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Abstract: To overcome challenges such as limited energy availability for terminal devices, constrained
network coverage, and suboptimal spectrum resource utilization, with the overarching objective of
establishing a sustainable and efficient interconnection infrastructure, we introduce an innovative
Intelligent Reflective Surface (IRS) technology. This cutting-edge IRS technology is employed to
architect a wireless and energy-efficient cognitive secure communication network assisted by IRS. To
further optimize the overall energy harvesting of this network, we present a cognitive secure resource
allocation scheme, aiming to maximize the system’s total collected energy. This scheme carefully
considers various constraints, including transmission power constraints for cognitive base stations,
power constraints for jammer devices, interference limitations for all primary users, minimum security
rate constraints for all cognitive Internet of Things (IoT) devices, and phase shift constraints for IRS.
We establish a comprehensive hybrid cognitive secure resource allocation model, encompassing joint
cognitive transmission beam design, jammer device transmission beam design, and phase shift design.
Given the non-convex nature of the formulated problem and the intricate coupling relationships
among variables, we devise an effective block coordinate descent (BCD) iterative algorithm. The
realization of joint cognitive/jammer base station transmission beam design and phase shift design
employs sophisticated techniques such as continuous convex approximation methods and semi-
definite programming. Simulation results underscore the superior performance of the proposed
scheme compared to existing resource allocation approaches, particularly in terms of total harvested
energy and other critical metrics.

Keywords: spectrum resource utilization; intelligent reflecting surfaces; energy harvesting; security
rate; block coordinate descent

1. Introduction

The proliferation of Internet of Things (IoT) devices globally, including smartphones,
tablets, various sensors, and wearable devices, is projected to increase from 7 billion to
22 billion, laying the foundation for a pervasive connectivity paradigm in the future [1,2].
However, over the past decades, a significant portion of the available spectrum has been al-
located primarily to high-speed communication services, resulting in a scarcity of spectrum
resources within wireless communication systems. Conversely, the efficiency of utilizing
the abundant spectrum remains suboptimal. Cognitive radio (CR) emerges as an innovative
approach to address the scarcity of spectrum resources [3–8]. In CR networks, cognitive
users (CUs) are authorized to use frequency bands designated for primary users (PUs) for
communication, ensuring minimal interference to PUs. The interference generated by CUs,
affecting PUs, is commonly referred to as interference temperature. Network security is a
critical concern in CR networks [9–12]. Due to the intrinsic broadcast properties of wireless
communication, transmission information is vulnerable to interception by unauthorized
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users. In the past, security challenges in wireless networks were predominantly addressed
by encrypting transmission signals using secret keys. However, certain security challenges
persisted, such as the key allocation problem in symmetric cryptosystems and the high
complexity problem in asymmetric cryptosystems. In recent years, physical layer security
(PLS) technology has emerged as a promising alternative or complement to encryption
technology, with researchers developing various approaches to enhance the PLS of wireless
networks [13–15]. Multiple-antenna technology, considered pivotal in the realm of future
wireless communication, has the potential to significantly enhance the security rate of
wireless communication. Moreover, the strategic introduction of artificial noise to the
transmission signal at a specific power level proves to be an effective strategy to inter-
fere with the signal reception of eavesdropping users, thereby enhancing communication
security [16].

The rapid expansion of large-scale IoT applications has notably augmented the power
consumption of wireless devices. In addressing this, a comprehensive massive access
scheme for 6G cellular IoT was proposed in [17], aiming to facilitate efficient massive access
while enhancing energy efficiency within the constraints of limited spectrum resources,
while the authors in [18] have put forth an AI-based adaptive security specification ap-
proach to tackle the elevated energy (EE) consumption resulting from advanced security
measures for IoT devices. This approach tailors security specifications to corresponding
business requirements, mitigating energy depletion concerns and extending operational
time. Despite these advancements, ensuring a sustainable energy supply for a vast array
of IoT devices remains a formidable challenge. The utilization of wired power supply for
IoT devices is impractical for large-scale deployment, and the energy storage capacity of
battery power is inherently limited, posing constraints on the sustained operation of the
entire IoT ecosystem [19]. Although the replacement of batteries can alleviate the energy
shortage issue, the environmental limitations associated with the large-scale deployment of
IoT devices contribute to high operational costs [20].

Wireless power transfer (WPT) has become a focal point of attention in both academic
and industrial circles, emerging as a dependable solution for powering IoT devices in recent
years [21–23]. Reference [21] introduces a theoretical framework tailored for 6G cellular
IoT, emphasizing the integration of energy, computation, and communication aspects.
The authors investigate the potential of utilizing WPT to establish a sustainable power
supply for a diverse array of IoT devices. They propose a joint beamforming design scheme
for both the transmitter and receiver to optimize EE. In the context of remote WPT, the
literature [22] puts forth a resonant beam charging method. This method facilitates the si-
multaneous transmission of wireless signals and energy, defining one of the applications of
WPT technology known as Wireless Energy and Information Transmission (WEIT). Specif-
ically, Simultaneous Wireless Information and Power Transfer (SWIPT), a form of WPT
incorporating bi-directional energy exchange, is explored in the literature [23]. The study
focuses on an SWIPT system with full-duplex IoT nodes, proposing an optimization scheme
for joint hybrid precoding, decoding rules, and power allocation to minimize total transmis-
sion power. Therefore, leveraging the dual nature of wireless signals that encompass both
information and energy, SWIPT technology holds the promise of achieving a sustainable
power supply and efficient communication for IoT devices simultaneously, aligning with
the fundamental requirements of green communication for the new generation of IoT.

On the contrary, the emerging IRS technology [24–27] is considered a promising candi-
date for 6G systems. Essentially, IRS embodies a uniform array plane featuring a multitude
of cost-effective, sub-wavelength, and autonomously adjustable passive electromagnetic
reflecting elements. These elements provide the capability to precisely manipulate the
amplitude and phase of reflected signals via software programming, utilizing feedback
from the signal propagation data within the communication link. This dynamic capability
enables the coherent superposition of the reflected signal with contributions from other
transmission paths, thereby amplifying the power of the desired signal at the receiver and
concurrently enhancing the overall communication quality [25–27]. In [28], a beamforming
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design method is proposed based on the maximum–minimum criterion, jointly designing
the beamformer of the Base Station (BS) and the IRS reflection phase shift to maximize
the minimum harvested energy for an IRS-aided SWIPT system. Additionally, Ref. [29]
examines an IRS-enabled MISO system with SIWPT. It presents an iterative algorithm for
designing the transmit/reflection beamforming, aiming to maximize the weighted sum
power of the energy-harvesting receiver (EHR).

