
Citation: Chen, X.; Fan, H.; Chen, W.;

Zhang, Y.; Zhu, D.; Song, S.

Explaining a Logic Dendritic Neuron

Model by Using the Morphology of

Decision Trees. Electronics 2024, 13,

3911. https://doi.org/10.3390/

electronics13193911

Academic Editors: Alberto Fernandez

Hilario and Aryya Gangopadhyay

Received: 2 September 2024

Revised: 20 September 2024

Accepted: 30 September 2024

Published: 3 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Explaining a Logic Dendritic Neuron Model by Using the
Morphology of Decision Trees
Xingqian Chen 1 , Honghui Fan 1, Wenhe Chen 1,2 , Yaoxin Zhang 1, Dingkun Zhu 1 and Shuangbao Song 3,*

1 School of Computer Engineering, Jiangsu University of Technology, Changzhou 213001, China;
xingzai@jsut.edu.cn (X.C.); fanhonghui@jsut.edu.cn (H.F.); chenwh@jsut.edu.cn (W.C.);
zyx_ysh@jsut.edu.cn (Y.Z.); zhudingkun@jsut.edu.cn (D.Z.)

2 Shanghai Huace Navigation Technology Co., Ltd., Shanghai 201700, China
3 School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
* Correspondence: leadingsong@cczu.edu.cn

Abstract: The development of explainable machine learning methods is attracting increasing attention.
Dendritic neuron models have emerged as powerful machine learning methods in recent years.
However, providing explainability to a dendritic neuron model has not been explored. In this
study, we propose a logic dendritic neuron model (LDNM) and discuss its characteristics. Then,
we use a tree-based model called the morphology of decision trees (MDT) to approximate LDNM
to gain its explainability. Specifically, a trained LDNM is simplified by a proprietary structure
pruning mechanism. Then, the pruned LDNM is further transformed into an MDT, which is easy to
understand, to gain explainability. Finally, six benchmark classification problems are used to verify
the effectiveness of the structure pruning and MDT transformation. The experimental results show
that MDT can provide competitive classification accuracy compared with LDNM, and the concise
structure of MDT can provide insight into how the classification results are concluded by LDNM.
This paper provides a global surrogate explanation approach for LDNM.

Keywords: explainable artificial intelligence; dendritic neuron model; decision tree; global explanation
approach; explainable machine learning

1. Introduction

With the rapid development of artificial intelligence (AI) in recent years, machine
learning (ML), a subset of AI, has been widely used in many fields of society [1–3]. However,
some scientists and regulators have a cautious attitude toward the ML technique when
it is applied in sensitive domains [4–7], such as law, finance, and health care [8], because
numerous ML models can provide accurate predictions but lose explainability; thus, the
inner workings and predictions of these ML models are not understandable for humans [9].
Hence, research concerning the explainability of ML has attracted great attention from
researchers in recent years [10].

The ML model, whose intrinsic architecture can provide human-comprehensible expla-
nations, is considered an interpretable (or transparent) model [11]. The typical interpretable
models include linear models, decision trees, and k-nearest neighbors (KNN). However,
numerous ML models, such as random forest, support vector machine (SVM), and mul-
tilayer neural networks, are considered black box (or opaque) models because they are
not “interpretable by nature” [12]. Numerous methods have been proposed to provide
explainability to black box models in the literature. These methods can be classified into
the following two categories [6,12]: global explanation approaches and local explanation
approaches. Global explanation approaches aim to provide insight into the whole logic of
a black box model. A representative global explanation approach is partial dependence
plots [13]. Local explanation approaches, such as Anchors [14], attempt to explain how the
prediction is made by a black box model based on a specific instance and its neighbors [15].
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Moreover, these two categories of explanation approaches can be further subdivided into
two classes according to whether surrogate models are used. Thus, a surrogate model,
which is much easier to interpret, approximates the black box model to provide explainabil-
ity. Currently, inTrees [16] is considered a popular global surrogate explanation approach.
LIME [17] and SHAP [18,19] are considered the most popular approaches among local
surrogate explanation approaches.

Decision trees belong to a category of interpretable models because they construct
tree-like structures that can be directly explained to gain explainability. Several explanation
approaches employing decision trees as the core techniques have been proposed in recent
years. For example, Zilke et al. proposed an approach called DeepRED to extract rules
from deep neural networks [20]. The rules created by C4.5 decision trees for hidden layers
are used to explain the whole network. Wu et al. trained a neural network model with
novel tree regularization [21]. Decision trees are used to approximate the neural network
model for interpretability. Deng proposed an explanation approach called inTrees to gain
the explainability of tree ensembles [16]. This approach can extract key rules from a
tree ensemble and calculate frequent variable interactions. Lundberg et al. proposed an
explanation approach called TreeExplainer for explaining tree-based ML models [22]. The
novelty of this approach is interpreting global model structure by combining numerous
local explanations. These studies indicate that tree-based methods can serve as promising
alternatives for solving the black box model explanation problem.

