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Królikowski, Z. Development of

AI-Based Prediction of Heart Attack

Risk as an Element of Preventive

Medicine. Electronics 2024, 13, 272.

https://doi.org/10.3390/

electronics13020272

Academic Editors: Jawahar

(Jay) Kalra and Patrick Seitzinger

Received: 30 November 2023

Revised: 28 December 2023

Accepted: 5 January 2024

Published: 7 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Development of AI-Based Prediction of Heart Attack Risk as an
Element of Preventive Medicine
Izabela Rojek 1,* , Piotr Kotlarz 1 , Mirosław Kozielski 1 , Mieczysław Jagodziński 2
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Abstract: The future paradigm of early cardiac diagnostics is shifting the focus towards heart attack
preventive medicine based on non-invasive medical imaging with the support of artificial intelligence.
It is necessary to preventively detect its increased risk early and respond with preventive drugs
before moving on to more effective, but also more invasive, forms of therapy. The main motivation
of our study was to improve existing and develop new AI-based solutions for cardiac preventive
medicine, with particular emphasis on the prevention of heart attacks. This is due to the fact that
the epidemic of lifestyle diseases (including cardiologic ones) has been stopped but not reversed;
hence, automatically supervised prevention using AI seems to be a key opportunity to introduce
progress in the above-mentioned areas. This can have major effects not only scientific and clinical in
nature, but also economic and social. The aim of this article is to develop and test an AI-based tool
designed to predict the occurrence of a heart attack for the purposes of preventive medicine. It used
the combination and comparison of multiple AI methods and techniques to determine a personalized
heart attack probability based on a wide range of patient characteristics and, from a computational
point of view, determine the minimum set of characteristics necessary to do so. When applied to
a specific patient, this represents progress in this field of research, resulting in improvements in
preclinical care and diagnostics, as well as predictive accuracy in preventive medicine. After an
initial selection based on the authors’ knowledge and experience, four solutions turned out to be the
best: linear support vector machine (Linear SVC), logistic regression, k-nearest neighbors algorithm
(KNN, k-NN), and random forest. A comparison of the models developed in the study shows that
models based on logistic regression proved to be the most accurate, although their predictive value is
moderate, but sufficient for the initial screening diagnosis—selecting patients who require further,
more accurate testing. In addition, this can be performed based on a reduced set of parameters,
particularly heart rate, age, BMI, and cholesterol. This allows the development of a prevention
strategy based on modifiable factors (e.g., in the form of diet, activity modification, or a hybrid
combining different factors) combined with the monitoring of heart attack risk by the proposed
system. The novelty and contribution of the described system lies in the use of AI for a widely
available, cheap, and quick predictive analysis of cardiovascular functions in a group of patients
classified as at risk, and over time in all patients as a standard periodic examination qualifying them
for further, more advanced diagnosis of heart diseases.

Keywords: artificial intelligence; machine learning; cardiac; computer-aided diagnosis; AI-based
predictive medicine; prediction

1. Introduction

The early prediction of diseases through preventive measures results in increased
patient survival rates. This requires the computerization of the healthcare system, which,
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through the Internet of Things (IoT) and cloud computing, provides cyclical access to
accurate patient data for artificial intelligence (AI) systems, including machine learning
(ML), predicting patient health status and the risk of various conditions [1,2].

The issue of preventive medicine in heart attack has so far been addressed in 111 papers
published between 1979 and 2023, with some intensification since 2015, but papers using AI
have been rare. Research to date has tended to look at incidence rates and seasonal variances
in specific populations [3,4] and at prevention guidelines [5,6] rather than prevention
models [7,8]. More attention has been paid to technical solutions, such as a remote cardiac
monitoring system with an automatic warning of acute cardiac episodes, and less to the
integration of different design, measurement, and optimization logics in complex adaptive
healthcare systems, including for cardiology [9,10]. A part of this interest stems from the
development of telerehabilitation systems for patients undergoing home rehabilitation,
sometimes at a considerable distance from the nearest hospital with an interventional
cardiology unit.

Incorrect, incomplete, or uncertain medical data can result in longer waiting times for
patient prognosis, failure to ensure best outcomes, or even false prognoses. Similar results
can be produced by a targeted action, i.e., an attack on data transfer or processing systems
due to insufficient security. In this article, we will deal with the first of the aforementioned
situations, ensuring the appropriate level of processing, inference, and prediction from data
using AI. Preventive medicine, i.e., the medicine of healthy people aimed at predicting the
health of patients and preventing their diseases, still poses challenges for engineers and
medical specialists to accurately predict diseases for a specific patient.

