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Abstract: In wind turbines, to investigate the cause of failures and evaluate the remaining lifetime, it
may be necessary to measure their loads. However, it is often difficult to do so with only strain gauges
in terms of cost and time, so a method to evaluate loads by utilizing only simple measurements
is quite useful. In this study, we investigated a method with machine learning to estimate hub
center loads, which is important in terms of preventing damage to equipment inside the nacelle.
Traditionally, measuring hub center loads requires performing complex strain measurements on
rotating parts, such as the blades or the main shaft. On the other hand, the tower is a stationary
body, so the strain measurement difficulty is relatively low. We tackled the problem as follows: First,
machine learning models that predict the time history of hub center loads from the tower top loads
and operating condition data were developed by using aeroelastic analysis. Next, the accuracy of the
model was verified by using measurement data from an actual wind turbine. Finally, individual pitch
control, which is one of the applications of the time history of hub center loads, was performed using
aeroelastic analysis, and the load reduction effect with the model prediction values was equivalent to
that of the conventional method.

Keywords: wind turbine; load; machine learning; linear regression; extra trees regressor; individual
pitch control

1. Introduction

To preserve the ecosystem on Earth, global warming must be urgently suppressed.
One of the important solutions to this problem is to make the power sector, which produces
a significant amount of CO,, carbon-free. Wind power generation is one of the most suc-
cessful renewable energy processes and has matured technologically, but further expansion
and cost reduction are expected. Accordingly, progress is being made in making wind
turbines even larger, developing floating wind turbines that can be installed in deeper
waters, applying wind power generation technology to complex terrain, etc. This requires
the development of new technologies and application to new environments, but real-world
implementation is often hindered by complications [1,2].

In investigating the cause of wind turbine failure, it is important to understand the
loads acting on the target parts at the site. The loads applied to a wind turbine are
evaluated with a simulator during the turbine design process [3] and are verified by
measuring strain on a demonstration wind turbine installed on essentially flat terrain
on land [4]. However, wind turbines are installed in the natural environment, and the
conditions vary considerably depending on the installation location. Therefore, to confirm
the loads on a malfunctioning wind turbine, it is necessary to carry out measurements on
the malfunctioning turbine itself. In addition, determining the loads at the installation site
can aid in the optimization of operation, the evaluation of the remaining lifetime, lifetime
extension decisions, maintenance planning, etc.

Electronics 2024, 13, 3648. https://doi.org/10.3390/ electronics13183648

https://www.mdpi.com/journal/electronics


https://doi.org/10.3390/electronics13183648
https://doi.org/10.3390/electronics13183648
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6364-3298
https://doi.org/10.3390/electronics13183648
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13183648?type=check_update&version=1

Electronics 2024, 13, 3648

20f21

Load and stress evaluation at the installation site of a wind turbine is generally
performed by measuring strain near the target area, which is highly accurate. However,
when it is necessary to do so on multiple wind turbines for remaining lifetime evaluation or
the investigation of the cause of a malfunction, it is not realistic in terms of costs and labor
to perform strain measurement on all the target wind turbines. To overcome these financial
and manpower drawbacks, technologies have been developed to evaluate the target loads
and stress by using other data acquired from the wind turbine. Machine learning models
were trained to predict the main fatigue loads of wind turbines based on SCADA data,
which are collected for all wind turbines and include operating conditions and nacelle
acceleration [5]. In addition, SCADA 10 min data generally have many variables due to
parameters and statistical methods, but using all these data as inputs for a machine learning
model would cause overfitting issues and poor insights/analysis; therefore, effective feature
selection and dimensionality reduction methods were examined [6-8]. In addition, a
method was proposed to use the strain data for a limited period as training data for model
learning, and the necessary period was investigated [9].

Fatigue is often a deciding factor in the design of support structures for offshore wind
turbines, and load monitoring is required. Noppe et al. [10] developed a method to evaluate
the loads of offshore wind turbine support structures by evaluating quasi-static loads from
1 Hz SCADA data and dynamic loads from tower acceleration data. Santos et al. [11]
showed that adding tower acceleration and wave data in addition to SCADA data allows
for a more accurate assessment of lateral fatigue, where damage is greater in XL monopiles.
Santos et al. [12] also attempted to estimate the wind turbine foundation fatigue load of an
entire wind farm from a limited number of wind turbine strain data and found that it was
possible to predict it with an MAE of 1% for the training turbine and an MAE of less than
3% for other turbines. Santos et al. [13] also developed a model that incorporates physical
laws into a neural network to improve accuracy in life expectancy prediction and enable
safety evaluation.

