
Citation: Chen, Q.; Xiong, Q.; Huang,

H.; Tang, S.; Liu, Z. Research on the

Construction of an Efficient and

Lightweight Online Detection Method

for Tiny Surface Defects through

Model Compression and Knowledge

Distillation. Electronics 2024, 13, 253.

https://doi.org/10.3390/

electronics13020253

Academic Editor: Beiwen Li

Received: 22 November 2023

Revised: 21 December 2023

Accepted: 3 January 2024

Published: 5 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Research on the Construction of an Efficient and Lightweight
Online Detection Method for Tiny Surface Defects through
Model Compression and Knowledge Distillation
Qipeng Chen 1,2,3, Qiaoqiao Xiong 4,5,*, Haisong Huang 1,2,* , Saihong Tang 4,5,* and Zhenghong Liu 3

1 Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University,
Guiyang 550025, China; qipeng.chen@gyu.cn

2 School of Mechanical Engineering, Guizhou University, Guiyang 550025, China
3 School of Mechanical Engineering, Guiyang University, Guiyang 550005, China; jx0011@gyu.cn
4 Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra

Malaysia (UPM), Serdang 43400, Malaysia
5 Department of Mechanical and Electronic Engineering, Guizhou Communications Polytechnic,

Guiyang 551400, China
* Correspondence: gs58734@student.upm.edu.my (Q.X.); hshuang@gzu.edu.cn (H.H.);

saihong@upm.edu.my (S.T.)

Abstract: In response to the current issues of poor real-time performance, high computational
costs, and excessive memory usage of object detection algorithms based on deep convolutional
neural networks in embedded devices, a method for improving deep convolutional neural networks
based on model compression and knowledge distillation is proposed. Firstly, data augmentation is
employed in the preprocessing stage to increase the diversity of training samples, thereby improving
the model’s robustness and generalization capability. The K-means++ clustering algorithm generates
candidate bounding boxes, adapting to defects of different sizes and selecting finer features earlier.
Secondly, the cross stage partial (CSP) Darknet53 network and spatial pyramid pooling (SPP) module
extract features from the input raw images, enhancing the accuracy of defect location detection and
recognition in YOLO. Finally, the concept of model compression is integrated, utilizing scaling factors
in the batch normalization (BN) layer, and introducing sparse factors to perform sparse training on the
network. Channel pruning and layer pruning are applied to the sparse model, and post-processing
methods using knowledge distillation are used to effectively reduce the model size and forward
inference time while maintaining model accuracy. The improved model size decreases from 244 M to
4.19 M, the detection speed increases from 32.8 f/s to 68 f/s, and mAP reaches 97.41. Experimental
results demonstrate that this method is conducive to deploying network models on embedded
devices with limited GPU computing and storage resources. It can be applied in distributed service
architectures for edge computing, providing new technological references for deploying deep learning
models in the industrial sector.

Keywords: clustering; model compression; knowledge distillation; YOLO; sparse factor; pruning

1. Introduction

In the manufacturing process of industrial products, various factors, such as the influ-
ence of processing equipment on automated production lines, manufacturing processes,
and the surrounding environment, can lead to the occurrence of a wide range of defects in
the processed products. Therefore, the effective quality inspection of the product manu-
facturing process is of significant practical importance for businesses aiming to enhance
quality, reduce costs, and increase efficiency [1–3]. Machine vision-based technology for
detecting surface defects in products has become increasingly mature and is widely used
in critical industrial sectors such as the aerospace, electronics, machinery manufacturing,
and automotive industries. In general, conventional industrial quality inspection relies

Electronics 2024, 13, 253. https://doi.org/10.3390/electronics13020253 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13020253
https://doi.org/10.3390/electronics13020253
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3750-6537
https://doi.org/10.3390/electronics13020253
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13020253?type=check_update&version=1

Electronics 2024, 13, 253 2 of 27

on the characteristics and properties of surface defects to design appropriate imaging
schemes. Subsequently, defect areas are separated using techniques like region cropping
and edge detection. Specific techniques such as histogram of oriented gradient (HOG) and
local binary pattern (LBP) are employed for feature extraction, which is then input into
a classifier, or threshold methods are used to determine defect types. In [4], the authors
utilized the local maximum variance method to effectively segment solar cell images and
identify busbars. They proposed a positioning algorithm that combines integral projection
with grayscale centroid. They designed a support vector machine (SVM) classifier with
a radial basis function (RBF) as the kernel function. Experimental results demonstrated
that this method achieved a recognition rate of over 90% for common defects in solar cells.
In [5], an image processing technique was used to develop a rust-defect detection method
for earthquake hammers. This method combined histogram equalization, morphological
processing, and knowledge of the RGB color model. It involved template matching be-
tween the normal state of the earthquake hammer and its rusted condition to detect rust
defects. Experimental results indicated that this method achieved an accuracy of around
80% in detecting rust on earthquake hammers. In [6], a detection method was proposed
to identify defects in industrial products with a center-symmetric distribution pattern.
This method is an improved version of the Hough transform-based detection approach.
Experimental results demonstrated that this algorithm can effectively address the issue
of undetectable defects caused by the similarity between the target and the background.
In [7], a fabric defect detection method was proposed based on HOG and support vector
machine (SVM). In this method, each block-based feature of the image was encoded using
HOG, which is insensitive to variations in lighting and noise. Feature extraction was
carried out using the AdaBoost algorithm, and an SVM was used for the classification of
fabric defects. Experimental results have demonstrated the effectiveness of this algorithm.
However, industrial production environments often exhibit a certain level of complexity
and unpredictability. For instance, factors such as a high similarity between defects and the
background, significant scale variations, a wide range of defect types, a low image contrast,
and high levels of noise can all impact the accuracy of traditional defect detection methods.
As a result, traditional methods of quality inspection are no longer able to meet the current
demands of production.

The advent of convolutional neural networks (CNNs) has transformed this landscape.
Thanks to their robust feature extraction capabilities, factors such as object shape, size,
texture, background, and image quality are no longer significant obstacles in quality in-
spection with the assistance of CNNs. CNNs can replace traditional feature extractors
and classifiers from feature learning theories, eliminating the need for the complex prepro-
cessing of raw images and streamlining the detection process. Currently, target detection
algorithms with a CNN as the backbone have made significant breakthroughs in various
fields. From a practical standpoint, deep learning-based target detection algorithms are
highly consistent with traditional surface quality inspection. Structurally, this detection
method can be categorized into two-stage networks, represented by the region-based con-
volutional neural network (R-CNN) series [8], which involves candidate box generation
and classification, and one-stage networks, represented by the you only look once (YOLO)
series [9–16] and single shot multibox detector (SSD) [17], which directly predict target
categories and positions using the features extracted from the backbone network.

Deep learning-based object detection algorithms have gradually started to be applied
in various product quality inspection scenarios. In [18], a fabric quality defect detection
network tailored for complex background textures was proposed. Gabor kernels were
embedded into the faster R-CNN network. A two-stage training approach based on genetic
algorithm (GA) and backpropagation was designed to train the new faster GG R-CNN
model. The resulting model exhibited a 15.59% improvement in mean average precision
(mAP) compared to the original network model. In [19], a method for casting defect recog-
nition based on an improved YOLOv3 model was proposed. It employed guided filtering
techniques to enhance the defect images in defect recognition (DR) images, resulting in

Electronics 2024, 13, 253 3 of 27

standardized defect samples. This was achieved by incorporating dual-density convolu-
tion layers into YOLOv3, reducing the defect detection rate and enhancing the network
accuracy. The improved network model exhibited a 26.1% increase in mAP compared to
YOLO v3. It also showed faster convergence and better convergence characteristics. In [20],
in response to the challenges of a low detection accuracy, poor interference resistance,
and slow detection speed in traditional tunnel lining defect detection methods, a novel
deep learning-based network model called YOLOv4-ED was proposed. It incorporated
the depthwise separable convolution (DSC) block to reduce the model’s storage space and
enhance detection efficiency. Ultimately, the model achieved a mAP of 81.84%. In [21],
a surface defect detection method based on the MobileNet-SSD network was proposed.
Model simplification was achieved through adjustments to the network structure and
parameters. This method was applied to the typical defect detection on the sealing surfaces
of containers in a filling production line. Compared to traditional machine learning and
lightweight network methods, the proposed approach offers more accurate and faster
defect detection on the container surfaces. In [22], a computer vision method based on
deep learning is proposed. This method seamlessly integrates Mask-RCNN, U-net, and an
innovative crack quantification technique, considering the actual distribution and orienta-
tion of dense microcracks. It is used for the identification, quantification, and visualization
of microcracks in high-performance fiber-reinforced cementitious composites (HPFRCCs).
The presented method has exhibited promising performance in identifying and quantifying
dense microcracks in HPFRCCs, fully considering the interconnection and orientation of
the microcracks during the quantification process. Generally, one-stage detection networks
typically do not achieve the same level of accuracy as two-stage networks. However,
they offer the advantage of simpler detection structures and an extremely high detection
efficiency compared to two-stage networks. This makes them more scalable and versatile
in diverse industrial settings.

In response to the current issues of poor real-time performance, high computational
costs, and the excessive memory usage of object detection algorithms based on deep con-
volutional neural networks in embedded devices, this paper uses a one-stage detection
network as a technical starting point to build an online model for the surface quality in-
spection of products. The goal is to enhance detection accuracy by modifying the network
structure and adjusting network parameters, finding a suitable balance between detection
accuracy and speed. Moreover, considering the demanding hardware and production
conditions in some industrial sectors, this paper incorporates the ideas of model prun-
ing and knowledge distillation into the design of the product quality online inspection
model. This is performed to improve the model’s applicability in various scenarios, en-
abling its deployment on automated production lines. This approach contributes to the
construction of a digital twin model for in-process product surface quality inspection in a
rule-based manner.

2. Pre-Treatment and Methods
2.1. Sample Pre-Treatment

In industrial production lines, the collected images often exhibit characteristics of
stability in shape, singularity, and a limited number of samples. This article focuses on
validating the feasibility of the proposed method using an eccentric conical workpiece as
the experimental subject. The machining quality at the eccentric convex portion of this
workpiece directly determines the precision of subsequent assembly processes, making the
online quality control of utmost importance. In the experiments described in this paper,
a charge coupled device (CCD) camera was used to capture 1200 images of tiny defects
on the surface of aerospace products on an automated production line. These defects
included “Dent”, “Crack”, “Glitch”, and “Fracture”. To meet the real-time and accuracy
requirements of the industrial domain, the original image dimensions were first normalized
to 416 × 416 pixels. This resizing enhances model detection speed without compromising
useful image information. Subsequently, the normalized images were divided into training

Electronics 2024, 13, 253 4 of 27

and testing sets, with data augmentation applied to the training set images. Finally,
considering the locations and sizes of defects in all defect labels, a clustering approach was
used to initialize the sizes of anchor boxes in the detection network, as part of the defect
sample preprocessing. The image preprocessing workflow is detailed in Figure 1.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 27

to 416 × 416 pixels. This resizing enhances model detection speed without compromising
useful image information. Subsequently, the normalized images were divided into train-
ing and testing sets, with data augmentation applied to the training set images. Finally,
considering the locations and sizes of defects in all defect labels, a clustering approach
was used to initialize the sizes of anchor boxes in the detection network, as part of the
defect sample preprocessing. The image preprocessing workflow is detailed in Figure 1.

Figure 1. Image preprocessing flowchart.

2.1.1. Data Augmentation Methods
When the sample data in an image dataset are too small, the situation can lead to the

overfitting of the deep learning neural network model. To prevent this from happening,
data augmentation methods can be effectively used to reduce overfitting, make the model
better suited for new samples, reduce the model’s reliance on certain attributes, and im-
prove its robustness and generalization ability. In this study, a supervised data augmen-
tation method called mosaic [12] was selected. This method involves reading four sample
images at a time and randomly scaling, cropping, and arranging them. The images are
combined, and the bounding boxes are combined after being placed in four different po-
sitions. This approach enriches the detection dataset, particularly by adding many small
objects through random scaling, thereby addressing the issue of target scale imbalance in
the original dataset and improving the network’s robustness. The data from the four sam-
ple images are directly processed at the BN layer, allowing for a smaller mini-batch size.
This enables effective training on a single GPU. Specific examples of data samples using
the mosaic data augmentation method are shown in Figure 2.

Figure 2. Data sample example image using the mosaic data augmentation method.

Figure 1. Image preprocessing flowchart.

2.1.1. Data Augmentation Methods

When the sample data in an image dataset are too small, the situation can lead to
the overfitting of the deep learning neural network model. To prevent this from happen-
ing, data augmentation methods can be effectively used to reduce overfitting, make the
model better suited for new samples, reduce the model’s reliance on certain attributes,
and improve its robustness and generalization ability. In this study, a supervised data
augmentation method called mosaic [12] was selected. This method involves reading four
sample images at a time and randomly scaling, cropping, and arranging them. The images
are combined, and the bounding boxes are combined after being placed in four different
positions. This approach enriches the detection dataset, particularly by adding many small
objects through random scaling, thereby addressing the issue of target scale imbalance
in the original dataset and improving the network’s robustness. The data from the four
sample images are directly processed at the BN layer, allowing for a smaller mini-batch
size. This enables effective training on a single GPU. Specific examples of data samples
using the mosaic data augmentation method are shown in Figure 2.

