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Abstract: During the Keyhole Tungsten Inert Gas (K-TIG) welding process, a significant amount of
information related to the weld quality can be obtained from the weld pool and the keyhole of the
topside molten pool image, which provides a vital basis for the control of welding quality. However,
the topside molten pool image has the unstable characteristic of strong arc light, which leads to
difficulty in contour extraction. The existing image segmentation algorithms cannot satisfy the
requirements for accuracy, timing, and robustness. Aiming at these problems, a real-time recognition
method, based on improved DeepLabV3+, for identifying the molten pool more accurately and
effectively was proposed in this paper. First, MobileNetV2 was selected as the feature extraction
network with which to improve detection efficiency. Then, the atrous rates of atrous convolution
layers were optimized to reduce the receptive field and balance the sensitivity of the model to molten
pools of different scales. Finally, the convolutional block attention module (CBAM) was introduced to
improve the segmentation accuracy of the model. The experimental results verified that the proposed
model had a fast segmentation speed and higher segmentation accuracy, with an average intersection
ratio of 89.89% and an inference speed of 103 frames per second. Furthermore, the trained model was
deployed in a real-time system and achieved a real-time performance of up to 28 frames per second,
thus meeting the real-time and accuracy requirements of the K-TIG molten pool monitoring system.
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1. Introduction

As a welding method with high energy input, K-TIG welding plays a crucial role
in the field of medium-thick plate welding. Medium-thick material plates, like titanium
alloy, duplex stainless steel, and low carbon steel, can perform a single-sided weld and a
double-sided form in a single pass without opening grooves [1-3]. It is often combined
with robots for automatic welding in practical industrial production, but it is still difficult
to achieve precise real-time regulation during the complex welding process. To improve
the intelligent automation level of welding technology, scholars have paid much attention
to monitoring the welding process [4].

Welding process monitoring is a key component in intelligent welding [5]. During
the welding process, the molten pool contains a wealth of welding quality information. By
observing the shapes and characteristics of the molten pool, skilled welders can adjust the
welding parameters in real time to maintain good welding quality. However, the shape of
the molten pool is dynamic, and it is a very subjective task to monitor its formation manually.
To realize the closed-loop control of intelligent welding, visual sensing technology can
be used to simulate the welders in monitoring the morphological change in the molten
pool and obtain its shape parameters, which are used as indirect control variables fed back
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to the control system so that the welding parameters can be adjusted to greatly improve
welding quality and efficiency. Visual sensing technology is considered to be the most
promising welding sensing technology due to its advantages of convenient operation,
strong anti-interference, mass information, high-speed acquisition, and non-contact with
the workpiece.

In the visual monitoring of K-TIG welding, image processing is an indispensable step
through which to obtain the surface morphology of the weld pool and keyhole clearly
and accurately. It is typically required to go through the following four stages in image
processing: the selection of the region of interest (ROI), the preprocessing of the image, the
segmentation of the image, and feature extraction [6-8]. Its most crucial and challenging
part is image segmentation, which can be used to segment the captured objects, like the
weld pool, keyhole, weld line, arc, and the like [9]. At present, image segmentation methods
for molten pools can be divided into two categories, including methods based on traditional
image algorithms and those based on active contour models [10]. Liu et al. [11] analyzed
the results of six different edge detection operators and finalized the Canny operator (with
a threshold between 0.1 and 0.5) to obtain ideal edge features for a molten pool. Chen
et al. [12] utilized a traditional image algorithm to extract the molten pool’s width, trailing
length, and surface height, which were used as the input signals of the data-driven model
to predict the backside width. Liu et al. [13] proposed an active contour model to extract the
edges of the groove accurately, and the accuracy of the model was proven by the experiment
results. These methods have the obvious advantages of low computational complexity and
high efficiency, which make it possible to obtain stable and accurate segmentation results
under certain tasks. However, during the K-TIG welding process, the size, shape, and
position of the weld pool and keyhole are affected by different welding process parameters,
which leads to difficulty in the segmentation of the molten pool image within the actual
welding environment [14]. Furthermore, the segmentation methods mentioned above have
the problem of poor segmentation performance due to the interference from the complex
reflection characteristics of the molten pool’s surface, the intense light intensity of the arc
light, and the other noise sources in the environment.