Cardiovascular diseases as lifestyle diseases pose a special challenge: the epidemic of
lifestyle diseases has been stopped, but their number is not decreasing. Perhaps, this can be
achieved with the use of AI-based preventive cardiology medicine. The future paradigm of
early cardiac diagnosis is shifting the focus towards heart attack prevention medicine based
on non-invasive medical imaging with the support of artificial intelligence. It is necessary
to detect increased risk early in a preventive way and use preventive drugs before moving
on to more effective, but also more invasive, forms of therapy.

The main motivation of our study was to improve existing and develop new AI-based
solutions for cardiac preventive medicine, with particular emphasis on the prevention
of heart attacks. This is due to the fact that the epidemic of lifestyle diseases (including
cardiologic ones) has been stopped but not reversed; hence, automatically supervised
prevention using AI seems to be a key opportunity to introduce progress in the above-
mentioned areas. This can have major effects not only scientific and clinical in nature, but
also economic and social.

The aim of this article is to develop and test an artificial intelligence-based tool for
predicting the occurrence of a heart attack for the purposes of preventive medicine. It
used the combination and comparison of multiple artificial intelligence methods and
techniques to determine a personalized probability of a heart attack based on a wide
range of patient characteristics and, from a computational point of view, determine the
minimum set of characteristics necessary to do so. When applied to a specific patient, this
represents progress in this field of research, resulting in improvements in preclinical care
and diagnosis, as well as predictive accuracy in preventive medicine.

The novelty and contribution of the described system lies in the use of AI for widely
available, cheap, and quick predictive analysis of circulatory system functions in a group
of patients classified as at risk, and over time in all patients in the form of a standard
periodic examination qualifying them for further tests and more advanced diagnosis of
heart diseases.

Current studies showed deep learning (DL) is worth using for the quick, automated
segmentation of coronary plaques based on angiography, allowing for the prediction of a
future heart attack, or for automating the assessment of calcium concentration in coronary
arteries during gateless computed tomography (CT) of the heart and the chest, and for
automating the measurement of epicardial fat tissue. This requires predictive models based



Electronics 2024, 13, 272 3 of 19

on artificial intelligence, integrating clinical and diagnostic imaging parameters [11–14].
So far, AI is used to improve the effectiveness of cardiovascular CT: for image acquisition,
reconstruction and denoising, image segmentation, quantitative analysis, decision support,
and data integration. The further development of AI systems may provide an opportunity
to improve current diagnostic procedures as precision medicine tools [11,15]. Furthermore,
even freely available data can provide a reading of risk at the population level. The routine
assessment of biomarkers (including hematological ones) for inclusion in clinical risk
models is sometimes carried out on the basis of data that are already available to most
patients. This allows for a trade-off between data availability, analysis cost, and the ease of
implementing such a system in the existing healthcare system. The ideal input data for risk
assessment in population health initiatives will be those that are already available to most
patients [15].

Recent research focuses on three areas, i.e., prediction, classification, and detection,
including, e.g., atrial fibrillation. This creates a certain way of proceeding. Most of the
research to date concerns analysis based on AI (40% is based on DL and 60% on conventional
ML), with a strong increase in the number of publications after 2015 [16]. Additionally,
lipid-based methods currently used to predict the risk of coronary heart disease (CHD)
have limitations that can be eliminated by incorporating epigenetic information (including
the history of diseases in the patient’s ancestors) into AI-based risk prediction algorithms.
The identification of genetic and epigenetic biomarkers in people with coronary artery
disease already outperforms other risk assessment methods [17].

This is even more important because current guidelines may underestimate the risk
of some cardiovascular diseases, including atherosclerotic cardiovascular disease (CVD),
in high-risk people. An ML-based risk calculator based on support vector machines
(SVM) eliminates this error based on data from a 13-year multi-ethnic atherosclerosis study
(6459 participants) that achieved a sensitivity of 0.86, a specificity of 0.95, and an AUC of
0.92, even forall CVDs, but still requires validation [18]. Researchers are encouraged to
explore alternative ML-based diagnostic methods that use non-invasive clinical data to
diagnose the disease and assess its severity [19]. It is also important to have the support of
medical experts in assessing the predicted risk of diseases in order to validate AI-based
software 2024 [20].

