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Abstract: As wireless communication scenarios grow more complicated, security issues are becoming
increasingly prominent and severe. In the Internet of Things and vehicle-to-everything scenarios,
conventional cryptographic technology faces numerous challenges. These include difficulties in secret
key distribution and management, low update rates of secret keys, and vulnerability to quantum
attacks. Physical layer secret key generation is considered a promising solution to security issues.
The perfect secrecy proposed by Shannon can be achieved by combining secret key generation and
the one-time pad when the length of secret keys is equal to that of plaintext. Hence, it is important
to increase secret key generation rates. Intelligent reflecting surfaces demonstrate great advantages
in improving the secret key generation performance. This paper provides a comprehensive review
of current research efforts related to secret key generation assisted by intelligent reflecting surfaces,
which is divided into three main categories: introducing the randomness of intelligent reflecting
surfaces, optimizing the reflecting coefficients, and designing probing protocols. Comparative results
of existing optimization approaches are provided and discussed. Furthermore, we emphasize the
significance of selecting a random source of secret key generation from the perspective of information
theory. Finally, two significant application scenarios, the Industrial Internet of Things and vehicle-to-
everything, are discussed, and some challenges and opportunities are presented.

Keywords: physical layer secret key generation; intelligent reflecting surfaces; optimization; commu-
nication security

1. Introduction

From the first-generation (1G) to fifth-generation (5G) mobile communication systems,
there has been continuous improvement in system performance in terms of coverage,
data rates, connections, and latency. Meanwhile, the security problems of communication
systems are becoming increasingly serious. The sixth-generation (6G) mobile communi-
cation system faces more security risks and potential attacks [1,2]. Therefore, 6G requires
stronger security mechanisms. Classical cryptography has gone from an art to a science
since the 1980s. The field of cryptography is becoming more and more widespread, encom-
passing secret communications, message authentication, digital signatures, protocols for
exchanging secret keys, authentication protocols, and more. Symmetric encryption and
decryption algorithms, along with asymmetric encryption and decryption algorithms, are
the cornerstone of modern security systems [3]. The premise of classical cryptographic
technology to ensure security is that attackers cannot crack highly complex mathematical
problems, such as discrete logarithm problems, using the current computing power avail-
able. However, with the emergence of quantum computers, this assumption may no longer
hold in the future, and conventional cryptographic technology faces challenges. With the
emergence of the Internet of Things (IoT), the number of devices connected to the Internet
has increased significantly. In scenarios such as vehicle-to-everything (V2X) and Industrial
Internet of Things (IIoT), secret key distribution and management based on authoritative
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third parties present challenges in terms of high communication overhead and computa-
tional complexity [4]. Physical layer security technologies [5] have the advantages of being
lightweight and decentralized, with low communication overhead. They are especially
suitable for resource-constrained devices in IoT scenarios, as well as in V2X scenarios where
the high-speed movement of vehicles brings the burden of key distribution management.
From the perspective of endogenous security [6], wireless communication systems take
advantage of the convenience of wireless connections to enable terminals to connect to the
Internet from any location and at any time. However, the side effects of this openness of
wireless connections bring potential security risks, such as eavesdropping attacks. These
security problems that originate from within the system are called endogenous security
problems. Physical layer security technologies are endogenous security technologies, which
effectively solve the endogenous security problems.

Physical layer security, which consists mainly of securing transmitting, secret key
generation, and authentication, may be a part of the whole security mechanism, along with
classic cryptographic mechanisms. Securing transmitting uses security coding technologies
to protect the confidentiality of data rather than relying on secret keys [7]. Nevertheless, it
is challenging to acquire a positive secrecy capacity or to design effective security codes.
Physical layer authentication extracts “fingerprints” from wireless links or hardware de-
vices to identify users [8]. The aim of physical layer secret key generation (PLSKG) is for
two parties, Alice and Bob, to acquire shared secret keys, knowing dependent random
variables, but who do not share a secret key initially [9]. In time division duplex (TDD)
mode, owing to the reciprocity of the channel, Alice and Bob observe a highly correlated
channel parameter, such as received signal strength (RSS) or channel state information
(CSI), which is regarded as a common random source. After quantization [10], information
reconciliation [11], and privacy amplification [12], Alice and Bob can generate the same
secret key.

An intelligent reflecting surface (IRS) is a two-dimensional surface consisting of an
array of discrete elements that can change the phases and amplitudes of incident electro-
magnetic waves [13,14]. An IRS can create a virtual line-of-sight link between two parties
blocked by an obstacle to improve the signal-to-noise ratio (SNR). An IRS is emerging as a
promising technology owing to its ability to modify wireless channels in data transmitting
and physical layer security [15,16]. Intuitively, the SNR’s increase improves the perfor-
mance of data transmitting, securing transmitting, and PLSKG, which can be achieved
by optimizing the IRS’s reflecting coefficients. Nevertheless, maximizing the SNR cannot
acquire the optimal secret key generation rate (SKGR) of PLSKG because the entropy rate
of a legitimate channel and the SNR of an eavesdropper also have an effect on the SKGR.
There are three major directions of IRS-assisted PLSKG. One is to increase the entropy rate
of a legitimate channel by randomly changing the phases of the IRS’s elements after every
two-way channel probing [17–20]. The second is maximizing the SKGR by optimizing the
phases or amplitudes of the IRS’s elements [21–27], which usually is achieved by solving a
complicated optimization problem. The third is designing channel probing methods, which
affect the entropy of a common random source [28–30].

Xiao et al. [31] provided a comprehensive overview of the application of PLSKG in
the next communication systems and discussed some positive and negative effects of mas-
sive multiple-input–multiple-output (MIMO), IRSs, artificial intelligence (AI), integrated
space–air–ground networks, and quantum communications on PLSKG. Li et al. [32] dis-
cussed in detail PLSKG combined with duplex modes, massive MIMO, and millimeter
wave (mmWave) communications, and demonstrated the feasibility of PLSKG in practical
communication systems. Li et al. [33] analyzed the constructive and destructive effects of
IRSs on PLSKG. In static environments or wave-blockage scenarios, IRSs can improve the
performance of PLSKG significantly. However, malicious users can launch attacks assisted
by an IRS when they control the IRS, which can result in the failure or leakage of secret keys.
Zhang et al. [34] provided a comprehensive overview of the principles, generation process,
performance optimization, and application scenarios of PLSKG. Zeng et al. [35] focused
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on several challenges in PLSKG. (1) How to estimate the amount of leaked information.
(2) The overhead of information reconciliation is high when the SNR of a legitimate user is
low. (3) How to decorrelate a generated bit sequence to obtain a truly random sequence.
Jiao et al. [36] first pointed out three problems with existing PLSKG, and then introduced
the 5G enabling technologies to solve the existing problems. Specifically, highly directional
beams are used to block eavesdroppers in adjacent locations, mmWave channels are used
to attain a high SNR, and hybrid precoding is used to reduce the temporal correlation of
channel samples.

There are few articles [31,33] surveying the related works of IRS-assisted PLSKG.
Although the studies [31,33] discussed some aspects of IRS-assisted PLSKG, it is necessary
to extend them to promote the study of PLSKG. Existing reviews have not specifically ana-
lyzed the advantages and disadvantages of the IRS-assisted PLSKG research works within
a unified framework. These motivate us to provide a survey of IRS-assisted PLSKG. This
paper focuses on the topic of IRS-assisted PLSKG that includes related principles, research
contents, and application scenarios. We provide detailed discussions on optimization
complexity, training overheads, SKGRs, etc. Based on the limitations of existing studies,
possible further extensions and research directions are discussed. Our major contributions
can be summarized as follows.

• To provide readers with a more comprehensive and objective understanding of IRS-
assisted PLSKG, we divide this field into three main categories: introducing the
IRS’s randomness, optimizing the IRS’s reflecting coefficients, and designing probing
protocols. We focus on the fundamental principles of the related works. Furthermore,
the limitations of existing studies are discussed, which can inspire directions for
further improvements.