A neuron is the fundamental unit of the brain and consists of the following three
components: dendrites, a cell body, and an axon. McCulloch and Pitts were the pioneers
who first proposed an artificial neuron model in 1943 [23]. Subsequently, Rosenblatt
improved the McCulloch–Pitts neuron and invented the perceptron [24]. These models
laid a foundation for research involving artificial neural networks but are considered
simplistic because they can solve linearly separable problems but are unable to solve
nonlinear separable problems, such as the XOR problem [25]. Subsequently, scientists
confirmed the importance of dendritic branches in neuron computational power [25,26].
Consequently, numerous neuron models involving the nonlinear mechanisms of dendrites
have been proposed in the literature [27–31]. Moreover, synaptic pruning and dendritic
pruning are considered two important mechanisms for learning [32,33]. Incorporating
these relevant mechanisms into artificial neuron models is considered a promising way to
improve their performance.

In recent years, researchers have paid continuous attention to developing and im-
proving artificial neuron models with dendrite morphology. For example, Sossa et al.
proposed a dendrite morphological neural network with an efficient training algorithm [34].
Gómez-Flores et al. incorporated smooth maximum and minimum functions into a dendrite
morphological neuron model to generate smooth decision boundaries [35]. Luo et al. pro-
posed a decision tree-based method to properly initialize the synaptic weights of a dendritic
neuron model [36]. Bicknell et al. developed a pyramidal neuron model and a synaptic
learning rule to investigate the nonlinear computations performed in dendrites [37]. In our
previous studies, we proposed a series of dendritic neuron models to address several practi-
cal problems [38–42]. These studies indicate that a single neuron with dendrite morphology
can perform network-level computations in various ML tasks. However, notably, these
dendritic neuron models serve as black box models when applied to ML problems. Similar
to many sophisticated ML models, dendritic neuron models can make accurate predictions
but provide limited explainability. Although research concerning the explainability of ML
has become an important issue in the field of artificial intelligence [10,12,43], to the best of
the knowledge of the authors, providing explainability to a dendritic neuron model has not
yet been well explored.

In this study, we attempt to provide explainability to the proposed logic dendritic
neuron model (LDNM) by using a tree-based model called the morphology of decision
trees (MDT). We first review the definition of LDNM. Then, a structure pruning mechanism
based on the characteristics of LDNM is proposed to simplify the structure of a trained
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LDNM. Next, we propose a method to transform a pruned LDNM into an MDT, which can
provide explainability to LDNM. Finally, six benchmark classification problems are used to
verify the classification performance of LDNM, the effectiveness of the structure pruning,
and the MDT transformation. The contribution of this paper is threefold. First, we propose
a method to transform a pruned LDNM into an MDT. To the best of the knowledge of the
authors, this transformation method has not been explored. Second, a global surrogate
explanation approach is proposed for LDNM. Third, the effectiveness of the explanation
approach is experimentally investigated.

The remainder of this paper is organized as follows. Section 2 presents the definition
of the proposed LDNM and a description of the classification and regression tree (CART).
Section 3 presents the learning method, structure pruning method, and MDT transforma-
tion method of LDNM. The experimental studies are provided in Section 4. Finally, the
conclusion of this study is provided in Section 5.

2. Materials

In this section, we introduce two important concepts: LDNM and CART.

2.1. LDNM Formulation

A biological neuron is composed of the following three typical components: a cell
body, dendrites, and a single axon. LDNM is composed of the following four components:
synaptic layers, dendrite layers, a membrane layer, and a cell body. Figure 1 shows the
architecture of the LDNM, and the four components are defined in the following.

...

...

x1 x2 x3 xn

Cell body

Yn,m

OV

Z1

Z2

Z3

Zm

Figure 1. The architecture of LDNM.

Synaptic layer: The synaptic layers receive nerve signals from presynaptic neurons.
A synapse connects a synaptic input with a dendritic branch, and a logistic function is
employed to formulate this connection. The output Yi,j of the ith (i = 1, 2, ..., n) synaptic
input located on the jth (j = 1, 2, ..., m) dendrite branch is expressed as follows:

Yi,j =
1

1 + e−k(wi,jxi−qi,j)
(1)

where k is a positive parameter. xi is the ith (i = 1, 2, ..., n) synaptic input and ranges from
0 to 1. wi,j and qi,j are the weights of a synapse and need to be adjusted by a learning
algorithm. In addition, all wi,j and qi,j are randomly initialized in [−1.5, 1.5] before training
the LDNM.
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Dendritic layer: These are multiplicative operations believed to exist on the dendrite
tree of a biological neuron [44]. This operation can be considered a logical AND operation
in the binary case. In the proposed LDNM, the jth dendritic layer is expressed as follows:

Zj =
n

∏
i=1

Yi,j (2)

where Zj represents the output of the jth dendritic layer.
Membrane layer: The membrane layer processes the signals conveyed from all den-

dritic branches. A summation operation is employed to imitate the calculation performed
in the membrane layer. This operation can be considered a logical OR operation when the
dendritic signals are binary. The output of membrane layer V can be calculated as follows:

V =
m

∑
j=1

Zj (3)

Cell body: The cell body is enclosed by its membrane. The cell body receives signals
from the membrane and transports the processed signals up the axon. A logistic function is
employed to simulate the information processing of the cell body as follows:

O =
1

1 + e−c(V−γ)
(4)

where c is a constant parameter. γ is the threshold used for the classification task. O is the
actual output of the cell body.

