectors.

For the verification of the effectiveness of our proposed MultArtRec on real-world
data, the public WikiArt Emotions Dataset and Amazon Clothing Dataset are adopted.

In the experiments conducted on the WikiArt Emotions Dataset, the first two exper-
iments verify the performance of MultArtRec on monomodal item content. The results
show that for monomodal input, MultArtRec has better results on many metrics than a
state-of-the-art image-based recommender system, CausalRec, and two other similar ar-
chitectured multimodal recommendation methods, CDL and CVAE. The third experiment
explores whether MultArtRec can perform better when utilizing multimodal input rather
than monomodal input. This experiment compares the performances of MultArtRec itself
on two kinds of image modal features, three kinds of text modal features, and six combined
multimodal features by the image modal features and text modal features. The experi-
mental results show that MultArtRec can achieve better results when utilizing multimodal
features than only utilizing monomodal features. All the experiment results prove that
both the architecture and the loss function with topic loss of MultArtRec are effective.

In the experiments conducted on Amazon Clothing Dataset, the preliminary results
show that MultArtRec outperforms those other models, which illustrates MultArtRec’s
versatility to some degree. However, more experiments on other modalities and datasets
are needed to prove the real versatility of our proposed method.

Two main limitations of MultArtRec have also been discovered. The first limitation is
that when utilizing monomodal input, the performance of MultArtRec is not always opti-
mal; e.g., when utilizing the text monomodal input, CDL outperforms MultArtRec in some
of the metrics. Understanding the reasons requires analyzing why CDL has good feature
extraction effects for certain text features in future work. The second limitation is that when
utilizing multimodal data, MultArtRec cannot make good use of the advantageous features
that perform well in monomodal experiments, e.g., MultArtRec performs well with VGG
features in monomodal experiments, but the experimental results of using VGG features
in multimodal experiments are not ideal. In order to solve this problem, it is necessary to
design a better model structure for feature fusion.

In the future, in addition to image modality and text modality, we will also consider
verifying whether other modal information is effective in improving the performance of
MultArtRec. We will first consider the tags of the artwork and the description text.

As stated in [40], the recommendation interface (e.g., the layouts of recommendations)
is an important element for recommender systems. Article [41] emphasizes that the present
aesthetics of the recommendation results will affect the recommendation effect. Study [42]
proposed a novel deep-learning-based approach to both evaluate and optimize the recom-
mendation interface. In our research, it is considered that an ideal artwork recommender
system in practice is not only for finding artworks that match the users’ interests but also to
provide users with better access to information and aesthetic experience. Therefore, in the
future development of the proposed artwork recommender system, we will focus on the
interface design of the recommender system and use advanced technology to evaluate it.
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