• From an information-theoretic perspective, we carefully consider how to leverage the
advantages of IRSs to improve SKGRs. We analyze the advantages and disadvan-
tages of several methods for optimizing the IRS’s reflecting coefficients within the
same framework. Furthermore, we emphasize the importance of selecting a random
source and propose the optimal method for acquiring the largest SKGR among the
existing methods.

• Some application scenarios of PLSKG are discussed. Theoretically, PLSKG can be
used for the majority of communication scenarios. We focus on the IIoT and V2X
scenarios because they face the types of serious security risks that cannot be effectively
addressed by conventional cryptographic schemes. We identify existing issues with
PLSKG and provide potential solutions. Some future research directions are also given.

Notation: XT , X∗, XH , tr{X}, and X−1 denote the transposition, conjugating, con-
jugate transpose, trace, and inverse of a matrix, respectively. diag(x) denotes a diagonal
matrix whose i-th diagonal element is the i-th element of the vector x. vec(X) denotes
converting a matrix into a vector in column-major order. ∥ x ∥ denotes the Euclidean
norm of x. A ⊗ B and A ⋄ B denote the Kronecker and Khatri–Rao product, respectively.
CN denotes the N dimension vector space of complex numbers. Similarly, CN×M denotes
the matrix space of complex numbers with N rows and M columns. I(X; Y) denotes the
mutual information of X and Y. H(X) denotes the entropy of the random variable X. log()
is a function of the base 2 logarithm. Pr{B} denotes the probability of the event B. O()̇
denotes the computational complexity of an algorithm.

The rest of this article is structured as follows. Section 2 explains the fundamental
concepts of PLSKG. Section 3 specifically introduces the state-of-the-art research on IRS-
assisted PLSKG from different aspects. The application scenarios and challenges are
discussed. Section 4 concludes the whole paper.

2. Preliminaries

In the pioneering work of information-theoretic security by Shannon in 1949 [37], the
concept of perfect secrecy was introduced. Perfect secrecy can be guaranteed only if a secret
key has at least as much entropy as the message to be encrypted, generally equivalent
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to the key and plaintext being of equal length, which is difficult to achieve because the
length of the key is usually less than that of the plaintext in practical situations. In 1993,
Maurer [9] studied generating a secret key shared by two parties under the condition that
the enemy obtains at most a negligible amount of information about the key. Ahlswede
and Csiszar [38] also studied the same problem. The definition of the key capacity [38], also
called the secrecy capacity in [9], is given below. For every ϵ > 0, there exists a protocol for
a sufficiently large n satisfying

Pr{K ̸= K′} < ϵ, (1)
1
n

I
(

Φk, Ψk, Zn; K
)
< ϵ, (2)

R <
1
n

H(K) + ϵ, (3)

1
n

log|K| < 1
n

H(K) + ϵ, (4)

where K, K′ denote the keys generated by Alice and Bob, respectively, Φk, Ψk denote the
information exchanged between Alice and Bob, Zn denotes the sequence observed by an
eavesdropper, Eve, K denotes the set from which K, K′ take values, and |K| denotes the
cardinality of the set K. n is the length of the sequences observed by Alice, Bob, and
Eve. The definition of the entropy is H(K) = −∑x∈K p(x)log(p(x)), where p(x) is the
probability of the event that the key generated by Alice is x. The definition of the mu-
tual information is I(Φk, Ψk, Zn; K) = H(Φk, Ψk, Zn) + H(K) − H(Φk, Ψk, Zn, K), where
H(Φk, Ψk, Zn) = −∑φ∈Φk ,ϕ∈Ψk ,z∈Zn p(φ, ϕ, z)log(p(φ, ϕ, z)), p(φ, ϕ, z) denotes the proba-
bility of the event that the exchanged information between Alice and Bob is φ, ϕ and the
observed sequence by Eve is z. H(Φk, Ψk, Zn, K) has a similar definition to H(Φk, Ψk, Zn).
The maximum achievable R is called the key capacity. The first constraint (1) guarantees
that Alice and Bob acquire the same key. The second constraint (2) ensures that Eve obtains
at most a negligible amount of information about the key. The third (3) is the limitation of
the entropy. The fourth constraint (4) ensures that the key follows a uniform distribution.

In general, it is difficult to acquire the expression of the key capacity except in a few
special cases [38]. Luckily, Maurer [9] gave the upper and lower bounds of the key capacity.

R ≤ min{I(X; Y), I(X; Y|Z)}, (5)

R ≥ max{I(X; Y)− I(X; Z), I(X; Y)− I(Y; Z)}, (6)

where X, Y, and Z denote the random variables observed by Alice, Bob, and Eve, respec-
tively, and the definition of the conditional mutual information is I(X; Y|Z) = H(X|Z)−
H(X|Y, Z). R = I(X; Y) when Z is independent of X, Y. When X → Y → Z forms
a Markov chain, R = I(X; Y) − I(X; Z). When Y → X → Z forms a Markov chain,
R = I(X; Y)− I(Y; Z).

Maurer [9] demonstrated the feasibility of PLSKG by using a satellite as a random
source, and three-party terminals on land as receivers on binary symmetric channels.
At present, the majority of the literature uses wireless channel parameters as random
sources for the following reasons. (1) The wireless channel exhibits spatial variation: in
a rich scattering environment, the received signals at two locations that are more than
half an electromagnetic wave distance apart are independent of each other, preventing
eavesdroppers from obtaining legitimate channel information. (2) The wireless channel
has time variation: within a coherent time, the channel state is unchanged, and, beyond
the coherent time, the channel states are independent of each other. Therefore, it can
be used as a random source that is not controlled by any third party, as proposed by
Ahlswede and Csiszar [38]. (3) The wireless channel has reciprocity: the state of the channel
remains unchanged during forward transmission and reverse transmission. The legitimate
parties can obtain highly correlated channel information. The above characteristics make it
advantageous to use wireless channels as the random source to extract the key.



Electronics 2024, 13, 258 5 of 17

A general protocol of PLSKG consists of four phases: channel probing [39], quantization [10],
information reconciliation [11], and privacy amplification [12]. Some articles have the phase of
preprocessing such as denoising, decorrelated, and increasing reciprocity. Mathur et al. [40] pro-
posed a protocol using channel impulse response or receiving signal strength as a random source.
They conducted experiments using off-the-shelf 802.11 hardware, which achieved approximately
1 bit/second SKGR in a real indoor environment. Chen et al. [41] used temporally and spatially
correlated wireless channel coefficients as the random source to acquire high SKGRs. The reasons
for their approach of acquiring high SKGRs were the increased dimension of the random source
and the improved SNRs of legitimate users after denoising preprocessing. To increase SKGRs
further, MIMO [42] and orthogonal frequency division multiplexing (OFDM) [43,44] are used to
improve the performance of PLSKG. IRSs, as one of the 6G enabling technologies, can improve the
performance of PLSKG significantly. Hence, there have been numerous studies on IRS-assisted
PLSKG in recent years [17–26,28–30].

Unlike MIMO systems with higher complexity and higher power consumption, the
consumed power of each element of an IRS is only 15, 45, and 60 mW for 3-bit, 4-bit, and
5-bit resolution phase shifting [45]. In addition, the received power increases in the order
of N2

r in an IRS-assisted single-user system, where Nr denotes the number of reflecting
elements. In the theoretical study, the control ways of IRSs are divided into three categories:
continuous amplitudes and phase shifts, constant amplitudes and continuous phase shifts,
and constant amplitudes and discrete phase shifts [13]. The control way of continuous
amplitudes and phase shifts has a tractable constraint in IRS-related optimization problems.
The control way of constant amplitudes and discrete phase shifts is consistent with practical
applications. IRSs have great potential to improve the performance of data transmission
and PLSKG.