The opportunities created by AI-based preventive medicine systems primarily relate
to the early detection of disease through monitoring, enhanced surveillance, and the early
warning of disease prediction. This applies to both individual patients and population
health risks, facilitating timely and targeted interventions. Personalized risk assessment
allows the creation of personalized health plans, i.e., personalized risk profiles and pre-
vention strategies based on them. This includes the integration of genomic data, allowing
genetic predispositions to be understood and taken into account when formulating individ-
ualized disease prevention recommendations. Lifestyle data and health-seeking behaviors
offer insights into habits (beneficial and harmful) that influence health status, and indirectly
are used to design interventions and support individuals to make informed, stimulated
healthier choices. An important element of preventive medicine is individually optimized
vaccination schedules to ensure timely and effective vaccination against infectious dis-
eases, the elimination of vaccination gaps, etc. As a part of preventive medicine, early
interventions for chronic diseases are viable and support AI in identifying people at risk of
developing chronic diseases, confirming their risks/symptoms and implementing early
interventions to avoid or mitigate these conditions. This integrated approach remotely
monitors individuals with chronic diseases and their groups, improving the effectiveness
of therapy and reducing the risk of complications. Environmental health monitoring,
which includes monitoring the quality of air, water, and soil, allows to take into account
the impact of air or water quality on public health, contributing to the introduction of
preventive measures against threats resulting from periodic or permanent environmental
pollution. Due to the above reason, preventive medicine systems play a key role in global
health surveillance, increasing preparedness for pandemics and poisonings. Through
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international cooperation, environmental data and health information should be shared,
contributing to a more coordinated global response to health challenges. In the long run,
this will result in reduced healthcare costs by avoiding some of the high expenses asso-
ciated with the treatment (e.g., in hospital) of advanced diseases and by optimizing the
allocation of resources, moving saved financial resources to where they are more needed.
To this end, targeted health education and mental health programs in the workplace be-
come key areas of impact. Targeted health education campaigns that build awareness and
encourage healthy habits can be actively supported by AI-powered digital health platforms,
making reliable knowledge more accessible to society. Government, organizational, and
corporate health initiatives targeting chronic fatigue syndrome, prolonged stress, burnout,
and depression can proactively support workplace well-being programs, thanks to AI
providing insight into objectively measured employee health, guiding the development of
targeted interventions and promoting healthier habits among employees. Their successful
implementation requires addressing technological, social, and ethical challenges, such
as privacy issues, data security, and ensuring equal access to preventive interventions.
Collaboration between the patient community, healthcare providers, policy makers, and
technology developers is essential to achieve the full potential of preventive medicine
systems, especially for cardiovascular diseases.

2. Materials and Methods
2.1. Dataset

The dataset is a raw dataset (.csv file) from Kaggle [21], representing 8763 gener-
ated(having all characteristics, including statistical characteristics, of the population under
study) patient records described by the following 26 characteristics (Table 1, first is pa-
tient ID):

• Age—age of the patient;
• Sex—gender of the patient (male/female);
• Cholesterol—cholesterol levels of the patient;
• Blood Pressure—blood pressure of the patient (systolic/diastolic);
• Heart Rate—heart rate of the patient;
• Diabetes—whether the patient has diabetes (yes/no);
• Family History—family history of heart-related problems (1: yes, 0: no);
• Smoking—smoking status of the patient (1: smoker, 0: non-smoker);
• Obesity—obesity status of the patient (1: obese, 0: not-obese);
• Alcohol consumption—level of alcohol consumption by the patient (none/light/

moderate/heavy);
• Exercise hours per week—number of exercise hours per week;
• Diet—dietary habits of the patient (healthy/average/nonhealthy);
• Previous heart problems—previous heart problems of the patient (1: yes, 0: no);
• Medication use—medication usage by the patient (1: yes, 0: no);
• Stress level—stress level reported by the patient (1–10);
• Sedentary hours per day—hours of sedentary activity per day;
• Income—income level of the patient;
• BMI—body mass index (BMI)of the patient;
• Triglycerides—triglyceride levels of the patient;
• Physical activity days per week—days of physical activity per week;
• Sleep hours per day—hours of sleep per day;
• Country—country of the patient;
• Continent—continent where the patient resides;
• Hemisphere—hemisphere where the patient resides;
• Heart attack risk—presence of heart attack risk (1: yes, 0: no).
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Table 1. Dataset sample (8763 rows × 26 columns).

Row No. Patient ID Age Sex Cholesterol Blood
Pressure

Heart
Rate Diabetes Family

History
--
- Country

0 BMW7812 67 Male 208 158/88 72 0 0 . . . Argentina

1 CZE1114 21 Male 389 165/93 98 1 1 . . . Canada

2 BNI9906 21 Female 324 174/99 72 1 0 . . . France

3 JUN3497 84 Male 383 163/100 73 1 1 . . . Canada

4 GFO8847 66 Male 318 91/88 93 1 1 . . . Thailand

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8759 QSV6764 28 Female 120 157/102 73 1 0 . . . Canada

8760 XKA5925 47 Male 250 161.75 105 0 1 . . . Brazil

8761 EPE6801 36 Male 178 119/67 60 1 0 . . . Brazil

8762 ZWN9666 25 Female 356 138/67 75 1 1 . . . United Kingdom

We checked missing and incomplete values and turned categorical variables to num-
bers. Dataset division: training 80% (7010) and testing 20% (1753).