With the rapid development of deep learning, image semantic segmentations based
on the convolutional neural network (CNN) have made significant progress, and various
semantic segmentation models have also appeared, one after another. Because of its two
characteristics of local connection and weight sharing, the CNN can make the network
deeper and obtain higher accuracy in complex tasks by greatly reducing the parameters
of the network model. The fully convolutional network (FCN), proposed in 2015 [15],
improved based on CNN. The FCN is a seminal contribution to deep learning for semantic
segmentation, which establishes a general network model framework. It leverages the
feature map generated by the final convolutional layer in the CNN to perform up-sampling,
and it classifies and predicts each pixel throughout this procedure. However, the network
of the FCN is relatively large, it is not sensitive to the details of the image, and the target
boundary is blurred due to the low correlation between pixels. To improve the accuracy of
segmentation results, many researchers have tried a variety of methods. Peng et al. [16]
proposed an improved global convolutional network method, which uses large separable
filters to reduce the number of parameters and optimize the segmentation boundary.
PSPNet [17], developed by Zhao, extracts appropriate global features for scene parsing
and semantic segmentation tasks. It uses a pyramid pooling module to combine local
and global information and proposes an optimization strategy with moderate supervision
loss. The DeepLab model [18-21] is a deep convolutional neural network (DCNN) model
proposed by Chen et al. Its core concept is to use atrous convolution, which can not only
clearly control the resolution of the response when calculating the feature response but also
expand the receptive field of the convolutional kernel, as well as integrate more feature
information without increasing the number of parameters and calculations.
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In recent years, some researchers have attempted to apply deep learning models to the
monitoring of the K-TIG welding process. Xia et al. [22] designed a novel visual monitoring
system for K-TIG welding, employing an XVC-1000e camera to observe the weld pool and
keyhole. The residual network (ResNet) was developed for welding state classification
based on the molten pool image, achieving an impressive recognition rate of 98% in
experiments. To guarantee a good welding seam tracking effect, Chen et al. [23] proposed an
image processing algorithm using Mask-RCNN to accurately identify the keyhole entrance
and weld centerline. The accuracy of the algorithm was verified by experiments, and the
inference speed was 1.53 frames per second. Wang et al. [24] introduced a segmentation-
LSTM model, segmenting the regions of the weld pool and keyhole. Deployed in an
embedded system, this model achieved a running time of 50 ms. The above research results
show that although these models have shown excellent performance, their model structures
were too large and complex, resulting in slow processing speeds and high memory usage.
Moreover, challenges persisted in accurately segmenting the weld pool and keyhole areas,
with room for improvement in the accuracy and stability of the weld pool and keyhole edge.

To address these issues, an improved DeepLabV3+ model is put forward, aiming to
boost processing speed and improve the accuracy and robustness of image segmentation.
A visual sensing system with a high-dynamic-range (HDR) camera was designed and
implemented to capture weld pool and keyhole images simultaneously, reducing inter-
ference from strong arc light. MobileNetV2 serves as the backbone network where its
atrous rates are adjusted to diminish model parameters and computational complexity
to classify each pixel in the molten pool image and extract the information of the weld
pool and keyhole quickly and efficiently from the image. The proposed model lays a solid
foundation for the practical application of proven deep learning techniques in the K-TIG
welding process control.

2. System and Experiments
2.1. Experiment System

As shown in Figure 1, the experimental system is composed of four subsystems: the
K-TIG welding system, robot system, visual sensing system, and control system. The K-TIG
welding system includes a welding power source (model HTIG-P10), a water cooler, a
specialized welding torch equipped with a 6.4 mm diameter tungsten electrode, and pure
argon with a purity of 99.99% serving as the shielding gas for K-TIG experiments. The
robot system, which mainly consists of a six-DOF KUKA robot (model KR16), controller
cabinet, and smart PAD, is responsible for the movement of the welding torch. The HDR
camera of the visual sensing system is utilized to observe the topside molten pool, forming
an approximately 60-degree angle with the workpiece to aim at the keyhole entrance
and welding pool area. The systems considered above are all controlled by an industrial
computer within the control system.