3. IRS-Assisted PLSKG

How can IRSs improve the PLSKG’s performance? IRSs improve the PLSKG’s perfor-
mance in two significant aspects: the SNR and the entropy rate of the wireless channel. If
the entropy rate of the wireless channel is low, the SKGR is small, even if the SNR is high.
This usually happens in static or sparse multipath environments. Note that the reason
why we use the entropy rate rather than entropy is that the wireless channel is modeled
as a stochastic process. Certainly, if the SNR is low, the SKGR is also small, even if the
entropy rate is high. Therefore, IRSs are mainly used to increase the entropy rate of the
wireless channel in static indoor environments. In wave-blockage or cell-edge scenarios,
the focus should be on improving the SNR. We need to consider the two aspects simulta-
neously when they are equally important. This can be achieved by optimizing the IRS’s
reflecting coefficients to maximize the SKGR. The formulated optimization problems are
usually complex. In the following, we present and discuss the research progress from three
aspects: introducing the IRS’s randomness, optimizing the IRS’s reflecting coefficients, and
designing probing protocols.

3.1. Introducing the IRS’s Randomness

In static and sparse multipath environments, the entropy rate of the wireless channel
is low, which limits the SKGR. To deal with the problem, a feasible method is to introduce
the IRS’s randomness [17–20]. This method uses the random reflecting coefficients of an
IRS as the random source. The general process is divided into three steps. (1) An IRS
randomly selects reflecting coefficients according to some probability distribution. (2) Alice
and Bob probe their channel in turn to acquire samples of the channel parameters. Note
that the probing period must be smaller than the coherence time of the channel. (3) Repeat
steps 1 and 2 until a sufficient number of samples are obtained.

As shown in Figure 1, Tup, Tp denote the update period of an IRS and the probing
period of Alice and Bob, respectively. ti, si(i = 1, 2, . . . , L) denote the time of transmitting
signals by Alice and Bob, respectively. L denotes the oversampling factor within a channel
coherence time. It is important to calculate the SKGR of this scheme, and the theoretical
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analysis is given by Hu et al. [19]. They considered a system consisting of a single antenna,
Alice, a single antenna, Bob, and an IRS with Nr reflecting elements. The estimated channel
of Alice and Bob can be expressed as

ha =
Nr

∑
n=1

φnhar,nhrb,n + na, (7)

hb =
Nr

∑
n=1

φnhar,nhrb,n + nb, (8)

he =
Nr

∑
n=1

φnhar,nhre,n + ne, (9)

where har,n, hrb,n, hre,n denote the channels of Alice and the n-th element of the IRS, Bob and
the n-th element, and Eve and the n-th element, respectively, φn denotes the n-th reflecting
coefficient, and na, nb denote additive white Gaussian noise (AWGN) with 0 means and
σ2

a , σ2
b variances of Alice and Bob, respectively. It is difficult to obtain the closed form of the

SKGR, but it has an approximate form when Nr is large [19]

R =
1

Tup + Tp
I(ha; hb) ≈

1
Tup + Tp

log

1 +
1

2
γeq

+ 1
γ2

eq

, (10)

where γeq =
σ2

h (1+Nrσ2
h )

σ2 , σ2
a = σ2

b = σ2, and σ2
h denotes the power of the channel. Equation (10)

is a rewritten form of the original formula [19] to see more clearly the effect of Nr on the SKGR.
It is observed that R is directly proportional to γeq. It is in line with the expectation that the
SKGR increases as Nr increases. Another important factor is the duration of acquiring a pair
of samples (ha, hb). As shown in Figure 1, it is equal to Tup + Tp when L is equal to 1. The
smaller Tup + Tp is, the better.

...

channel coherence time

Figure 1. Time domain diagram of the channel probing.

The experimental results were given and discussed by Staat et al. [18]. Assum-
ing extracting one bit from one downsampled sample, the SKGR is upper bounded by
(Tup + LTp)−1. Note that downsampling is implemented by averaging L samples within a
channel coherence time. Tup and Tp are approximately equal to 2ms, and Nr is 128 in their
experiments. The SKGR is 237.45 bits/s and the SKDR is 0.26 when L = 1. The SKGR is
97.39 bits/s and the SKDR is 0.083 when L = 4. It is concluded that selecting L requires a
tradeoff between the SKGR and SKDR. Only one subcarrier of the OFDM and one antenna
are used; the SKGR will increase further if using all subcarriers and multiple antennas.

The goal of oversampling is to decrease the power of noise by averaging the data sam-
ples with noise. The IRS uses 1-bit resolution to control phases, which means it takes values
from the set {1,−1}. It is not necessary to use a higher resolution, because the random
source ∑Nr

n=1 φnhar,nhrb,n approximately follows a Gaussian distribution when Nr is large,
resulting in the SKGRs of different phase control approaches being approximately equal.

The primary risk of random phase shifting [17–19] is the potential for an eavesdropping
attack when Eve is in close proximity to Bob or Alice. As indicated in Equations (8) and (9),
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the observation results of Bob and Eve are correlated only if the channels hrb,n and hre,n are
correlated. Owing to the static environment, hrb,n and hre,n change slowly, which makes them
vulnerable to inference attacks. What is the upper bound of the SKGR of the random phase
shifting? Correlated eavesdroppers need to be considered, and the synchronization error also
has an effect on the SKGR when the update period of the IRS is short.

As mentioned before, the IRS randomly selects reflecting coefficients according to some
probability distribution. Which distribution is the best? There are no conclusions about this
question. The articles [18,19] use a uniform distribution by default. Liu et al. [17] pointed
out that their approach [18,19] reduced the entropy of the random source because the dis-
tribution of the random source is not a uniform distribution. This motivated Liu et al. [17]
to make sure that the distribution of the random source is uniform by controlling the IRS’s
reflecting coefficients. They proposed two methods: phase shifting control of heuristic and
deep reinforcement learning. Requiring training data for learning is the burden of this
method. The benefit is that the SKGR of their proposed method is much larger than that of
the other methods [18,19]. Some remarks on the study [17] are listed as follows.

• The use of uniform multi-level quantization in the study [17] limits the selection of the
random shifting control approach. It means that the random source ∑Nr

n=1 φnhar,nhrb,n
must follow a uniform distribution to achieve maximum entropy. In fact, the maximum
entropy can be achieved for arbitrary distributions using the existing quantization
method [10].

• The optimal selection of the random shifting control approach should maximize the
SKGR subject to the constraints of the IRS’s reflecting coefficients. Will the SKGR
increase significantly if the amplitudes of the reflecting coefficients can change? The
optimal probability distribution for the reflecting coefficients is not easy to obtain.
Nevertheless, some experience and intuition might be worth considering. For example,
select φn to maximize the variance of the random source. Furthermore, ensure that φn
follows a Gaussian distribution with maximum variance.

Are the schemes of random phase shifting [17–19] as secure as conventional PLSKG
schemes? This problem was studied by Mehmood et al. [20]. In their model, both Alice and
Bob were equipped with an IRS. Eve was one wavelength away from Alice. The experimen-
tal results demonstrated that the greater the number of reflecting elements and multipaths
there were, the higher was the level of secrecy. In sparse multipath environments, a large
number of the reflecting elements are required to guarantee the secrecy of PLSKG.

3.2. Optimizing the IRS’s Reflecting Coefficients

For consistency of representation, the symbols used in this section are included in
Table 1. Different from introducing the randomness of the IRS, optimizing the IRS’s reflect-
ing coefficients is finished before the process of PLSKG. The IRS’s reflecting coefficients do
not change during the process. Generally, the statistical information of channels, such as
covariance matrices, is required before the optimization. The optimization of the reflecting
coefficients can increase the SKGR because the reflecting coefficients are included in the
statistical information.

Table 1. The definitions of symbols.

Symbols Definitions

Na The number of Alice’s antennas.
Nb The number of Bob’s antennas.
Nr The number of the IRS’s elements.
Ne The number of Eve’s antennas.
Ke The number of Eves.
Ku The number of users (multiple user scenarios).
ϵ The accuracy of the algorithm solution.