Electronics 2024, 13, x FOR PEER REVIEW 4 of 27

to 416 × 416 pixels. This resizing enhances model detection speed without compromising
useful image information. Subsequently, the normalized images were divided into train-
ing and testing sets, with data augmentation applied to the training set images. Finally,
considering the locations and sizes of defects in all defect labels, a clustering approach
was used to initialize the sizes of anchor boxes in the detection network, as part of the
defect sample preprocessing. The image preprocessing workflow is detailed in Figure 1.

Figure 1. Image preprocessing flowchart.

2.1.1. Data Augmentation Methods
When the sample data in an image dataset are too small, the situation can lead to the

overfitting of the deep learning neural network model. To prevent this from happening,
data augmentation methods can be effectively used to reduce overfitting, make the model
better suited for new samples, reduce the model’s reliance on certain attributes, and im-
prove its robustness and generalization ability. In this study, a supervised data augmen-
tation method called mosaic [12] was selected. This method involves reading four sample
images at a time and randomly scaling, cropping, and arranging them. The images are
combined, and the bounding boxes are combined after being placed in four different po-
sitions. This approach enriches the detection dataset, particularly by adding many small
objects through random scaling, thereby addressing the issue of target scale imbalance in
the original dataset and improving the network’s robustness. The data from the four sam-
ple images are directly processed at the BN layer, allowing for a smaller mini-batch size.
This enables effective training on a single GPU. Specific examples of data samples using
the mosaic data augmentation method are shown in Figure 2.

Figure 2. Data sample example image using the mosaic data augmentation method. Figure 2. Data sample example image using the mosaic data augmentation method.

Electronics 2024, 13, 253 5 of 27

2.1.2. Bounding Box Generation Methods

The process of generating anchor box for object detection networks helps in defect
classification prediction, enabling the model to select finer features at an earlier stage. In
the YOLO series of object detection networks, the default sizes for anchor boxes are (10,
13), (16, 30), (33, 23), (30, 61), (62, 45), (59, 119), (116, 90), (156, 198), and (373, 326), totaling
nine different sizes. However, these sizes may not be tailored to specific datasets. In this
study, the K-means++ method was used to perform clustering analysis on the ground-truth
boxes in the image labels. The core idea of this method is to select data points that are as
far apart as possible from the initial cluster centers, effectively addressing the problem of
over-reliance on the cluster center selection method in traditional K-means. Subsequently,
anchor boxes that are objective and representative are chosen based on the clustering
results. The specific process of determining the initial estimation of anchor boxes using the
K-means++ clustering algorithm is illustrated in Figure 3.

Electronics 2024, 13, x FOR PEER REVIEW 5 of 27

2.1.2. Bounding Box Generation Methods
The process of generating anchor box for object detection networks helps in defect

classification prediction, enabling the model to select finer features at an earlier stage. In
the YOLO series of object detection networks, the default sizes for anchor boxes are (10,
13), (16, 30), (33, 23), (30, 61), (62, 45), (59, 119), (116, 90), (156, 198), and (373, 326), totaling
nine different sizes. However, these sizes may not be tailored to specific datasets. In this
study, the K-means++ method was used to perform clustering analysis on the ground-
truth boxes in the image labels. The core idea of this method is to select data points that
are as far apart as possible from the initial cluster centers, effectively addressing the prob-
lem of over-reliance on the cluster center selection method in traditional K-means. Subse-
quently, anchor boxes that are objective and representative are chosen based on the clus-
tering results. The specific process of determining the initial estimation of anchor boxes
using the K-means++ clustering algorithm is illustrated in Figure 3.

Figure 3. The specific process of determining the initial estimation of anchor boxes using the K-
means++ clustering algorithm.

The specific implementation steps of this process are as follows:
Step 1: Randomly select the width and height of any ground-truth box in a label as

the initial cluster center, 𝑐ଵ.
Step 2: Calculate the shortest Euclidean distance, represented as 𝐷(𝑥), between all

ground-truth boxes and the current existing cluster centers. Calculate the probability of
each ground-truth box being chosen as the next cluster center using the formula 𝐷(𝑥)ଶ/ ∑ 𝐷(𝑥)ଶ, and select the next cluster center using a roulette wheel selection.

Step 3: Repeat the process from Step 2 until you have selected 𝐾 cluster centers ሼ𝑧ଵ, 𝑧ଶ,⋅⋅⋅, 𝑧௞ሽ.
Step 4: Calculate the distance 𝑑௜௝(𝑦௝, 𝑧௜) between each ground-truth box 𝑦௜ and

each cluster center, 𝑦௝ ∈ ሼ𝑦ଵ,⋅⋅⋅, 𝑦௡ሽ, where 𝑛 is the number of samples. The distance cal-
culation is represented as: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏𝑜𝑥, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑) = 1 − 𝐼𝑜𝑈(𝑏𝑜𝑥, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑) (1)

where “𝑏𝑜𝑥” represents the set of ground-truth boxes, “𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑” represents the set of
cluster centers, and “𝐼𝑜𝑈(𝑏𝑜𝑥, 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑)” represents the Intersection over Union (IoU) be-
tween ground-truth boxes and cluster centers.

Step 5: Based on the principle of minimizing distance, classify the ground-truth
boxes. For each ground-truth box 𝑦௝, if 𝑑௜௝ is the minimum distance, then 𝑦௝ is assigned
to class 𝑒௜, meaning 𝑦௝ ∈ 𝑒௜. Subsequently, calculate the mean 𝑧௜ᇱ of all samples in class 𝑒௜, and this mean is used as the new cluster center for class 𝑒௜, represented as:

Figure 3. The specific process of determining the initial estimation of anchor boxes using the K-
means++ clustering algorithm.

The specific implementation steps of this process are as follows:
Step 1: Randomly select the width and height of any ground-truth box in a label as the

initial cluster center, c1.
Step 2: Calculate the shortest Euclidean distance, represented as D(x), between all

ground-truth boxes and the current existing cluster centers. Calculate the probability of each
ground-truth box being chosen as the next cluster center using the formula D(x)2/∑ D(x)2,
and select the next cluster center using a roulette wheel selection.

Step 3: Repeat the process from Step 2 until you have selected K cluster centers
{z1, z2, · · · , zk}.

Step 4: Calculate the distance dij(yj, zi) between each ground-truth box yi and each
cluster center, yj ∈ {y1, · · · , yn}, where n is the number of samples. The distance calcula-
tion is represented as:

distance(box, centroid) = 1 − IoU(box, centroid) (1)

where “box” represents the set of ground-truth boxes, “centroid” represents the set of cluster
centers, and “IoU(box, centroid)” represents the Intersection over Union (IoU) between
ground-truth boxes and cluster centers.

Step 5: Based on the principle of minimizing distance, classify the ground-truth boxes.
For each ground-truth box yj, if dij is the minimum distance, then yj is assigned to class

Electronics 2024, 13, 253 6 of 27

ei, meaning yj ∈ ei. Subsequently, calculate the mean z′i of all samples in class ei, and this
mean is used as the new cluster center for class ei, represented as:

z′i =
1
Ni

∑yj∈ei
yi, i = 1, 2, · · · , k (2)

where Ni is the number of samples belonging to class ei.
Step 6: If the cluster centers do not change significantly, the clustering process is

completed. Otherwise, go back to Step 3 and continue iterating.
The anchor box sizes obtained using the K-means++ method are in the order as follows:

(15, 42), (26, 45), (41, 17), (36, 41), (48, 34), (72, 70), (161, 109), (113, 161), and (184, 172). These
anchor box sizes will be used for generating the initial anchors in the detection network.

2.2. Using Model Compression-Based YOLOv4 Deep Learning Algorithm for the Online Detection
of Tiny Surface Defects on Workpieces
2.2.1. Overall Technical Route

This study aims to achieve the online detection of tiny surface defects on workpieces
and mark the defect locations using embedded devices. The technical route of the proposed
method is depicted in Figure 4. In this research:

1. Initially, manually labeled surface defect data for workpieces were used to train an
improved YOLOv4 object detection network. This training process incorporated
transfer learning, enabling the rapid detection and labeling of tiny surface defects on
workpieces.

2. After training the YOLOv4 model for workpiece surface defect detection, model
compression and knowledge transfer techniques were applied. This involved model
pruning and knowledge distillation algorithms, simplifying the model’s structure and
parameters while maintaining model accuracy.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 27

𝑧௜ᇱ = ଵே೔ ∑ 𝑦௜, 𝑖 = 1,2, ⋅⋅⋅, 𝑘௬ೕ∈௘೔ (2)

where 𝑁௜ is the number of samples belonging to class 𝑒௜.
Step 6: If the cluster centers do not change significantly, the clustering process is com-

pleted. Otherwise, go back to Step 3 and continue iterating.
The anchor box sizes obtained using the K-means++ method are in the order as fol-

lows: (15, 42), (26, 45), (41, 17), (36, 41), (48, 34), (72, 70), (161, 109), (113, 161), and (184,
172). These anchor box sizes will be used for generating the initial anchors in the detection
network.

2.2. Using Model Compression-Based YOLOv4 Deep Learning Algorithm for the Online
Detection of Tiny Surface Defects on Workpieces
2.2.1. Overall Technical Route

This study aims to achieve the online detection of tiny surface defects on workpieces
and mark the defect locations using embedded devices. The technical route of the pro-
posed method is depicted in Figure 4. In this research:
1. Initially, manually labeled surface defect data for workpieces were used to train an

improved YOLOv4 object detection network. This training process incorporated
transfer learning, enabling the rapid detection and labeling of tiny surface defects on
workpieces.

2. After training the YOLOv4 model for workpiece surface defect detection, model com-
pression and knowledge transfer techniques were applied. This involved model
pruning and knowledge distillation algorithms, simplifying the model’s structure
and parameters while maintaining model accuracy.
The ultimate objective of this research is to simplify and optimize the process of de-

tecting and marking tiny surface defects on workpieces using embedded devices.

Figure 4. Technical route of the proposed method. Figure 4. Technical route of the proposed method.

The ultimate objective of this research is to simplify and optimize the process of
detecting and marking tiny surface defects on workpieces using embedded devices.

Electronics 2024, 13, 253 7 of 27

2.2.2. Construction of a Workpiece’s Tiny-Surface-Defect Online Detection Model Based
on YOLOv4

The YOLO network is an object detection algorithm based on regression. It offers fast
detection speeds and can perform end-to-end object detection and recognition, making
it highly effective in fast real-time object detection tasks. In this paper, YOLOv4 is used
to identify and label defect categories in images. YOLOv4 was introduced by Alexey
Bochkovskiy and his team in 2020. It is an improvement over the YOLOv3 network by
combining new algorithmic ideas, enhancing detection efficiency and accuracy, and making
it more friendly for detecting small objects.

The YOLOv4 network consists of four main components: the input, Backbone, Neck,
and Prediction. Initially, the Backbone main network is used to extract features from
the input image. Then, the input image is divided into an S × S grid, and each grid is
responsible for detecting targets within it. Each grid predicts B bounding boxes and the
probabilities for belonging to C different categories. It also outputs confidence information
representing whether the bounding box contains an object and the accuracy of the bounding
box. The overall structure of the workpiece surface quality online detection model used in
this study is shown in Figure 5.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 27

2.2.2. Construction of a Workpiece’s Tiny-Surface-Defect Online Detection Model Based
on YOLOv4

The YOLO network is an object detection algorithm based on regression. It offers fast
detection speeds and can perform end-to-end object detection and recognition, making it
highly effective in fast real-time object detection tasks. In this paper, YOLOv4 is used to
identify and label defect categories in images. YOLOv4 was introduced by Alexey
Bochkovskiy and his team in 2020. It is an improvement over the YOLOv3 network by
combining new algorithmic ideas, enhancing detection efficiency and accuracy, and mak-
ing it more friendly for detecting small objects.

The YOLOv4 network consists of four main components: the input, Backbone, Neck,
and Prediction. Initially, the Backbone main network is used to extract features from the
input image. Then, the input image is divided into an S × S grid, and each grid is respon-
sible for detecting targets within it. Each grid predicts B bounding boxes and the proba-
bilities for belonging to C different categories. It also outputs confidence information rep-
resenting whether the bounding box contains an object and the accuracy of the bounding
box. The overall structure of the workpiece surface quality online detection model used in
this study is shown in Figure 5.

Figure 5. Overall structure diagram of the product-surface-quality online inspection model.

CSP Darknet53 is a Backbone structure derived from YOLOv3’s main network Dark-
net53. It adds CSP modules to each major residual block in order to optimize network
architecture and address the issue of high-inference computation due to redundant gra-
dient information. CSP Darknet53 includes 5 CSP modules, and each CSP module is pre-
ceded by a 3 × 3 convolution kernel with a stride of 2, effectively performing down sam-
pling. Since the Backbone has 5 CSP modules, and the input image is 416 × 416, the pattern
of feature map size changes is as follows: 416 → 208 → 104 → 52 → 26 → 13. After passing
through 5 CSP modules, a 13 × 13 feature map is obtained. The activation function used
in the CSP Darknet53 main network is Mish, while Leaky_ReLU is still used as the activa-
tion function in the later parts of the network.

To improve feature fusion in the YOLOv4’s Neck section, a combination of the SPP
module and the feature pyramid network with path aggregation network (FPN + PAN)
methods is primarily used. Using the SPP module, rather than relying solely on k × k max
pooling, effectively increases the reception range of the main features and significantly
separates the most crucial contextual features. In this study, within the SPP module, max
pooling with different scales K = {1 × 1, 5 × 5, 9 × 9, 13 × 13} was employed, and the resulting
feature maps were concatenated. The SPP structure is illustrated in Figure 6.