A dataset downloaded from Kaggle was used to demonstrate the capabilities of the
proposed method. Each open dataset can create a community that allows you to create
your own projects, discuss the data, discover public code, various methods, and techniques,
and choose the best solution among all options. This significantly increases the possibilities
of data analysis by one research team and increases the chance of quickly finding the best
solution among all existing ones, not only those that can be investigated by one specific
research team.

2.2. Computational Analysis

The purpose of the analysis was to compare multiple artificial intelligence meth-
ods/techniques with the expected effect in mind: selecting the best one to determine the
personalized probability of a heart attack based on a wide range of patient characteristics
and, from a computational point of view, determining the minimum set of features nec-
essary for this. This will bring progress in building a personalized preventive medicine
system for heart attacks and the progress in this field of research will result in improved
preclinical care and diagnostics as well as predictive accuracy.

After initial selection based on the authors’ knowledge and experience, four solutions
turned out to be the best: linear support vector machine (Linear SVC), logistic regression,
k-nearest neighbors algorithm (KNN, k-NN), and random forest.

LinearSVC is an algorithm that attempts to find the hyperplane that maximizes the
distance between classified samples. It uses a linear kernel function to perform the clas-
sification and works well with a large number of samples. Compared to the SVC model,
linear SVC has additional parameters: a penalty normalization that uses “L1” or “L2” and
a loss function.

Logistic regression is a ML classification algorithm that is used to predict the prob-
ability of certain classes based on some dependent variables. It computes a sum of the
input features.

KNN is a non-parametric supervised learning classifier that uses proximity to classify
or predict the clustering of individual data points.

Random forest is a widely used machine learning algorithm that combines the output
of multiple decision trees to produce a single result. It is easy to use and flexible, dealing
with both classification and regression.
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3. Results

More than one-third of the study population (35.82%, Figure 1) was assessed as being
at risk of a heart attack (“1”), a very high proportion that indicates the need for immediate
preventive action, as therapeutic measures alone may not be sufficient in a few years time.
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• LinearSVC—LinearSupport Vector Classifier;
• Logistic Regression—LogisticRegression;
• K-Nearest Neighbors—KneighboursClassifier;
• RandomForest—RandomForestClassifier.
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Hyperparameters Tuning

A study was performed to assess the impact of tuning on different models using
hyperparameters specific to each model.

For the KNeighborsClassifier, model manual tuning was provided. The maximal KNN
score achieved was 62.86% (Figure 5).
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The test score changed with an increasing number of neighbors but stabilized at the
value of k = 20, and no further improvement was seen.

For the RandomForrestClassifier, manual tuning was provided. The maximal score
achieved was 63.32%. Sample train scores are shown in Table 2.

Table 2. Sample train scores.

Score No. Score Value

1. 1.0

2. 0.7718972895863053

3. 0.7679029957203994

4. 0.7168330955777461

5. 0.7125534950071327

6. 0.6905848787446505

7. 0.6894436519258202

8. 0.6894436519258202

9. 0.6821683309557774

10. 0.6800285306704708

11. 0.6704707560627675

12. 0.6740370898716119

13. 0.6667617689015692

14. 0.6671897289586305

15. 0.660342368045649

16. 0.6616262482168331

17. 0.6601997146932953

18. 0.6627674750356634

19. 0.6590584878744651

20. 0.661055634807418

21. 0.6556348074179743
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Sample test scores are shown in Table 3.

Table 3. Sample test scores.

Score No. Score Value

1. 0.5447803764974329

2. 0.6001140901312036

3. 0.5561893896177981

4. 0.6052481460353679

5. 0.5681688533941814

6. 0.6023958927552767

7. 0.5778665145464917

8. 0.602966343411295

9. 0.5915573302909298

10. 0.6138049058756417

11. 0.5938391329150029

12. 0.6195094124358242

13. 0.6023958927552767

14. 0.618938961779806

15. 0.6086708499714775

16. 0.6240730176839704

17. 0.6103822019395322

18. 0.6286366229321164

19. 0.6149458071876782

20. 0.6280661722760981

For the LogisticsRegression and RandomForestClassifier, tuning using Randomized-
SearchCV was provided. The maximal scores achieved were63.52% and 64.18%, respectively.

For the LogisticRegression, tuning using GridSearchCV was provided. The maximal
score achieved was 64.18%.

Results achieved for 27 models’ lazy classifiers are shown in Table 4.

Table 4. Lazy classifiers.

