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Abstract: Recently, non-orthogonal multiple access (NOMA) has become prevalent in 5G commu-
nication. However, the traditional successive interference cancellation (SIC) receivers for NOMA
still encounter challenges. The near-far effect between the users and the base stations (BS) results
in a higher bit error rate (BER) for the SIC receiver. Additionally, the linear detection algorithm
used in each SIC stage fails to eliminate the interference and is susceptible to error propagation.
Consequently, designing a high-performance NOMA system receiver is a crucial challenge in NOMA
research and particularly in signal detection. Focusing on the signal detection of the receiver in the
NOMA system, the main work is as follows. (1) This thesis leverages the strengths of deep neural
networks (DNNs) for nonlinear detection and incorporates the low computational complexity of the
successive interference cancellation (SIC) structure. The proposed solution introduces a feedback
deep neural network (FDNN) receiver to replace the SIC in signal detection. By employing a deep
neural network for nonlinear detection at each stage, the receiver mitigates error propagation, lowers
the BER in NOMA systems, and enhances resistance against inter-user interference (IUI). (2) We
describe its algorithm flow and provide simulation results comparing FDNN and SIC receivers under
MIMO-NOMA scenarios. The simulations clearly demonstrate that FDNN receivers outperform SIC
receivers in terms of BER for MIMO-NOMA systems.

Keywords: NOMA; DNN receiver; multi-user system; MIMO

1. Introduction

The fifth generation (5G) of wireless communication technology has been widely
applied to various types of services, including mobile Internet and Internet of Things
(IoT) devices [1]. 5G technology has notably enhanced the transmission rates, minimized
latency, and bolstered system capacity, enabling varied applications [2]. However, with the
explosive growth in the number of mobile network users, the data traffic has increased 1000-
fold by 2020 [3], and spectrum and time slot resources are limited [4]. The conventional
orthogonal multiple access (OMA) systems face resource shortages with growing user
access. To achieve the requirements for processing explosive data traffic, NOMA technology
has been proposed. In a NOMA system, multiple users share the same frequency and time
with distinct power allocations, thereby increasing user connections and system capacity.
The earliest NOMA technology was proposed by NTT Corporation in Japan [5]. It can
improve spectrum efficiency and increase system users’ capacity. Recent studies have
indicated that NOMA technology outperforms OMA in BER with the same bandwidth [6].
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Another technology known as multiple-input multiple-output (MIMO) enables re-
ceivers with multiple antennas to communicate with multiple transmitters concurrently.
In a massive MIMO scenario, terminals are equipped with numerous antennas, operating
in a time division duplex, which improves throughput and radiated energy efficiency by
concentrating energy into smaller spatial regions [7]. The emitted wavefronts add to the
expected position and reduce their strength elsewhere. As a result, spatial multiplexing in
massive MIMO significantly boosts the capacity of BS by several orders of magnitude [8].

In the MIMO-NOMA scenario, many scholars have conducted extensive research.
In [9], a cooperative relay NOMA with a massive MIMO system based on the geometric-
based stochastic channel model is proposed. In [10], hybrid precoding of millimeter wave
large-scale MIMO based on NOMA is presented, which utilizes NOMA with beamforming
to reduce the orthogonality error. Reference [11] incorporates code reuse in the proposed
signal transmission scheme to access the BER of a MIMO-NOMA system. Reference [12]
extends the millimeter wave mMIMO-NOMA algorithm to multiple user scenarios, and an
SSOR-CRZF linear precoder is proposed. Reference [13] proposes a downlink NOMA
algorithm for the 6G IoT scenario, ensuring users at different distances receive the same
frequency signals from the base station. Reference [14] proposed an algorithm for distribut-
ing high-speed cached content using unmanned aerial vehicles (UAVs). Ground users can
utilize these UAVs as airborne base stations, thereby minimizing the overall time latency of
data transmission.