Figure 5. Overall structure diagram of the product-surface-quality online inspection model.

CSP Darknet53 is a Backbone structure derived from YOLOv3’s main network Dark-
net53. It adds CSP modules to each major residual block in order to optimize network
architecture and address the issue of high-inference computation due to redundant gradient
information. CSP Darknet53 includes 5 CSP modules, and each CSP module is preceded by
a 3 × 3 convolution kernel with a stride of 2, effectively performing down sampling. Since
the Backbone has 5 CSP modules, and the input image is 416 × 416, the pattern of feature
map size changes is as follows: 416 → 208 → 104 → 52 → 26 → 13. After passing through
5 CSP modules, a 13 × 13 feature map is obtained. The activation function used in the CSP
Darknet53 main network is Mish, while Leaky_ReLU is still used as the activation function
in the later parts of the network.

To improve feature fusion in the YOLOv4’s Neck section, a combination of the SPP
module and the feature pyramid network with path aggregation network (FPN + PAN)
methods is primarily used. Using the SPP module, rather than relying solely on k × k max
pooling, effectively increases the reception range of the main features and significantly
separates the most crucial contextual features. In this study, within the SPP module, max
pooling with different scales K = {1 × 1, 5 × 5, 9 × 9, 13 × 13} was employed, and the
resulting feature maps were concatenated. The SPP structure is illustrated in Figure 6.

Electronics 2024, 13, 253 8 of 27Electronics 2024, 13, x FOR PEER REVIEW 8 of 27

Figure 6. SPP’s structure diagram.

By employing the FPN with PAN methods, YOLOv4 adds a bottom-up feature pyr-
amid PAN layer behind the FPN layer. The FPN layer conveys strong semantic features
from the top down, while the PAN layer conveys strong positional features from the bot-
tom up. By combining these two approaches, the network aggregates parameters from
different backbone layers to different detection layers, further enhancing the network’s
feature extraction capabilities. The FPN + PAN structure is detailed in Figure 7.

Figure 7. FPN + PAN structure diagram.

In the prediction part of YOLO v4, the loss function primarily consists of three com-
ponents: bounding box position loss, confidence loss, and classification loss. 𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠஼ூ௢௎ + 𝐿𝑜𝑠𝑠௖௢௡௙ + 𝐿𝑜𝑠𝑠௖௟௦ (3)

Part 1: Bounding box position loss, represented as 𝐿𝑜𝑠𝑠஼ூ௢௎, is represented using a
regression loss function. 𝑣 = 4𝜋ଶ ቆ𝑎𝑟𝑐𝑡𝑎𝑛 𝑤௚௧ℎ௚௧ − 𝑎𝑟𝑐𝑡𝑎𝑛 𝑤ℎ ቇ (4)

𝛼 = 𝑣(1 − 𝐼𝑜𝑈) + 𝑣 (5)

𝐿𝑜𝑠𝑠஼ூ௢௎ = 1 − 𝐼𝑜𝑈 + 𝑑ଶ𝑐ଶ + 𝛼𝑣 (6)

Figure 6. SPP’s structure diagram.

By employing the FPN with PAN methods, YOLOv4 adds a bottom-up feature pyra-
mid PAN layer behind the FPN layer. The FPN layer conveys strong semantic features from
the top down, while the PAN layer conveys strong positional features from the bottom up.
By combining these two approaches, the network aggregates parameters from different
backbone layers to different detection layers, further enhancing the network’s feature
extraction capabilities. The FPN + PAN structure is detailed in Figure 7.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 27

Figure 6. SPP’s structure diagram.

By employing the FPN with PAN methods, YOLOv4 adds a bottom-up feature pyr-
amid PAN layer behind the FPN layer. The FPN layer conveys strong semantic features
from the top down, while the PAN layer conveys strong positional features from the bot-
tom up. By combining these two approaches, the network aggregates parameters from
different backbone layers to different detection layers, further enhancing the network’s
feature extraction capabilities. The FPN + PAN structure is detailed in Figure 7.

Figure 7. FPN + PAN structure diagram.

In the prediction part of YOLO v4, the loss function primarily consists of three com-
ponents: bounding box position loss, confidence loss, and classification loss. 𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠஼ூ௢௎ + 𝐿𝑜𝑠𝑠௖௢௡௙ + 𝐿𝑜𝑠𝑠௖௟௦ (3)

Part 1: Bounding box position loss, represented as 𝐿𝑜𝑠𝑠஼ூ௢௎, is represented using a
regression loss function. 𝑣 = 4𝜋ଶ ቆ𝑎𝑟𝑐𝑡𝑎𝑛 𝑤௚௧ℎ௚௧ − 𝑎𝑟𝑐𝑡𝑎𝑛 𝑤ℎ ቇ (4)

𝛼 = 𝑣(1 − 𝐼𝑜𝑈) + 𝑣 (5)

𝐿𝑜𝑠𝑠஼ூ௢௎ = 1 − 𝐼𝑜𝑈 + 𝑑ଶ𝑐ଶ + 𝛼𝑣 (6)

Figure 7. FPN + PAN structure diagram.

In the prediction part of YOLO v4, the loss function primarily consists of three compo-
nents: bounding box position loss, confidence loss, and classification loss.

Loss = LossCIoU + Losscon f + Losscls (3)

Part 1: Bounding box position loss, represented as LossCIoU , is represented using a
regression loss function.

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)
(4)

α =
v

(1 − IoU) + v
(5)

LossCIoU = 1 − IoU +
d2

c2 + αv (6)

Electronics 2024, 13, 253 9 of 27

In the equation, “v” represents a parameter that measures aspect ratio consistency;
“wgt” and “hgt” represent the width and height of the ground truth bounding box; ”w”
and “h” represent the width and height of the predicted bounding box; “α” represents a
parameter used for balancing; “IoU” represents the intersection over union between the
predicted bounding box and the ground truth bounding box; “c” represents the diagonal
distance of the closure; “d” represents the Euclidean distance between the two center points.

Part 2: Confidence loss, represented as Losscon f , is represented using a cross-entropy
loss function.

Losscon f =
S×S
∑

i=0

B
∑

j=0
Iobj
ij

[
−Ĉilog(Ci)−

(
1 − Ĉi

)
log(1 − Ci)

]
+λnoobj∑

S×S
i=0 ∑B

j=0 Inoobj
ij

[
−Ĉilog(Ci)−

(
1 − Ĉi

)
log(1 − Ci)

] (7)

In the equation, “S × S” represents the number of grids into which the input image is
divided; “B” represents the number of predicted bounding boxes per grid; “Iobj

ij ” represents
a value of 1 when the j-th bounding box predicted by the i-th grid detects an object, and 0
otherwise; “Ĉi” represents the confidence score of the actual bounding box in the i-th grid;
“Ci” represents the confidence score of the predicted bounding box in the i-th grid; “λnoobj”
represents the weight coefficient for grids that do not contain objects.

Part 3: The classification loss, represented as Losscls, is represented using the cross-
entropy loss function.

Losscls = ∑S×S
i=0 Iobj

ij ∑C∈classes[− p̂i(C)log(pi(C))− (1 − p̂i(C))log(1 − pi(C))] (8)

In the equation, “C” represents the category to which the detected target belongs;
“p̂i(C)” represents the actual probability that the target belongs to category C when detected
in the i-th grid; “pi(C)” represents the predicted probability that the target belongs to
category C when detected in the i-th grid.

2.2.3. Pruning of the YOLOv4 Workpiece’s Tiny-Surface-Defect Online Detection Model
Based on Model Compression Algorithm

Many model compression techniques have been proposed to address the issues of the
large model size, memory consumption, and computational load of convolutional neural
networks, enabling them to directly learn more efficient models for faster inference [23–25].
These methods include low-rank decomposition, network quantization and binarization,
weight pruning, dynamic inference, and more. However, these methods often address
only one or two of these issues, and some may require specialized software or hardware
for acceleration. Another direction for reducing the resource requirements of CNNs is
network sparsity, which involves introducing sparsity at various network levels, leading
to significant model compression and inference acceleration. However, such methods
typically require special software or hardware accelerators to access memory or save time,
although this is generally easier to implement than unstructured sparse weight matrices.

In CSP Darknet53, the most significant computations come from the convolutional
layers. To reduce the computational load while maintaining the complexity of feature
extraction, it is possible to decrease the number of neurons in the convolutional layers,
which will correspondingly reduce the number of parameters [26–28]. Sparse structures in
network models can be implemented at different granularities, including the weight level,
kernel level, channel level, and layer level. Fine-grained sparsity offers higher flexibility
and generalization capability, resulting in higher compression ratios. However, it often
requires the use of software or hardware accelerators for fast inference with sparse models,
making it more challenging to implement. Conversely, coarse-grained sparsity does not
necessitate special libraries for acceleration and is easier to implement. However, it is less
flexible because it may involve pruning entire layers, and it is particularly effective when
dealing with very deep neural networks. For coarse-grained pruning, channel pruning

Electronics 2024, 13, 253 10 of 27

strikes a balance between flexibility and implementation ease. It allows for pruning at the
filter level, making it more feasible in both software and hardware, achieving a compromise
between flexibility and implementation difficulty.

BN layers can normalize the channels, and introducing BN layers can accelerate
network training and improve model generalization. In this study, YOLOV4 introduces
affine transformation parameters γ and β for the convolutional layers following the BN
layer. These affine transformation parameters are iteratively updated through network
training, allowing them to learn the feature distribution for each layer. γ, as a scaling
factor for channel pruning, is used for network pruning. Its advantage lies in not requiring
additional parameters and not adding extra computational burden to the network [29].
The parameter values in the model being close to or becoming zero indicates that they
have a minimal impact during neural network propagation. Correspondingly, the neurons
associated with such parameters contribute less to the network connections. These less
important neurons can be pruned, thus achieving model compression while maintaining
overall model detection performance. BN layers use mini-batch data to normalize the
internal activation values. Let “zin” and “zout” represent the input and output of the BN
layer, and “B” represents the current mini-batch. The transformation of the BN layer is as
shown in the following formula.

ẑ =
zin − µB√

δ2
B + ϵ

(9)

zout = γẑ + β (10)

In the equation, “µB” and “δB” represent the mean and standard deviation of the input
activations, “ϵ” denotes a very small positive value, and “γ” and “β” represent trainable
scaling and shifting parameters, which can linearly transform the normalized values to
any scale.

“γ” represents the importance of convolutional filters, with smaller γ values indicating
lower importance for the convolutional kernel. Since there are fewer convolutional kernels
with γ values close to zero, a sparsity training method is used to train the network weights
and the scaling factor γ in the BN layer. This involves introducing L1 regularization and
gradually reducing the values of γ during the training process. The objective function
trained by this method is as shown in the following formula:

L = ∑(x,y) l(f (x, W), y) + λ∑γ∈T g(γ) (11)

In the equation, the first term is the training loss function of the CNN network, where
“(x, y)” represents the training input and target, and “W” represents the trainable network
weights. The second term is the L1 regularization term on the Gamma coefficients of the
BN layer, and g(·) applies a sparsity penalty to the scaling factors. λ is the balance factor
between the two terms. In the experiments, the selected penalty function for promoting
sparsity is the L1 norm, denoted as g(s) = |s|, which is used to encourage sparsity.

In the YOLOv4 object detection network, after the convolutional layer operations, the
size of the feature map is denoted as w × h × c, where “w” and “h” represent the width
and height of the feature map, and c corresponds to the number of channels in that layer of
the network. After processing through a BN layer, you obtain normalized feature maps,
and each channel corresponds to a scaling factor γ. After sparse training, the values of
the scaling factors γ tend to approach zero or become zero. The total number of statistical
parameters γ is counted and sorted. An appropriate pruning ratio is chosen to calculate
the maximum γ value that needs to be pruned, denoted as “s”. Channels and filters with
scaling factors less than or equal to “s” are pruned, resulting in the pruned network model.
The channel pruning process is detailed in Figure 8.

Electronics 2024, 13, 253 11 of 27
Electronics 2024, 13, x FOR PEER REVIEW 11 of 27

Figure 8. Channel pruning process diagram.

The algorithm for channel pruning utilizes the Gamma coefficients of the BN layer to
assess the contribution scores of input channels. Based on the relationship between distri-
bution coefficients and channel pruning rates, channels with higher contributions (shown
in solid blue lines) are retained, while channels with lower contributions (depicted with
dashed yellow lines) are removed. In the process of channel connections, neurons in chan-
nels with lower contributions do not participate in the connections.

To further compress the model, layer pruning is performed after channel pruning.
The layer pruning method employed in this study is derived from the previous channel
pruning method. It evaluates the preceding convolution batch normalization mish (CBM)
layer for each shortcut layer in the YOLOV4 network, sorts the Gamma means of all layers,
and then selects the layer with the lowest mean for pruning. To ensure the integrity of the
YOLOV4 structure, when a shortcut structure is pruned, a shortcut layer along with its
two preceding convolution layers are simultaneously pruned. The primary focus in this
paper is on pruning the shortcut modules in the main network. After completing all prun-
ing operations, the obtained model undergoes fine-tuning to mitigate performance losses
resulting from model compression. Pruning operations can be conducted again according
to the model’s requirements to meet specific performance criteria. The pruning process is
depicted in Figure 9.