2.2. Classification and Regression Tree

Decision tree is a popular ML method that uses a tree-like structure to build a learning
model. CART [45] is a typical decision tree model that constructs a binary tree for classi-
fication and regression tasks. There are two types of nodes in CART. Each internal node
stores an integer d to label the tested feature and a threshold value φ. Each leaf node stores
a variable p to represent a class label (for the classification task) or a real number (for the
regression task). CART makes a prediction by executing a top-down search from root to
leaf. In each internal node, if xd ≤ φ, the left child tree is further explored; otherwise, the
right child tree is further explored. Figure 2 shows an example of CART for solving the
XOR problem.

x1≤0.5 ?

p=0

x2≤0.5 ?
Yes                       No

x2≤0.5 ?

p=1 p=1 p=0
Yes              No Yes              No

x1 x2 x1 XOR x2
0 0 0
0 1 1
1 0 1
1 1 0

XOR problem

(a)                                                         (b)

Figure 2. An example of CART for solving the XOR problem. (a) Inputs and outputs of the XOR
problem. (b) Desired solution for the XOR problem by using CART.

A trained CART can be translated into a set of decision rules. A decision rule is a
decision path (starting from the root node to a leaf node) and has the following form:

IF(condition1 AND condition2 AND...) THEN outcome;
where the condition corresponds to the internal node, and the outcome corresponds to the
leaf node. For example, the CART shown in Figure 2 can be translated into the following
decision rules:
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IF(x1 <= 0.5 AND x2 <= 0.5) THEN p = 0;
IF(x1 <= 0.5 AND x2 > 0.5) THEN p = 1;
IF(x1 > 0.5 AND x2 <= 0.5) THEN p = 1;
IF(x1 > 0.5 AND x2 > 0.5) THEN p = 0;
Moreover, for binary classification, the aforementioned IF-THEN statements with

p = 0 can be merged into an ELSE statement.
The decision tree method is considered simpler and more interpretable than other

ML methods because the workflow of decision trees is very similar to human decision
behaviors. A trained decision tree can easily be visualized and understood.

3. Methodology

In this section, we provide the details of the proposed approach.

3.1. Learning Method

Since the proposed LDNM is a feedforward neural network, the backpropagation (BP)
algorithm is employed as the learning method [39]. Given the training data with P samples,
the error function of LDNM in the pth training sample is defined as follows:

Ep =
1
2
(Tp − Op)

2 (5)

Tp is the target output in the pth training sample, and Op is the actual output of LDNM. At
each training epoch, the synaptic weights wi,j and qi,j are adjusted based on the gradient
descent method as follows:

wi,j = wi,j − η
P

∑
p=1

∂Ep

∂wi,j
(6)

qi,j = qi,j − η
P

∑
p=1

∂Ep

∂qi,j
(7)

where η is the learning rate.

3.2. Structure Pruning

Synaptic pruning is observed in the human brain, where many axons and dendrites
are eliminated during youth in humans. Neural network pruning increases the efficiency
of a trained neural network by removing redundant weights. A trained LDNM can also
be pruned by specific mechanisms. The main idea of the specific mechanisms is that the
synapses contributing minimally to the output of the trained LDNM can be removed.
Thus, determining the unimportant synapses in a trained LDNM is the key issue in
pruning LDNM.

Equation (1) describes the relation between the synaptic input xi and the output Yi,j,
namely, the connection state. Obviously, the connection state is uniquely determined by
the synaptic weights wi,j and qi,j. According to the values of wi,j and qi,j, a synapse in
the trained LDNM stays in one state among the following four types of connection states:
direct connection, inverse connection, constant 1 connection, and constant 0 connection.
Four types of symbols are used to represent these connection states, as shown in Figure 3.
Figure 4 shows how the synaptic weights wi,j and qi,j determine the connection state of
a trained synapse. A parameter θi,j = qi,j/wi,j is defined as the threshold of the trained
synapse. Obviously, θi,j is the midpoint of the modified logistic function (Equation (1))
on the horizontal axis as shown in Figure 4. The four connection states are explained
as follows.

State 1.1: wi,j > 0, qi,j < 0 < wi,j; for example, wi,j = 1, qi,j = −0.5, and θi,j = −0.5 as
shown in Figure 4a. This state is a constant 1 connection because the output is almost 1
whenever xi ranges in [0, 1].
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State 1.2: wi,j < 0, qi,j < wi,j < 0; for example, wi,j = −1, qi,j = −1.5, and θi,j = 1.5 as
shown in Figure 4d. This state is also a constant 1 connection for the abovementioned reason.