ISCA The iteration number of SCA.
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Different optimization problems are formulated based on different system models,
which may include single or multiple antennas, the presence or absence of eavesdroppers,
and different control methods for IRSs. A basic system consists of single-antenna users,
Alice and Bob, one eavesdropper, Eve, and an IRS having Nr reflecting coefficients. The
IRS can change the amplitudes and phases continuously. The optimization problem is
formulated as

max
φ

R (11)

s.t. |φn| ≤ 1, n = 1, 2, ..., Nr, (12)

where φn denotes the n-th reflecting coefficient, and R denotes the SKGR. In the study [21],
R = log

(
f (φ)
g(φ)

)
, where f (φ) = c1 + c2φH A1φ+ c3φH A2φφH A3φ, and g(φ) = d1 + d2φHB1φ+

d3φHB2φφHB3φ. Observe that f (φ) consists of three different terms: a constant, a quadratic
term φH A1φ, and a quartic term φH A2φφH A3φ. g(φ) has a similar expression to f (φ).
It is not difficult to see that the objective function is not convex. Semidefinite relaxation
(SDR) is used to transform φH A1φ into tr{A1V} and φH A2φφH A3φ into tr{A2VA3V}, where
V = φφH. Therefore, f (φ) = f (V) = c1 + c2tr{A1V}+ c3tr{A2VA3V} is a convex function
of V, because A2 and A3 are positive semidefinite matrices. An auxiliary variable, C, is intro-
duced, and let f (V) ≥ Cg(V). The original problem is then transformed into maximizing C
by jointly optimizing C and V. Due to variable coupling, alternatively optimizing methods are
used to solve the problem. To reduce the complexity of the algorithm, the successful convex
approximation (SCA) is used. Assuming there are Ke Eves in the system model, the objective
function is changed to R = min

{
log

(
f (φ)
g(φ)

)
, k = 1, 2, ..., Ke

}
, which only increases the number

of constraints and does not change the structure of the optimization problem.
Li et al. [23] considered a multi-user scenario in which Alice intended to generate

secret keys with Ku users. All parties, Alice and the users, were equipped with a single
antenna. When Alice extracted keys with the k-th user, the remaining users were regarded
as potential eavesdroppers. The formulated optimization problem has a more complex
structure than that of the study [21]. The solving method of [23] is a little different from that
of [21]. The logarithm of the product is converted into the sum of logarithms. An effective
algorithm combining the SDR and SCA was proposed.

The studies [21,23] only considered a single-input–single-output (SISO) system model.
It is necessary to expand it into a multiple-input–single-output (MISO) model. Hu et al. [24]
assumed that Alice and Bob were equipped with Na and single antennas, respectively. A
joint transmitting and reflecting beamforming optimization was formulated as

max
φ,w

R (13)

s.t. |φn| ≤ 1, n = 1, 2, ..., Nr, (14)

∥ w ∥2≤ PA, (15)

where w denotes the transmitting beamforming and PA denotes the transmitting power.
The alternating optimization method is a common method to solve this variable coupling
problem, and transforms the original problem into the optimizing problem of φ and the
optimizing problem of w. Owing to no eavesdroppers, the original problem is equivalent
to two sub-optimizing problems, and the closed-form solutions of the sub-optimizing
problems are acquired.

The random source in the study [24] was a scalar, which limits the SKGR. Liu et al. [22]
used a Na-dimensional channel as a random source, which increased the SKGR significantly.
Further, a Na(Nr + 1)-dimensional channel was used as a random source by probing the
channel multiple times within a coherence time [26]. The randomness of the direct and
cascaded channel was explored fully, which increased the SKGR considerably. The probing
method proposed by Lu et al. [26] included the precoding of signals, the control of the
IRS’s reflecting coefficients, and the channel estimation. Hence, an optimization of the
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joint of the precoding matrix and the reflecting coefficients was formulated. By variable
substitution and mathematical operations, the original problem was transformed into
an equivalent problem that had a simpler form and was effectively solved. Although
Hu et al. [27] considered a MIMO system, the receiver acquired the preprocessing signal
by taking an inner product of the receiving signal and an all-one vector, which resulted
in the system model degenerating into a MISO situation. The major contribution was
that they proposed a low-complexity algorithm to solve a joint transmitting and reflecting
beamforming optimization problem.

The comparative results of various studies on the optimization of the IRS’s reflecting
coefficients are presented in Table 2. The algorithm of [24] has minimal computational
complexity because there are no eavesdroppers, and the form of the covariance matrix of the
channel becomes simpler by using the Kronecker correlation model. The algorithms [21–23]
using the Kronecker correlation model have lower complexity than those [24,26,27] not using
the Kronecker model. For multi-dimensional channels used as the random source [22,26],
the SKGR is large and the SKDR is high. For one-dimensional channels used as the random
source [21,23,24,27], the SKGR is small and the SKDR is low. The increase in the dimension
of the random source is a crucial factor in increasing the SKGR because it fully explores the
randomness of the channel. On the other hand, the SNR is low because the multiple antennas
are not used to obtain diversity gain. Similar to the communication theory of traditional data
transmission, the trade-off between multiplexing and diversity gain should be considered.

Table 2. Comparative results of different optimization methods.

References Antenna Model Eavesdropping
Model

Joint
Optimization

IRS’s
Constraints

Training
Overhead Performance Complexity

[21] SISO
Ke

single-antenna
Eves

No |φn| ≤ 1 2 Small SKGR,
high SKDR.

O
(
(N6.5

r K3.5
e +

N5.5
r K2.5

e )
log2(1/ϵ)

)
ISCA

[22] MISO
Ke

single-antenna
Eves

No |φn| ≤ 1 1 + Na
Large SKGR,
high SKDR.

O
(
(N6.5

r K3.5
e +

N5.5
r K2.5

e )
log2(1/ϵ)

)
ISCA

[23] SISO, Ku users
Ku − 1

single-antenna
Eves

No |φn| ≤ 1 2Ku
Small SKGR,
high SKDR.

O
(
(N9

r K3
u +

N7
r K5

u + N5
r K7

u)
log(1/ϵ)

)
ISCA

[24] MISO No Yes |φn| = 1 2 Small SKGR,
low SKDR. O(1)

[26] MISO No Yes Discrete phases (1 + Na)
(1 + Nr)

Large SKGR,
high SKDR.

O
(

N3
a /ϵ2+

Na(1 +
Nr)log(1/ϵ)

)
[27] MIMO

Ke
single-antenna

Eves
Yes |φn| ≤ 1 2 Small SKGR,

low SKDR.
O
(
Ke(Na +

Nr)/ϵ
)

Different optimization methods acquire different SKGRs based on different system
models. We provide an explanation from the perspective of information theory. As shown
in Figure 2, assume that Alice and Bob are equipped with Na and Nb antennas, respectively.
An IRS has Nr reflecting elements. Bob transmits the training symbol sb and Alice receives
the signals [46]

ya =
√

Pb(Hba + HraΦHbr)sb + na, (16)

where Hba ∈ CNa×Nb , Hra ∈ CNa×Nr , Hbr ∈ CNr×Nb , denote the channels between Bob and
Alice, between the IRS and Alice, and between Bob and the IRS, respectively, Φ = diag(φ)
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denotes the reflecting coefficients matrix, and na denotes the additive white Gaussian noise
(AWGN). Equation (16) is rewritten as [46]

ya =vec
(√

Pb(Hba + HraΦHbr)sb

)
+ na

=
√

Pb

(
sT

b ⊗ INa

)
vec(Hba) +

√
Pb

(
sT

b ⊗ INa

)(
HT

br ⋄ Hra

)
φ + na

=
√

Pb

(
sT

b ⊗ INa

)
Hc φ̄ + na

=
√

Pb

(
φ̄T ⊗ sT

b ⊗ INa

)
hc + na, (17)

where Pb denotes the transmitting power of Bob, sT
b ⊗ INa denotes the Kronecker product

between sT
b and INa , and HT

br ⋄ Hra denotes the Khatri–Rao product between HT
br and Hra,

φ̄ = [1, φT ]T , Hc = [vec(Hba), HT
br ⋄ Hra], and hc = vec(Hc).

controller

Bob

Eve

IRS

Alice

Figure 2. IRS-assisted PLSKG.