Figure 9. Pruning process flowchart.

2.2.4. Compression and Post-Processing of the YOLOv4 Workpiece’s Tiny-Surface-De-
fect Online Detection Model Based on Knowledge Transfer Algorithm

“Knowledge Distillation” is a post-processing method for model compression that
enables the transfer of knowledge from a well-trained complex model to a structurally

Figure 8. Channel pruning process diagram.

The algorithm for channel pruning utilizes the Gamma coefficients of the BN layer
to assess the contribution scores of input channels. Based on the relationship between
distribution coefficients and channel pruning rates, channels with higher contributions
(shown in solid blue lines) are retained, while channels with lower contributions (depicted
with dashed yellow lines) are removed. In the process of channel connections, neurons in
channels with lower contributions do not participate in the connections.

To further compress the model, layer pruning is performed after channel pruning.
The layer pruning method employed in this study is derived from the previous channel
pruning method. It evaluates the preceding convolution batch normalization mish (CBM)
layer for each shortcut layer in the YOLOV4 network, sorts the Gamma means of all layers,
and then selects the layer with the lowest mean for pruning. To ensure the integrity of
the YOLOV4 structure, when a shortcut structure is pruned, a shortcut layer along with
its two preceding convolution layers are simultaneously pruned. The primary focus in
this paper is on pruning the shortcut modules in the main network. After completing all
pruning operations, the obtained model undergoes fine-tuning to mitigate performance
losses resulting from model compression. Pruning operations can be conducted again
according to the model’s requirements to meet specific performance criteria. The pruning
process is depicted in Figure 9.

Electronics 2024, 13, x FOR PEER REVIEW 11 of 27

Figure 8. Channel pruning process diagram.

The algorithm for channel pruning utilizes the Gamma coefficients of the BN layer to
assess the contribution scores of input channels. Based on the relationship between distri-
bution coefficients and channel pruning rates, channels with higher contributions (shown
in solid blue lines) are retained, while channels with lower contributions (depicted with
dashed yellow lines) are removed. In the process of channel connections, neurons in chan-
nels with lower contributions do not participate in the connections.

To further compress the model, layer pruning is performed after channel pruning.
The layer pruning method employed in this study is derived from the previous channel
pruning method. It evaluates the preceding convolution batch normalization mish (CBM)
layer for each shortcut layer in the YOLOV4 network, sorts the Gamma means of all layers,
and then selects the layer with the lowest mean for pruning. To ensure the integrity of the
YOLOV4 structure, when a shortcut structure is pruned, a shortcut layer along with its
two preceding convolution layers are simultaneously pruned. The primary focus in this
paper is on pruning the shortcut modules in the main network. After completing all prun-
ing operations, the obtained model undergoes fine-tuning to mitigate performance losses
resulting from model compression. Pruning operations can be conducted again according
to the model’s requirements to meet specific performance criteria. The pruning process is
depicted in Figure 9.

Figure 9. Pruning process flowchart.

2.2.4. Compression and Post-Processing of the YOLOv4 Workpiece’s Tiny-Surface-De-
fect Online Detection Model Based on Knowledge Transfer Algorithm

“Knowledge Distillation” is a post-processing method for model compression that
enables the transfer of knowledge from a well-trained complex model to a structurally

Figure 9. Pruning process flowchart.

2.2.4. Compression and Post-Processing of the YOLOv4 Workpiece’s Tiny-Surface-Defect
Online Detection Model Based on Knowledge Transfer Algorithm

“Knowledge Distillation” is a post-processing method for model compression that
enables the transfer of knowledge from a well-trained complex model to a structurally
simpler network or allows a simple network to learn from the knowledge of a complex
model. The concept of knowledge distillation was initially proposed by Hinton [30] as a

Electronics 2024, 13, 253 12 of 27

compression framework. The basic idea involves introducing a teacher–student network
structure, where the soft knowledge from the teacher network model is distilled into the
student network model. The teacher network model is obtained through training a deep
and wide network for classification or detection tasks, while the student network model
is a lightweight model obtained through model compression. This network framework
primarily uses soft targets related to the teacher network model as a part of the total loss
function to guide the training of the student network model, facilitating the process of
knowledge transfer and, thereby, enhancing the accuracy of the compressed model. It
employs a SoftMax function with a temperature hyperparameter T to generate predicted
probabilities qi for each class, as shown in the following formula:

qi =
exp

(zi
T
)

∑j exp
(zj

T

) (12)

In the formula, “qi” represents the target for the network model to learn (soft target),
“zi” represents the probability of the i-th class in the network’s output vector, where
j ∈ {1, 2, 3, · · · , k}, and k is the total number of classes. When T is set to 1, this formula
represents the original SoftMax function. When T approaches 0, the maximum value will
approach 1, and other values will approach 0, approximating a one-hot encoding. When T
is greater than 1, the output distribution becomes smoother, acting as a form of smoothing
while retaining similar information. When T is set to infinity, it represents a uniform
distribution.

The term “soft target” refers to a target associated with parameter T, aiming to closely
resemble the distribution probabilities of the teacher network model with T incorporated.
“Hard target,” on the other hand, pertains to the target used in regular network training,
with the goal of achieving accurate classification tasks [31]. The student network model
involves two loss functions, corresponding to the cross-entropy calculated from soft and
hard targets, serving as the loss functions for training the student network model. This
enables the student network model to learn features from the teacher network model,
resulting in a student network model with fewer parameters and comparable accuracy.
During predictions, the trained student network model is used conventionally. Knowledge
distillation is a technique that employs a high-performing teacher network model to
supervise the training of the student network model, effectively improving the utilization
of model parameters.

The structural diagram for knowledge distillation is specifically depicted in Figure 10.
The predicted output of the teacher network (on the left-hand side) undergoes a SoftMax
calculation after division by the temperature hyperparameter, T, resulting in a softened
probability distribution (soft targets or labels) that ranges numerically between 0 and
1, exhibiting a more gradual distribution. A higher value of T leads to a more gradual
distribution, while reducing T can amplify the probability of misclassification and introduce
unnecessary noise. Hard targets represent the true labels of the samples and can be
represented using a one-hot vector. The total loss is designed as the weighted average of
the cross-entropy corresponding to both soft and hard targets. A higher weight coefficient
for the cross-entropy of soft targets indicates a greater dependency on the contribution
of the teacher network during transfer. This is particularly necessary during the initial
training stages, aiding the student network in more easily discerning simple samples.
However, in the later stages of training, it is essential to appropriately reduce the weight of
soft targets, allowing the true labels to aid in distinguishing difficult samples. Additionally,
the predictive accuracy of the teacher network is typically superior to that of the student
network, and there are no specific constraints on the model’s capacity. Moreover, a higher
inference accuracy of the teacher network is more beneficial for the learning process of the
student network.

Electronics 2024, 13, 253 13 of 27Electronics 2024, 13, x FOR PEER REVIEW 13 of 27

Figure 10. Knowledge distillation structure diagram.

In this study, the value of T is greater than 1, which results in a softened SoftMax,
and this soft target can provide more inter-class and intra-class information. For the same
input 𝑥, the teacher network model and the student network model generate soft targets
and soft outputs, respectively. The student network model jointly utilizes soft targets, soft
outputs, and hard targets as inputs for the cross-entropy loss function to learn weights, as
shown in the following formulas: 𝑃௦ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧௦𝑇) (13)

𝑃௧ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧௧𝑇) (14)

𝐿௖௟௦ = 𝜆𝐿௦௢௙௧(𝑃௧, 𝑃௦) + (1 − 𝜆)𝐿௛௔௥ௗ(𝑦, 𝑃௦) (15)

In the equation, “𝑦” represents the one-hot encoding of the true labels (hard targets),
“𝑃௦” represents the soft output generated by the student network model, and “𝑃௧” repre-
sents the soft target generated by the teacher network model. “𝐿௖௟௦” represents the classi-
fication loss, and “𝐿௛௔௥ௗ” and “𝐿௦௢௙௧” represent the classic cross-entropy losses in a clas-
sification problem. Due to the use of the soft SoftMax calculation, which involves division
by 𝑇, the gradient magnitudes associated with soft targets are scaled down by a factor of 𝑇ଶ. Therefore, it is necessary to consider the factor of 𝑇ଶ in advance when using 𝜆. 𝐿௕(𝑅௦, 𝑅௧, 𝑦) = ൜ ‖𝑅௦ − 𝑦‖ଶଶ, 𝑖𝑓‖𝑅௦ − 𝑦‖ଶଶ + 𝑚 ൐ ‖𝑅௧ − 𝑦‖ଶଶ0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (16)

𝐿௥௘௚ = 𝐿௦௅ଵ൫𝑅௦, 𝑦௥௘௚൯ + 𝑣𝐿௕൫𝑅௦, 𝑅௧, 𝑦௥௘௚൯ (17)

In the equation, “𝐿௥௘௚” represents the regression loss for bounding boxes, “𝑅௦” rep-
resents the regression output of the student network model, “𝑅௧” represents the regres-
sion output of the teacher network model, “𝑦௥௘௚” represents the true regression labels,
“𝑚” represents the margin, “𝑣” represents a weight parameter, “𝐿௦௅ଵ” represents the ab-
solute loss (smooth L1 loss) function, and “𝐿௕” represents the bounded regression loss of
the teacher network model. The loss function can be computed using the mean absolute
error (L1 loss) function, the absolute loss (smooth L1 loss) function, or the mean squared
error (L2 loss) function. In this study, the mean squared error (L2 loss) function was used.
Using this combination can encourage the student network model to train for regression
tasks to be as close as or even better than the teacher network model. When the student
network model achieves the same performance as the teacher network model, the teacher
network model will not exert excessive influence over the student network model.

Figure 10. Knowledge distillation structure diagram.

In this study, the value of T is greater than 1, which results in a softened SoftMax, and
this soft target can provide more inter-class and intra-class information. For the same input
x, the teacher network model and the student network model generate soft targets and soft
outputs, respectively. The student network model jointly utilizes soft targets, soft outputs,
and hard targets as inputs for the cross-entropy loss function to learn weights, as shown in
the following formulas:

Ps = so f tmax
(zs

T

)
(13)

Pt = so f tmax
(zt

T

)
(14)

Lcls = λLso f t(Pt, Ps) + (1 − λ)Lhard(y, Ps) (15)

In the equation, “y” represents the one-hot encoding of the true labels (hard targets),
“Ps” represents the soft output generated by the student network model, and “Pt” represents
the soft target generated by the teacher network model. “Lcls” represents the classification
loss, and “Lhard” and “Lso f t” represent the classic cross-entropy losses in a classification
problem. Due to the use of the soft SoftMax calculation, which involves division by T,
the gradient magnitudes associated with soft targets are scaled down by a factor of T2.
Therefore, it is necessary to consider the factor of T2 in advance when using λ.

Lb(Rs, Rt, y) =
{

∥Rs − y∥2
2, i f ∥Rs − y∥2

2 + m > ∥Rt − y∥2
2

0, otherwise
(16)

Lreg = LsL1
(

Rs, yreg
)
+ vLb

(
Rs, Rt, yreg

)
(17)

In the equation, “Lreg” represents the regression loss for bounding boxes, “Rs” repre-
sents the regression output of the student network model, “Rt” represents the regression
output of the teacher network model, “yreg” represents the true regression labels, “m”
represents the margin, “v” represents a weight parameter, “LsL1” represents the absolute
loss (smooth L1 loss) function, and “Lb” represents the bounded regression loss of the
teacher network model. The loss function can be computed using the mean absolute error
(L1 loss) function, the absolute loss (smooth L1 loss) function, or the mean squared error
(L2 loss) function. In this study, the mean squared error (L2 loss) function was used. Using
this combination can encourage the student network model to train for regression tasks to
be as close as or even better than the teacher network model. When the student network
model achieves the same performance as the teacher network model, the teacher network
model will not exert excessive influence over the student network model.

2.3. Evaluation of the Model Performance

The commonly used performance evaluation metrics for object detection include mAP
and frames per second (FPS). mAP is primarily used to evaluate the accuracy of the model,
while FPS is used to assess the model’s speed.

Electronics 2024, 13, 253 14 of 27

1. mAP

IoU is a highly significant function in the computation of mAP. IoU measures the ratio
of the intersection area to the union area between the candidate bound and the ground
truth bound. IoU serves as a metric for evaluating the accuracy of object localization
in detection. A higher IoU value implies better model performance, indicating greater
precision in predictions. The specific calculation formula is as follows:

IoU =
area

(
Bp ∩ Bgt

)
area

(
Bp ∪ Bgt

) (18)

Electronics 2024, 13, x FOR PEER REVIEW 14 of 27

2.3. Evaluation of the Model Performance
The commonly used performance evaluation metrics for object detection include

mAP and frames per second (FPS). mAP is primarily used to evaluate the accuracy of the
model, while FPS is used to assess the model’s speed.
1. mAP

IoU is a highly significant function in the computation of mAP. IoU measures the ratio
of the intersection area to the union area between the candidate bound and the ground
truth bound. IoU serves as a metric for evaluating the accuracy of object localization in
detection. A higher IoU value implies better model performance, indicating greater preci-
sion in predictions. The specific calculation formula is as follows: 𝐼𝑜𝑈 = ௔௥௘௔(஻೛∩஻೒೟)௔௥௘௔(஻೛∪஻೒೟) (18)

𝐼𝑜𝑈 = ௔௥௘௔ ௢௙ ௢௩௘௥௟௔௣௔௥௘௔ ௢௙ ௨௡௜௢௡ = (19)

Recall (R), also known as sensitivity, is in reference to our original positive samples,
indicating how many of the positive samples in the dataset were predicted correctly. After
prediction, there are two possibilities for the original positive samples: one is classifying
the original positive samples as positive, which we call true positive (TP); the other is clas-
sifying the original positive samples as negative, which we refer to as false negative (FN). 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 = 𝑇𝑃𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ𝑠 (20)

Using recall values that reflect the classifier’s ability to cover positive samples as the
x-axis and precision values that reflect the accuracy of the classifier’s positive predictions
as the y-axis, a precision–recall (PR) two-dimensional curve is created, and this PR curve
is smoothed. The PR curve demonstrates the trade-off between the classifier’s coverage of
positive samples and its precision in correctly identifying them. Average precision (AP) is
the area enclosed by the PR curve and the x-axis.