State 2: wi,j > 0, 0 < qi,j < wi,j; for example, wi,j = 1, qi,j = 0.5, and θi,j = 0.5 as
shown in Figure 4b. This state is a direct connection because a larger input xi leads to a
larger output Yi,j.

State 3: wi,j < 0, wi,j < qi,j < 0; for example, wi,j = −1, qi,j = −0.5, and θi,j = 0.5 as
shown in Figure 4e. This state is an inverse connection because a larger input xi leads to a
smaller output Yi,j.

State 4.1: wi,j > 0, 0 < wi,j < qi,j; for example, wi,j = 1, qi,j = 1.5, and θi,j = 1.5 as
shown in Figure 4c. This state is a constant 0 connection because the output is almost 0
whenever xi ranges in [0, 1].

State 4.2: wi,j < 0, wi,j < 0 < qi,j; for example, wi,j = −1, qi,j = 0.5, and θi,j = −0.5 as
shown in Figure 4f. This state is also a constant 0 connection for the abovementioned reason.

After training

Random
connection

Direct
connection

Inverse
connection

Constant 1
connection

Constant 0
connection

1 0

Figure 3. A synapse in a trained LDNM stays in one state among the following four types of connec-
tion states: direct connection, inverse connection, constant 1 connection, and constant 0 connection.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

xi

0.0

0.5

1.0

Y
i,
j

θi,j

(a) Constant 1 connection

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

xi

0.0

0.5

1.0

Y
i,
j

θi,j

(d) Constant 1 connection

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

xi

0.0

0.5

1.0

Y
i,
j

θi,j

(b) Direct connection

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

xi

0.0

0.5

1.0

Y
i,
j

θi,j

(e) Inverse connection

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

xi

0.0

0.5

1.0

Y
i,
j

θi,j

(c) Constant 0 connection

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

xi

0.0

0.5

1.0

Y
i,
j

θi,j

(f) Constant 0 connection

Figure 4. Four connection states are determined by the synaptic weights wi,j and qi,j. Notably, a
parameter θi,j = qi,j/wi,j is defined as the threshold of the trained synapse, and xi ranges from 0 to 1.

After training, all synapses in an LDNM stay in one state of the four connection
states. As described in Section 2.1, the multiplicative operations in the dendritic layers
are considered logical AND operations in the binary case. Since the dendritic input of the
constant 1 connection and the constant 0 connection are always 1 and 0, respectively, these
two types of connection states can play special roles in the output of a trained LDNM. As a
result, two pruning mechanisms can be performed in a trained LDNM.
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Synaptic pruning: Given a synapse in a constant 1 state and a dendritic layer connected
to this synapse, the synaptic output Yi,j = 1 has no effect on the output of dendritic layer
Zj because of the Boolean operation “x AND 1 = x”. Therefore, this synapse in constant 1 is
redundant and can be removed from the trained LDNM. Figure 5a shows how the synaptic
pruning operation functions.

(a) Synaptic pruning                                (b) Dendritic pruning

1 0

Figure 5. Two examples showing how synaptic pruning and dendritic pruning are performed in
trained LDNMs.

Dendritic pruning: Given a synapse in a constant 0 state and a dendritic layer con-
nected to this synapse, the synaptic output Yi,j = 0 leads dendritic layer Zj to always
output 0 because of the Boolean operation “x AND 0 = 0”. Moreover, the dendritic layer
with Zj = 0 has no effect on the output of the membrane layer because of the logical OR
operation in the membrane layer. As a result, this dendritic layer is redundant and can be
removed from the trained LDNM. Figure 5b shows how the dendritic pruning operation
functions.

After synaptic pruning and dendritic pruning, all synapses in the constant 1 connection
state and the constant 0 connection state and the redundant dendritic layers are removed
from a trained LDNM. In addition, the structure of the pruned LDNM is much simpler
than that of the original LDNM.

3.3. Transformation into a Morphology of Decision Trees

The logistic function and the step function are two common activation functions used
in artificial neural networks [46]. The logistic function has the following form:

f (x) =
1

1 + e−k′(x−µ)
(8)

where µ is the midpoint of the logistic function. k′ (k′ > 0) determines the steepness of the
curve as shown in Figure 6a. The step function is defined as follows:

H(x) =

{
0 , x ≤ µ

1 , x > µ
(9)

where µ is the threshold of the step function as shown in Figure 6b. The step function can be
considered a smooth approximation of the logistic function if k′ approaches positive infinity,
suggesting that these two functions are interchangeable in some cases. In fact, the step
function serves as the activation function in early artificial neural networks (ANNs), such
as the McCulloch–Pitts neuron, where the aggregation of the weighted input is compared
with a predefined threshold. Since the logistic functions are monotonic and derivable,
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they fit the gradient-based training method and have become more popular in the field
of ANNs.