Model Accuracy Balanced
Accuracy

ROC
AUC F1 Score Time

Taken

ExtraTreeClassifier 0.55 0.51 0.51 0.55 0.04

LabelSpreading 0.56 0.51 0.51 0.55 6.00

LabelProppagation 0.55 0.51 0.51 0.55 5.07

XGBClassifier 0.59 0.51 0.51 0.56 0.50

BaggingClassifier 0.61 0.51 0.51 0.55 1.43

NuSVC 0.57 0.50 0.50 0.55 9.16

SGDClassifier 0.64 0.50 0.50 0.51 0.21

RandomForestClassifier 0.64 0.50 0.50 0.51 3.67

DecisionTreeClassifier 0.54 0.50 0.50 0.54 0.28

RidgeClassifier 0.64 0.50 0.50 0.50 0.19
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Table 4. Cont.

Model Accuracy Balanced
Accuracy

ROC
AUC F1 Score Time

Taken

Ridge ClassifierCV 0.64 0.50 0.50 0.50 0.11

LogisticRegression 0.64 0.50 0.50 0.50 0.06

LinearSVC 0.64 0.50 0.50 0.50 1.22

LinearDiscriminantAnalysis 0.64 0.50 0.50 0.50 0.42

GaussianNB 0.64 0.50 0.50 0.50 0.05

DummyClassifier 0.64 0.50 0.50 0.50 0.04

CalibratedClassifierCV 0.64 0.50 0.50 0.50 4.39

BernoulliNB 0.64 0.50 0.50 0.50 0.12

SVC 0.64 0.50 0.50 0.50 6.47

QuadraticDiscriminantAnalysis 0.62 0.50 0.50 0.53 0.09

LGBMClassifier 0.62 0.50 0.50 0.53 0.56

AdaBoostClassifier 0.64 0.50 0.50 0.51 1.31

ExtraTreesClassifier 0.63 0.49 0.49 0.51 1.52

KNeighborsClassifier 0.56 0.49 0.49 0.54 0.39

Perceptron 0.52 0.49 0.49 0.52 0.05

PassiveAggressiveClassifier 0.47 0.48 0.48 0.47 0.07

NearestCentroid 0,48 0.47 0.47 0.49 0.05

Receiver Operating Characteristic (ROC) is a plot of true positive rate versus false
positive rate. A false positive in this case occurs when the person tests positive but does
not actually have the disease. A false negative occurs when the person tests negative,
suggesting they are healthy, when they actually do have the disease.

• True positive = model predicts 1 when truth is 1;
• False positive = model predicts 1 when truth is 0;
• True negative = model predicts 0 when truth is 0;
• False negative = model predicts 0 when truth is 1 (Figure 6).
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Area Under Curve (AUC) is the area underneath the ROC curve. A perfect model
achieves a score of 1.0.

Confusion matrix shows where model made the right predictions and where it made
the wrong predictions (Figure 7).
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Figure 7. Confusion matrix.

Precision indicates the proportion of positive identifications (model predicted class 1)
that were actually correct. A model that produces no false positives has a precision of 1.0.
Recall indicates the proportion of actual positives that were correctly classified. A model
that produces no false negatives has a recall of 1.0. F1 score is a combination of precision
and recall. A perfect model achieves an F1 score of 1.0. Support is the number of samples
each metric was calculated on. The accuracy of the model is in the decimal form. Perfect
accuracy is equal to 1.0.

Accuracy shows the accuracy of the model in the decimal form. The ideal accuracy is
equal to 1.0. Precision indicates the percentage of positive identifications (predicted by the
model class 1) that were actually correct. A model that does not generate false positives
has a precision of 1.0. Recall indicates the percentage of actual positives that were correctly
classified. A model that does not generate false negatives has a recall of 1.0. F1 score is a
combination of precision and recall. An ideal model achieves an F1 score of 1.0 (Table 5).
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Table 5. Cross-validated metrics.

Precision Recall F1-Score Support

0 0.64 1.00 0.78 1126

1 0.00 0.00 0.00 628

Accuracy - - 0.64 1753

Macro average 0.32 0.50 0.39 1753

Weighted average 0.41 0.64 0.50 1753

Additional metrics are macro average and weighted average. Macro average stands
for the average of precision, recall, and F1 score between classes. Macro average does not
consider class imbalances, so if there are class imbalances, pay attention to this metric.
Weighted average is the weighted average of precision, recall, and F1 score between
classes. Weighted means each metric is calculated with respect to the number of samples in
each class.

The key features (risk factors) within the heart attack risk assessment are (from the
most important) heart rate, age, BMI, and cholesterol. BMI and cholesterol are modifiable
factors, including diet. Although specific risk factors allow the rapid diagnosis of heart
attack, it is advisable to combine biomarkers to improve discrimination (Figure 8).
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Moreover, AI can potentially improve the prevention and self-treatment of several
chronic diseases simultaneously, within one preventive medicine system. However, we
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are aware that the perspectives of patients, their families, and several medical specialists
are combined here, which may affect both the implementation prospects and the preven-
tive/therapeutic success of these systems. This also applies to the secondary prevention of
heart attack due to polypharmacy and the coexistence of other diseases.