For a continuous PR curve, the specific formula to calculate AP is: 𝐴𝑃 = න 𝑃𝑅𝑑𝑟ଵ
଴ (21)

For a discrete PR curve, the specific formula to calculate AP is: 𝐴𝑃 = ∑ 𝑃(𝑘)Δ𝑟(𝑘)௡௞ୀଵ (22)

mAP is the average AP value across all categories, and the specific calculation formula
is:

𝑚𝐴𝑃 = ∑ 𝐴𝑃(𝑞)ொ௤ୀଵ𝑄 (23)

2. FPS
In object detection algorithms, it is crucial to evaluate not only the accuracy of detec-

tion but also an important metric: detection speed. Only with fast detection can real-time
online detection be achieved. FPS is used to assess the speed of object detection, indicating
the number of images that can be processed per second. A higher FPS value signifies that
a greater number of images can be processed per second, indicating a faster detection
speed. The specific formula for calculating FPS is: 𝐹𝑃𝑆 = 𝑓𝑟𝑎𝑚𝑒𝑁𝑢𝑚𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇𝑖𝑚𝑒 (24)

(19)

Recall (R), also known as sensitivity, is in reference to our original positive samples,
indicating how many of the positive samples in the dataset were predicted correctly. After
prediction, there are two possibilities for the original positive samples: one is classifying the
original positive samples as positive, which we call true positive (TP); the other is classifying
the original positive samples as negative, which we refer to as false negative (FN).

Recall =
TP

TP + FN
=

TP
all ground truths

(20)

Using recall values that reflect the classifier’s ability to cover positive samples as the
x-axis and precision values that reflect the accuracy of the classifier’s positive predictions
as the y-axis, a precision–recall (PR) two-dimensional curve is created, and this PR curve is
smoothed. The PR curve demonstrates the trade-off between the classifier’s coverage of
positive samples and its precision in correctly identifying them. Average precision (AP) is
the area enclosed by the PR curve and the x-axis.

For a continuous PR curve, the specific formula to calculate AP is:

AP =
∫ 1

0
PRdr (21)

For a discrete PR curve, the specific formula to calculate AP is:

AP = ∑n
k=1 P(k)∆r(k) (22)

mAP is the average AP value across all categories, and the specific calculation formula is:

mAP =
∑Q

q=1 AP(q)

Q
(23)

2. FPS

In object detection algorithms, it is crucial to evaluate not only the accuracy of detection
but also an important metric: detection speed. Only with fast detection can real-time online
detection be achieved. FPS is used to assess the speed of object detection, indicating the
number of images that can be processed per second. A higher FPS value signifies that a
greater number of images can be processed per second, indicating a faster detection speed.
The specific formula for calculating FPS is:

FPS =
f rameNum

elapsedTime
(24)

Electronics 2024, 13, 253 15 of 27

3. Results and Analysis

This study used an automated production line for a specific aerospace product, which
was self-constructed by Guizhou University’s Intelligent Manufacturing Laboratory, as
an experimental platform to validate the effectiveness and practicality of the proposed
model for the online inspection of workpiece surface quality. In the process of precision
machining at the numerical control processing center, workpieces with surface quality
below standard may inevitably be produced due to various reasons. Such workpieces,
when entering subsequent assembly stages, can easily lead to product rejection, causing
delays in production efficiency and resource wastage. The experimental subject of this
article is an eccentric conical workpiece. The machining quality at the conical convex
platform of this workpiece directly determines the precision in the subsequent assembly
stages, making surface quality inspection crucial. The image acquisition facility consists
of industrial robots, industrial CCD cameras, industrial lenses, curved LED light sources,
and a light-shielding cabinet, as shown in Figure 11. Prior to acquisition, the curved light
source is adjusted to the appropriate brightness, lenses are installed on the industrial
CCD cameras, and aperture and focal length are adjusted to ensure image quality during
acquisition. An industrial robot transports the processed workpieces to the inspection area
at a certain speed and triggers the CCD camera to capture images by sending I/O signals.
To ensure that the CCD camera captures high-quality images, a precise calibration of the
image acquisition facility is required, with hardware models specified as shown in Table 1.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 27

3. Results and Analysis
This study used an automated production line for a specific aerospace product,

which was self-constructed by Guizhou University’s Intelligent Manufacturing Labora-
tory, as an experimental platform to validate the effectiveness and practicality of the pro-
posed model for the online inspection of workpiece surface quality. In the process of pre-
cision machining at the numerical control processing center, workpieces with surface
quality below standard may inevitably be produced due to various reasons. Such work-
pieces, when entering subsequent assembly stages, can easily lead to product rejection,
causing delays in production efficiency and resource wastage. The experimental subject
of this article is an eccentric conical workpiece. The machining quality at the conical con-
vex platform of this workpiece directly determines the precision in the subsequent assem-
bly stages, making surface quality inspection crucial. The image acquisition facility con-
sists of industrial robots, industrial CCD cameras, industrial lenses, curved LED light
sources, and a light-shielding cabinet, as shown in Figure 11. Prior to acquisition, the
curved light source is adjusted to the appropriate brightness, lenses are installed on the
industrial CCD cameras, and aperture and focal length are adjusted to ensure image qual-
ity during acquisition. An industrial robot transports the processed workpieces to the in-
spection area at a certain speed and triggers the CCD camera to capture images by sending
I/O signals. To ensure that the CCD camera captures high-quality images, a precise cali-
bration of the image acquisition facility is required, with hardware models specified as
shown in Table 1.

Figure 11. Physical image of workpiece-surface-quality online inspection device.

Table 1. Hardware selection table for workpiece-surface-quality online inspection device.

Equipment Name Hardware Model Parameter

Industrial robot ESTUN ER6-K6B-P-D
AC380 V/3.4 KVA, maximum load 6 kg, Arm
span 1600 mm, repeatable positioning accu-

racy ± 0.08 mm

Industrial CCD camera COGNEX 821-0037-1R
24VDC ± 10%/500 mA, 1/1.8 UI inch CCD,

1600 × 1200
 resolution (pixels)

Industrial lens COMPUTAR M5018-MP2
50 mm focal length, F1.8 aperture, 2/3″ target

surface size
LED arc light source AFT, RL12068W Ring, PWM dimming

Light-shielding cabinet Homemade Shade: 42 cm × 55 cm,

Figure 11. Physical image of workpiece-surface-quality online inspection device.

Table 1. Hardware selection table for workpiece-surface-quality online inspection device.

Equipment Name Hardware Model Parameter

Industrial robot ESTUN ER6-K6B-P-D
AC380 V/3.4 KVA, maximum load 6 kg,

Arm span 1600 mm, repeatable
positioning accuracy ± 0.08 mm

Industrial CCD camera COGNEX 821-0037-1R

24VDC ± 10%/500 mA, 1/1.8 UI inch
CCD,

1600 × 1200
resolution (pixels)

Industrial lens COMPUTAR
M5018-MP2

50 mm focal length, F1.8 aperture, 2/3′′

target surface size
LED arc light source AFT, RL12068W Ring, PWM dimming

Light-shielding cabinet Homemade Shade: 42 cm × 55 cm,
cabinet: 50 cm × 50 cm × 122 cm

Electronics 2024, 13, 253 16 of 27

In the experiment, common surface processing defects for the eccentric conical work-
piece include “Dent”, “Crack”, “Glitch”, and “Fracture”. A total of 1200 samples of these
four defect types were collected during the experiment, with 300 samples for each category.
These samples were randomly split, with 80% used as the training dataset and 20% as the
testing dataset. The training dataset was used for fitting the data samples and training the
relevant parameters. The testing dataset was used for tuning the hyperparameters of the
neural network model and evaluating its performance. The training dataset samples were
also used for data augmentation, which involves generating additional training samples
through various transformations to improve the model’s robustness and generalization.

In the experiment, two different upper-level computer configurations were used to
process the data acquired from the image acquisition facility. The former used a high-
performance server: the processor was an Intel Xeon Silver 4210 dual-CPU with 20 cores
and 40 threads, a clock speed of 2.2 GHz, and a GeForce RTX 2080Ti graphics card with
8 GPUs, each with 11 GB of video memory, and 256 GB of RAM, which was used for
training the online surface quality inspection model. The latter utilized Nvidia’s Jetson
AGX Xavier developer kit, which consists of a GPU featuring a 512-core NVIDIA Volta™
GPU with 64 Tensor Cores. It was paired with an 8-core ARM 64 v8.2 64-bit CPU, 8 MB
L2 + 4 MB L3 cache, 32 GB of 256-bit LPDDR4x memory operating at 137 GB/second, and
it had a 32 GB eMMC 5.1 storage. This setup is designed for deploying lightweight deep
learning models in industrial scenarios. This configuration was utilized for the deployment
of a pruned workpiece-surface-quality online inspection model in an industrial setting.
The software platform used was the Ubuntu 18.04 LTS operating system, and the deep
learning model framework employed was PyTorch (v 2.0). The detection model selects
nine different sizes of anchor boxes using the K-means++ clustering method, and these
anchor box sizes are then separately applied to the three branches of the feature pyramid
network. In the case of the deeper feature maps, specifically the outputs of Residual Block1
and Residual Block2, three anchor box sizes are used, which correspond to the smallest and
medium-sized areas. For the shallower feature map, which is the output of Residual Block3,
three anchor box sizes with the largest areas are employed. Furthermore, the learning rate
in this study was initially set to 0.001 and underwent exponential decay as the number of
iterations increased. Pretrained model weights that have undergone extensive training on
the ImageNet dataset were used as the initial weights for the feature extraction network.
Specific model training parameters are outlined in Table 2.

Table 2. Model training parameter table.

Parameter YOLOV4 YOLOV4-Tiny

Number of batch training samples 64 64
Number of sample subsets 8 8

Image width 416 416
Image height 416 416

Number of channels 3 3
Momentum 0.949 0.949

Weight decay regularization coefficient 0.0005 0.0005
Random rotation angle 0 0

Randomly adjusted saturation 1.5 1.5
Randomly adjusted exposure 1.5 1.5

Randomly adjusted hues 0.1 0.1
Learning rate 0.0001 0.0001

Number of traversals 150 150

3.1. Comparison of Different Object Detection Algorithms

The product-surface-quality online inspection model designed in this study employs
the CutMix data augmentation method and the K-means++ clustering method in the sample
preprocessing stage to improve the algorithm’s robustness. This allows the generated
anchor boxes to select more fine-grained features at an earlier stage. The training process

Electronics 2024, 13, 253 17 of 27

of the surface quality online inspection model is shown in detail in Figure 11, while the
training process of the YOLOV4-tiny model is specified in Figure 12. Model performance is
evaluated on the test set using mAP as a metric every 15 epochs.

Electronics 2024, 13, x FOR PEER REVIEW 17 of 27

3.1. Comparison of Different Object Detection Algorithms
The product-surface-quality online inspection model designed in this study employs

the CutMix data augmentation method and the K-means++ clustering method in the sam-
ple preprocessing stage to improve the algorithm’s robustness. This allows the generated
anchor boxes to select more fine-grained features at an earlier stage. The training process
of the surface quality online inspection model is shown in detail in Figure 11, while the
training process of the YOLOV4-tiny model is specified in Figure 12. Model performance
is evaluated on the test set using mAP as a metric every 15 epochs.

In the early stages of model training for the workpiece-surface-quality online inspec-
tion model, the learning rate was set relatively high, and the training curve converged
quickly. As training progressed, the slope of the training curve gradually decreased. Fi-
nally, when the number of training iterations reached 150 epochs, the model’s learning
efficiency was gradually saturated, and the loss fluctuated around 0.27.

Figure 12. The training process of surface-quality online detection model (YOLOV4).

As shown in Figures 12 and 13, both models converged rapidly. The surface quality
online inspection model and YOLOV4-tiny model reached an accuracy of over 90.00%
after approximately 55 epochs and 130 epochs of training, respectively. Meanwhile, under
the evaluation with an IoU threshold of 0.5, the former achieved a final mAP of 97.50%,
while the latter reached 92.74%. It is evident that the surface quality online inspection
model designed for industrial products with stable shapes, singularity, and small varia-
tion in defect size exhibited advantages in terms of convergence performance and detec-
tion performance. This study further investigated the performance of these models and
other object detection models in subsequent experiments.

Figure 13. The training process of the YOLOV4-tiny model.