−4 −2 0 2 4

x

0.00

0.25

0.50

0.75

1.00

f
(x
)

µ = 0

k′ = 1

k′ = 2

k′ = 10

(a) Logistic function

−4 −2 0 2 4

x

0.00

0.25

0.50

0.75

1.00

H
(x
)

µ = 0

(b) Step function

Figure 6. Curves of the logistic function and the step function. The step function can be considered a
smooth approximation of the logistic function if k′ approaches positive infinity.

As shown in Equation (1), a modified logistic function is used to model the synaptic
layer. After synaptic pruning and dendritic pruning, only direct connections and inverse
connections remain in the pruned LDNM. The discussion above suggests that the step
function can serve as a substitute for modified logistic functions. For simplicity, the direct
connection (Figure 4b) can be replaced with the following step function:

Yi,j =

{
0 , xi ≤ θi,j

1 , xi > θi,j
(10)

The inverse connection (Figure 4e) can be replaced with the following step function:

Yi,j =

{
1 , xi ≤ θi,j

0 , xi > θi,j
(11)

How a pruned LDNM outputs 1 is analyzed in the following. According to Equa-
tion (4), the membrane layer output V = 1 leads to the cell body outputting O = 1 in the
binary case, and vice versa. Moreover, since the membrane layer performs a logical OR
operation, the membrane layer outputs V = 1, while at least one dendritic layer outputs
Zj = 1. Furthermore, all synapses in the constant 1 connection state and the constant 0
connection state and the redundant dendritic layers are removed, and only the synapses
in the direct connection state and inverse connection state exist on the dendritic branches.
Since the dendritic layers perform a logical AND operation, a dendritic layer outputs
Zj = 1, while all synapses are in the direct connection state and the inverse connection
output Yi,j = 1. Considering that the synapses in the direct connection state and inverse
connection state have the form of a step function (Equations (10) and (11)), the synaptic
layer output Yi,j is determined by the comparison between the feature xi and the threshold
θi,j. Therefore, the pruned LDNM can be expressed as a set of decision rules consisting of
comparing, AND, and OR logistic operations.

Given the example of a pruned LDNM shown in Figure 7a, based on the aforemen-
tioned analysis, the structure of the pruned LDNM can be translated as a set of decision
rules as follows:

IF(x1 > θ1,1 AND x3 <= θ3,1) THEN p = 1;
IF(x1 <= θ1,2 AND x2 > θ2,2) THEN p = 1;
ELSE p = 0;
It is obvious that this set of decision rules is similar to a set of decision rules of CART.

For simplicity, each IF-THEN statement (corresponding to a dendritic branch) is combined
with an ELSE p = 0 statement to construct an equivalent CART. As a result, two CARTs are
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constructed, and these CARTs have a parallel relation. Finally, a morphology of decision
trees (MDT) is generated based on the pruned LDNM as shown in Figure 7b. The prediction
of MDT is achieved by performing the logistic OR operation based on the prediction of all
individual CARTs.

x1 x2 x3
x1≤θ1,1 ?

p=0 x3≤θ3,1 ?θ1,1 θ3.1 

θ1,2 θ2,2 
p=1 p=0

x1≤θ1,2 ?

p=0x2≤θ2,2 ?

p=1p=0

OR

Yes                    No Yes                    No

Yes                 No Yes                 No

(a) A pruned LDNM                                     (b) Its corresponding MDT

Figure 7. An example of transforming a pruned LDNM into the MDT.

4. Experimental Studies

In this section, we present experimental studies to evaluate the performance of the
proposed approach.

4.1. Experimental Setup

All algorithms used in this study are implemented in Python and C language. The
experiments are conducted on a Linux system with a Core-i5 CPU and 16 GB RAM.
According to our previous studies [39], the parameters of LDNM are set as follows: the
number of dendritic branches m = 2n (n is the number of synaptic inputs), the positive
parameter k = 5, the constant parameter c = 5, and the threshold γ = 0.5. The parameters
of the learning method of LDNM are set as follows: the learning rate η = 0.01, and the
maximum number of epochs is set to 2000.

Six classification datasets, which can be accessed in the UCI Machine Learning Reposi-
tory, are used as benchmark problems to evaluate the effectiveness of LDNM and other
classifiers. These six datasets are iris, blood transfusion service center, glass identification,
origin of wines, heart disease, and heart failure clinical records. In addition, all datasets are
processed as binary classification problems. All features of each dataset are normalized in
[0, 1] to fit the input of LDNM. More details of these datasets are presented in Table 1.

Table 1. Details of the six benchmark datasets.