To estimate the channel hc, Bob transmits the training sequence with the length of
T ≥ Nb(Nr + 1) and Alice stacks T received signals [46]

ȳa =

 ya(1)
...

ya(T)

 =

 Xa(1)
...

Xa(T)

hc +

 na(1)
...

na(T)

 = Xaha + n̄a, (18)

where Xa(t) =
√

Pb φ̄T(t)⊗ sT
b (t)⊗ INa . Provided that Xa is full rank, the method of least

squares (LS) can be used to estimate hc. The estimated channels of Alice and Bob can be
expressed as [47]

ha =XH
a ȳa = hc + n′

a, (19)

hb =XH
b ȳb = hc + n′

b. (20)

Lu et al. [26] used Ahc as the random source and acquired the mathematical model

za =Aha = Ahc + ña, (21)

zb =Ahb = Ahc + ñb, (22)

where A = Φ̄T ⊗ PT , Φ̄ denotes the reflecting coefficient matrix and P denotes the precoding
matrix. According to the data-processing inequality of information theory, I(ha; hb) ≥



Electronics 2024, 13, 258 11 of 17

I(Aha; hb) ≥ I(Aha; Ahb) = I(za; zb). Because A is a column full rank matrix, I(za; zb) ≥
I((AAH)−1 AHza; zb) ≥ I((AAH)−1 AHza; (AAH)−1 AHzb) = I(ha; hb). We conclude that
there is no information loss because I(ha; hb) = I(za; zb). This is also the reason why the
SKGR of [26] is the largest among the existing methods.

Similar to Equation (21), Liu et al. [22] used A1hc as the random source and A1 = φT ⊗ INa .
There is information loss because A1 is not a column full rank matrix, which results in I(ha; hb) ≥
I(A1ha; A1hb).

Hu et al. [24] used wT A1hc as the random source, and the transmitting beamforming
wT is not a column full rank matrix. We conclude that the SKGR of [24] is smaller than that
of [22] according to the data-processing inequality. Hence, the SKGR of the work [26] is
larger than that of the work [22] for the MISO system model, and the SKGR of the work [22]
is larger than that of the work [24].

Although the SKGR decreases by preprocessing hc with a matrix whose columns are
not of full rank, it can improve the SNR and reduce the training overhead. As shown in
Table 2, the training overhead of the work [26] is larger than that of the work [22], and the
training overhead of the work [22] is larger than that of the work [24]. It is known that
optimizing the transmitting and reflecting beamforming can improve the SNR. For instance,
the SNR is improved by optimizing the transmitting beamforming, w, and reflecting
beamforming, φ, in the study [24], and by optimizing the reflecting beamforming, φ, in the
study [22].

Based on the model of estimated channels shown in Equation (19), we propose to
use the channel hc as the random source to acquire the largest SKGR among the existing
methods. Alice and Bob can use state-of-the-art channel estimation techniques to acquire
channel samples, which are then used to generate secret keys. The whole process of
PLSKG has no optimization problems. Nevertheless, the dimension of hc is NaNb(Nr + 1)
and the SNR corresponding to a certain dimension may be low. In addition, there are
challenges in quantizing high-dimensional vectors. These shortcomings prevent the practical
application of this probing protocol, but it can be used as a reference value for comparing
the performance of other PLSKG methods.

3.3. Designing Probing Protocols

Channel probing is the first phase of PLSKG, and different probing protocols or meth-
ods have a significant effect on the performance of PLSKG. It is observed that the method
of random phase shifting [17–20] only explores the randomness of the IRS’s reflecting
coefficients and does not use the randomness of the channel itself. To solve this problem,
Lu et al. [28] proposed a probing protocol fully exploiting the randomness from the channel
and the IRS. Specifically, the whole process can be divided into four steps. The first step is
that Alice and Bob estimate the direct channel when the IRS is turned off. The second step
involves estimating the reflecting channel by configuring orthogonal reflecting coefficients
in Nr rounds of channel probing. In the third step, Alice uses the way of random phase
shifting [17–19] to control the IRS, and Bob estimates the cascaded channel. The final step
is for Alice to reconstruct the reciprocal channel of step 3. It is obvious that the SKGR
contributes from three random sources: the direct channel, the reflecting channel, and the
IRS. Some remarks on the study [28] are listed as follows.

• The randomness of the wireless channel and the IRS is exploited. The channel coher-
ence time is divided into three parts assigned to direct channel estimation, reflecting
channel estimation, and random phase shifting, respectively.

• The SKGR does not always increase as the number of reflecting elements increases.
Estimating the reflecting channels requires a large number of time slots when the num-
ber of reflecting elements is large, which reduces the available slots for random phase
shifting. It is necessary to reduce the overhead of estimating the reflecting channels.

• The attack model only includes one eavesdropper and can be expanded to include
additional cases of non-colluding multiple eavesdroppers. This probing protocol can
be expanded to include systems with multiple antennas to increase the SKGR.
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One of the interesting applications of PLSKG is to achieve perfect secrecy [37] by
combining the one-time pad. Ji et al. [29] divided one channel coherence time into two
parts. The first part is used to extract secret keys using random phase shifting [17–19]. The
second part is used to transmit data encrypted by the extracting keys and the one-time pad.
It is critical to make sure that the SKGR is approximately equal to the transmitting rate due
to the requirement of perfect secrecy. The optimal time slot allocation for the two parts is
obtained by their proposed optimizing algorithm.

Most studies concentrate on sub-6GHz communications, and PLSKG of mmWave
channels is prone to blockage effects. IRSs can solve this problem. Lu et al. [30] investigated
PLSKG in the IRS-assisted mmWave system. The major difference is that the random source
is the virtual beam-domain channel instead of the actual physical channel. There are two
advantages of using the beam-domain channel. One is reducing the training overhead
by exploiting the sparsity of the mmWave channel. The other is that different virtual
channels of the beam domain are independent of each other. In their protocol, the virtual
spatial angles need to be estimated first, and then Alice and Bob estimate the channel
gains in the beam domain. The channels are re-estimated after one channel coherence
block, but the virtual spatial angles are re-estimated after several coherent blocks. From a
signal processing perspective, transforming the original channels into virtual beam-domain
channels is similar to the idea of principal component analysis. Both methods achieve the
goal of reducing the dimensionality of the data. The dimension discussed in the study [30]
is the virtual spatial angle. Since the channels of different beams are independent of each
other, Eve only acquires information about the secret key when the beams of Bob and Eve
overlap. Narrower beams offer enhanced security. The main contribution is proposing
a probing protocol to estimate the beam-domain channel. Interestingly, this idea can be
applied to MIMO PLSKG in sparse multipath environments. It is worth further study in
the future.

3.4. Application Scenarios

IIoT, commonly referred to as Industry 4.0, improves the efficiency of production
and manufacturing through the use of large numbers of networked embedded sensing
devices. These devices are often poorly secured and vulnerable to cyber-attacks. This
brings huge challenges to IIoT security [48]. Conventional cryptographic schemes such as
public key infrastructure (PKI) have high complexity, making them unsuitable for resource-
constrained IIoT devices. The complexity increases as the number of devices increases
owing to the centralized architecture model of conventional security systems. PLSKG is a
promising solution to the security of IIoT due to it being lightweight and its provision of
information-theoretical security. Certainly, PLSKG cannot meet all the requirements of IIoT.
A more practical conclusion is that PLSKG enhances security as part of an overall security
system. Specifically, PLSKG can tackle the issue of key generation, and the generated key
can be used to provide confidentiality and authentication services.

Owing to dynamic changes in network topology and open connectivity, V2X commu-
nications face serious and complex security challenges [4]. A V2X security system must
prevent broadcast messages from being falsified, protect privacy data such as vehicles’
positions, and prevent information from being eavesdropped. Conventional cryptographic
technologies are well-established and have been used for an extended period. However,
there are still challenges when applying them directly to V2X. Public-key cryptosystems,
such as those proposed by Rivest–Shamir–Adleman (RSA), Diffie–Hellman (DH), and ellip-
tic curve cryptography (ECC), are associated with high communication and computation
overhead, which cannot meet the requirement of low latency for V2X. PLSKG can rapidly
and efficiently generate symmetric secret keys for V2X communications, which overcomes
the shortcomings of conventional methods. Some details of PLSKG in V2X communications
scenarios are listed as follows.