Active and passive mutual transmission technology based on IRS is one of the promis-
ing physical layer solutions for 6G and IoT systems. However, this technology also raises
PLS concerns [30–34]. In the work presented by [30], an iterative methodology augmented
via the introduction of AN is introduced. The primary objective of this approach is to
enhance energy efficiency within an IRS-aided SWIPT system, particularly considering a
non-linear EH model. Furthermore, as delineated in [31], an alternating iterative algorithm
rooted in Semi-Definite Relaxation (SDR) is advanced. This algorithm is dedicated to the
minimization of transmit power within an IRS-assisted MIMO secure transmission system,
simultaneously yielding a closed-form expression for secure beamforming. Moreover, this
contribution significantly amplifies the overall effectiveness of the power allocation scheme.
In [32], an iterative method combining the barrier method and item-by-item optimization
was proposed to improve the secure rate in an IRS-enabled Gaussian MIMO system, where
the CSI of the eavesdropper remains undisclosed. To achieve secrecy and rate maximization
in a distributed IRS-assisted multi-user MIMO transmission system, ref. [33] proposed
a joint optimization strategy of the penalty function method, SCA, and SDR to design a
robust beamforming and AN scheme, considering the scenario where the eavesdropper’s
CSI is unknown and there is no LoS link. However, the interference techniques [34] that
can effectively enhance the secure rate and energy transmission have not been investigated
in the aforementioned literature. Furthermore, ref. [25–27] only addressed the IRS-assisted
SWIPT system model, and [30–34] primarily focused on traditional secure transmission
systems. The IRS-assisted SWIPT-CR communication system based on external interfer-
ence technology can enhance the system’s energy harvesting capability while improving
communication security by emitting interference signals to counter eavesdropping.

In light of the challenges associated with energy transfer and information security
mentioned earlier, the study of the PLS problem within a cognitive SWIPT system, with the
assistance of IJ and IRS, bears both theoretical and practical importance. This paper makes
specific contributions to the research in the following areas:

• In a cognitive SWIPT IoT system, we establish a secure communication link that
receives simultaneous assistance from IJ and IRS. The EHR model is formulated
by collaboratively optimizing the SBS beamforming matrix, the IJ’s beamformer,
and the phase shifts associated with the IRS. The central challenge lies in solving a
non-convex quadratic optimization problem subject to quadratic constraints, which
presents inherent difficulty.

• A novel alternate secure transmission algorithm is posed to address the aforemen-
tioned non-convex quadratic programming problem. First, the non-convex security
constraint is transformed into a convex one by applying sequential parametric convex
approximation (SPCA). Then, the initial non-convex objective function is approxi-
mated into a convex form by employing a first-order Taylor expansion, relaxation
variables, SDR, and auxiliary variables. Finally, an alternating scheme rooted in SDR
is devised to attain a viable solution for the initial non-convex conundrum.

• The simulation results offer compelling evidence of the algorithm’s convergence, while
also vividly demonstrating the substantial improvements in harvested energy realized
by the cognitive SWIPT IoT system in the presence of IRS support. Compared with
conventional schemes, the use of IRS offers significant advantages in enhancing system
security and energy harvesting performance.
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2. Network Model

Figure 1 depicts a model of a SWIPT cognitive IoT system assisted by IRS. The system
comprises a multi-antenna SBS; K legitimate cognitive IoT devices, each with a single
antenna; L eavesdropping devices (Eve); and P PUs. Given that Eves are assumed to be in
closer proximity to the SBS than the IoT devices, they are better situated to eavesdrop on
external information. It is reasonable to regard Eves as potential eavesdropping devices
due to the importance of ensuring information security during transmission. To improve
information transmission security, J EHRs are deployed near the IRS to collect radio
frequency signal energy. Additionally, a jammer is utilized to emit interference signals. We
make the assumption that both the SBS and the IJ are outfitted with M antennas, whereas
the IRS is furnished with N reflection units. This system revolves around the conventional
downlink transmission scenario from the SBS to the receiving device, with the additional
assumption that the location of Eve can be ascertained using parameters such as AoA, RSS,
TDoA, and ToA.

SBS

Jammer

Eavesdroppers

IoT Receivers

EHRs

PUs

Passive IRS

Figure 1. Illustration of a IRS-SWIPT-enabled Secure Transmission CR-IoT Network.

To achieve secure transmission of a SWIPT-enabled CR-IoT system in the presence of
MIMO eavesdropping channels, we make the assumption that the channel gains linking
the SBS with the IRS, the k-th IoT device, the j-th EHR, the l-th eavesdropper, and the p-th
PU, which are denoted by HBI ∈ CN×M, hBU,k ∈ CM×1, hBEH,j ∈ CM×1, hBEVE,l ∈ CM×1,
and hBP,p ∈ CM×1, respectively. The channel gains between the jammer and the IRS,
the k-th IoT device, the j-th EHR, the l-th eavesdropper, and the p-th PU are denoted
by GJ I ∈ CN×M, gJU,k ∈ CM×1, gJEH,j ∈ CM×1, gJEVE,l ∈ CM×1, and gJP,p ∈ CM×1,
respectively. Assuming that the IRS reflects signals from the SBS to the k-th IoT device,
the j-th EHR, the l-th eavesdropper, and the p-th PU, their corresponding channel gains
are represented by hIU,k ∈ CN×1, hIEH,j ∈ CN×1, hIEVE,l ∈ CN×1, and hIP,p ∈ CN×1,
respectively. Additionally, we assume that the IRS reflects signals from the jammer to the
same set of receivers, namely the k-th IoT device, the j-th EHR, the l-th Eve, and the p-th
PU, and the corresponding channel gains are denoted by gIU,k ∈ CN×1, gIEH,j ∈ CN×1,
gIEVE,l ∈ CN×1, and gIP,p ∈ CN×1, respectively. The IRS fine tunes the phase adjustments
of its reflective elements to enhance the composite signal arriving at the user group. The
diagonal phase shift matrix of the IRS is represented by Θ = diag(ejθ1 , ejθ2 , · · · , ejθN ), with
the main diagonal corresponding to the phase shift of the n-th element of the composite
incident signal, ∀n = 1, 2, · · · , N. Assuming ideal CSI and a quasi-static flat fading model
for the channel gains across all connections, the transmission signal of the SBS and jammer
can be represented as x1 = ∑K