The HDR camera and welding torch are installed together at the end of the KUKA
robot through a clamping device. The workpieces to be welded are fixed on the workbench
before welding, with the robot moving forward at the welding speed while the welding
torch and camera remain stationary. The HDR camera was chosen for its capability to
capture high-dynamic-range visual information, including weld pools, keyholes, and arcs.
Moreover, it effectively suppresses the impact of welding arc light on the front end of a
molten pool. The parameters of the HDR camera are listed in Table 1.
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Figure 1. The schematic diagram of the K-TIG welding experimental platform.
Table 1. The parameters of the HDR camera.
Parameter Value
Model LITS-FS3H
Resolution 1920 (H) x 1080 (V)
Pixel size 3.75 um (H) x 3.75 um (V)
Dynamic range 120 dB
Frame rate 30 fps
Exposure mode Rolling Shutter

2.2. Experimental Procedure

In this paper, experiments were performed on 300 mm x 100 mm x 8 mm 2205 stain-
less steel as the experimental object due to its wide application in industry. The butt
welding was adopted, with no obvious wrong edge or gap between the workpieces. The
tungsten tip was 3 mm away from the surface of the workpieces.

Figure 2 shows the flowchart of the experiment procedure. When started, signals were
output from the industrial computer to the welding power source and controller cabinet,
controlling the weld current and movement speed. Under the action of the heat source, the
workpieces began to melt from the surface into the interior, forming the weld pool and
keyhole. Simultaneously, as the robot started to move, the HDR camera was triggered to
monitor and capture images of weld pools as well as keyholes. These images were then
transmitted to the industrial computer for use as inputs in the segmentation model. During
the training process of the model, the areas of the weld pools and keyholes were manually
labeled in the captured images, as shown in Figure 3. The trained segmentation model was
subsequently utilized to recognize the actual edges of the weld pool and keyhole.
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Figure 2. The flowchart of the experiment procedure.

(a) (b) (c)

Figure 3. Dataset preparation for training segmentation model. (a) Input image; (b) Labeled image;
(c) One-hot encoding.

2.3. Data Collection

Given the absence of public molten pool datasets, this experiment used an HDR
camera to capture the molten pool images. The shapes of the weld pool and keyhole vary
with different welding currents and speeds. To ensure the reliability and robustness of the
segmentation model, the training dataset should be collected in as many different welding
conditions as possible. Welding currents were randomly varied below 480 A, while welding
speeds ranged between 280 mm/min and 360 mm/min. Figure 4 illustrates images of the
molten pool obtained under different welding currents and speeds.

Figure 4. Images of molten pool obtained under different welding currents and speeds.

A total of 3015 clear molten pool original images were amassed. To effectively mitigate
the overfitting problem in the segmentation model, it is necessary to enrich the dataset
by the method of image augmentation, which includes three geometric transformations:
rotation, scaling, and flipping. The dataset was randomly divided into two sub-datasets:
10,854 as the training dataset and 1206 as the validation dataset. To make it easier to label
the weld pool and keyhole edge, the Improved LabelMe image annotation software [24]
was used to label both the training dataset and validation dataset images with the labels
“weld pool” and “keyhole”.
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3. Design of Segmentation Model
3.1. Improved DeepLabV3+ Model

The DeepLabV3+ model is improved based on DeepLabV1-3, which has achieved
good results in public datasets such as Pascal VOC and CitySpace. The DeepLabV3+ model
consists of an encoder and decoder. The encoder part includes the Xception network,
atrous spatial pyramid pooling (ASPP) module, and 1 x 1 convolutional layer. The ASPP
module is comprised of a 1 x 1 ordinary convolution layer, three atrous convolution layers
with different atrous rates, and a pooling layer. Two feature maps with different levels
are produced by the Xception network of the encoder after extracting the features of the
input image. The features of the low-level feature map are extracted in the ASPP module,
which is spliced in the channel dimension and compressed through the 1 x 1 convolution
to obtain a feature map with high-level semantic information. In the decoder part, first, the
1 x 1 convolution is used to adjust the channel dimension of the high-level feature map.
After that, the adjusted feature map can fuse with the feature maps upsampled by four
times. Subsequently, the fused feature map employs a 3 x 3 convolution to recover spatial
information and then is upsampled four times to enhance the target boundary, producing
the final segmentation result.

In the experiment, the complicated structure of the Xception network will result in
some blurring and confusion problems in detail extraction for the weld pool and keyhole.
The large number of parameters in Xception necessitates a significant investment of time
and computing power, so MobileNetV2 is selected as the backbone feature extraction
network. MobileNetV2, with fewer parameters and faster training speed, accelerates
feature extraction in molten pool images. This facilitates improved detail capture for the
weld pool and keyhole, rendering it more suitable for molten pool extraction tasks. At the
same time, given the differing characteristics of the weld pool and keyhole, it is not suitable
to apply the DeepLabV3+ model directly to the molten pool segmentation. The improved
DeepLabV3+ model architecture is shown in Figure 5.
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Figure 5. Improved DeepLabV3+ model architecture.