• The reciprocity, temporal variation, and spatial variation of wireless channels are im-
portant foundations of PLSKG. The coherence time is only hundreds of microseconds
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in typical V2X scenarios. This property of rapid change is beneficial for obtaining
a large SKGR. In general, the SKGR is inversely proportional to the coherence time.
In urban scattering-rich environments, channel responses are independent between
one transmit–receive link and another, if the links are separated by an order of half a
wavelength or more. This makes it difficult for eavesdroppers to acquire information
about the generated key.

• Users of symmetric encryption algorithms must share a secret key before any secure
communications. This is achieved by asymmetric algorithms in classical crypto-
graphic schemes. Nevertheless, it may not be appropriate for resource-limited and
time-critical V2X devices, as asymmetric algorithms have high computational com-
plexity. Wan et al. [49] proposed a PLSKG protocol for generating a pre-shared key
in V2X communications. The length of the pre-shared key is optimized under timing
constraints for the V2X application. They compared their work with cryptographic
algorithms to evaluate the security strength, performance, and overhead. The results
indicate that their PLSKG protocol is a low-cost and efficient security mechanism.

• Figure 3 depicts a schematic diagram illustrating the combination of PLSKG and
V2X public key infrastructure. The Certificate Authority (CA) issues certified public–
private key pairs to vehicles. The CA communicates with vehicles through a 5G
cellular base station (gNB) and roadside units (RSUs). After the initial stage, vehicles
can authenticate others using their private key and attach the corresponding certificate.
Then, two vehicles start a PLSKG protocol assisted by an IRS to generate keys to
enable secure communications over an insecure channel. Compared with traditional
cryptography, the update rate of the secret key of PLSKG is much faster, which
improves the security of communication systems.

RSU

RSU

gNB

CA

PLSKG

01001101110010110

01001101110010110

IRS

Figure 3. The V2X application scenario.

3.5. Challenges and Opportunities

• Correlation channel models
The Kronecker correlation channel model simplifies the form of the covariance matrix
of the channel and simplifies the optimization problem. Nevertheless, the Kronecker
model only applies to Rayleigh-fading environments [50]. An alternative approach
is to assume that there is no prior knowledge [21–23] about the spatial correlation
model of the channel. The PLSKG based on this assumption can be applied to any
channel environment. Its disadvantage is increasing the complexity of the optimization
problems [21–23]. How to balance the advantages and disadvantages of these two
methods is a question that is worthy of study.
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• High SKDRs
The existing works [21–24,26,27] on optimizing the IRS’s reflecting coefficients only
focus on maximizing the SKGR, without considering the constraint of the SKDR.
The overhead in the information reconciliation phase is high when the SKDR is
large. Hence, it is necessary to consider the constraint of the SKDR in optimization
problems. In the presence of jamming attackers, there may be no feasible solution to
the optimization problem including the constraint of the SKDR.

• The attack’s model
In the studies of PLSKG, existing attack models are simple and ideal. Specifically, most
works only considered passive eavesdropping attacks and did not consider active
attacks such as pilot contaminations [51], jamming attacks [52], injection attacks [53],
and man-in-the-middle attacks [54]. The main issue is the complexity and analytically
intractability if the model includes many attack modes. It is one of the key factors
limiting the development of PLSKG. A scheme is needed to evaluate the security of a
PLSKG protocol.

• A tractable system framework
Most studies only focus on one or two phases of PLSKG, such as the probing
phase [17–24,26–30], and few works [41] include all phases of PLSKG. The SKGR
calculated according to Equation (6) is a theoretical value, and the actual value will be
affected by other factors such as quantization, the SKDR, information reconciliation,
and privacy amplification. A tractable system framework must include all phases of
PLSKG, have reliable output such as the SKGR, and can be optimized.

• A trade-off between PLSKG and data transmission
The probing process of PLSKG requires communication resources. Hence, it is neces-
sary to study both simultaneously [55] when communication resources are limited.
Both data transmission and PLSKG require channel estimation. As a result, the es-
timated channels in the PLSKG can be used to demodulate the signals in the data
transmission. It is a feasible approach to integrate PLSKG into existing communication
systems. Relevant research is still lacking.

4. Conclusions

The classical cryptographic technology exhibits high computational complexity, high
communication overhead, and the risk of being cracked by quantum computing in complex
and severe communication scenarios. PLSKG, one of the technologies of physical layer
security, is a promising solution to the problems faced by conventional cryptographic
approaches due to its characteristics of being lightweight and highly efficient, and its ability
to provide information-theoretical security. Recently, there have been numerous studies on
IRS-assisted PLSKG because the IRS is capable of manipulating wireless channels to create
an intelligent environment.

We present a comprehensive survey of IRS-assisted PLSKG, which is divided into three
aspects: introducing the IRS’s randomness, optimizing the IRS’s reflecting coefficients, and
designing probing protocols. From the perspective of information theory, the selection of
the random source has a significant effect on the SKGR. We compare the advantages and
disadvantages of existing optimization methods [21–24,26,27] and present the results in Table 2.

It has been observed that IRSs can significantly improve the performance of PLSKG
in static and dynamic environments. Random phase shifting [17–19] is effective and easy
to achieve, and it is mainly used in static environments. Optimizing the IRS’s reflecting
coefficients can significantly increase the SKGR. Nevertheless, the optimization problems
of the reflecting coefficients usually are difficult to solve and have high computational
complexity. Some assumptions of system models, such as the Kronecker correlation model,
can reduce the complexity of optimization problems. The protocols of channel probing
have a significant impact on PLSKG. A well-designed protocol can increase the SKGR and
improve the efficiency of the PLSKG. There are some challenges and issues that need to be
addressed to promote the development of PLSKG.
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SNR Signal-to-noise ratio
PKI Public key infrastructure

References
1. Porambage, P.; Gür, G.; Osorio, D.P.M.; Liyanage, M.; Gurtov, A.; Ylianttila, M. The Roadmap to 6G Security and Privacy. IEEE

Open J. Commun. Soc. 2021, 2, 1094–1122. [CrossRef]
2. Nguyen, V.L.; Lin, P.C.; Cheng, B.C.; Hwang, R.H.; Lin, Y.D. Security and Privacy for 6G: A Survey on Prospective Technologies

and Challenges. IEEE Commun. Surv. Tutorials 2021, 23, 2384–2428. [CrossRef]
3. Katz, J.; Lindell, Y. Introduction to Modern Cryptography: Principles and Protocols, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL,

USA, 2007.
4. Lu, R.; Zhang, L.; Ni, J.; Fang, Y. 5G Vehicle-to-Everything Services: Gearing Up for Security and Privacy. Proc. IEEE 2020,

108, 373–389. [CrossRef]
5. Zou, Y.; Zhu, J.; Wang, X.; Hanzo, L. A Survey on Wireless Security: Technical Challenges, Recent Advances, and Future Trends.

Proc. IEEE 2016, 104, 1727–1765. [CrossRef]
6. Jin, L.; Hu, X.; Lou, Y.; Zhong, Z.; Sun, X.; Wang, H.; Wu, J. Introduction to wireless endogenous security and safety: Problems,

attributes, structures and functions. China Commun. 2021, 18, 88–99. [CrossRef]
7. Wu, Y.; Khisti, A.; Xiao, C.; Caire, G.; Wong, K.K.; Gao, X. A Survey of Physical Layer Security Techniques for 5G Wireless

Networks and Challenges Ahead. IEEE J. Sel. Areas Commun. 2018, 36, 679–695. [CrossRef]
8. Xiao, L.; Greenstein, L.J.; Mandayam, N.B.; Trappe, W. Using the physical layer for wireless authentication in time-variant

channels. IEEE Trans. Wirel. Commun. 2008, 7, 2571–2579. [CrossRef]
9. Maurer, U.M. Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 1993, 39, 733–742.