k=1 fksk and x2 = wz, where the variables sk and z are
considered as complex Gaussian random variables which are independently and identically
distributed. Although the CSI is imperfect in practical systems, ref. [35] proposed a novel
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approach to successfully solve the channel estimation problem in a multi-user IRS system.
Thus, we assume perfect CSI for the design of resource allocation in this paper. Meanwhile,
the vectors fk and w correspond to the beamforming of the k-th cognitive IoT device and
jamming precoding vectors, respectively. The received signal related to the k-th cognitive
IoT devices, l-th eavesdropper, j-th EHR, and p-th PU can be modeled as

ySU,k =
K

∑
i=1

(hH
BU,k + hH

IU,kΘHBI) fisi+

(gH
JU,k + gH

IU,kΘGJ I)wz + nSU,k

(1)

ySEV,l =
K

∑
i=1

(hH
BEVE,l + hH

IEVE,lΘHBI) fisi+

(gH
JEVE,l + gH

IEVE,lΘGJ I)wz + nSEVE,l

(2)

ySEH,j =
K

∑
i=1

(hH
BEH,j + hH

IEH,jΘHBI) fisi+

(gH
JEH,j + gH

IEH,jΘGJ I)wz + nSEH,j

(3)

yP,p =
K

∑
i=1

(hH
BP,p + hH

IP,pΘHBI) fisi+

(gH
JP,p + gH

IP,pΘGJ I)wz + nSP,p

(4)

where nSU,k ∼ CN (0, δ2), nSEVE,l ∼ CN (0, δ2), nSEH,j ∼ CN (0, δ2), and nSP,p ∼ CN (0, δ2)
are the additional noise. Henceforth, the SINR referred to the k-th cognitive IoT device is

γSU,k =
|(hH

BU,k + hH
IU,kΘHBI) fk|2

∑K
i=1,i ̸=k |(hH

BU,k + hH
IU,kΘHBI) fi|2 + |(gH

JU,k + gH
IU,kΘGJ I)w|2 + δ2

(5)

The SINR referred to the l-th eavesdropper can be formulated as

γSE,l =

|(hH
BEVE,l + hH

IEVE,lΘHBI) fk|2

∑K
i=1,i ̸=k |(hH

BEVE,l + hH
IEVE,lΘHBI) fi|2 + |(gH

JEVE,l + gH
IEVE,lΘGJ I)w|2 + δ2

(6)

As a result, the achievable secure rate of k-th IoT device is

Rs,k = max
[

log2(1 + γSU,k)− max
∀l

log2(1 + γSE,l), 0] (7)

In CR networks, PUs enjoy higher priority in terms of spectrum utilization than SUs.
As SUs communicate through a shared spectrum, they may potentially interfere with PUs.
To safeguard the performance of p-th PUs, the interference power experienced by the PUs
is effectively constrained to remain beneath a predefined threshold, which is denoted by:

K

∑
i=1

|(hH
BP,p + hH

IP,pΘHBI) fi|2

|(gH
JP,p + gH

IP,pΘGJ I)w|2 + δ2 ≤ Γ0

(8)

where Γ0 is the interference threshold. Additionally, the collected power of the j-th EHR is
modeled as
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Ej =
K

∑
i=1

|(hH
BEH,j + hH

IEH,jΘHBI) fi|2

|(gH
JEH,j + gH

IEH,jΘGJ I)w|2
(9)

Since the received signal power is considerably higher than the noise power, the energy
harvesting module needs to be activated by the relatively high energy carried by the
received radio frequency (RF) signal (about −10 dBm). If the received RF signal energy
is lower than the minimum threshold, energy cannot be harvested. Therefore, this article
disregards the energy harvested from noise power.

3. Secure Transmission Algorithm Design
3.1. Problem Formulation

Drawing on the aforementioned analysis, this study endeavors to maximize the sum
harvested energy at the EHRs by means of a joint optimization approach, involving the
SBS’s beamforming vector, the jammer’s interference precoding vector, and the IRS’s phase-
shift matrix. The optimization problem is subject to several constraints, including the SBS’s
total transmission power, the jammer’s total power, the interference constraint at the PUs,
the secure rate of each cognitive IoT device, and the phase shift is enforced to possess a
unitary modulus. The considered problem can be mathematically modeled as:

max
fk ,w,Θ

J

∑
j=1

K

∑
i=1

|(hH
BEH,j + hH

IEH,jΘHBI) fi|2+

J

∑
j=1

|(gH
JEH,j + gH

IEH,jΘGJ I)w|2

s.t. C1 :
K

∑
i=1

∥ fi∥2 ≤ Ps

C2 : ∥w∥2 ≤ PJ

C3 : Rs,k ≥ Rs,th, ∀k

C4 :
K

∑
i=1

|(hH
BP,p + hH

IP,pΘHBI) fi|2+

|(gH
JP,p + gH

IP,pΘGJ I)w|2 + δ2 ≤ Γ0

C5 : 0 ≤ θn ≤ π ∀n

(10)

where Rs,th indicates the minimum secure rate threshold of the k-th IoT device, and Ps and
PJ represent the maximum allowable transmit power of the SBS and the IJ, respectively.

The constraint C1 restricts the maximum transmission power of the SBS, while C2 im-
poses limits on the maximum transmission power of the jammer. C3 and C4 are constraints
that respectively regulate the secure rate at each IoT device and the interference impact
on PUs. Moreover, C5 indicates the limitation of the phase shift of IRS. It is evident that
the optimization problem presented in Equation (10) belongs to a non-convex as well as a
multi-variable coupled problem that is challenging to solve directly due to the impact of
the objective function and constraint C3. Consequently, obtaining optimal solutions for the
SBS’s beamforming vector, the IJ’s interference precoding vector, and the phase-shift matrix
requires a non-trivial approach. Hence, the following section aims to propose an iterative
algorithm utilizing block coordinate descent to address the resource allocation problem
with the goal of maximizing the total harvested energy.