While NOMA technology is efficient in wireless communication, it faces certain draw-
backs [15]. The computational complexity of NOMA system receivers poses high demands
on receiver hardware and software performance. Additionally, the near-far effect between
users and BS leads to higher BER in traditional receivers. Effectively designing a receiver
system for NOMA has become a significant challenge. To address this, we integrate deep
learning algorithms into the traditional receiver model. These algorithms leverage hidden
layers in neural networks to train datasets, providing convergent solutions and proving
efficiency in nonlinear detection scenarios. Much research has explored the combination of
NOMA and deep learning algorithms. Reference [16] provides an overview of multiple
NOMA systems supporting deep learning and proposes performance evaluation metrics.
Reference [17] has explored user grouping for NOMA systems and applies the deep learn-
ing algorithm to power allocation. Reference [18] utilizes deep neural networks to enhance
performance in power optimization for a downlink NOMA system, leveraging the long
short-term memory (LSTM) network to predict channel coefficients. Reference [19] pro-
poses a DNN-based algorithm that combines reconfigurable intelligent surfaces (RISs) to
enhance predictability and security performance. Reference [20] applies the DNN network
to power allocation algorithms, which can improve the performance of the downlink visible
light communication NOMA system in factory automation scenarios. Reference [21] pro-
posed an algorithm applying simultaneously transmitting and reflecting RIS (STAR-RISs)
in MIMO-NOMA scenarios. The algorithm jointly optimizes the reflection, transmission
phase shifts, and precoding matrix of the STAR-RIS based on each user’s Quality of Service
(QoS). Additionally, a convolutional neural network (CNN) model is utilized to predict the
downlink spectral efficiency by analyzing user location information and channel gains.

One research direction in this field involves applying deep learning methods to the
receivers or detectors for MIMO-NOMA systems. Reference [22] introduces a machine-
learning-based MIMO signal detector algorithm that can learn joint detection without
requiring channel state information (CSI). Reference [23] proposed a DNN-based joint de-
tector for the orthogonal frequency-division multiplexing (OFDM)-based NOMA scheme,
performing channel estimation, equalization, and demodulation simultaneously. Refer-
ence [24] applies a CNN network to the scene of a single BS and multi-user downlink
NOMA receivers. The convolutional layer enhances feature extraction, reducing errors
introduced during the SIC detection process. Reference [25] suggests an LSTM deep learn-
ing network employing nonlinear mapping algorithms to assess data detection capacity in
NOMA systems, ensuring high accuracy with low complexity. Reference [26] uses DNN
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to construct the precoder and SIC decoders. This approach enables the precise decoding
of received signals at users through the SIC decoding technique after precoding at the
transmitter. Reference [27] applies two deep learning models to the MIMO-NOMA visible
light communication (MIMO-NOMA-VLC) scenario. Simulation results demonstrate that
the models can achieve low BER in both perfect and imperfect SIC scenarios. Reference [28]
utilizes a deep learning model with a discrete wavelet transform (DWT)-based OFDM
approach. By analyzing CSI and channel noise information, this algorithm can reduce
inter-channel interference.

In this article, a DNN-based SIC receiver algorithm for the MIMO-NOMA scene is
proposed. We apply the DNN method to traditional SIC receivers, which can reduce
the errors caused by the near-far effect and enhance nonlinear detection capability. We
discuss the selection of the DNN network structure and the appropriate number of hidden
layers. Simulation results demonstrate the impact of the signal-to-noise ratio (SNR) on
BER. Performance comparisons with traditional SIC receivers affirm the effectiveness of
the DNN-based receiver algorithm.

In the rest of the paper, Section 2 introduces the system model. Section 3 shows the
proposed method. Section 4 presents the extensive experiments. Finally, Section 5 will
summarize the conclusions.

2. System Model
2.1. NOMA System

NOMA facilitates the simultaneous transmission of symbols by multiple users on the
same frequency. Power domain and code domain multiplexing are two distinct types of
NOMA. Focusing on power domain multiplexing, it enables the user’s signal to be superim-
posed and encoded in the power domain, allowing a resource block to serve multiple users
concurrently. Considering an uplink NOMA scheme with N users, the channel gain for the
i-th user is hi. Assuming the channel gain from user 1 to user N is arranged in descending
order, which is h1 > h2 > · · · > hn, the power allocation pi should be P1 > P2 > · · · > Pn.
It is because the difference in user symbol gain should be more pronounced to make the
station distinguish signals accurately as it receives the user’s superimposed signal. Conse-
quently, users with stronger channel gains are allocated higher power. The superimposed
signal y at the BS can be written as [29]

y =
N

∑
i=1

√
Pihisi + w0 . (1)

In the SIC receiver, signal detection occurs based on the user’s symbol gain, progress-
ing from larger gains to smaller gains. When detecting users with strong hi, the receiver
treats the signals of users with weak hi as interference signals.