Figure 12. The training process of surface-quality online detection model (YOLOV4).

In the early stages of model training for the workpiece-surface-quality online inspec-
tion model, the learning rate was set relatively high, and the training curve converged
quickly. As training progressed, the slope of the training curve gradually decreased. Finally,
when the number of training iterations reached 150 epochs, the model’s learning efficiency
was gradually saturated, and the loss fluctuated around 0.27.

As shown in Figures 12 and 13, both models converged rapidly. The surface quality
online inspection model and YOLOV4-tiny model reached an accuracy of over 90.00%
after approximately 55 epochs and 130 epochs of training, respectively. Meanwhile, under
the evaluation with an IoU threshold of 0.5, the former achieved a final mAP of 97.50%,
while the latter reached 92.74%. It is evident that the surface quality online inspection
model designed for industrial products with stable shapes, singularity, and small variation
in defect size exhibited advantages in terms of convergence performance and detection
performance. This study further investigated the performance of these models and other
object detection models in subsequent experiments.

Electronics 2024, 13, x FOR PEER REVIEW 17 of 27

3.1. Comparison of Different Object Detection Algorithms
The product-surface-quality online inspection model designed in this study employs

the CutMix data augmentation method and the K-means++ clustering method in the sam-
ple preprocessing stage to improve the algorithm’s robustness. This allows the generated
anchor boxes to select more fine-grained features at an earlier stage. The training process
of the surface quality online inspection model is shown in detail in Figure 11, while the
training process of the YOLOV4-tiny model is specified in Figure 12. Model performance
is evaluated on the test set using mAP as a metric every 15 epochs.

In the early stages of model training for the workpiece-surface-quality online inspec-
tion model, the learning rate was set relatively high, and the training curve converged
quickly. As training progressed, the slope of the training curve gradually decreased. Fi-
nally, when the number of training iterations reached 150 epochs, the model’s learning
efficiency was gradually saturated, and the loss fluctuated around 0.27.

Figure 12. The training process of surface-quality online detection model (YOLOV4).

As shown in Figures 12 and 13, both models converged rapidly. The surface quality
online inspection model and YOLOV4-tiny model reached an accuracy of over 90.00%
after approximately 55 epochs and 130 epochs of training, respectively. Meanwhile, under
the evaluation with an IoU threshold of 0.5, the former achieved a final mAP of 97.50%,
while the latter reached 92.74%. It is evident that the surface quality online inspection
model designed for industrial products with stable shapes, singularity, and small varia-
tion in defect size exhibited advantages in terms of convergence performance and detec-
tion performance. This study further investigated the performance of these models and
other object detection models in subsequent experiments.

Figure 13. The training process of the YOLOV4-tiny model. Figure 13. The training process of the YOLOV4-tiny model.

Deep learning methods have achieved significant success in the field of object de-
tection, surpassing traditional algorithms in both accuracy and robustness. One-stage
detection models, which balance real-time performance and accuracy, are particularly
suitable for engineering applications. The experiments use the versatile YOLO series and
SSD as the detection substructures, combined with DarkNet-53 [11], InceptionV2 [32], and
InceptionV3 [33] for comparative tests. Specifically, SSD-InceptionV2, SSD-InceptionV3,
YOLOV3, and YOLOV4-tiny are used as comparison models. Since mAP is the most widely

Electronics 2024, 13, 253 18 of 27

used comprehensive evaluation metric in object detection tasks, the experiments follow
the evaluation approach used in the COCO dataset [34] with an IoU threshold of 0.5. This
approach takes into account both localization and recognition accuracy and deeply explores
the differences in the models’ capabilities in detection tasks. The specific experimental
results are shown in Table 3.

Table 3. Depth model performance statistics table.

Network Model SSD-Inception V2 SSD-Inception V3 YOLOV3 YOLOV4-Tiny Quality Detection Model

Number of Epochs 100 100 100 150 150
IoU 0.50 0.50 0.50 0.50 0.50

mAP (%) 70.59 76.65 92.54 92.74 97.50
Model size (MB) 52.6 994 236 23.1 244

FPS (f/s) 35.5 30.3 30.2 56.6 32.8

From Table 3, it can be observed that the workpiece surface quality online inspection
model has achieved quite satisfactory results. During validation on the test set, this model
is capable of finely learning high-quality features, accurately identifying types of defects
within the samples, and generating detection results highly similar to the real bounding
boxes. During testing, the surface quality online inspection model achieved an FPS score of
32.8 f/s on a single GeForce RTX 2080Ti card. While it may not outperform other detection
models in terms of FPS, it still meets the real-time requirements of the industrial field,
especially in scenarios with adequate hardware resources.

3.2. Comparison of the Proposed Method with Previous Studies

While the improved surface quality online inspection model can effectively detect
the machining quality of workpiece surfaces, the YOLOV4 network has a large number
of model parameters, and its deep network structure results in significant computational
demands. To reduce the model’s parameters and complexity, decrease its resource require-
ments, and make it deployable on edge computing devices with limited computational
capabilities, channel pruning is employed. Channel pruning fundamentally involves the
identification and elimination of unimportant channels within the network, along with
their associated input and output relationships, thereby reducing the number of parameters
that need to be stored. In addition, layer pruning is performed on top of channel pruning
to further decrease the computational load, enhance the model’s inference speed, and
achieve compression in both the width and depth of the network. Consequently, this paper
employs both channel pruning and layer pruning methods to trim the trained workpiece-
surface-quality online inspection model, ultimately striking a balance between flexibility
and implementation cost.

The specific steps of the model compression method in this research include the following:

1. Sparse Training: Apply L1 regularization constraints to the coefficients of the BN
layers in the surface-quality online inspection model to adjust the sparsity of the
model in the structural direction.

2. Pruning: After sparse training, perform channel pruning and layer pruning on the
sparse model according to a certain pruning ratio to generate a compact model,
reducing its storage space requirements.

3. Fine-tuning the Pruned Model: The primary purpose is to overcome the issue of
excessive loss of accuracy after model pruning. Knowledge distillation is used to
effectively recover the lost accuracy. The specific parameters for model compression
are outlined in Table 4.

Electronics 2024, 13, 253 19 of 27

Table 4. Model compression parameter table.

Stage Parameters Numerical Value

Sparse training

Batch sample quantity 8
Learning rate 0.003
Sparsity rate 0.001

Number of traversals 2000

Pruning Channel pruning ratio 0.90
Number of layers pruning 2

Fine-tuned pruned model Number of traversals 100
Batch sample quantity 8

These steps collectively contribute to reducing the model’s size while maintaining its
performance, allowing for deployment on resource-constrained edge computing devices.

Sparse training is essentially a trade-off between model accuracy and sparsity. Dif-
ferent sparse strategies need to be applied for different models to achieve a high sparsity
while maintaining a high accuracy. Generally, choosing a larger sparsity rate can accelerate
the model’s sparsity but result in a faster drop in accuracy. On the other hand, select-
ing a smaller sparsity rate, although slower in sparsity reduction, also leads to a slower
decrease in accuracy. Additionally, combining a larger learning rate can speed up the
sparsity process, while using a smaller learning rate later helps the accuracy recover. After
multiple experiments, this study ultimately chose a constant-sparsity strategy for sparse
training. This means that throughout the entire sparsity process, a constant sparsity rate is
used to add extra gradients to the model. This approach provides a relatively even force,
resulting in higher compression levels. The specific distribution and values of the Gamma
coefficients of the BN layers before sparse training are shown in Figures 14 and 15.

Electronics 2024, 13, x FOR PEER REVIEW 19 of 27

2. Pruning: After sparse training, perform channel pruning and layer pruning on the
sparse model according to a certain pruning ratio to generate a compact model, re-
ducing its storage space requirements.

3. Fine-tuning the Pruned Model: The primary purpose is to overcome the issue of ex-
cessive loss of accuracy after model pruning. Knowledge distillation is used to effec-
tively recover the lost accuracy. The specific parameters for model compression are
outlined in Table 4.
These steps collectively contribute to reducing the model’s size while maintaining its

performance, allowing for deployment on resource-constrained edge computing devices.

Table 4. Model compression parameter table.

Stage Parameters Numerical Value

Sparse training

Batch sample quantity 8
Learning rate 0.003
Sparsity rate 0.001

Number of traversals 2000

Pruning
Channel pruning ratio 0.90

Number of layers pruning 2

Fine-tuned pruned model
Number of traversals 100
Batch sample quantity 8

Sparse training is essentially a trade-off between model accuracy and sparsity. Dif-
ferent sparse strategies need to be applied for different models to achieve a high sparsity
while maintaining a high accuracy. Generally, choosing a larger sparsity rate can acceler-
ate the model’s sparsity but result in a faster drop in accuracy. On the other hand, selecting
a smaller sparsity rate, although slower in sparsity reduction, also leads to a slower de-
crease in accuracy. Additionally, combining a larger learning rate can speed up the spar-
sity process, while using a smaller learning rate later helps the accuracy recover. After
multiple experiments, this study ultimately chose a constant-sparsity strategy for sparse
training. This means that throughout the entire sparsity process, a constant sparsity rate
is used to add extra gradients to the model. This approach provides a relatively even force,
resulting in higher compression levels. The specific distribution and values of the Gamma
coefficients of the BN layers before sparse training are shown in Figures 14 and 15.

The specific distribution and coefficient changes of the Gamma coefficients of the BN
layers during sparse training are shown in Figures 16 and 17. During the sparse training
process, with an increasing number of iterations, the center of the Gamma coefficient dis-
tribution for all BN layers gradually moves in the direction of 0. However, not all BN lay-
ers’ Gamma coefficients decay to 0, indicating that the Gamma coefficients are gradually
becoming sparse. After about 1800 iterations of sparse training, there is only a slight
change in the sparsity of the Gamma coefficients, suggesting that sparse training has
reached saturation. The specific distribution and values of the Gamma coefficients of the
BN layers after sparse training are depicted in Figures 18 and 19.

Figure 14. The specific distribution of Gamma coefficients of the BN layers before sparse training.

Electronics 2024, 13, x FOR PEER REVIEW 20 of 27

Figure 14. The specific distribution of Gamma coefficients of the BN layers before sparse training.

Figure 15. The numerical values of the Gamma coefficients of the BN layers before sparse training.

Figure 16. The specific distribution of Gamma coefficients of the BN layers during the sparse train-
ing process.

Figure 17. The change in Gamma coefficients of the BN layers during the sparse training process.

Figure 18. The specific distribution of Gamma coefficients of the BN layers after sparse training.

Figure 15. The numerical values of the Gamma coefficients of the BN layers before sparse training.

Electronics 2024, 13, 253 20 of 27

The specific distribution and coefficient changes of the Gamma coefficients of the BN
layers during sparse training are shown in Figures 16 and 17. During the sparse training
process, with an increasing number of iterations, the center of the Gamma coefficient
distribution for all BN layers gradually moves in the direction of 0. However, not all BN
layers’ Gamma coefficients decay to 0, indicating that the Gamma coefficients are gradually
becoming sparse. After about 1800 iterations of sparse training, there is only a slight change
in the sparsity of the Gamma coefficients, suggesting that sparse training has reached
saturation. The specific distribution and values of the Gamma coefficients of the BN layers
after sparse training are depicted in Figures 18 and 19.

Electronics 2024, 13, x FOR PEER REVIEW 20 of 27

Figure 14. The specific distribution of Gamma coefficients of the BN layers before sparse training.

Figure 15. The numerical values of the Gamma coefficients of the BN layers before sparse training.

Figure 16. The specific distribution of Gamma coefficients of the BN layers during the sparse train-
ing process.

Figure 17. The change in Gamma coefficients of the BN layers during the sparse training process.

Figure 18. The specific distribution of Gamma coefficients of the BN layers after sparse training.

Figure 16. The specific distribution of Gamma coefficients of the BN layers during the sparse
training process.

Electronics 2024, 13, x FOR PEER REVIEW 20 of 27

Figure 14. The specific distribution of Gamma coefficients of the BN layers before sparse training.

Figure 15. The numerical values of the Gamma coefficients of the BN layers before sparse training.

Figure 16. The specific distribution of Gamma coefficients of the BN layers during the sparse train-
ing process.

Figure 17. The change in Gamma coefficients of the BN layers during the sparse training process.

Figure 18. The specific distribution of Gamma coefficients of the BN layers after sparse training.

Figure 17. The change in Gamma coefficients of the BN layers during the sparse training process.

Electronics 2024, 13, x FOR PEER REVIEW 20 of 27

Figure 14. The specific distribution of Gamma coefficients of the BN layers before sparse training.

Figure 15. The numerical values of the Gamma coefficients of the BN layers before sparse training.

Figure 16. The specific distribution of Gamma coefficients of the BN layers during the sparse train-
ing process.

Figure 17. The change in Gamma coefficients of the BN layers during the sparse training process.

Figure 18. The specific distribution of Gamma coefficients of the BN layers after sparse training. Figure 18. The specific distribution of Gamma coefficients of the BN layers after sparse training.

Electronics 2024, 13, 253 21 of 27
Electronics 2024, 13, x FOR PEER REVIEW 21 of 27

Figure 19. The numerical values of the Gamma coefficients of the BN layers after sparse training.