In order to streamline the analysis of problem (10), we set
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u = [ejθ1 , · · · , ejθN ], v = [uH ; 1],

HSU,k = [diag(hH
IU,k)HBI ; hH

BU,k]

HSEVE,i = [diag(hH
IEVE,i)HBI ; hH

BEVE,i]

HSEH,j = [diag(hH
IEH,j)HBI ; hH

BEH,j]

HSP,p = [diag(hH
IP,p)HBI ; hH

BP,p]

GJU,k = [diag(gH
IU,k)GJ I ; gH

JU,k]

GJEVE,i = [diag(gH
IEVE,i)GJ I ; gH

JEVE,i]

GJEH,j = [diag(gH
IEH,j)GJ I ; gH

JEH,j]

GJP,p = [diag(gH
IP,p)GJ I ; gH

JP,p]

(11)

Hence , problem (10) can reformulated as

max
fk ,w,v

J

∑
j=1

( K

∑
i=1

|vH HSEH,j fi|2 + |vHGJEH,jw|2
)

s.t. C1 :
K

∑
i=1

∥ fi∥2 ≤ Ps

C2 : ∥w∥2 ≤ PJ

C̄3 : log2(1 + γ̄SU,k)− max
∀l

log2(1 + γ̄SE,l) ≥ Rs,th, ∀k

C̄4 :
K

∑
i=1

|vH HSP,p fi|2|+ |vHGJP,pw|2|+ δ2 ≤ Γ0

C5 : |v(1, n)| = 1

(12)

where

γ̄SU,k =
|vH HSU,k fk|2

∑K
i=1,i ̸=k |vH HSU,k fi|2 + |vHGJU,kw|2 + δ2 (13)

γ̄SE,l =
|vH HSEVE,l fk|2

∑K
i=1,i ̸=k |vH HSEVE,l fi|2 + |vHGJEVE,lw|2 + δ2 (14)

Since the secrecy rate constraint expressed in C̄3 is non-convex, it can be approximated
using convex techniques, such as introducing slack variables and utilizing SPCA techniques.
To facilitate the handling of Constraint (C̄3), two slack variables, t1,k and t2,k, are introduced,
which results in an equivalent transformation of the original Equation (C̄3) for easier
processing, such as

log2(t1,kt2,k) ≥ Rs,th

1 +
|vH HSU,k fk|2

∑K
i=1,i ̸=k |vH HSU,k fi|2 + |vHGJU,kw|2 + δ2

≥ t1,k

1 +
|vH HSEVE,l fk|2

∑K
i=1,i ̸=k |vH HSEVE,l fi|2 + |vHGJEVE,lw|2 + δ2

≤ 1
t2,k

(15)

Furthermore , expression (C̄3) can undergo a conversion to
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C̄3 − 1 : t1,kt2,k ≥ 2Rs,th

C̄3 − 2 :
|vH HSU,k fk|2

∑K
i=1,i ̸=k |vH HSU,k fi|2 + |vHGJU,kw|2 + δ2

≥ t1,k − 1

C̄3 − 3 :
∑K

i=1,i ̸=k |vH HSEVE,l fi|2 + |vHGJEVE,lw|2 + δ2

∑K
i=1 |vH HSEVE,l fi|2 + |vHGJEVE,lw|2 + δ2

≥ t2,k

(16)

The constraint condition expressed in Equation (12) is equivalent to

2Rs,th+2 + (t1,k − t2,k)
2 ≤ (t1,k + t2,k)

2 (17)

In addition, (16) can be reformulated into a quadratic function representation,
thereby yielding

∥[
√

2Rs,th+2, t1,k − t2,k]∥ ≤ t1,k + t2,k (18)

Consequently , we can rephrase problem (12) as

max
t1,k ,t2,k , fk ,w,v

J

∑
j=1

( K

∑
i=1

|vH HSEH,j fi|2 + |vHGJEH,jw|2
)

s.t. C1, C̄3 − 2, C̄3 − 3, C̄4, C5

∥[
√

2Rs,th+2, t1,k − t2,k]∥ ≤ t1,k + t2,k, ∀k

(19)

In comparison to the pre-transformation problem (12), the post-transformation problem (19)
exhibits a higher tractability for the solution. However, due to the convex nature of the cost
function, the presence of non-convex constraints denoted as C̄3 − 2 and C̄3 − 3, as well as
the interconnectedness among variables t1,k, t2,k, fk, w, v, ∀k, the attainment of the optimal
solutions for variables t1,k, t2,k, fk, w, v, ∀k remains elusive using conventional convex
optimization theories. Hence, the subsequent section will introduce a novel approach,
utilizing an iterative algorithm that employs a block coordinate descent (BCD) approach to
address the non-convex resource allocation problem that aims to maximize both collection
and energy.

3.2. Proposed Algorithm

In this section, we delve into the application of the BCD method as a means to untangle
the intricacies of problem (19), effectively segregating it into two discernible subproblems.
More precisely, our initial focus revolves around the subproblem of devising an optimal
transmit beamforming scheme for both the SBS and cognitive jammer, while duly taking
into account the existence of a given phase-shift matrix that governs the behavior of IRS. To
tackle this subproblem, we employ a refined continuous convex approximation technique,
tailored to ensure a reliable and accurate solution. Subsequently, leveraging the acquired
transmit beamforming shaping vector for the cognitive base station in tandem with the
transmit beamforming vector for the cognitive jammer, we proceed to employ the widely
embraced SDR methodology.

3.2.1. Cognitive Beamforming Vector Optimization

In the presence of a pre-determined phase-shift matrix diag(v), we encounter an opti-
mization quandary concerning the strategic formulation of the transmit beamforming shap-
ing vector for the SBS, as well as the interference beamforming vector for the jammer. This
optimization predicament can be succinctly expounded upon in the subsequent manner:
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max
fk ,w,t1,k ,t2,k

J

∑
j=1

( K

∑
i=1

|vH HSEH,j fi|2 + |vHGJEH,jw|2
)

s.t. C1, C2, C̄4

C̄3 − 1 :∥[
√

2Rs,th+2, t1,k − t2,k]∥ ≤ t1,k + t2,k, ∀k

C̄3 − 2 :
|vH HSU,k fk|2

∑K
i=1,i ̸=k |vH HSU,k fi|2 + |vHGJU,kw|2 + δ2

≥ t1,k − 1

C̄3 − 3 :
∑K

i=1,i ̸=k |vH HSEVE,l fi|2 + |vHGJEVE,lw|2 + δ2

∑K
i=1 |vH HSEVE,l fi|2 + |vHGJEVE,lw|2 + δ2

≥ t2,k

(20)

Owing to the intricate interplay between the objective function and non-convex constraints
C̄3 − 2 and C̄3 − 3, problem (20) remains inherently non-convex in nature. Moreover, it is of
significance to observe that the constraints C̄3 − 2 and C̄3 − 3 can be elegantly reformulated
as follows:

K

∑
i=1,i ̸=k

|vH HSU,k fi|2 + |vHGJU,kw|2 ≤
|vH HSU,k fk|2

t1,k − 1
− δ2

∑K
i=1,i ̸=k |vH HSEVE,l fi|2 + |vHGJEVE,lw|2 + δ2

t2,k
≥

K

∑
i=1

|vH HSEVE,l fi|2 + |vHGJEVE,lw|2 + δ2

(21)

Notwithstanding its non-convex nature and the inherent challenges associated with ob-
taining solutions, we address this predicament via the utilization of the SCA technique,
which enable the transformation of the problem at hand. Specifically, when considering a
differentiable convex function g(x), it becomes feasible to approximate it utilizing a tangen-
tial function denoted as f (x, x̄). This tangential function represents the first-order Taylor
expansion centered around the point x̄ [33]. Consequently, we can express the resultant
relationship as follows:

g(x) ≥ f (x, x̄) = g(x̄) +▽xg(x̄)(x − x̄) (22)

The above equation holds true when x is equal to x̄. Building upon the preceding Taylor
series approximation, Lemma 1 is introduced as a viable approximation technique for
Equation (21).