In the uplink NOMA scenario, the SINR of the i-th user can be calculated by the
superimposed signals from the base station receiver, which is written as [30]

SINRi =
Pi|hi|2

∑N
k=i+1 Pk|hk|2 + N0

. (2)

Assuming the bandwidth of the transmission time-frequency block is B, the through-
put Ri of the i-th user in the uplink NOMA system can be written as

Ri = B log (1 +
Pi|hi|2

∑N
k=i+1 Pk|hk|2 + N0

) . (3)

Assuming the transmission power of two users is fixed at 1 W, the bandwidth is 1 Hz,
the channel noise at the base station end is 10 mW, the power distribution factor of user 1
and user 2 is α and 1− α. Due to the higher hi of user 1 than user 2, the base station receiver
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first detects the symbols of user 1 and then detects the symbols of user 2. At this point,
the throughput of users 1 and 2 in the uplink NOMA scenario can be represented as [6]

RNOMA
1 = log (1 +

αP|h1|2

(1 − α)P|h2|2 + N0
) . (4)

RNOMA
2 = log (1 +

(1 − α)P|h2|2

N2
) . (5)

2.2. SIC Receiver

The fundamental concept of the SIC receiver is to detect corresponding symbols in
descending order based on signal amplitude. Therefore, the SIC receiver initially sorts the
amplitude of each user’s signal during the detection process. In the uplink NOMA scenario,
the BS detects symbols for each user in descending order, considering the product of the
channel gain and power for user i. Typically, each stage of the SIC receiver employs a linear
detection algorithm such as zero-forcing (ZF) [31] detection. Assuming the received signal
is Y, the symbol gain matrix is H, the actual symbol sent by the sending end is X, and the
estimated symbol at the receiving end is X. The objective function of the ZF detection
algorithm is min L(x) = |Y − HX̂|2F, in which

L(x) = |Y − HX̂|2F = (Y − HX̂)H(Y − HX̂)

= YHY − YH HX̂ − X̂H HHY + X̂H HH HX̂ .
(6)

The derivative form of the objective function can be denoted as

d(L(X)

dX̂
= −2HHY + 2HH HX̂ = 0 . (7)

Then, we can establish the linear relationship between the received symbols and the
symbol estimation at the receiving end. Specifically, the weight matrix of the ZF detection
algorithm can be performed as

X̂ = (HH H)−1HHY = WZFY . (8)

Assuming the original superimposed signal at the receiving terminal is Y, the symbol
gain for the i-th user is Hi, and the estimated symbol value for the i-th user is ŝi. In the n-th
level detection, the superimposed signal can be denoted as

Y(n) = Y −
n−1

∑
i=1

Hi ŝi, 1 ≤ n ≤ N . (9)

Through N-level symbol detection and interference cancellation, the SIC receiver can
obtain symbol estimates for all N users.

The SIC receiver boasts low computational complexity. However, relying on a linear
detection method, it may encounter error propagation issues in case of an error. In the
uplink NOMA system, the constrained transmission power of terminals makes it challeng-
ing to achieve significant power differences through user matching and power control
strategies, leading to interference between users. Additionally, the near-far effect between
users and the BS in the uplink scenario exacerbates the situation. The signals of these
users are superimposed on the same resource block, potentially resulting in irregular su-
perimposed constellations. Consequently, due to the linear detection algorithm used by the
SIC receiver at each detection level, errors may arise in detecting signals within irregular
constellation diagrams. As a result, the BER can be significantly higher than that of the
downlink scenario. To address these shortcomings, we propose the application of a DNN
on the SIC receiver.
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2.3. DNN Network

The deep learning method has found widespread applications in various fields such as
natural language processing, image recognition, and the Internet of Things. Figure 1
illustrates the basic structure of a DNN network, which can be described as three parts.
The input layers receive the input data matrix from different users and transmit it to the
hidden layers. With interconnected neuron nodes in the hidden layers, the DNN network
enhances accuracy in data identification. As the data enter the hidden layer, the function
expression can be denoted as

zj =
n

∑
i=1

wijxi + bj , (10)

in which xi denotes the i-th node of the input layer, and bi denotes the threshold value
of the node in the hidden layer. Between two different layers, wij represents the weight
vector. Since the neural network introduces the nonlinear activation function, the DNN
structure can be used for nonlinear mapping. In this paper, we choose the Relu function as
the activation function. Then, the output of the j-th node can be denoted as

Oj = f (zj) . (11)

By introducing the Relu function in each hidden layer, the final output can be
expressed as

ŷ = f (aj) = f (
m

∑
j=1

wjiOj + bi) , (12)

where aj denotes the j-th node in the hidden layer which is directly connected with the
output layer.