4. Discussion

A comparison of the models developed in the study shows that models based on
logistic regression proved to be the most accurate, although their predictive value is
moderate, but sufficient for the initial screening diagnosis—selecting patients who require
further, more accurate testing. In addition, this can be performed based on a reduced set of
parameters, particularly heart rate, age, BMI, and cholesterol. This allows the development
of a prevention strategy based on modifiable factors (e.g., in the form of diet, activity
modification, or a hybrid combining different factors) combined with the monitoring of
heart attack risk by the proposed system.

Guidelines for the diagnosis and treatment of acute and chronic heart failure are con-
stantly being innovated and clinically researched in the search for more effective methods
of prevention—the only way, it seems, to reverse the epidemic of civilization cardiovas-
cular conditions. This requires not only harnessing the analytical and predictive power
of artificial intelligence but also developing a framework for combining health, ecologi-
cal, mechanistic, and social models to design, track, and evaluate complex interventions
while translating knowledge. Experienced in a variety of healthcare settings, both proce-
dural and technological innovations can measure and optimize their impact in complex,
dynamically changing interactions within the healthcare system. A review of the six
largest bibliometric databases yielded 134,012 publications (1857–2024) with the keyword
“preventive medicine”, including only 110 publications with the keywords “preventive
medicine” + “heart attack” (1979–2023) and only 3 “preventive medicine” + “heart attack”
+ “artificial intelligence” or “preventive medicine” + “heart attack” + “machine learning”
(2003–2023) [22–24]. The results from the perspective of research to date show that AI-based
heart attack prediction systems offer a number of benefits that can significantly improve
healthcare outcomes, but more are needed. AI algorithms analyzing large datasets (patient
records, medical images, and genetic information) identify rules, mechanisms, patterns,
and risk factors associated with heart attacks, and this allows for the early detection of
potential problems, enabling quick intervention and taking preventive actions. AI provides
a personalized risk assessment by taking into account a wide range of factors, including
medical history, lifestyle, genetics, and environmental variables, allowing for more accurate
predictions tailored to an individual’s specific risk profile [1,22–25]. Continuous patient
monitoring provides the real-time analysis of health parameters and can detect subtle
changes in health that may indicate an increased risk of heart attack. AI algorithms help
medical specialists interpret complex medical data, reducing the likelihood of diagnostic
errors and also providing additional information (computational biomarkers) and signaling
potential problems. This can automate and accelerate the analysis of large datasets collected
from patients and increase the accuracy of analyses. This relieves some of the burden of
manual data analysis, allowing focus on patient care and clinical decision-making. By
supporting decision-making, AI helps in developing personalized prevention, treatment,
rehabilitation, and care plans [22–28]. AI ensures data integration and analyzes data from
various sources, which enables a more comprehensive understanding of the patient’s
health condition and increases the accuracy of predictions and the effectiveness of pre-
ventive/therapeutic actions taken. Conclusions from the above data may contribute to
the identification of new risk factors, mechanisms, decision rules, and potential treatment
options (ultimately leading to the innovative forms of prevention and therapy). Preventive
medicine systems based on AI can strengthen patients’ motivation by providing them
with personalized support in the area of health status and desired activities, which can
encourage them to adopt a healthier lifestyle, follow treatment plans and cardiac reha-
bilitation (including in a hybrid form: intertwining home rehabilitation and outpatient),
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and actively engage with their own healthcare. Moreover, from a systems perspective,
the early detection and prevention of heart attacks can lead to savings in the healthcare
system, because by identifying people in high-risk groups and implementing preventive
measures, the overall cost of treating heart disease can be reduced and scarce resources can
be allocated more efficiently (Figure 9).

Electronics 2024, 13, x FOR PEER REVIEW 14 of 19 
 

 

area of health status and desired activities, which can encourage them to adopt a health-

ier lifestyle, follow treatment plans and cardiac rehabilitation (including in a hybrid form: 

intertwining home rehabilitation and outpatient), and actively engage with their own 

healthcare. Moreover, from a systems perspective, the early detection and prevention of 

heart attacks can lead to savings in the healthcare system, because by identifying people 

in high-risk groups and implementing preventive measures, the overall cost of treating 

heart disease can be reduced and scarce resources can be allocated more efficiently (Fig-

ure 9). 

 

Figure 9. AI-based preventive medicine system for predicting heart attacks. 