Lemma 1. Two functions is modeled as

Q1(t1,k, fk) =
|vH HSU,k fk|2

t1,k − 1
− δ2

Q2(t2,k, w, fk) =
∑K

i=1,i ̸=k |vH HSEVE,l fi|2 + |vHGJEVE,lw|2 + δ2

t2,k

(23)

Then , a first-order Taylor approximation of Q1(t1,k, fk) and Q2(t2,k, w, fk) centered around the
reference point (t̄1,k, t̄2,k, w̄, f̄k) can be formulated as
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Q3(t1,k, fk, t̄1,k, w̄, f̄k) =
2Re

{
f̄ H
k HH

SU,kvvH HSU,k f̄k

}
t̄1,k − 1

− δ2

−
Re

{
f̄ H
k HH

SU,kvvH HSU,k f̄k

}
(t̄1,k − 1)2 (t1,k − 1)

(24)

Q4(t2,k, w, fk, t̄2,k, w̄, f̄k)

=
∑K

i=1,i ̸=k 2Re(vH HSEVE,l fi f̄ H
i HH

SEVE,lv)

t̄2,k

+
2Re(vHGJEVE,lww̄HGJEVE,lwHv)

t̄2,k
+

δ2

t̄2
2,k

(2t̄2,k − t2,k)

−
∑K

i=1,i ̸=k 2Re(vH HSEVE,l f̄i f̄ H
i HH

SEVE,lv)

t̄2
2,k

−
2Re(vHGJEVE,lw̄w̄HGJEVE,lwHv)

t̄2
2,k

(25)

By adopting these approaches, we can effectively substitute Q1(t1,k, w, fk) and Q2(t2,k, w, fk) with
Q3(t1,k, w, fk, t̄1,k, w̄, f̄k) and Q4(t2,k, w, fk, t̄2,k, w̄, f̄k), respectively, leading to a streamlined formulation.

Proof. Utilizing the Taylor series approximation as stated in Equations (24) and (25),
we derive

Q1(t1,k, fk) ≥ Q3(t̄1,k, f̄k) +
∂Q3

∂ fk

∣∣∣∣
(t̄1,k , f̄k)

( fk − f̄k)

+
∂Q3

∂t1,k

∣∣∣∣
(t̄1,k , f̄k)

(t1,k − t̄1,k)− δ2 = Q3(t1,k, fk, t̄1,k, w̄, f̄k)

(26)

Q2(t2,k, w, fk) ≥ Q4(t̄1,k, f̄k, w̄) +
∂Q4

∂ fk

∣∣∣∣
(t̄1,k , f̄k)

( fk − f̄k)

+
∂Q4

∂t1,k

∣∣∣∣
(t̄1,k , f̄k)

(t1,k − t̄1,k)− δ2 = Q4(t1,k, fk, t̄1,k, w̄, f̄k)

(27)

where

Q3(t1,k, fk, t̄1,k, w̄, f̄k) =
vH HSU,k f̄k f̄ H

k HH
SU,kv

t̄1,k − 1
− δ2

+
2 f̄ H

k HH
SU,kvvH HSU,k

t̄1,k − 1
( fk − f̄k)

−
vH HSU,k f̄k f̄ H

k HH
SU,kv

(t̄1,k − 1)2 [(t1,k − 1 − (t̄1,k − 1)]

(28)
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Q4(t1,k, fk, t̄1,k, w̄, f̄k) =
∑K

i=1,i ̸=k vH HSEVE,l f̄i f̄ H
i HH

SEVE,lv

t̄2,k
+

+
∑K

i=1,i ̸=k 2 f̄ H
i HH

SEVE,lvvH HSEVE,l

t̄2,k
( fi − f̄i)

+
2w̄HGH

JEVE,lvvHGJEVE,l

t̄2,k
(w − w̄) +

vHGJEVE,lw̄w̄HGH
JEVE,lv

t̄2,k

−
∑K

i=1,i ̸=k |vH HSEVE,l f̄i|2 + |vHGJEVE,lw̄|2

t̄2
2,k

(t2,k − t̄2,k)

(29)

To better approximate the real nature of the functions Q1(t1,k, fk) and Q2(t2,k, w, fk),
Equations (28) and (29) can be further modified as

Q3(t1,k, fk, t̄1,k, w̄, f̄k) =
2Re

{
vH HSU,k f̄k f̄ H

k HH
SU,kv

}
t̄1,k − 1

− δ2

−
Re

{
vH HSU,k f̄k f̄ H

k HH
SU,kv

}
(t̄1,k − 1)2 (t1,k − 1)

=
2Re

{
f̄ H
k HH

SU,kvvH HSU,k f̄k

}
t̄1,k − 1

− δ2

−
Re

{
f̄ H
k HH

SU,kvvH HSU,k f̄k

}
(t̄1,k − 1)2 (t1,k − 1)

(30)

Q4(t1,k, fk, t̄1,k, w̄, f̄k) =
∑K

i=1,i ̸=k 2Re(vH HSEVE,l fi f̄ H
i HH

SEVE,lv)

t̄2,k

+
2Re(vHGJEVE,lww̄HGJEVE,lv)

t̄2,k
+

δ2

t̄2
2,k

(2t̄2,k − t2,k)

−
∑K

i=1,i ̸=k 2Re(vH HSEVE,l f̄i f̄ H
i HH

SEVE,lv)

t̄2
2,k

−
2Re(vHGJEVE,lw̄w̄HGJEVE,lv)

t̄2
2,k

=
∑K

i=1,i ̸=k 2Re( f̄ H
i HH

SEVE,lvvH HSEVE,l fi)

t̄2,k

+
2Re(w̄HGJEVE,lvvHGJEVE,lw)

t̄2,k
+

δ2

t̄2
2,k

(2t̄2,k − t2,k)

−
∑K

i=1,i ̸=k 2Re( f̄ H
i HH

SEVE,lvvH HSEVE,l f̄i)

t̄2
2,k

−
2Re(w̄HGJEVE,lvvHGJEVE,lw̄)

t̄2
2,k

(31)

The validity of the approximations given in Equations (26) and (27) hinge on the
fulfillment of the conditions fi = f̄i, w = w̄, t1,k = t̄1,k and t2,k = t̄2,k.