Dataset Number of Number of Number of
Samples Features Classes

Iris 150 4 2
Transfusion 748 4 2
Glass 214 9 2
Wine 178 13 2
Heart 270 13 2
HeartFailure 299 12 2

In the experiments, the stratified 5-fold cross-validation is conducted six times using
each dataset to evaluate a classifier. Specifically, in a 5-fold cross-validation, the samples of
a given dataset are randomly divided into five equal-sized groups. Four groups of samples
are used to train the classifier, and the other group of samples is used as test data. Then,
the cross-validation process is repeated five times in sequence. Finally, the experiments of
training and testing a classifier in a benchmark problem are performed a total of 30 times.
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4.2. Verifying the Classification Performance of LDNM

First of all, we confirm whether LDNM can serve as an effective ML model. To verify
the classification performance of LDNM, we compare it with seven common classifiers.
These classifiers include SVM, KNN, multilayer perceptron (MLP), naive Bayes (NB) classi-
fier, decision tree, random forest, and AdaBoost. These classifiers are implemented using
the ML library scikit-learn [47]. Their parameters are set according to the recommendation
of scikit-learn and are presented in Table 2. For each classifier, the prepared datasets for the
six classification problems are successively implemented 30 times as described above. The
classification accuracies of LDNM and the seven classifiers are summarized in Table 3.

Table 2. Parameter settings of the seven classifiers.

Classifier Key Parameters Setting

SVM Kernel Radial basis function
Regularization parameter 1.0

KNN Number of neighbors 5

MLP Size of the hidden layer 100
Learning method Adam

NB Assumption for features Gaussian distribution

Decision tree Maximum depth 5

Random forest Number of trees 10
Maximum depth of each tree 3

AdaBoost Number of estimators 50
Base estimator Decision tree

Table 3. Comparing the classification accuracies (%) of the eight classifiers.

Datasets KNN SVM Decision Tree Random Forest MLP NB AdaBoost LDNM

Iris 95.56 ± 2.90 67.22 ± 1.51 94.44 ± 3.88 92.33 ± 4.73 72.11 ± 11.17 91.67 ± 4.28 93.78 ± 3.92 95.56 ± 3.26
Transfusion 77.25 ± 2.62 76.20 ± 0.25 77.18 ± 2.64 76.38 ± 0.61 77.05 ± 1.38 75.06 ± 2.01 78.12 ± 2.25 79.36 ± 1.97
Glass 92.91 ± 3.72 91.12 ± 3.43 94.40 ± 3.32 90.03 ± 3.96 92.29 ± 3.66 90.58 ± 3.20 94.54 ± 3.59 93.29 ± 3.72
Wine 95.79 ± 3.32 97.74 ± 1.70 91.83 ± 4.94 92.14 ± 3.79 97.56 ± 1.90 95.58 ± 3.09 96.61 ± 3.22 94.82 ± 4.24
Heart 80.25 ± 5.16 83.46 ± 4.38 76.79 ± 6.36 79.01 ± 5.35 84.14 ± 4.87 84.69 ± 4.78 79.38 ± 5.28 81.73 ± 5.51
HeartFailure 68.39 ± 4.17 71.57 ± 1.87 79.54 ± 4.49 72.80 ± 2.90 82.44 ± 4.06 76.47 ± 3.68 80.66 ± 4.09 83.95 ± 4.27

According to Table 3, KNN, SVM, NB, AdaBoost, and LDNM exhibit the best perfor-
mance in one, one, one, one, and two classification problems, respectively. Decision tree,
random forest, and MLP do not yield the best results in any classification problem. It is
obvious that the proposed LDNM is considered a very effective classifier for solving these
classification problems with respect to the number of best performances. Moreover, the
Friedman test is used to quantitatively compare these classifiers. The Friedman test ranks
the eight classifiers according to their performance and provides the statistical significance.
A smaller ranking value represents better performance by a classifier. The statistical results
obtained by the Friedman test are presented in Table 4. According to Table 4, LDNM is
considered to exhibit the best performance in six classification problems because it obtains
the smallest ranking value of 2.67. In addition, the p-values of each classifier are provided
in Table 4. To avoid a Type I error [48], a post hoc method, i.e., Holm’s procedure, is used to
adjust the p-values to pHolm values. As shown in Table 4, the pHolm value of random forest
is smaller than the significance level (0.05). This finding suggests that the performance of
LDNM is significantly better than that of random forest in the six classification problems.
However, the pHolm values of SVM, NB, decision tree, KNN, MLP, and AdaBoost are larger
than 0.05. Thus, LDNM is not significantly superior to these six classifiers. Overall, the
comparison result suggests that the proposed LDNM can achieve very competitive perfor-
mance compared to these classic classifiers. LDNM can be considered an effective classifier
in terms of classification accuracy.
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Table 4. Friedman test ranks the eight classifiers according to their classification performance (in
Table 3).