This group of solutions offers significant benefits, but challenges include data pri-

vacy, algorithm transparency, and the need for continuous validation and improvement 

of artificial intelligence models for use in heart attack prevention [1,22,28–31]. It is nec-

essary to establish a common platform of views. The study by Pelly et al. [32] identified as 

many as 21 concepts resulting from the views of patients and medical specialists in the 

area of preventive medicine. They covered five categories: 

• Trust, information reliability, and security; 

• Expected features, tailored feedback, and personalized advice; 

• Adoption, usability, and general interest in artificial intelligence; 

• Concerns and previous negative experiences with artificial intelligence; 

• Perceived benefits and the usefulness of artificial intelligence in providing advice 

when regular contact with healthcare is not possible. 

Positive public perceptions of preventive medicine systems may help increase the 

likelihood of successful implementation and the adoption of AI-enabled systems in the 

context of heart attack, as an example of broader applications in the management of 

chronic diseases. 

4.1. Limitations 

The number and severity of the aforementioned limitations will change as research 

progresses and further problems encountered in the daily operation of AI-based preven-

tive medicine systems, including those dedicated to cardiovascular conditions, are 

solved. The limitations observed today are summarized in Table 6. 

Table 6. Current limitations of AI-based prediction of heart attack risk (own concept) [1,22,32–34]. 

Limitation Results 

Accuracy, data 

quality, and bias 

Biased or incomplete training data may make the model’s predic-

tions inaccurate or may perpetuate existing biases in healthcare. 

AI models trained on specific datasets may have difficulty general-

izing different populations, as genetics, lifestyles, and so-
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This group of solutions offers significant benefits, but challenges include data privacy,
algorithm transparency, and the need for continuous validation and improvement of
artificial intelligence models for use in heart attack prevention [1,22,28–31]. It is necessary
to establish a common platform of views. The study by Pelly et al. [32] identified as many
as 21 concepts resulting from the views of patients and medical specialists in the area of
preventive medicine. They covered five categories:

• Trust, information reliability, and security;
• Expected features, tailored feedback, and personalized advice;
• Adoption, usability, and general interest in artificial intelligence;
• Concerns and previous negative experiences with artificial intelligence;
• Perceived benefits and the usefulness of artificial intelligence in providing advice

when regular contact with healthcare is not possible.

Positive public perceptions of preventive medicine systems may help increase the
likelihood of successful implementation and the adoption of AI-enabled systems in the
context of heart attack, as an example of broader applications in the management of
chronic diseases.

4.1. Limitations

The number and severity of the aforementioned limitations will change as research
progresses and further problems encountered in the daily operation of AI-based preventive
medicine systems, including those dedicated to cardiovascular conditions, are solved. The
limitations observed today are summarized in Table 6.

Continued research, collaboration between computer scientists and medical special-
ists, and a commitment for validating predictive models in real-world settings will help
overcome the above limitations.

In the technology area, existing prediction models based on multilayer perceptron
with extreme gradient boosting provided better predictions than models based on logistic
regression when analyzing diverse datasets, with different algorithm classification lists.
Hence, a beneficial trend may be the hybridization of preventive medicine systems based
on the use of more than one algorithm and then the aggregation of their results, e.g., based
on a separate algorithm with trend extraction (based on a fuzzy system and/or multifractal
analysis) [33].



Electronics 2024, 13, 272 15 of 19

Table 6. Current limitations of AI-based prediction of heart attack risk (own concept) [1,22,32–34].

Limitation Results

Accuracy, data
quality, and bias

Biased or incomplete training data may make the model’s predictions
inaccurate or may perpetuate existing biases in healthcare.

AI models trained on specific datasets may have difficulty generalizing
different populations, as genetics, lifestyles, and socio-economic conditions
can vary widely.

The dynamic nature of health data means that health conditions and risk
factors change over time, which requires the capturing of their dynamic
changes (including, for example, changes in the norm).

Limited predictive
horizon

AI models trained on historical data may have limited predictive
capabilities—accurately predicting future events can be challenging.

Societal changes

Predictive models may not take into account changes in patient behavior
(medication adherence, lifestyle modifications, etc.), which can significantly
affect the actual risk of myocardial infarction, but may be difficult to
predict accurately.

The problem is much broader. Current cardiovascular mortality rates vary significantly
across countries, and systems of care play a major role in determining outcomes also
through shortcomings in pre-hospital and in-hospital systems and improvements in the
quality of care. The time to first medical contact is critical here. It can be shortened
by the preventive medicine system that we have described and by improving patients’
awareness of the importance of individual symptoms and the need to call emergency
medical services [34,35]. However, this requires the coordination of preventive medicine
systems with other systems used in healthcare. The algorithmic (thanks to AI) identification
of patients at risk of heart attack or even with a high-risk heart attack must be synchronized
with the transmission of pre-hospital electrocardiograms and appropriate referral of such
patients to hospitals, e.g., for percutaneous coronary intervention [35]. Optimizing primary
and secondary prevention, including patient adherence to medications, also requires data
collection to facilitate the auditing and assessment of clinical improvement, but also to
facilitate the detection of non-adherent patients through prediction system that produce
unreliable outcomes (e.g., variability over time, jumps or gaps in data, etc.) [36,37].