Figure 1. Structure of the DNN model.

By introducing a DNN algorithm, its nonlinear activation function and hidden layer
structure can enable the receivers to have the ability of nonlinear detection, enhancing
detection accuracy and reducing errors. Details about the selection of the activation function,
the number of neuron nodes, and the hidden layers in the DNN network model used in
this paper are provided in Sections 3.2.2 and 4.2.

3. Proposed Method

This section introduces a feedback deep neural networks-based algorithm for MIMO-
NOMA detection. Initially, we establish the fundamental structure of the MIMO-NOMA
system and subsequently present the FDNN algorithm designed to address signal detec-
tion challenges.
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3.1. MIMO-NOMA System

Consider an uplink MIMO-NOMA system. In this system, a BS equipped with N
antennas is employed. To mitigate near-field effects, users are required to maintain a
certain distance from the BS. The BS receives signals simultaneously from K users, each
transmitting with a single antenna, which can be written as

ỹ = H̃x̃ + ñ , (13)

where x̃ represents the user’s modulation symbols vector. H̃ represents the channel matrix
during transmission, and ñ represents the AWGN noise. We transform (13) into a real
domain as

y = Hx + n , (14)

where H ≜
[
R(H̃) −S(H̃)
S(H̃) R(H̃)

]
, y ≜

[
R(ỹ)
S(ỹ)

]
, x ≜

[
R(x̃)
S(x̃)

]
, n ≜

[
R(ñ)
S(ñ)

]
. The real parts

are written as R(·) and the imaginary parts are written as S(·). We have H ∈ R2N×2K,
y ∈ R2N , n ∈ R2Ñ and x ∈ R2K. In this system, K users share the total power P, which
can be divided into p1, p2, · · · , pk. The power allocation coefficient for user k is denoted
as αk =

pk
P , where ∑K

k=1 αk = 1. By monitoring the CSI during transmission, users can be
arranged in ascending order based on the magnitude of the channel gain hk. Users with
higher channel gain are assigned greater αk, enhancing signal clarity during reception.
However, αk cannot increase without limitations. Allocating excessive power to one user
may distort the information of other users during transmission, leading to an overall
increase in errors. Balancing efficiency and equity considerations, the power allocation
factor should fluctuate within a certain interval. Detailed simulation results are presented
in Section 4.4.

To enhance transmission rates, reduce IUI, and lower BER, numerous researchers have
explored user-matching strategies. In the downlink NOMA scenario, the BS possesses
higher transmit power and greater computational capabilities. Utilizing user-matching
strategies in the downlink can create larger power differences among NOMA signals in
the same resource block, effectively reducing IUI. However, in the uplink NOMA system,
terminal transmit power is constrained, making it challenging to achieve significant power
differences through user-matching strategies.

3.2. FDNN Model

Detecting symbols sent by users in a communication system essentially involves a
judgment process akin to a multi-categorization problem. So, we employ one-hot coding
to represent different classifications and leverage feedback deep neural networks for non-
linear classification. Using one-hot coding helps reduce computational complexity when
calculating the cross-entropy of the vectors, which facilitates the training and testing of
the network. The FDNN receiver follows a detection sequence from strong to weak user
signals. After each detection level, the reconstructed signal is fed back to the input terminal
and subtracted from the superimposed signal. Subsequently, the detection process for the
next user ensues. The FDNN receiver model is depicted in Figure 2.

The received signal y and the channel parameter vector Θ serve as the inputs of the
FDNN network. They undergo multiple hidden layers, each comprising a fully connected
layer followed by a ReLu layer. In the last hidden layer, the input from the preceding layer
undergoes a fully connected layer and a softmax layer. The output then passes through a
reconstruction layer, and this reconstructed signal is subtracted from y. The rest of it will
become the new received signal for the subsequent user’s FDNN receiver.
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Figure 2. FDNN receiver model.