[CrossRef]
10. Patwari, N.; Croft, J.; Jana, S.; Kasera, S.K. High-Rate Uncorrelated Bit Extraction for Shared Secret Key Generation from Channel

Measurements. IEEE Trans. Mob. Comput. 2010, 9, 17–30. [CrossRef]
11. Brassard, G.; Salvail, L. Secret-Key Reconciliation by Public Discussion. In Proceedings of the Workshop on the Theory and

Application of Cryptographic Techniques, Lofthus, Norway, 23–27 May 1993; pp. 410–423. [CrossRef]
12. Bennett, C.H.; Brassard, G.; Crepeau, C.; Maurer, U.M. Generalized privacy amplification. IEEE Trans. Inf. Theory 1995,

41, 1915–1923. [CrossRef]

http://doi.org/10.1109/OJCOMS.2021.3078081
http://dx.doi.org/10.1109/COMST.2021.3108618
http://dx.doi.org/10.1109/JPROC.2019.2948302
http://dx.doi.org/10.1109/JPROC.2016.2558521
http://dx.doi.org/10.23919/JCC.2021.09.008
http://dx.doi.org/10.1109/JSAC.2018.2825560
http://dx.doi.org/10.1109/TWC.2008.070194
http://dx.doi.org/10.1109/18.256484
http://dx.doi.org/10.1109/TMC.2009.88
http://dx.doi.org/10.1007/3-540-48285-7_35
http://dx.doi.org/10.1109/18.476316


Electronics 2024, 13, 258 16 of 17

13. Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Di Renzo, M.; Al-Dhahir, N. Reconfigurable Intelligent Surfaces: Principles and
Opportunities. IEEE Commun. Surv. Tutorials 2021, 23, 1546–1577. [CrossRef]

14. Wu, Q.; Zhang, R. Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network. IEEE
Commun. Mag. 2020, 58, 106–112. [CrossRef]

15. Hong, S.; Pan, C.; Ren, H.; Wang, K.; Chai, K.K.; Nallanathan, A. Robust Transmission Design for Intelligent Reflecting
Surface-Aided Secure Communication Systems with Imperfect Cascaded CSI. IEEE Trans. Wirel. Commun. 2021, 20, 2487–2501.
[CrossRef]

16. Guo, H.; Yang, Z.; Zou, Y.; Lyu, B.; Jiang, Y.; Hanzo, L. Joint Reconfigurable Intelligent Surface Location and Passive Beamforming
Optimization for Maximizing the Secrecy-Rate. IEEE Trans. Veh. Technol. 2023, 72, 2098–2110. [CrossRef]

17. Liu, Y.; Wang, M.; Xu, J.; Gong, S.; Hoang, D.T.; Niyato, D. Boosting Secret Key Generation for IRS-Assisted Symbiotic Radio
Communications. In Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland,
25–28 April 2021; pp. 1–6. [CrossRef]

18. Staat, P.; Elders-Boll, H.; Heinrichs, M.; Kronberger, R.; Zenger, C.; Paar, C. Intelligent Reflecting Surface-Assisted Wireless Key
Generation for Low-Entropy Environments. In Proceedings of the 2021 IEEE 32nd Annual International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 13–16 September 2021; pp. 745–751. [CrossRef]

19. Hu, X.; Jin, L.; Huang, K.; Sun, X.; Zhou, Y.; Qu, J. Intelligent Reflecting Surface-Assisted Secret Key Generation with Discrete
Phase Shifts in Static Environment. IEEE Wirel. Commun. Lett. 2021, 10, 1867–1870. [CrossRef]

20. Mehmood, R.; Wallace, J.W. Wireless security enhancement using parasitic reconfigurable aperture antennas. In Proceedings of
the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011; pp. 2761–2765.

21. Ji, Z.; Yeoh, P.L.; Zhang, D.; Chen, G.; Zhang, Y.; He, Z.; Yin, H.; Li, Y. Secret Key Generation for Intelligent Reflecting Surface
Assisted Wireless Communication Networks. IEEE Trans. Veh. Technol. 2021, 70, 1030–1034. [CrossRef]

22. Liu, Y.; Huang, K.; Sun, X.; Yang, S.; Wang, L. Intelligent Reflecting Surface-Assisted Wireless Secret Key Generation against
Multiple Eavesdroppers. Entropy 2022, 24, 446–460. [CrossRef]

23. Li, G.; Sun, C.; Xu, W.; Renzo, M.D.; Hu, A. On Maximizing the Sum Secret Key Rate for Reconfigurable Intelligent Surface-
Assisted Multiuser Systems. IEEE Trans. Inf. Forensics Secur. 2022, 17, 211–225. [CrossRef]

24. Hu, L.; Li, G.; Qian, X.; Ng, D.W.K.; Hu, A. Joint Transmit and Reflective Beamforming for RIS-assisted Secret Key Generation. In
Proceedings of the 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 2352–2357.
[CrossRef]

25. Wei, Z.; Li, B.; Guo, W. Adversarial Reconfigurable Intelligent Surface Against Physical Layer Key Generation. IEEE Trans. Inf.
Forensics Secur. 2023, 18, 2368 – 2381. [CrossRef]

26. Lu, T.; Chen, L.; Zhang, J.; Chen, C.; Hu, A. Joint Precoding and Phase Shift Design in Reconfigurable Intelligent Surfaces-Assisted
Secret Key Generation. IEEE Trans. Inf. Forensics Secur. 2023, 18, 3251–3266. [CrossRef]

27. Hu, L.; Li, G.; Qian, X.; Hu, A.; Ng, D.W.K. Reconfigurable Intelligent Surface-Assisted Secret Key Generation in Spatially
Correlated Channels. IEEE Trans. Wirel. Commun. 2023, early access. [CrossRef]

28. Lu, T.; Chen, L.; Zhang, J.; Cao, K.; Hu, A. Reconfigurable Intelligent Surface Assisted Secret Key Generation in Quasi-Static
Environments. IEEE Commun. Lett. 2022, 26, 244–248. [CrossRef]

29. Ji, Z.; Yeoh, P.L.; Chen, G.; Pan, C.; Zhang, Y.; He, Z.; Yin, H.; Li, Y. Random Shifting Intelligent Reflecting Surface for OTP
Encrypted Data Transmission. IEEE Wirel. Commun. Lett. 2021, 10, 1192–1196. [CrossRef]

30. Lu, T.; Chen, L.; Zhang, J.; Chen, C.; Duong, T.Q. Reconfigurable Intelligent Surface-Assisted Key Generation for Millimeter Wave
Communications. In Proceedings of the 2023 IEEE Wireless Communications and Networking Conference (WCNC), Glasgow,
UK, 26–29 March 2023; pp. 1–6. [CrossRef]

31. Xiao, Q.; Zhao, J.; Feng, S.; Li, G.; Hu, A. Securing NextG networks with physical-layer key generation: A survey. Secur. Saf. 2024,
3, 2023021. [CrossRef]

32. Li, G.; Sun, C.; Zhang, J.; Jorswieck, E.; Xiao, B.; Hu, A. Physical Layer Key Generation in 5G and Beyond Wireless Communica-
tions: Challenges and Opportunities. Entropy 2019, 21, 497. [CrossRef] [PubMed]

33. Li, G.; Hu, L.; Staat, P.; Elders-Boll, H.; Zenger, C.; Paar, C.; Hu, A. Reconfigurable Intelligent Surface for Physical Layer Key
Generation: Constructive or Destructive? IEEE Wirel. Commun. 2022, 29, 146–153. [CrossRef]

34. Zhang, J.; Duong, T.Q.; Marshall, A.; Woods, R. Key Generation From Wireless Channels: A Review. IEEE Access 2016, 4, 614–626.
[CrossRef]

35. Zeng, K. Physical layer key generation in wireless networks: challenges and opportunities. IEEE Commun. Mag. 2015, 53, 33–39.
[CrossRef]