Classifier Ranking p pHolm

Random forest 6.50 0.006717 0.047017
SVM 5.33 0.059346 0.356079
NB 5.33 0.059346 0.356079
Decision tree 4.83 0.125506 0.502026
KNN 4.33 0.238593 0.715778
MLP 3.83 0.409395 0.818791
AdaBoost 3.17 0.723674 0.818791
LDNM 2.67 - -

4.3. Investigating the Effectiveness of Structure Pruning and MDT Transformation

The effectiveness of the structure pruning and the MDT transformation is verified
in this subsection. For each benchmark problem, the LDNM is applied to the training
datasets 30 times as described above. Then, the performance of the trained LDNMs, the
corresponding pruned LDNMs and the corresponding MDTs is verified in the same test
datasets. The classification accuracies of the three classifiers are presented in Table 5. It
is obvious that compared with the trained LDNM, the degradation of the classification
capability of the pruned LDNM is less than 1%, except for two problems (i.e., Heart
and HeartFailure). Moreover, compared with the trained LDNM, the degradation of the
classification capability of the MDT is commonly less than 3%. This finding indicates that
the structure pruning and the MDT transformation are considered effective because the
classification accuracy is not greatly sacrificed. Moreover, we analyze the precision and
recall scores of the three classifiers. As shown in Tables 6 and 7, the precision scores of
the pruned LDNM and MDT are lower than those of the trained LDNM in most cases.
However, the recall scores of the pruned LDNM and MDT are higher than those of the
trained LDNM in most cases. This finding indicates that structure pruning and MDT
transformation improve the ability to detect positives but sacrifice the ability to predict true
positives accurately.

Table 5. Comparisons of the classification accuracies of the LDNM, the pruned LDNM, and the MDT.

Dataset
LDNM Pruned LDNM MDT

Accuracy (%) Num. of Branches Accuracy (%) Num. of Branches Accuracy (%)

Iris 95.56 ± 3.26 8.00 ± 0.00 95.67 ± 3.12 1.43 ± 0.50 95.44 ± 3.04
Transfusion 79.36 ± 1.97 8.00 ± 0.00 79.01 ± 2.96 2.67 ± 0.60 76.22 ± 4.09
Glass 93.29 ± 3.72 18.00 ± 0.00 93.60 ± 4.01 2.63 ± 0.71 93.14 ± 4.10
Wine 94.82 ± 4.24 26.00 ± 0.00 94.83 ± 4.17 2.30 ± 0.69 92.94 ± 3.96
Heart 81.73 ± 5.51 26.00 ± 0.00 74.63 ± 9.49 3.17 ± 0.82 77.04 ± 6.30
HeartFailure 83.95 ± 4.27 24.00 ± 0.00 81.88 ± 5.43 3.47 ± 0.96 80.72 ± 5.26

Table 6. Comparisons of the precision scores (%) of the LDNM, the pruned LDNM, and the MDT.

Dataset LDNM Pruned LDNM MDT

Iris 92.74 ± 6.68 92.74 ± 6.68 93.16 ± 5.74
Transfusion 64.87 ± 9.69 62.70 ± 11.48 51.05 ± 8.17
Glass 89.00 ± 9.65 88.23 ± 10.28 86.67 ± 10.84
Wine 96.17 ± 5.22 95.13 ± 5.20 91.51 ± 5.29
Heart 84.43 ± 7.30 68.93 ± 9.68 73.74 ± 8.84
HeartFailure 79.63 ± 7.39 69.96 ± 8.03 71.13 ± 10.96

Table 7. Comparisons of the recall scores (%) of the LDNM, the pruned LDNM, and the MDT.

Dataset LDNM Pruned LDNM MDT

Iris 94.67 ± 7.18 95.00 ± 6.19 93.67 ± 7.95
Transfusion 31.64 ± 8.47 34.64 ± 9.72 52.33 ± 7.72
Glass 83.27 ± 13.05 85.88 ± 12.72 85.52 ± 11.40
Wine 90.78 ± 8.50 91.95 ± 8.99 91.21 ± 9.17
Heart 72.78 ± 10.30 84.17 ± 9.77 77.64 ± 9.83
HeartFailure 68.11 ± 12.47 78.67 ± 12.25 72.41 ± 12.99
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4.4. Exhibiting the Proposed Explanation Approach

For each benchmark problem, a typical pruned LDNM and the corresponding MDT
are exhibited in Figures 8 and 9. It can be observed that the structures of the pruned LDNMs
are concise. Table 5 reports the number of branches of the trained LDNM and the pruned
LDNM for each benchmark problem. The number of branches of the pruned LDNMs is
significantly reduced compared with the trained LDNM. Less than four dendritic branches
are retained in most pruned LDNMs. Moreover, as shown in Figures 8 and 9, a few feature
inputs are retained in the pruned LDNM. Therefore, some irrelevant feature inputs are also
removed by the structure pruning operations. Overall, the structure pruning mechanisms
can greatly simplify the structure of a trained LDNM. Usually, a small number of synapses
in the direct connection and the inverse connection are retained in the pruned LDNMs.

As shown in Figures 8 and 9, the MDTs are considered more interpretable than
the pruned LDNMs because MDTs mainly comprise a small number of independent
CARTs. Moreover, these CARTs have reasonable depths (usually less than four). The
structures of MDTs can provide insight into how the classification results are obtained by
the MDTs, the pruned LDNMs, and the trained LDNMs. As a result, the structures of MDTs
help us understand the intrinsic characteristics of these benchmark problems and make
LDNM explainable.
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Yes                 No
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(c) Glass

Figure 8. Typical pruned LDNMs and corresponding MDTs for three datasets (Iris, Transfusion, and
Glass). Specifically, the thresholds in each MDT are reverted to the primitive values according to the
original datasets (i.e., before normalization).