3.2.1. Data Preprocessing

The initial step involves updating the superimposed signals and channel parameters.
The superimposed signal is updated before the detection process for each user. When
detecting the i-th user, the superimposed signal yi is computed as the sum of the original
signal minus the reconstructed signal from the previous user, which is written as

yi = y −
i

∑
k=1

H(x̂k) , (15)

y represents the original signal that the BS receives. H(·) represents the reconstruction
function, which is responsible for recovering the user’s signal based on encoding estimation.
With yi, we can extract the in-phase component yI

i and orthogonal component yQ
i as the

input of the network. The channel parameter vector can be expressed as

Θi = [gi, φi, gi+1, φi+1, · · · , gN , φN ] . (16)

gi is the symbol gain and gi =
√

Pi|hi|. φi is the symbol phase of user i at the receiving
end and φi = arctan( Im(hi)

Re(hi)
). The channel parameter vector is updated before each user’s

detection by subtracting the channel parameter of the previous user. Therefore, the input
vector of the FDNN network is Ii = [yI

i , yQ
i ; Θi]. At the output terminal, we map the

modulation symbol si of user i to the one-hot code xi, which is written as

xi = fOH(si), si ∈ Si . (17)

The one-hot code makes it easy to calculate the cross-entropy of vectors.

3.2.2. Detection Module

The detection module encompasses a fully connected deep neural network structure
featuring nonlinear layers. This neural network consists of K fully connected layers with the
initial K − 1 fully connected layers directly succeeded by an activation layer. The ReLu
function is selected as the activation function, which is written as

fReLu(x) = max(0, x) . (18)
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Additionally, we employ the Softmax classification function at the end of the FDNN
network, where the output represents the probability of the estimated symbol. The Softmax
function can be represented as

fSo f tmax(xn) =
exn

∑m exm
. (19)

The total detection module can be expressed as

x̂i = F(Ii)

= fSo f tmax(WK fReLu(WK−1 · · ·W1 fReLu(Ii + b1) · · ·+ bK−1) + bK) ,
(20)

in which WK and bK represent the weight matrix and bias vector of the k-th fully connected
layer. x̂i signifies the estimated value of the one-hot code output by the detection module.
This estimated value can be transformed into the estimated modulation symbols ŝi by

ŝi = f−1
OH(x̂i), ŝi ∈ Si . (21)

3.2.3. Feedback Module

The feedback module is responsible for completing the reconstruction of the detection
signal. The decision function fσ binarizes the output vector into a unit vector. By multiply-
ing the binary unit vector with the reconstruction gain matrix, the reconstruction signal can
be obtained. The reconstruction module can be expressed as

H(x̂i) = fσ(x̂i)V i + ci , (22)

in which V i and ci represent the reconstruction gain matrix and reconstruction bias vector.
Since the channel parameter information of each user is known, V i and ci can be constructed
based on the channel parameter information and updated only based on the detected users.
Typically, modulation symbols are unbiased, so the ci = 0. V i can be denoted as

V i = [
√

Pihis
(1)
i ,

√
Pihis

(2)
i , · · · ,

√
Pihis

(M)
i ]T , (23)

in which Pi and hi are the power and the channel parameter for user i. s(1)i , s(2)i , · · · , s(M)
i

denoted the M modulation symbols of user i.

3.2.4. Model Training

The FDNN receiver transforms symbol detection into a classification problem. We
chose Kullback–Leibler (KL) divergence to measure the distribution differences of vectors.
The mathematical expression for solving the target can be expressed as

min
F(·),F(·)

DKL(xi||x̂i) =
M

∑
k=1

x(k)i log
x(k)i

x̂(k)i

, (24)

in which xi and x̂i represent the label values and estimated values of one-hot code for user
i; x(k)i represents the value of the k-th position of the one-hot coding vector of user i. M is
the number of modulation symbols for user i. F(·) and H(·) are the function expressions of
the detection module and the reconstruction module.

Next, we need to determine the loss function L(x̂, x). Considering that the training
samples are known, the entropy of the training sample label H(xi) is a constant. Since
we have D(xi||x̂i) = H(xi, x̂i)− H(xi), solving for the minimum of (24) is equivalent to
solving for the minimum of the cross-entropy H(xi, x̂i). As the receiver aims to minimize
the detection error for each user, the loss function is the sum of cross-entropy losses for
each user’s detection. The loss function can be written as
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L(x̂, x) = −
N

∑
i=1

M

∑
k=1

x(k)i log x̂(k)i + λ ∑
k

w2
k . (25)

The neural network employs stochastic gradient descent for training, representing the
parameter update method for the detection module as

wk
mn(t + 1) = wk

mn(t)− α∇wk
mn , (26)

bk
n(t + 1) = bk

n(t)− α∇bk
n , (27)

in which wk
mn(t) represents the values of the weight matrix W k in the m-th row and n-th

column of the k-th layer during the t-th iterations. bk
n(t) represents the values of the bias

vector bk in the n-th column of the k-th layer during the t-th iteration. α∇wk
mn and α∇bk

n
are the gradient values and α is the learning rate of the neural network.