36. Jiao, L.; Wang, N.; Wang, P.; Alipour-Fanid, A.; Tang, J.; Zeng, K. Physical Layer Key Generation in 5G Wireless Networks. IEEE
Wirel. Commun. 2019, 26, 48–54. [CrossRef]

37. Shannon, C.E. Communication Theory of Secrecy Systems. Bell Syst. Tech. J. 1949, 28, 656–715. [CrossRef]
38. Ahlswede, R.; Csiszar, I. Common randomness in information theory and cryptography. I. Secret sharing. IEEE Trans. Inf. Theory

1993, 39, 1121–1132. [CrossRef]
39. Walkenhorst, B.T.; Harper, A.D.; Baxley, R.J. Channel model and sounding method effects on wireless secret key rates. In

Proceedings of the 2012 IEEE Conference on Technologies for Homeland Security (HST), Waltham, MA, USA, 13–15 November
2012; pp. 597–602. [CrossRef]

http://dx.doi.org/10.1109/COMST.2021.3077737
http://dx.doi.org/10.1109/MCOM.001.1900107
http://dx.doi.org/10.1109/TWC.2020.3042828
http://dx.doi.org/10.1109/TVT.2022.3211608
http://dx.doi.org/10.1109/VTC2021-Spring51267.2021.9448719
http://dx.doi.org/10.1109/PIMRC50174.2021.9569556
http://dx.doi.org/10.1109/LWC.2021.3084347
http://dx.doi.org/10.1109/TVT.2020.3045728
http://dx.doi.org/10.3390/e24040446
http://dx.doi.org/10.1109/TIFS.2021.3138612
http://dx.doi.org/10.1109/GLOBECOM48099.2022.10001434
http://dx.doi.org/10.1109/TIFS.2023.3266705
http://dx.doi.org/10.1109/TIFS.2023.3268881
http://dx.doi.org/10.1109/TWC.2023.3296076
http://dx.doi.org/10.1109/LCOMM.2021.3130635
http://dx.doi.org/10.1109/LWC.2021.3061549
http://dx.doi.org/10.1109/WCNC55385.2023.10119128
http://dx.doi.org/10.1051/sands/2023021
http://dx.doi.org/10.3390/e21050497
http://www.ncbi.nlm.nih.gov/pubmed/33267211
http://dx.doi.org/10.1109/MWC.007.2100545
http://dx.doi.org/10.1109/ACCESS.2016.2521718
http://dx.doi.org/10.1109/MCOM.2015.7120014
http://dx.doi.org/10.1109/MWC.001.1900061
http://dx.doi.org/10.1002/j.1538-7305.1949.tb00928.x
http://dx.doi.org/10.1109/18.243431
http://dx.doi.org/10.1109/THS.2012.6459916


Electronics 2024, 13, 258 17 of 17

40. Mathur, S.; Trappe, W.; Mandayam, N.; Ye, C.; Reznik, A. Radio-Telepathy: Extracting a Secret Key From an Unauthenticated
Wireless Channel. In Proceedings of the 14th ACM International Conference on Mobile Computing and Networking, New York,
NY, USA, 14–19 September 2008; pp. 128–139. [CrossRef]

41. Chen, C.; Jensen, M.A. Secret Key Establishment Using Temporally and Spatially Correlated Wireless Channel Coefficients. IEEE
Trans. Mob. Comput. 2011, 10, 205–215. [CrossRef]

42. Jorswieck, E.A.; Wolf, A.; Engelmann, S. Secret key generation from reciprocal spatially correlated MIMO channels. In Proceedings
of the 2013 IEEE Globecom Workshops, Atlanta, GA, USA, 9–13 December 2013; pp. 1245–1250. [CrossRef]

43. Zhang, J.; Marshall, A.; Woods, R.; Duong, T.Q. Efficient Key Generation by Exploiting Randomness From Channel Responses of
Individual OFDM Subcarriers. IEEE Trans. Commun. 2016, 64, 2578–2588. [CrossRef]

44. Peng, Y.; Wang, P.; Xiang, W.; Li, Y. Secret Key Generation Based on Estimated Channel State Information for TDD-OFDM
Systems Over Fading Channels. IEEE Trans. Wirel. Commun. 2017, 16, 5176–5186. [CrossRef]

45. Méndez-Rial, R.; Rusu, C.; González-Prelcic, N.; Alkhateeb, A.; Heath, R.W. Hybrid MIMO Architectures for Millimeter Wave
Communications: Phase Shifters or Switches? IEEE Access 2016, 4, 247–267. [CrossRef]

46. Swindlehurst, A.L.; Zhou, G.; Liu, R.; Pan, C.; Li, M. Channel Estimation with Reconfigurable Intelligent Surfaces—A General
Framework. Proc. IEEE 2022, 110, 1312–1338. [CrossRef]

47. Steven, M.K. Fundumentals of Statistical Signal Processing: Estimation Theory; Prentice Hall PTR: New Jersey, NJ, USA, 1993.
48. Tange, K.; De Donno, M.; Fafoutis, X.; Dragoni, N. A Systematic Survey of Industrial Internet of Things Security: Requirements

and Fog Computing Opportunities. IEEE Commun. Surv. Tutorials 2020, 22, 2489–2520. [CrossRef]
49. Wan, J.; Lopez, A.; Faruque, M.A.A. Physical Layer Key Generation: Securing Wireless Communication in Automotive Cyber-

Physical Systems. ACM Trans. Cyber-Phys. Syst. 2018, 3, 1–26. [CrossRef]
50. Chuah, C.N.; Tse, D.N.C.; Kahn, J.M.; Valenzuela, R.A. Capacity scaling in MIMO wireless systems under correlated fading. IEEE

Trans. Inf. Theory 2002, 48, 637–650. [CrossRef]
51. Im, S.; Jeon, H.; Choi, J.; Ha, J. Secret Key Agreement with Large Antenna Arrays Under the Pilot Contamination Attack. IEEE

Trans. Wirel. Commun. 2015, 14, 6579–6594. [CrossRef]
52. Belmega, E.V.; Chorti, A. Protecting Secret Key Generation Systems Against Jamming: Energy Harvesting and Channel Hopping

Approaches. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2611–2626. [CrossRef]
53. Jin, R.; Zeng, K. Physical layer key agreement under signal injection attacks. In Proceedings of the 2015 IEEE Conference on

Communications and Network Security, Florence, Italy, 28–30 September 2015; pp. 254–262. [CrossRef]
54. Mitev, M.; Chorti, A.; Belmega, E.V.; Reed, M. Man-in-the-Middle and Denial of Service Attacks in Wireless Secret Key Generation.

In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019;
pp. 1–6. [CrossRef]

55. Lai, L.; Liang, Y.; Poor, H.V. A Unified Framework for Key Agreement Over Wireless Fading Channels. IEEE Trans. Inf. Forensics
Secur. 2012, 7, 480–490. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/1409944.1409960
http://dx.doi.org/10.1109/TMC.2010.114
http://dx.doi.org/10.1109/GLOCOMW.2013.6825164
http://dx.doi.org/10.1109/TCOMM.2016.2552165
http://dx.doi.org/10.1109/TWC.2017.2706657
http://dx.doi.org/10.1109/ACCESS.2015.2514261
http://dx.doi.org/10.1109/JPROC.2022.3170358
http://dx.doi.org/10.1109/COMST.2020.3011208
http://dx.doi.org/10.1145/3140257
http://dx.doi.org/10.1109/18.985982
http://dx.doi.org/10.1109/TWC.2015.2456894
http://dx.doi.org/10.1109/TIFS.2017.2713342
http://dx.doi.org/10.1109/CNS.2015.7346835
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013816
http://dx.doi.org/10.1109/TIFS.2011.2180527

	Introduction
	Preliminaries
	IRS-Assisted PLSKG
	Introducing the IRS’s Randomness
	Optimizing the IRS’s Reflecting Coefficients
	Designing Probing Protocols
	Application Scenarios
	Challenges and Opportunities

	Conclusions
	References