3.2. MobileNetV2 Network

MobileNetV2 is used as the backbone feature extraction network, and its network
structure is shown in Figure 6. MobileNetV2 adopts an inverted residual block structure,
which gives the network a good ability for feature extraction while maintaining a small
number of parameters and computational complexity. First, the dimension of the input fea-
ture map is expanded by 1 x 1 convolution, followed by the utilization of ReLU®6 for feature
non-linearization. Then, 3 x 3 depthwise separable convolution and the ReLU6 activation
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function are employed to comprehensively extract and non-linearize features. Finally,
feature fusion and dimensionality reduction are carried out through 1 x 1 convolution.

MobilenetV?2

l—

1x1 Conv (expansion)
Batch Normalization
Rel. U6

3x3 Depthwise Conv
Batch Normalization
ReL U6

l

1x1 Conv (projection)
Batch Normalization

A
N

Output

Figure 6. MobileNetV2 network structure.

3.3. The Optimization of ASPP Module

In the DeepLabV3 + model, the ASPP module plays a crucial role in capturing multi-
scale context information from the image. It achieves this by utilizing convolution kernels
of different scales to optimize segmentation results and enhance segmentation accuracy.
Therefore, the ASPP in this paper used three atrous convolutional layers with varying
atrous rates to extract information from the weld pool and keyhole. If a larger atrous rate is
selected, the receptive field expansion can reduce the loss of feature information during the
convolution process. However, it may result in misidentification as the background and
poor extraction effects when the receptive field exceeds the size of the weld pool or keyhole
to be extracted. With the increase of the atrous rate, the attenuation of the expansion
convolution becomes invalid when it is greater than 24, leading to a loss of the resolution in
the feature map and subsequent loss of detailed information at the boundaries of the weld
pool and keyhole. Conversely, if the atrous rate is too small, the receptive field becomes
smaller than the feature area, and too much local information will be obtained, which
will lead to the loss of global information. To address these considerations and leverage
the characteristics of different scales and irregular edges of the weld pool and keyhole,
this paper optimized the parameters through multiple experiments and finally reduced
the atrous rate appropriately. The atrous rates in the ASPP were adjusted to 4, 8, and 12,
striking a balance to improve the model’s recognition ability for molten pool images.

3.4. Attention Module

The CBAM is a lightweight attention module proposed by Woo et al. [25]. It infers
the attention weights independently along the two dimensions: channel and space. The
resulting weights are then multiplied by the input feature to adaptively adjust the features.
The introduction of CBAM into the CNN can greatly improve the performance of the
model, and it brings a very small number of parameters and computations, which can be
embedded into most networks. The structure is shown in Figure 7.
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Figure 7. Structure of CBAM.

The CBAM is composed of a channel attention module and a spatial attention module.
In the channel attention module, a pooling module is formed by the mean-pooling and
max-pooling via parallel connection. Two feature maps, including the maximum and
average information, are derived through the pooling module. Subsequently, both feature
maps pass through a Multilayer Perceptron (MLP), in which the first fully connected
layer reduces dimensionality to mitigate computational complexity while the second fully
connected layer elevates dimensionality. The outputs from the MLP are summed, and the
channel weights are generated by the Sigmoid activation function. These weights are then
multiplied with the input features to adjust the feature response of each channel, generating
the input feature needed for the spatial attention module. In the spatial attention module,
mean-pooling and max-pooling operations are applied to the feature map produced by
the channel attention module. The results are combined to form a two-channel feature
map, which is then converted into a single-channel feature map through convolutional
operations. The Sigmoid activation function generates spatial weights, which are multiplied
with the input feature map, weighting the feature response at each spatial location to obtain
the final feature map.

The excessive atrous rate of the ASPP module will make the model unable to extract
the feature information well, which will also affect the correlation between the local features
of the molten pool and reduce the segmentation accuracy. Specifically, the CBAM attention
module is introduced after each atrous convolution in the ASPP module, therefore adjusting
the weight of the feature channel and enhancing the perception of edge features in the weld
pool and keyhole.