4. Simulation Results

In this section, we assess the influence of neural network hidden layer structure and
training batch size on performance. Subsequently, we present BER performance under
varying ∆SNRdB between users. Finally, a performance comparison is made between
FDNN receivers and SIC receivers, and the training parameters are detailed in Table 1.

Table 1. Training setting in numerical tests.

Parameters Values

N 2
K 2

Modulation Mode QPSK
Hidden Layers 2

Trainnig Sample Size 200,000
Regularization Parameter λ 0.01

Learning Rate α 0.02
Batch Size 100

Epoch 100

Consider a two-user uplink NOMA system using QPSK modulation. Due to varying
distances between users and the BS, a near-far effect induces channel gain and phase
differences. A learning rate α of 0.02 and regularization parameter λ of 0.01 were chosen
for optimal performance after preliminary testing. The hidden layers, trainng sample size,
and batch size will be discussed in the subsections below.

4.1. Data Set

We utilize MATLAB R2021b to produce communication signal data for both training
and testing sets. Assuming a NOMA-MIMO system with two users and one BS equipped
with two antennas, the signal data spans from SNR = 0 dB to SNR = 30 dB in 1 dB
increments. With a block number of 2000 and a batch size of 100, the overall training
sample size amounts to 200,000.

4.2. Hidden Layers

The hidden layer structure is depicted in Figure 2. Three types of hidden layers were
compared. Type 1 features a three-layer structure with an input layer, two hidden layers,
and an output layer, each with 16 and 32 nodes. Types 2 and 3 are five-layer structures
with input and output layers, along with four hidden layers. The nodes in type 2 are (16,
32, 48, 32), while in type 3, they are (32, 128, 64, 20). ∆SNR represents the difference in
SNR between two user signals at the receiving end. When ∆SNR = 5 dB or ∆SNR = 7 dB,
Figures 3 and 4 show the BER performance of them.
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(a) (b) (c)

Figure 3. ∆SNR = 5 dB for three types: (a) type 1; (b) type 2; (c) type 3.

(a) (b) (c)

Figure 4. ∆SNR = 7 dB for three types: (a) type 1; (b) type 2; (c) type 3.

From Figures 3 and 4, networks with five hidden layers perform better than networks
with three hidden layers. When the network structures are identical, those with more neu-
ron nodes exhibit better performance. Nevertheless, the performance difference between
three-layer and five-layer network structures is not significant. Considering computational
complexity and energy consumption, we opt for the three-layer structure.

4.3. Batch Size

This article also simulates and analyzes the training speed of the FDNN model. We set
the batch size as 10, 100, and 1000 symbols. Figure 5 shows the training loss curves under
different batch sizes.

Figure 5. Performance of FDNN under different batch sizes.
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With increasing training epochs, the training loss consistently decreases and converges
to a small value. The convergence loss for batch sizes of 10 and 100 samples is notably
lower than that for a batch size of 1000 samples. In earlier training rounds, the loss for a
batch size of 10 samples decreased more rapidly than that for 1000 samples and slightly
faster than 100 samples. However, considering computational complexity and the final
convergence loss, a batch size of 100 samples is deemed more suitable.

Moreover, the training error rapidly decreases to a low value within the initial
10 rounds when employing a batch size of 100 samples, suggesting that the FDNN model
can achieve quick convergence with lower computational demands. This characteristic is
advantageous for practical applications where low latency is essential.

4.4. Performance of FDNN Receivers

Figure 6 shows the performance of FDNN receivers under different ∆SNR.

(a) (b)

(c) (d)

Figure 6. Performance of FDNN receivers under different ∆SNR. (a) ∆SNR = 1 dB; (b) ∆SNR = 3 dB;
(c) ∆SNR = 5 dB; (d) ∆SNR = 7 dB.