After sparse training, a channel pruning ratio of 0.90 was applied to prune the work-
piece-surface-quality online inspection model. Since YOLOV4 includes five sets of 23
shortcut layer connections with corresponding “add” operations, and to ensure that the
two input dimensions of the shortcut layers remain consistent after channel pruning, lay-
ers directly connected to the shortcut layers were not pruned. This helped avoid dimen-
sion issues while effectively reducing model parameters to achieve a higher pruning ratio.
The specific changes in the number of channels for each layer before and after pruning are
shown in Figure 20. After pruning, the channel count ranged from 1 to 127 channels, with
a maximum pruning of 1017 channels and a minimum pruning of 1 channel. Subse-
quently, layer pruning was performed after channel pruning. For layer pruning, each pre-
ceding CBM layer for each shortcut layer was evaluated. The layers were sorted based on
the mean Gamma values, and the layers with the smallest mean Gamma values were se-
lected for layer pruning. According to the sorting results, this study selected layer 59 and
layer 90 for pruning. Table 5 presents the test results after model compression. After chan-
nel pruning, the model’s parameter count was reduced by 98.27%, the model size was
reduced by 98.24%, and the average accuracy mean was decreased by 2.36%. After layer
pruning, the model’s parameter count was reduced by 98.31%, the model size was re-
duced by 98.28%, and the average accuracy mean was decreased by 2.36%, which is con-
sistent with the results after channel pruning.

Table 5. Test results after model compression.

Parameters Original Model Channel Pruning Layer Pruning
Total parameters 63,953,841 1,107,904 1,080,754
Average accuracy

mean (%)
97.50 95.14 95.14

Model size (M) 244 4.30 4.19
Inference time (s) 0.0305 0.0153 0.0147

Figure 19. The numerical values of the Gamma coefficients of the BN layers after sparse training.

After sparse training, a channel pruning ratio of 0.90 was applied to prune the
workpiece-surface-quality online inspection model. Since YOLOV4 includes five sets
of 23 shortcut layer connections with corresponding “add” operations, and to ensure that
the two input dimensions of the shortcut layers remain consistent after channel pruning,
layers directly connected to the shortcut layers were not pruned. This helped avoid dimen-
sion issues while effectively reducing model parameters to achieve a higher pruning ratio.
The specific changes in the number of channels for each layer before and after pruning are
shown in Figure 20. After pruning, the channel count ranged from 1 to 127 channels, with
a maximum pruning of 1017 channels and a minimum pruning of 1 channel. Subsequently,
layer pruning was performed after channel pruning. For layer pruning, each preceding
CBM layer for each shortcut layer was evaluated. The layers were sorted based on the
mean Gamma values, and the layers with the smallest mean Gamma values were selected
for layer pruning. According to the sorting results, this study selected layer 59 and layer
90 for pruning. Table 5 presents the test results after model compression. After channel
pruning, the model’s parameter count was reduced by 98.27%, the model size was reduced
by 98.24%, and the average accuracy mean was decreased by 2.36%. After layer pruning,
the model’s parameter count was reduced by 98.31%, the model size was reduced by
98.28%, and the average accuracy mean was decreased by 2.36%, which is consistent with
the results after channel pruning.

Electronics 2024, 13, x FOR PEER REVIEW 22 of 27

Figure 20. Schematic representation of channel changes before and after pruning for each layer.

After model compression, there is usually a decrease in accuracy, and it is necessary
to fine-tune the compressed model to restore its accuracy. This study employed both
knowledge distillation and non-knowledge distillation methods to train the compressed
surface-quality online inspection model. As shown in Figure 21, when the non-knowledge
distillation method is used, after 100 iterations, the model achieves an optimal accuracy
of 96.05%, which is 1.29% lower than the accuracy of the uncompressed model. As shown
in Figure 22, when knowledge distillation is employed for fine-tuning, after 90 iterations,
the model’s accuracy reaches 97.41%, which is almost consistent with the accuracy of the
uncompressed model. The experimental results demonstrate that model compression can
effectively simplify the model while ensuring the accuracy of the workpiece-surface-qual-
ity online inspection model.

Figure 21. The training process of the model without using knowledge distillation.

Figure 20. Schematic representation of channel changes before and after pruning for each layer.

Electronics 2024, 13, 253 22 of 27

Table 5. Test results after model compression.

Parameters Original Model Channel Pruning Layer Pruning

Total parameters 63,953,841 1,107,904 1,080,754
Average accuracy mean (%) 97.50 95.14 95.14

Model size (M) 244 4.30 4.19
Inference time (s) 0.0305 0.0153 0.0147

After model compression, there is usually a decrease in accuracy, and it is necessary
to fine-tune the compressed model to restore its accuracy. This study employed both
knowledge distillation and non-knowledge distillation methods to train the compressed
surface-quality online inspection model. As shown in Figure 21, when the non-knowledge
distillation method is used, after 100 iterations, the model achieves an optimal accuracy of
96.05%, which is 1.29% lower than the accuracy of the uncompressed model. As shown
in Figure 22, when knowledge distillation is employed for fine-tuning, after 90 iterations,
the model’s accuracy reaches 97.41%, which is almost consistent with the accuracy of the
uncompressed model. The experimental results demonstrate that model compression can
effectively simplify the model while ensuring the accuracy of the workpiece-surface-quality
online inspection model.

Electronics 2024, 13, x FOR PEER REVIEW 22 of 27

Figure 20. Schematic representation of channel changes before and after pruning for each layer.

After model compression, there is usually a decrease in accuracy, and it is necessary
to fine-tune the compressed model to restore its accuracy. This study employed both
knowledge distillation and non-knowledge distillation methods to train the compressed
surface-quality online inspection model. As shown in Figure 21, when the non-knowledge
distillation method is used, after 100 iterations, the model achieves an optimal accuracy
of 96.05%, which is 1.29% lower than the accuracy of the uncompressed model. As shown
in Figure 22, when knowledge distillation is employed for fine-tuning, after 90 iterations,
the model’s accuracy reaches 97.41%, which is almost consistent with the accuracy of the
uncompressed model. The experimental results demonstrate that model compression can
effectively simplify the model while ensuring the accuracy of the workpiece-surface-qual-
ity online inspection model.

Figure 21. The training process of the model without using knowledge distillation. Figure 21. The training process of the model without using knowledge distillation.

Electronics 2024, 13, x FOR PEER REVIEW 23 of 27

Figure 22. The training process of the model using knowledge distillation method.

This study compared the fine-tuned compressed model with classic lightweight ob-
ject detection models such as MobileNetV1-SSD [35], MobileNetV2-SSD [36], YOLOV3-
Tiny [11], YOLOV4-Tiny [12], YOLOV5S [13,37], and YOLOV8S [14,38] on the test set, as
shown in Table 6. From the table, it is evident that the pruned surface quality online de-
tection model achieved relatively excellent performance compared to several other light-
weight deep learning models. It reached a detection accuracy of 97.41%, which is essen-
tially consistent with the YOLOV8S model’s accuracy. However, the model’s size reduced
by 80.51% compared to YOLOV8S, and its detection speed is superior to YOLOV8S. The
pruned surface-quality online detection model achieved a good balance between accuracy
and speed. Furthermore, due to the removal of a significant number of convolution chan-
nels, the model’s parameter count was greatly reduced. During the experiments, the
pruned model achieved an FPS of 47.8 when tested using the Jetson AGX Xavier develop-
ment kit with the validation test set images, enabling deployment in industrial scenarios
with limited hardware resources. The specific detection results for the product-surface-
quality online inspection model before and after improvement are presented in Figure 23.
It can be observed from Table 6 and Figure 24 that the improved product-surface-quality
online inspection model still maintains the same level of detection accuracy as the model
before improvement.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 22. The training process of the model using knowledge distillation method.

This study compared the fine-tuned compressed model with classic lightweight ob-
ject detection models such as MobileNetV1-SSD [35], MobileNetV2-SSD [36], YOLOV3-
Tiny [11], YOLOV4-Tiny [12], YOLOV5S [13,37], and YOLOV8S [14,38] on the test set, as

Electronics 2024, 13, 253 23 of 27

shown in Table 6. From the table, it is evident that the pruned surface quality online detec-
tion model achieved relatively excellent performance compared to several other lightweight
deep learning models. It reached a detection accuracy of 97.41%, which is essentially con-
sistent with the YOLOV8S model’s accuracy. However, the model’s size reduced by 80.51%
compared to YOLOV8S, and its detection speed is superior to YOLOV8S. The pruned
surface-quality online detection model achieved a good balance between accuracy and
speed. Furthermore, due to the removal of a significant number of convolution channels,
the model’s parameter count was greatly reduced. During the experiments, the pruned
model achieved an FPS of 47.8 when tested using the Jetson AGX Xavier development
kit with the validation test set images, enabling deployment in industrial scenarios with
limited hardware resources. The specific detection results for the product-surface-quality
online inspection model before and after improvement are presented in Figure 23. It can
be observed from Table 6 and Figure 24 that the improved product-surface-quality on-
line inspection model still maintains the same level of detection accuracy as the model
before improvement.

Table 6. Lightweight model performance statistics.

Parameters MobileNetV1-
SSD

MobileNetV2-
SSD

YOLOV3-
Tiny

YOLOV4-
Tiny YOLOV5S YOLOV8S Pruning

Model

AP(Dent) 34.77 78.33 81.37 93.65 97.37 98.85 98.82
AP(Crack) 61.63 62.79 82.23 95.24 97.45 98.63 98.35
AP(Glitch) 50 66.59 75.67 85.94 92.86 94.15 93.26

AP(Fracture) 73.5 74.64 91.65 96.13 96.84 98.97 99.21
mAP 54.98 70.59 82.73 92.74 96.13 97.65 97.41

Model size (MB) 18.5 52.6 34.7 23.1 14.1 21.5 4.19
FPS (2080Ti) 64.6 53.7 55.4 56.6 66.1 62.3 68.0

FPS (AGX Xavier) 42.3 29.6 30.6 33.8 44.5 38.4 47.8

Electronics 2024, 13, x FOR PEER REVIEW 23 of 27

Figure 22. The training process of the model using knowledge distillation method.

This study compared the fine-tuned compressed model with classic lightweight ob-
ject detection models such as MobileNetV1-SSD [35], MobileNetV2-SSD [36], YOLOV3-
Tiny [11], YOLOV4-Tiny [12], YOLOV5S [13,37], and YOLOV8S [14,38] on the test set, as
shown in Table 6. From the table, it is evident that the pruned surface quality online de-
tection model achieved relatively excellent performance compared to several other light-
weight deep learning models. It reached a detection accuracy of 97.41%, which is essen-
tially consistent with the YOLOV8S model’s accuracy. However, the model’s size reduced
by 80.51% compared to YOLOV8S, and its detection speed is superior to YOLOV8S. The
pruned surface-quality online detection model achieved a good balance between accuracy
and speed. Furthermore, due to the removal of a significant number of convolution chan-
nels, the model’s parameter count was greatly reduced. During the experiments, the
pruned model achieved an FPS of 47.8 when tested using the Jetson AGX Xavier develop-
ment kit with the validation test set images, enabling deployment in industrial scenarios
with limited hardware resources. The specific detection results for the product-surface-
quality online inspection model before and after improvement are presented in Figure 23.
It can be observed from Table 6 and Figure 24 that the improved product-surface-quality
online inspection model still maintains the same level of detection accuracy as the model
before improvement.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 23. The detection effect of online inspection model for product surface quality before and after
improvement, (a–d): the inspection results of the surface quality online detection mode; (e–h): the
inspection results of the compression-based surface-quality online detection model.

Electronics 2024, 13, 253 24 of 27

Electronics 2024, 13, x FOR PEER REVIEW 24 of 27

Figure 23. The detection effect of online inspection model for product surface quality before and
after improvement, (a–d): the inspection results of the surface quality online detection mode; (e–h):
the inspection results of the compression-based surface-quality online detection model.

Table 6. Lightweight model performance statistics.

Parameters MobileNetV1-
SSD

MobileNetV2-
SSD

YOLOV3-
Tiny

YOLOV4-
Tiny

YOLOV5S YOLOV8S Pruning
Model

AP(Dent) 34.77 78.33 81.37 93.65 97.37 98.85 98.82
AP(Crack) 61.63 62.79 82.23 95.24 97.45 98.63 98.35
AP(Glitch) 50 66.59 75.67 85.94 92.86 94.15 93.26

AP(Fracture) 73.5 74.64 91.65 96.13 96.84 98.97 99.21
mAP 54.98 70.59 82.73 92.74 96.13 97.65 97.41

Model size (MB) 18.5 52.6 34.7 23.1 14.1 21.5 4.19
FPS (2080Ti) 64.6 53.7 55.4 56.6 66.1 62.3 68.0

FPS (AGX Xavier) 42.3 29.6 30.6 33.8 44.5 38.4 47.8

Figure 24. Performance comparison chart of lightweight models.

4. Conclusions
This study primarily focused on constructing a rule-based digital twin model for the

surface quality inspection of in-process products. It proposed an improved product-sur-
face-quality online inspection model based on model compression, which is designed for
deployment on edge computing devices to identify and label minor defects on product
surfaces, thereby providing the foundation for building macro-level automated-manufac-
turing-process digital twin models. Firstly, in the preprocessing stage, the study intro-
duced the use of mosaic data augmentation methods to enhance the diversity of training
samples, improve the model’s robustness and generalization, and avoid overfitting. It also
employed the K-means++ clustering algorithm to generate anchor boxes, adapting to dif-
ferent defect sizes and selecting finer features earlier in the process. Secondly, it utilized
the CSP Darknet53 network and the SPP module to extract features from the input raw
images. Through training, it developed an online detection model tailored to workpiece-
surface-quality, thereby improving the accuracy of defect localization and recognition in
YOLOV4. Finally, the study integrated the concept of model compression by incorporat-
ing sparse training into the model using scaling factors in BN layers. It applied sparse
factors to the network, performed channel pruning and layer pruning on the sparse
model, and employed knowledge distillation methods. This approach effectively reduced

Figure 24. Performance comparison chart of lightweight models.