Based on the preceding derivation, we can approximate Q1(t1,k, fk) and Q2(t2,k, w, fk)
as Q3(t1,k, fk, t̄1,k, w̄, f̄k) and Q4(t2,k, w, fk, t̄2,k, w̄, f̄k), resulting in the transformation of
Equation (23) into a convex form represented by Equations (24) and (25).
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However, (20) remains non-convex, primarily because of the objective function. Keep
in mind that the quadratic nature of the objective function, involving w and fi, can be
addressed via the application of the following lemma to linearize them.

Lemma 2. The following function is characterized as

F1( fi, w) =
J

∑
j=1

( K

∑
i=1

|vH HSEH,j fi|2 + |vHGJEH,jw|2
)

(32)

The primary-order Taylor approximation of the function F1( fi, w) at a tangency point f̄i and
w̄ can be articulated as

F2( fi, w, f̄i, w̄) =
J

∑
j=1

( K

∑
i=1

2Re( f̄ H
i HH

SEH,jvvH HSEH,j fi)

− Re( f̄ H
i HH

SEH,jvvH HSEH,j f̄i)

+ 2Re(w̄H HH
SEH,jvvH HSEH,jw)

− Re(w̄H HH
SEH,jvvH HSEH,jw̄)

)
(33)

Adopting this methodology permits the substitution of Equation (32) with Equation (33),
thereby enabling the approximation of the objective function in (20) as a concave function.

Proof. Utilizing the Taylor series approximation, (32) exhibits differentiability and adheres
to the following criteria:

F1( fi, w) ≥ F1( f̄i, w̄) +∇F1( f̄i, w̄)H( fi − f̄i) +∇F1( f̄i, w̄)H(w − w̄) (34)

Through the application of the derivative rule, the substitution of (32) into inequality
(34) yields the following result:

F1( fi, w) ≥
J

∑
j=1

( K

∑
i=1

(vH HSEH,j f̄i f̄ H
i HH

SEH,jv

+ 2vH HSEH,j f̄ H
i HH

SEH,jv( fi − f̄i)

+ vH HSEH,jw̄w̄H HH
SEH,jv

+ 2vH HSEH,jw̄H HH
SEH,jv(w − w̄)

)
(35)

when w̄w̄H ⪰ 0 and vH HSEH,jHH
SEH,jv ⪰ 0, then we have

F1( fi, w) ≜ F2( fi, w, f̄i, w̄) (36)

Based on the derivation presented above, we can approximate F1( fi, w) as F2( fi, w, f̄i, w̄).

Utilizing the aforementioned transformations, we can redefine Equation (20) into a
tractable convex form. Additionally, for the purpose of minimizing computational complex-
ity, we rephrase problem (20) as a second-order cone programming (SOCP) problem [33,34],
as detailed in Equation (37), and this can be efficiently solved using CVX.
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max
fi ,w,t1,k ,t2,k

F2( fi, w, f̄i, w̄)

s.t. ∥[ f H
1 , · · · , f H

K ]H ]∥ ≤
√

Ps

∥w∥ ≤
√

PJ

∥[vH HSP,p f1; · · · ; vH HSP,p fK; δ]∥ ≤
√

Γ0

∥[
√

2Rs,th+2, t1,k − t2,k]∥ ≤ t1,k + t2,k, ∀k

∥[2vH HSU,k f1, · · · , 2vH HSU,k fk−1, 2vH HSU,k fk+1,

2vH HSU,k fK, 2vHGJU,kw, Q3(t1,k, fk, t̄1,k, w̄, f̄k)− 1]∥ ≤
Q3(t1,k, fk, t̄1,k, w̄, f̄k) + 1

∥[2vH HSEVE,l f1, · · · , 2vH HSEVE,l fK, 2vHGSEVE,lw,

2δ, Q4(t1,k, fk, t̄1,k, w̄, f̄k)− 1]∥ ≤
Q4(t1,k, fk, t̄1,k, w̄, f̄k) + 1

(37)

3.2.2. Passive Beamforming Design for IRS

In the presence of the given SBS’s beamforming vectors and the IJ’s beamforming
vectors as well as t1,k and t2,k, we conduct optimization for the phase-shift matrix. Before
optimizing the phase-shift matrix, we define V = vvH , W = wwH and Fi = fi f H

i . Then,
problem (19) can be recasted as

max
V

J

∑
j=1

( K

∑
i=1

Tr(HSEH,jFi HH
SEH,jV) + Tr(GJEH,jWGH

JEH,jV)
)

s.t.
K

∑
i=1

Tr(HSP,pFi HH
SP,pV) + Tr(GJP,pWGH

JP,pV) + σ2 ≤ Γ0

Tr(HSU,kFk HH
SU,kV)

t1,k − 1
≥

K

∑
i=1,i ̸=k

Tr(HSU,kFi HH
SU,kV)+

Tr(GJU,kWGH
JU,kV) + δ2

K

∑
i=1,i ̸=k

Tr(HSEVE,l Fi HH
SEVE,lV) + Tr(GJEVE,lWGH

JEVE,lV) + δ2 ≥

t2,k(
K

∑
i=1

Tr(HSEVE,l Fi HH
SEVE,lV) + Tr(GJEVE,lWGH

JEVE,lV) + δ2)

V ⪰ 0, Rank(V) = 1

(38)

Owing to the presence of rank-one constraints, it is important to emphasize that (38)
remains inherently non-convex in nature. Employing the SDR method, and deliberately
relaxing the Rank(V) = 1 constraint, allows us to reformulate (38) into a more amenable
problem, denoted as (39).
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max
V

J

∑
j=1

( K

∑
i=1

Tr(HSEH,jFi HH
SEH,jV) + Tr(GJEH,jWGH

JEH,jV)
)

s.t.
K

∑
i=1

Tr(HSP,pFi HH
SP,pV) + Tr(GJP,pWGH

JP,pV) + σ2 ≤ Γ0

Tr(HSU,kFk HH
SU,kV)

t1,k − 1
≥

K

∑
i=1,i ̸=k

Tr(HSU,kFi HH
SU,kV)+

Tr(GJU,kWGH
JU,kV) + δ2

K

∑
i=1,i ̸=k

Tr(HSEVE,l Fi HH
SEVE,lV) + Tr(GJEVE,lWGH

JEVE,lV) + δ2 ≥

t2,k(
K

∑
i=1

Tr(HSEVE,l Fi HH
SEVE,lV) + Tr(GJEVE,lWGH

JEVE,lV) + δ2)