When ∆SNR = 1 dB, user 2 struggles to reduce BER due to the small ∆SNR, making it
challenging for receivers to separate signals. So, the BER curve of user 2 is close to a parallel
horizontal line without a downward trend. As the ∆SNR increases, BER descent accelerates,
indicating improved signal distinguishability. When ∆SNR = 3 dB, BER curves show a
linear decline from 10−1 to 10−2. Further increases in ∆SNR = 5 dB and ∆SNR = 7 dB lead
to even faster BER reduction, reaching 10−4 for ∆SNR = 5 dB and 10−6 for ∆SNR = 7 dB at
SNR = 22 dB. This demonstrates that a higher ∆SNR correlates with a lower BER.

Figures 7 and 8 show the performance of FDNN and SIC receivers for user 1 and
user 2.
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Figure 7. Performance of FDNN and SIC receivers for user 1.

Figure 8. Performance of FDNN and SIC receivers for user 2.

Table 2 presents the BER for two users at SNR = 20 dB. Both user 1 and user 2
exhibit lower BERs with FDNN receivers compared to SIC receivers. As user SNR increases,
the BER advantage of FDNN receivers over SIC receivers becomes more pronounced.
Additionally, the comparison between ∆SNR = 3 dB and ∆SNR = 5 dB reveals that FDNN
receivers perform better than SIC receivers at ∆SNR = 3 dB, emphasizing the significant
impact of SNR difference on NOMA user detection performance. FDNN receivers excel in
scenarios with lower user differences.
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Table 2. BER at SNR = 20 dB.

User ∆SNR = 3 dB ∆SNR = 5 dB

User 1 for SIC 5.95 × 10−2 1.7 × 10−3

User 1 for FDNN 1.45 × 10−2 1.2 × 10−3

User 2 for SIC 9.8 × 10−2 1.75 × 10−5

User 2 for FDNN 2.4 × 10−2 1.4 × 10−5

Figure 9 examines the influence of the SNR difference ∆SNR between users on the BER
of NOMA systems. The greater the SNR of a channel, the more power it is allocated. We
use this to simulate the effect of power allocation on system performance.

Figure 9. Performance of FDNN and SIC receivers under different ∆SNR.

Table 3 presents the BER for two users at different ∆SNR. The x-axis represents ∆SNR
between two users, and the y-axis represents BER. User 1 maintains a fixed SNR of 15 dB,
while the SNR of user 2 is (15− ∆SNR)dB. We can see that when ∆SNR = 3 ∼ 7 dB, as ∆SNR
increases, the BER for both two users decreases due to reduced interference. However,
when ∆SNR = 9 dB, the BER of user 1 continues to decline, while the BER for user 2
increases, as the SNR of user 2 becomes too low. The comparison between the blue and
red lines in Figure 9 indicates that FDNN receivers consistently outperform SIC receivers,
reinforcing the superiority of FDNN receivers in MIMO-NOMA scenarios.

Table 3. BER at different ∆SNR.

User ∆SNR = 3 dB ∆SNR = 7 dB ∆SNR = 9 dB

User 1 for SIC 8.03 × 10−2 2.55 × 10−3 3.37 × 10−4

User 1 for FDNN 3.35 × 10−2 1.8 × 10−3 2.6 × 10−4

User 2 for SIC 1.3 × 10−1 1.15 × 10−2 2.45 × 10−2

User 2 for FDNN 6.22 × 10−2 9.52 × 10−3 2.46 × 10−2

5. Conclusions

This paper proposed an FDNN-based approach for signal detection in MIMO-NOMA
scenarios. This algorithm addresses the high BER issue in SIC receivers caused by the
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near-far effect and error propagation. By leveraging the advantages of DNN in nonlinear
detection and the low computational complexity of SIC, this paper proposes an FDNN
model to replace the traditional SIC receiver, providing its algorithm flow. Simulation
results demonstrate the algorithm’s computational efficiency and effectiveness.

Based on simulation results, this paper chooses 100 as the training batch size, and the
neural network has a three-layer structure consisting of an input layer, two hidden lay-
ers with node counts of 16 and 32, and an output layer. This configuration enables the
FDNN model to achieve better performance. This paper assesses the FDNN algorithm’s
effectiveness and examines the influence of the power allocation scheme on system per-
formance. Simulation outcomes consistently demonstrate that FDNN receivers exhibit
lower BER compared to SIC receivers, affirming the performance advantages of FDNN in
MIMO-NOMA scenarios. In future research, the performance gap of FDNN under different
conditions and scenarios will be further investigated, aiming to enhance the algorithm’s
stability in engineering applications.
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