4. Conclusions

This study primarily focused on constructing a rule-based digital twin model for the
surface quality inspection of in-process products. It proposed an improved product-surface-
quality online inspection model based on model compression, which is designed for deploy-
ment on edge computing devices to identify and label minor defects on product surfaces,
thereby providing the foundation for building macro-level automated-manufacturing-
process digital twin models. Firstly, in the preprocessing stage, the study introduced the
use of mosaic data augmentation methods to enhance the diversity of training samples,
improve the model’s robustness and generalization, and avoid overfitting. It also employed
the K-means++ clustering algorithm to generate anchor boxes, adapting to different defect
sizes and selecting finer features earlier in the process. Secondly, it utilized the CSP Dark-
net53 network and the SPP module to extract features from the input raw images. Through
training, it developed an online detection model tailored to workpiece-surface-quality,
thereby improving the accuracy of defect localization and recognition in YOLOV4. Finally,
the study integrated the concept of model compression by incorporating sparse training
into the model using scaling factors in BN layers. It applied sparse factors to the net-
work, performed channel pruning and layer pruning on the sparse model, and employed
knowledge distillation methods. This approach effectively reduced the model’s size and for-
ward inference time while maintaining the model’s accuracy. It is beneficial for deploying
network models on edge computing devices with limited GPU and storage resources.

Experimental results demonstrated that the proposed method for improving deep
convolutional neural networks through model compression can compress the model size
from 244 M to 4.19 M, achieving a prediction accuracy of 97.41% and a detection speed
of 47.8 f/s (AGX Xavier test results). These results outperform similar deep learning
algorithms, making the method suitable for use in rule-based models for product-surface-
quality inspection via digital twins. This allows for an accurate representation and a
synchronous mapping of the current quality status of in-process products. The effectiveness
of this approach was validated through in-process product-surface-quality online inspection
on an aerospace product automated production line.

Based on this research, the following needs are identified for future research:

1. The study focused extensively on the combination of the YOLO network, model
compression, and knowledge distillation algorithms. With the continuous develop-
ment of object detection networks, future research will incorporate different attention
mechanisms to improve network models, achieving better detection performance and
lighter models.

Electronics 2024, 13, 253 25 of 27

2. The limited quantity of defect samples that the study could collect may be enhanced
in the future by considering effective data augmentation using generative adversarial
networks (GANs) on original samples. This approach generates new samples with
different characteristics from the original data but possessing similar features, thereby
enhancing the algorithm’s robustness.

3. The algorithm employed in the study belongs to supervised learning. Acquiring
a large volume of annotated data in industrial sectors is challenging and requires
substantial human resources. Therefore, focusing on how to apply unsupervised
learning techniques to practical defect detection tasks will be a key area of future
research direction.

Author Contributions: Conceptualization, Q.C.; methodology, Q.C. and Q.X.; software, Q.C.; valida-
tion, Q.C. and Q.X.; formal analysis, Q.C.; investigation, Q.C.; resources, Q.C. and Z.L.; data curation,
Q.C.; writing—original draft preparation, Q.C.; writing—review and editing, Q.C.; visualization,
Q.C.; supervision, H.H. and S.T.; project administration, Q.C. and H.H.; funding acquisition, Q.C.
and Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Open Fund Project supported by the Key Laboratory of
Advanced Manufacturing Technology Ministry of Education, China (Grant No. QJH KY [2022]377),
Guizhou Provincial Basic Research Program (Natural Science) (Grant No. Qiankehejichu-ZK [2023]
General 014), Growth Project for Young Scientific and Technological Talents in General Colleges and
Universities of Guizhou Province (Grant No. Qianjiaoji [2022]303), Introducing Talents to Initiate
Funded Research Projects of Guiyang University (Grant No. GYU-KY-[2024]), Guizhou Provincial
Department of Education Science and Technology Top Talent Program (Grant No. [2022]086), and
Guiyang City Science and Technology Plan Program (Grant No. [2023]48-18).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

CSP Cross Stage Partial
SPP Spatial Pyramid Pooling
BN Batch Normalization
HOG Histogram of Oriented Gradient
LBP Local Binary Pattern
SVM Support Vector Machine
RBF Radial Basis Function
CNN Convolutional Neural Networks
R-CNN Region-based Convolutional Neural Network
YOLO You Only Look Once
SSD Single Shot Multibox Detector
GA Genetic Algorithm
mAP Mean Average Precision
DR Defect Recognition
DSC Depthwise Separable Convolution
HPFRCCs High-performance Fiber-reinforced Cementitious Composites
CCD Charge Coupled Device
IoU Intersection over Union
FPN Feature Pyramid Network
PAN Path Aggregation Network
CBM Convolution Batch Normalization Mish
FPS Frames per Second

Electronics 2024, 13, 253 26 of 27

R Recall
TP True Positive
FN False Negative
PR Precision-Recall
AP Average Precision
GANs Generative Adversarial Networks

References
1. Tulbure, A.A.; Tulbure, A.A.; Dulf, E.H. A review on modern defect detection models using DCNNs–Deep convolutional neural

networks. J. Adv. Res. 2022, 35, 33–48. [CrossRef] [PubMed]
2. Chen, Y.; Ding, Y.; Zhao, F.; Zhang, E.; Wu, Z.; Shao, L. Surface defect detection methods for industrial products: A review. Appl.

Sci. 2021, 11, 7657. [CrossRef]
3. Ren, Z.; Fang, F.; Yan, N.; Wu, J. State of the art in defect detection based on machine vision. Int. J. Precis. Eng. Manuf.-Green

Technol. 2022, 9, 661–691. [CrossRef]
4. Liu, L.; Wang, C.; Zhao, S.; Li, H. Research on solar cells defect detection technology based on machine vision. J. Electron. Meas.

Instrum. 2018, 32, 47–52.
5. Song, W.; Zuo, D.; Deng, B.; Zhang, H. Corrosion defect detection of earthquake hammer for high voltage transmission line. Chin.

J. Sci. Instrum. 2016, 37, 113–117.
6. Ge, Q.; Fang, M.; Xu, J. Defect Detection of Industrial Products based on Improved Hough Transform. In Proceedings of the 2018

IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 832–836.
[CrossRef]

7. Ding, S.; Liu, Z.; Li, C. AdaBoost learning for fabric defect detection based on HOG and SVM. In Proceedings of the IEEE 2011
International Conference on Multimedia Technology, Hangzhou, China, 26–28 July 2011.

8. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

9. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

10. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

11. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
12. Bochkovskiy, A.; Wang, C.Y.; Liao HY, M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
13. Jocher, G.; Stoken, A.; Borovec, J.; Stan, C.; Changyu, L.; Rai, P.; Ferriday, R.; Sullivan, T.; Xinyu, W.; Ribeiro, Y.; et al. Ultralyt-

ics/yolov5: v3. 0; Zenodo: Zurich, Switzerland, 2020.
14. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection

framework for industrial applications. arXiv 2022, arXiv:2209.02976.
15. Wang, C.Y.; Bochkovskiy, A.; Liao HY, M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June
2023; pp. 7464–7475.

16. Contributors, M. YOLOv8 by MMYOLO. 2023. Available online: https://github.com/open-mmlab/mmyolo/tree/main/configs/
yolov8 (accessed on 13 May 2023).

17. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings
of the Computer Vision–ECCV 2016: 14th European Conference, Part I 14, Amsterdam, The Netherlands, 11–14 October 2016;
Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 21–37.

18. Chen, M.; Yu, L.; Zhi, C.; Sun, R.; Zhu, S.; Gao, Z.; Ke, Z.; Zhu, M.; Zhang, Y. Improved faster R-CNN for fabric defect detection
based on Gabor filter with Genetic Algorithm optimization. Comput. Ind. 2022, 134, 103551. [CrossRef]

19. Duan, L.; Yang, K.; Ruan, L. Research on automatic recognition of casting defects based on deep learning. IEEE Access 2020, 9,
12209–12216. [CrossRef]

20. Zhou, Z.; Zhang, J.; Gong, C. Automatic detection method of tunnel lining multi-defects via an enhanced You Only Look Once
network. Comput. Aided Civ. Infrastruct. Eng. 2022, 37, 762–780. [CrossRef]

21. Li, Y.; Huang, H.; Xie, Q.; Yao, L.; Chen, Q. Research on a surface defect detection algorithm based on MobileNet-SSD. Appl. Sci.
2018, 8, 1678. [CrossRef]

22. Guo, P.; Meng, W.; Bao, Y. Automatic identification and quantification of dense microcracks in high-performance fiber-reinforced
cementitious composites through deep learning-based computer vision. Cem. Concr. Res. 2021, 148, 106532. [CrossRef]

23. Wu, D.; Lv, S.; Jiang, M.; Song, H. Using channel pruning-based YOLOv4 deep learning algorithm for the real-time and accurate
detection of apple flowers in natural environments. Comput. Electron. Agric. 2020, 178, 105742. [CrossRef]

24. Geng, L.; Niu, B. A Survey of Deep Neural Network Model Compression. J. Front. Comput. Sci. Technol. 2020, 14, 1441–1455.
25. Tan, X.; Wang, Z. Ping pong ball recognition using an improved algorithm based on YOLOv4. Technol. Innov. Appl. 2020, 27,

74–76.

https://doi.org/10.1016/j.jare.2021.03.015
https://www.ncbi.nlm.nih.gov/pubmed/35024194
https://doi.org/10.3390/app11167657
https://doi.org/10.1007/s40684-021-00343-6
https://doi.org/10.1109/ICMA.2018.8484328
https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov8
https://github.com/open-mmlab/mmyolo/tree/main/configs/yolov8
https://doi.org/10.1016/j.compind.2021.103551
https://doi.org/10.1109/ACCESS.2020.3048432
https://doi.org/10.1111/mice.12836
https://doi.org/10.3390/app8091678
https://doi.org/10.1016/j.cemconres.2021.106532
https://doi.org/10.1016/j.compag.2020.105742

Electronics 2024, 13, 253 27 of 27

26. Zhou, J.; Jing, J.; Zhang, H.; Wanh, Z.; Huang, H. Real-time fabric defect detection algorithm based on S-YOLOV3 model. Laser
Optoelectron. Prog. 2020, 57, 55–63.

27. Zhang, Y.; Wu, J.; Ma, Z.; Cao, X.; Guo, W. Compression and implementation of neural network model base on YOLOv3.
Micro/Nano Electron. Intell. Manuf. 2020, 178, 105742.

28. Bai, S. Research on Traffic Signs Detection and Recognition Algorithm Base on Deep Learning. Ph.D. Thesis, Changchun
University of Technology, Changchun, China, 2020; p. 159.

29. Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning efficient convolutional networks through network slimming. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 736–2744.

30. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
31. Chen, G.; Choi, W.; Yu, X.; Han, T.; Chandraker, M. Learning efficient object detection models with knowledge distillation. Adv.

Neural Inf. Process. Syst. 2017, 30, 1–10.
32. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning—PMLR, Lille, France, 6–11 July 2015; pp. 448–456.
33. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE 32nd Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.
34. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P. Microsoft coco: Common objects in context. In

Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Part V 13, Zurich, Switzerland, 6–12 September
2014; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 740–755.

35. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

36. Howard, A.; Zhmoginov, A.; Chen, L.C.; Sandler, M.; Zhu, M. Inverted residuals and linear bottlenecks: Mobile networks for
classification, detection and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Salt Lake City, UT, USA, 18–23 June 2018.

37. Guo, P.; Meng, X.; Meng, W.; Bao, Y. Monitoring and automatic characterization of cracks in strain-hardening cementitious
composite (SHCC) through intelligent interpretation of photos. Compos. Part B Eng. 2022, 242, 110096. [CrossRef]

38. Li, Y.; Fan, Q.; Huang, H.; Han, Z.; Gu, Q. A Modified YOLOv8 Detection Network for UAV Aerial Image Recognition. Drones
2023, 7, 304. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.compositesb.2022.110096
https://doi.org/10.3390/drones7050304

	Introduction
	Pre-Treatment and Methods
	Sample Pre-Treatment
	Data Augmentation Methods
	Bounding Box Generation Methods

	Using Model Compression-Based YOLOv4 Deep Learning Algorithm for the Online Detection of Tiny Surface Defects on Workpieces
	Overall Technical Route
	Construction of a Workpiece’s Tiny-Surface-Defect Online Detection Model Based on YOLOv4
	Pruning of the YOLOv4 Workpiece’s Tiny-Surface-Defect Online Detection Model Based on Model Compression Algorithm
	Compression and Post-Processing of the YOLOv4 Workpiece’s Tiny-Surface-Defect Online Detection Model Based on Knowledge Transfer Algorithm

	Evaluation of the Model Performance

	Results and Analysis
	Comparison of Different Object Detection Algorithms
	Comparison of the Proposed Method with Previous Studies

	Conclusions
	References