4. Training and Results

The proposed improved DeepLabV3+ network is implemented in the PyTorch frame-
work. The training was conducted in a computer environment with support for the Intel
i7-9750H CPU (Intel Corporation, Santa Clara, CA, USA) and NVIDIA GTX 1650 (Nvidia
Corporation, Santa Clara, CA, USA) graphics card. To expedite training and ensure quick
convergence, the network was initialized with pretraining weights and then finetuned
through transfer learning. Transfer learning is divided into two stages. In the first stage, the
parameters of the network model were initialized on the Pascal VOC dataset. By freezing
the batch normalization layer of the ASPP module and decoder part, it was not updated
during feature migration, which can reduce the model error, ensure the migration effect,
and obtain the pretraining weight. The second stage involved training on the dataset of
the molten pool. Since the features extracted by the backbone network, MobileNetV2 was
common in the whole model. The backbone network was frozen at the beginning of training
to speed up the model training and prevent the weights from being destroyed during the
training process. In later training epochs, the backbone network was unfrozen to participate
in the training of the entire model. The model was trained for 100 epochs with a batch size
of 8, utilizing the stochastic gradient descent (SGD) algorithm with 0.9 momentum and a
weight decay of 1 x 10~%. The learning rate was 1 x 10~%.
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After 100 epochs of training, the change in the loss value during model training and
validation is shown in Figure 8. As we can see in the figure, with the increase in training
time, both training and validation loss curves rapidly converge and then stay stable. When
the time of training reaches 60, the loss value reaches 0.03. To assess the effectiveness of the
DeepLabV3+ network, the mean intersection over union (MIOU) was adopted to calculate
and evaluate the percentage overlap between the target and prediction, which is defined in
Equation (1).

MIOU:K_lHZ - i (1)
=0 ,ZO pij + ,ZO (pji — pii)
i= i=

where K denotes the number of target categories, p;; is the number of pixels predicted
correctly, p;; is the number of pixels of class i predicted to be class j, pj; is the number of
pixels of class j predicted to be class i. The MIOU of the model for the segmentation of the
molten pool image is up to 89.89%.
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Figure 8. The change in the loss value during model training and validation.

The best-performing network model from the verification set was employed for testing
on additional molten pool images. The images before and after the segmentation are shown
in Figure 9. It can be observed in the figure that the boundaries of the weld pool and
keyhole are successfully recognized by the trained DeepLabV3+ network. The network
can process the images at 103 frames per second, i.e., the inference time of a single image is
only 9.62 ms. Such a speed ensures efficient deployment and application for monitoring
the K-TIG welding process.

The trained model was deployed in the K-TIG experiment system, as shown in Figure 1.
During welding, the molten pool images were collected by the HDR camera and were
transferred to the industrial computer, where the trained model was then applied to
segment the weld pool and keyhole. Due to the camera’s low frame rate, it will cause
problems with duplicated frames. Therefore, before processing, it is necessary to determine
whether the images acquired by the camera are the same from the pixel level. Although
the hardware limitations affected the model performance display to a very great degree,
the results demonstrated that the proposed model achieved a better balance between
segmentation accuracy and speed, in which the average frame rate of online detection is
about 28 frames per second.



Electronics 2024, 13, 283

10 of 12

Figure 9. The images before and after the segmentation, boundary of the detected molten pool.

5. Conclusions

In this paper, aiming at the engineering requirements of weld pool image segmentation
in K-TIG welding, a low-parameter and lightweight DeepLabV3+ network was built.
Based on the DeepLabV3+ model, the Xception backbone network is replaced with the
MobileNetV2 backbone network, significantly reducing the number of parameters of the
model and minimizing its dependence on hardware conditions, therefore accelerating the
convergence speed of the network. The segmentation speed of the molten pool reaches
103 frames per second, with an MIOU value of 89.89%, which realizes real-time high-
precision segmentation. The improved model in this paper reduces manual participation in
the manufacturing process, offering significant benefits in terms of reducing the defective
rate of the project, cutting costs, and enhancing the safety of the project. Furthermore,
for melt pool monitoring in K-TIG welding, the improved model enables more precise
segmentation of the weld pool and keyhole, extracting their contour edges comprehensively
and obtaining characteristic parameters, such as area and length-width ratio, which can be
instrumental in monitoring welding quality and provide a research basis for the subsequent
realization of the closed-loop control in K-TIG welding.
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