(39)

In accordance with the findings outlined in reference [28], it is established that (39)
constitutes an SDP problem, amenable to resolution via an optimization solver such as
CVX [22]. Nonetheless, it is crucial to underscore that, as a general rule, the relaxed
problem (39) does not guarantee the attainment of a rank-1 solution, thus implicating
that Rank(V) ̸= 1. The optimal cost function value of (39), in this context, serves solely
as an upper bound for (38). Consequently, the process of constructing a rank-1 solution
from the high-rank optimal solution of (39) necessitates supplementary procedural steps.
To elucidate this procedure, it commences with an SVD of matrix V , i.e., V = UΛUH

with the unitary matrix U = [u1, · · · , uN+1] and the diagonal matrix Λ. Subsequently, the
suboptimal solution v⋆ = UΛ

1
2 r for (38) is derived, with r ∈ CN+1 symbolizing a randomly

generated vector based on CN(0, IN+1). Leveraging independently generated Gaussian
vectors r, the objective function of (39) is approximated by selecting the maximum value
achieved for the most favorable v among all v. In the final analysis, the value of v can be
determined by the application of Equation (40).

v = e
jarg

(
v⋆n

vN+1

)
, ∀n = 1, · · · , N (40)

3.3. Proposed Algorithm

Applying the concept of alternating iterative algorithms to address the original opti-
mization problem, (19) reveals an interesting behavior: the power harvested by the EHR
demonstrates a monotonically increasing trend throughout the iterative process. Neverthe-
less, owing to the constraints on transmission power, the proposed algorithm ultimately
converges to a steady-state value. It is worth emphasizing that, given the non-convex na-
ture of the original optimization problem (10), this algorithm cannot ensure the attainment
of the global optimum. Instead, the presented alternating iterative approach incrementally
approaches the optimal solution. To be more precise, we designate the solutions obtained
after t iterations of the alternating iterative algorithm as V(t), f̄i(t), w(t), t1,k(t), t2,k(t), and
E(t) = ∑J

j=1 Ej(t). A detailed outline of the alternating iterative algorithm’s procedure is
provided in Algorithm 1.
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Algorithm 1 Proposed Secure Transmission Algorithm.

1: Initialization: t = 0, V(0), f̄i(0), w(0), t1,k(0), t2,k(0) and E(0);
2: Repeat

• t = t + 1;
• Employ the CVX solver to tackle the problem presented in (37), yielding the

solutions fi(t), w(t), t1,k(t) and t2,k(t) while keeping the V fixed;
• Employ the CVX solver to tackle the problem presented in (40), yielding the

solutions V(t) and t2,k(t) while keeping the fi(t), w(t), t1,k(t) fixed;
3: Until |E(t + 1)− E(t)| ≤ 10−4.
4: end

3.4. Complexity Analysis

The overall complexity of the alternative algorithm we propose is derived from two
components: subproblem 1 and subproblem 2. In each iteration of the alternative algorithm,
we independently solve problems (37) and (39). To elaborate, the complexity associated
with subproblem 1, addressing the non-linear convex problem (37), is

C1 = I1 · O((M + (P + J + K + L)M + 3(P + J + K + L))3.5 log(
1
ϵ1
)) (41)

where ϵ1 represents the given solution accuracy, I1 is the number of iterations before
convergence, and (M + (P + J + K + L)M + 3(P + J + K + L)) denotes the number of
variables [20,26,27]. The complexity of subproblem 2 solving the SDP problem (39) is

C2 = I2 · (O)((N + 1)3.5 log(
1
ϵ2
)) (42)

where N + 1 represents the dimension of the semi-definite cone and I2 denotes the number
of iterations for subproblem 2 to converge. In summary, the combined complexity of the
proposed alternative algorithm is

C∋ = I3(C1 + C2) (43)

where I3 represents the overall number of iterations performed by the alternative algorithm.

4. Simulation Results

This section presents numerical simulations that demonstrate the benefits of incorpo-
rating IRS into cognitive SWIPT-IoT networks. To build on previous studies [21,29], we
analyze an IRS-assisted cognitive SWIPT system with a secondary transmitter located at
(40, 0, 20), a jammer positioned at (40, 0, 15), and an IRS positioned at (0, 0, 10). Moreover,
we assume that K = 3 IoT receivers, L = 2 eavesdroppers, J = 3 EHRs, and P = 3 PUs are
randomly distributed within a circular area with a radius of 2 m centered at (20, 100, 0),
(15, 85, 0), (15, 80, 0), (20,−50, 0), respectively. Both secondary transmitter and jammer are
equipped with a total of four antennas, allowing for the transmission of one data stream to
each individual IoT user. Simultaneously, all users have one antenna. The model for the
large-scale path loss from either the SBS to the IRS or the IRS to the users is represented
as follows:

a(d) = T0(d/d0)
−α (44)

where T0 = −30 dB refers to the path loss (PL) with d0 = 1 m, where d indicates the distance
between two nodes, and α indicates the PL exponent. Assuming that the channels associated
with IRS are all Rician channels, while the channels from the SBS and the IJ to all users are
Rayleigh fading channels. Let us suppose that the PL factors from the SBS or jammer to
the RIS, IoT users, PUs, eavesdroppers, and EHRs are αBI = αJ I = 2.2, αSU = αJU = 3.6,
αSP = αJP = 3.6, αSE = αJE = 3.6, and αSEH = αJE = 3.6, respectively. Similarly, the path
loss factors from the RIS to the IoT users, PUs, eavesdroppers, and EHRs are αISU = 2.2,
αIP = 2.4, αIE = 2.4 and αIEH = 2.4, respectively. To evaluate the effectiveness of our
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proposed algorithm, we have conducted a series of comparative analyses with other state-
of-the-art algorithms. Specifically, we compared our algorithm with the following schemes:
Baseline 1, which employs IRS for secure transmission without a jammer [34]; Baseline 2,
which adopts reflective phase randomization with optimization based on Algorithm 1’s
active beamforming [30]; and Baseline 3, which is a secure transmission algorithm that
does not rely on IRS assistance [29].