4.2. Directions for Further Research

Potential areas of further interest and progress that can be explored in the future are
included in Table 7.

When thinking about the future of such preventive medicine systems, it is worth noting
that these are long-term projects, i.e., for tens of years and centuries, because the collection
and comparison of subsequent predictions with the patient’s results should be repeated
no less than three times (to obtain a prediction), but ultimately cyclically throughout the
life of a patient, thus obtaining increasingly accurate, personalized predictions, thereby
increasing the efficiency of the system.

From the point of view of the entire system, collecting data from the patient’s entire
life (not only the history of his illnesses, but also, e.g., environmental factors) will make
it possible to take into account a number of new factors, the existence of which we may
not be aware of today, i.e., personal (mental hygiene), local (environmental pollution), and
computational (virtual indicators of quality of life or mental health) factors.

A long-term approach can create a system for counteracting lifestyle diseases, and in
particular, the excessive occurrence of cardiovascular diseases in the population. However,
to fully achieve this, such a system of preventive medicine must be technologically appro-
priately developed and, moreover, harmonize with the entire healthcare system in several
areas simultaneously:

• legally and ethically (i.e.,the universal acceptance of preventive medicine);
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• in terms of systematicity and the scope of periodic examinations of healthy and sick people;
• Automatic availability of data collected for analysis;
• The scope of notification and alerting about deviations from the norm.

Table 7. Basic directions for further research on the AI-based prediction of heart attack risk (own
concept) [1,22,32–34].

Direction Detailed Tasks

Data standardization
and integration

Combining different datasets (combining electronic medical
records, genetic data, lifestyle information, etc.) to improve the
accuracy and reliability of AI models.

AI models should be easy to implement, integrate with already
existing healthcare data flows, and support strategies to facilitate
the practical implementation of AI-based heart disease risk
prediction tools in healthcare settings.

The widespread use of wearable technology and remote monitoring
can enable real-time risk assessment and early intervention.

Validation of AI models on diverse and external datasets to
ensure generalizability to other populations.

Explainability/interpretability

Models that make accurate predictions and provide clear
explanations of their decisions will help to gain the trust of
medical professionals and the acceptance of public.

Refining models to provide more personalized predictions, taking
into account factors such as genetics, environmental influences
and socio-economic factors.

Possible long-term impact

In the long term, the outcomes of people identified by AI models
as being at high risk of cardiovascular disease adhering to
recommendations and undergoing improvements in health may
change the face of preventive medicine and healthcare in general.

Ethical and legal
considerations

Data privacy, cybersecurity, and the responsible and safe use of
patient data in AI models.

Liability for an erroneous prediction made based on AI inference.

This is already a part of periodic examination programs related to the profession or
sport practiced, as well as age (children and elderly people).

It is worth noting that in this case, possible delays in the transmission and processing
process are not critical parameters—even delays of the order of seconds will not significantly
reduce its efficiency. The strength of the system lies in the quantity and quality of collected
data and the individual approach to the user throughout the history of his research. Due to
the above reason, there is a growing chance of wider use of wearable, i-wear, and smart
home devices in preventive medicine systems, including those connected occasionally (such
as today’s blood pressure meter or thermometer). This makes transferring the processing
part of the system to the cloud more and more feasible and relieves the burden on the
traditional system based on servers located throughout the country.

By reducing the time it takes for preventive medicine tools to process biomedical
data (including as part of the initial feature extraction by edge computing sensors), it is
possible not only to improve diagnosis, help more patients, and speed up research, but also
to improve solutions hitherto only considered to be promising, such as brain–computer
interfaces (BCIs) based on EEG and fNIRS [38–43].

Our study partly meets the requirements of AI-based tools recently discussed by the
American Heart Association (AHA) to perform cardiac CT scans on patients with chest
pain that can predict the risk of a fatal heart attack within 10 years. This technology could
transform the diagnosis and treatment of heart disease in the future, saving thousands
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of patients’ lives. Our study aims to develop a simpler, less invasive, and less expensive
system suitable for mass use, including in cardiac home care [44].

5. Conclusions

AI-based heart attack prevention systems represent a transformative approach to
healthcare and offer the potential to revolutionize early detection, personalized preventive
intervention, and patient care. In some cases, they will allow you to avoid treatment and
rehabilitation. In order to fully use the advantages of the above-mentioned systems, further
research, technological development, clinical trials, and the cooperation and involvement of
scientists from many disciplines are necessary. This will mitigate the associated challenges,
especially as these systems evolve, they could significantly contribute to reducing the global
burden of cardiovascular disease, with tangible health, social, and economic benefits.
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