Electronics 2024, 13, 3911 13 of 16

x1 x7 x10 x11 x12 x13

OR

x1≤13.31 ?

p=0x10≤3.82 ?

x12≤ 1.29?

p=1

p=0

p=0 p=0

x7≤ 1.06?

x11≤ 0.74?

x13≤ 6.66E2?

p=0

p=0

p=1

Yes                      No

Yes                     No

Yes                    No

Yes                      No

Yes                      No

Yes                  No

(a) Wine

x2 x3 x4 x12

OR

x13x11
x3≤3.36 ?

p=0 x13≤6.21 ?
Yes                      No

p=0
Yes                    No

p=1

x2≤ 8.58E-2?

p=0 x12≤ 0.43?
Yes                      No

p=0
Yes                    No

p=1

x4≤1.24E2?

p=0 x11≤ 1.39?

p=0
Yes                    No

p=1

x3≤1.05?

p=0
Yes                     No

Yes                     No

(b) Heart

x8 x10 x12

OR

x1≤46.49 ?

p=0 x12≤57.54 ?
Yes                     No

p=1 p=0
Yes                        No

x8≤ 2.12?

p=0 x10≤0.52?
Yes                       No

p=1 p=0
Yes                        No

x5≤ 26.30?

p=1 p=0
Yes                        No

x5x1

(c) HeartFailure

Figure 9. Typical pruned LDNMs and corresponding MDTs for three datasets (Wine, Heart, and
HeartFailure). Specifically, the thresholds in each MDT are reverted to the primitive values according
to the original datasets (i.e., before normalization).

4.5. Evaluation of the Explanation Approach

Evaluating an explanation approach is commonly considered subjective [9]. The
aforementioned experimental studies have revealed the comprehensibility and accuracy of
the proposed explanation approach. In this subsection, we provide qualitative evaluations,
including fidelity and certainty, of the proposed explanation approach.

Since the proposed explanation approach is a global surrogate explanation approach,
it is necessary to measure how well MDT approximates LDNM. The fidelity score is a
common metric used to measure fidelity [10]. It is defined as the percentage of the matched
prediction of the black box model and the surrogate explanation approach. Table 8 reports
the fidelity scores to evaluate how well MDT approximates LDNM on the test datasets. It
is obvious that the fidelity scores are considered high and are larger than 90% in most cases.
This finding indicates that MDT can serve as a satisfactory global surrogate explanation
approach for LDNM.

Table 8. Fidelity scores to evaluate how well MDT approximates LDNM on the test datasets.

Dataset Fidelity Score (%)

Iris 99.22 ± 1.86
Transfusion 86.16 ± 5.10
Glass 97.97 ± 2.33
Wine 96.45 ± 2.97
Heart 88.89 ± 6.50
HeartFailure 90.41 ± 4.72
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Although MDT is considered more concise and can provide satisfactory classification
performance, we should note that MDT cannot completely replace LDNM in some practical
applications. This is because MDT does not reflect the certainty of LDNM. LDNM performs
a real number computation, while MDT performs a logical operation. LDNM can provide
a prediction with a probability to show the confidence. However, MDT does not support
probability prediction and is not a probabilistic classifier.

5. Conclusions

In this study, we proposed an artificial neuron model called LDNM for classification
tasks. To provide explainability to LDNM, we attempted to transform a trained LDNM
into a concise tree-based model called MDT. Specifically, we introduced a proprietary
structure pruning mechanism to simplify a trained LDNM. Then, we proposed a method to
transform the pruned LDNM into an MDT. Since the structure of the MDT mainly comprises
some simple decision trees, the explainability of the LDNM for a specific problem can be
gained based on the corresponding MDT. Finally, six benchmark classification problems
were used to confirm the effectiveness of the proposed explanation approach for LDNM.
The experimental results demonstrate that the MDT can approximate a trained LDNM
well and provide explainability. As a result, an effective global surrogate explanation
approach for LDNM is provided in this paper. The results of this study suggest that the
explainability of other dendritic neuron models can be gained by similar decision tree-based
explanation approaches.

Nevertheless, this study has two limitations. First, although the experimental re-
sults demonstrate the effectiveness of the proposed explanation approach, more high-
dimensional classification problems could be used to further verify its effectiveness. Second,
the proposed LDNM and its explanation approach are designed to solve binary classifi-
cation problems. Multiclass classification techniques, such as the one-vs-rest strategy or
the one-vs-one strategy, could be used to extend the proposed approach to multiclass
classification problems. This issue deserves our further research.

In future studies, we intend to apply the proposed LDNM to more problems in
sensitive domains because the explainability of LDNM can contribute to understanding the
intrinsic characteristics of these problems. In addition, how to utilize the explainability of
LDNM to improve its learning method is worth investigating.
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