Figure 2 depicts the variation in the collected energy of EHRs over the iteration
number with regard to the proposed secure signal scheme. The graph illustrates that the
proposed algorithm achieves convergence after only a few iterations, indicating its superior
convergence properties. Moreover, as the interference temperature experienced by the PU
increases, the system’s energy collection capability also grows. This phenomenon is due to
the fact that, with a rise in the interference temperature, the PU can tolerate larger degrees
of interference. Consequently, the constraints on the energy collection of secondary IoT
users loosen, leading to an increase in the amount of energy they collect.
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Figure 2. The collected energy varies with iteration number.

Figure 3 depicts the correlation between the energy harvested by EHR and the transmit
power of the SBS employed for EHR collection. As indicated in Figure 3, the energy
harvested by EHR for all four schemes consistently increases in a monotonic manner as
the transmit power of the SBS augments, with the proposed scheme achieving the highest
performance. The rationale behind this finding is as follows: in comparison to the scheme
without IRS assistance, the inclusion of IRS can offer supplementary transmission paths for
energy harvesting from the SBS to EHR. Further, when contrasted with the random phase
scheme of IRS, optimizing the IRS phase results in an improved transmission of information
to authorized users and energy users, rather than unauthorized users. Additionally, as Ps
escalates, the performance gap between the IRS scheme and the non-IRS scheme, as well as
the performance gap between the IRS phase optimization scheme and the random phase
scheme, progressively intensifies. This is because the proposed scheme presented in this
study reinforces the expected reflected signal directionally, which ultimately elevates the
spatial degrees of freedom and diversity gain brought about by IRS.
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Figure 3. The correlation between the energy harvested by EHR and Ps.

Figure 4 depicts the correlation between the energy harvested by the EHRs and the
transmit power of a jammer. The findings reveal that, except for the no-jammer scheme,
the energy collected by the EHR increases as the transmit power rises for the other three
schemes. Among the schemes with the same jammer power, the proposed scheme surpasses
the scheme without IRS by approximately 1.84 dB. A comparative analysis indicates that
the system assisted by IRS offers a more substantial enhancement in energy harvesting
performance than the non-IRS scheme. Nonetheless, in the low power region, the scheme
without the jammer exhibits superiority over the scheme without RIS and the random phase
scheme. As the transmit power of the jammer increases, the performance gap between the
proposed scheme and the other three comparative schemes widens. This outcome results
from the fact that the proposed scheme can achieve a higher power degree of freedom
through the jammer and effectively mitigate the eavesdropping rate of the eavesdropper.
This approach broadens the feasible region of the security rate constraint and enhances the
energy harvesting performance of the EHR.
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Figure 4. The correlation between the energy harvested by EHR and PJ .
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The outcome depicted in Figure 5 demonstrates the correlation between the quantity
of transmitting antennas, denoted as M for SBS, and the harvested energy levels, assessed
across various benchmark schemes. It is evident that increasing the number of SBS’s trans-
mitting antennas leads to a significant improvement in the harvested energy in all evaluated
scenarios. Specifically, augmenting the quantity of antennas can lead to greater energy
beamforming gain and signal beamforming advantage, which enhances the beamforming
effect and subsequently increases the energy harvested by the system. Therefore, utilizing
multiple transmitting antennas in SBS can be an effective approach to improve the har-
vested energy of our considered communication systems. To provide further clarification,
the proposed algorithm exhibits a substantial improvement of approximately 3.2 × 10−4 W
in harvested energy as compared to the baseline scheme 1, which does not utilize IRS, when
the number of transmitting antennas at the SBS is set to M = 8. Additionally, the algorithm
achieves a noteworthy increment of around 4.9 × 10−4 W in harvested power at M = 12.
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Figure 5. The correlation between the energy harvested by EHR and M.

Figure 6 depicts the curve that illustrates the relationship between the energy acquired
by the EHR and the quantity of reflecting elements in the IRS represented as N. Assuming
Rs,th = 3 bps, the proposed methodology exhibits a monotonically increasing trend in the
energy collected by the EHR as the number of IRS reflecting elements increases from 20 to
60. This phenomenon can be ascribed to the supplementary spatial DoF made available
via the augmentation in the quantity of reflecting elements, which enhances the flexibility
of passive beamforming and ameliorates the channel quality of the links between the SBS,
IRS, and user devices, thereby elevating the overall energy harvesting performance of the
CR system. When compared to three alternative algorithms, the proposed methodology
outperforms them in terms of energy harvesting performance. Specifically, the IRS-assisted
secure algorithm that is free from interference outshines the random phase optimization
algorithm in terms of energy harvesting performance, thus emphasizing the paramount
importance of phase optimization. As such, it is evident that the incorporation of IRS into
SWIPT systems is a necessary undertaking.
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Figure 7 illustrates the relationship between the energy harvested by the EHR and the
secrecy rate. As shown in Figure 7, when M = 8 and N = 50, the energy harvested by the
EHR decreases gradually as the secrecy rate increases. Comparing the proposed energy
harvesting scheme with three benchmark approaches, the energy harvesting performance of
the system is found to be approximately 3.02 dB higher with IRS-assisted energy harvesting
than that without IRS. This improvement can be attributed to the additional DoF and
diversity gains provided by the IRS, as well as the optimization of IRS phase shifts that
enhances the energy harvesting performance of the EHR. Notably, the proposed approach
outperforms both the non-IRS and random phase shift approaches. Furthermore, compared
to the non-jammer scheme, Figure 7 corroborates the efficacy of the proposed approach,
which demonstrates a higher energy harvesting capability than the former at the same
secrecy rate.
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5. Conclusions

To achieve a sustainable and efficient interconnection of diverse entities in the beyond
5G system, this study investigates the intricacies of designing transmission beams, opti-
mizing jammer device transmission beams, and implementing phase shift designs within a
SWIPT-enabled cognitive secure communication network assisted by IRS. The investigation
considers the transmission power constraints of cognitive base stations and jammers, mini-
mum security requirements for all cognitive information receiving devices, interference
limitations posed by primary users, and phase shift constraints. Subsequently, we formulate
a comprehensive multidimensional resource joint allocation model with objectives such as
energy harvesting maximization. To address the complexity of the optimization problem,
we employ a BCD method, effectively breaking it down into two distinct subproblems.
The first subproblem focuses on resolving transmission beam design decisions using SCA
methods. Simultaneously, the second subproblem addresses an intelligent reflective surface
phase shift design and utilizes SDR methods. Extensive simulations conducted under
various scenarios and conditions consistently demonstrate that the proposed approach
outperforms existing solutions, highlighting its efficacy in achieving higher overall system
harvested energy and prolonging the operational lifespan of the network. In future, we
will explore the scenario of an IRS-aided cognitive secure transmission based on imperfect
channel state information to enhance the practicality of our research.
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