Regarding blade fatigue prediction techniques, evaluation methods using only 10 min
SCADA values have been studied; methods [14] that reproduce fast fluctuations through
simulation and create a database and methods [15] that incorporate Variational Auto-
Encoder (VAE), a deep learning technique, have been proposed. In the prediction of
component fatigue, a physics-informed neural network method [16] has been proposed
for main bearings; it uses physical laws for cyclic fatigue, for which the theory is generally
established, and a neural network with wind speed and temperature as inputs for grease
lubrication, to which mathematical formulas are difficult to apply. Regarding the internal
loads of drivetrain bearings, which are difficult to measure, a method [17] called virtual
sensor has been proposed in which a machine learning model is developed from the
analysis results by using measurable inputs such as acceleration.

Attempts have also been made to use data other than the commonly used strain and
acceleration data. Methods have been developed to track blade movement from inertial
measurement and navigation algorithms [18] and to estimate static loads on towers by
using satellite data [19]. A model has been developed to predict the fatigue loads of a
wind turbine that is subjected to the wake of an adjacent wind turbine based on the load
measurements of the latter [20].

Most load prediction methods focus on fatigue loads, but a model has been proposed
in which the proximity of the random forest model is used to predict extreme loads in each
tower section based on tower acceleration and other parameters [21].

As described above, methods have been developed to predict the loads and stress on a
target by combining other data with machine learning models without directly measuring
strain. However, there are few techniques to predict hub center loads, which is important
for preventing equipment failures inside the nacelle, except for an example [22] in which the
thrust force was predicted based on strain at the tower bottom. Furthermore, although many
techniques have been developed to predict statistical values, such as damage equivalent
load (hereinafter referred to as “DEL”), there are few examples of evaluating the time
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history of loads [23]. Therefore, in this study, with the aim of evaluating the time history
of hub center loads, the target wind turbine was selected (Section 2), the parameters that
could be evaluated were identified, and an effective machine learning model was examined
(Section 3). Next, a machine learning model was developed by using aeroelastic analysis
(Section 4) and was then validated by using measured data from the actual wind turbine
(Section 5). Application in individual pitch control [24], which is one of the benefits of
determining the time history of hub center loads, was also examined (Section 6), and finally,
conclusions were drawn (Section 7).

2. Wind Turbine and Target Loads

The target wind turbine is presented in Section 2.1, the loads to be evaluated are
shown in Section 2.2, and the strain measurements made on the prototype are described in
Section 2.3.

2.1. Wind Turbine

The target was a downwind 2 MW wind turbine manufactured by Hitachi, Ltd. (Tokyo,
Japan). Table 1 shows its general specifications.

Table 1. Wind turbine general specifications.

Manufacturer Hitachi, Ltd.
Model HTW2.0-86
Rotor diameter 86 m
Rotor position Downwind
Rated power 2 MW
Number of blades 3
Tilt angle —8 deg
Corning angle 5deg
Hub height 78 m

Power control Pitch, variable speed

2.2. Target Loads

The targets of the evaluation were the loads in the hub coordinate system [25] (here-
inafter referred to as “hub center loads”), which are important for the design of equipment
in the nacelle. Figure 1 shows the main components of a wind turbine and the coordinate
system at each wind turbine location. The hub coordinate system does not rotate with
the rotor and has the hub center as its origin. Here, the x-axis direction is the rotor axis
direction, the z-axis direction is perpendicular to the x-axis and points upward, and the
y-axis direction is horizontal. In this study, we focused on the most important hub center
loads: rotational torque (hereinafter referred to as “MXN"), nodding moment (hereinafter
referred to as “MYN"), yawing moment (hereinafter referred to as “MZN"), and thrust
force (hereinafter referred to as “FXN”). The loads were normalized by using the respective
design extreme loads (the maximum of the absolute values of the maximum and minimum).

2.3. Load Measurement

The measurement data used to validate the predictive model in Section 5 were acquired
in March 2015 from a prototype wind turbine located along the coast of Tainai City, Niigata
Prefecture, Japan. Figure 1 shows the measurement points at the blade root and at the
tower top. The blades were measured at four points in each axis direction on a cross-section
1.35 m from the root of the three blades, but the edge direction was measured at points
shifted 22.5 deg from the axial direction to avoid the over lamination area. At the tower
top, measurements were taken at four points at 90 deg intervals on a cross-section 1.0 m
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below the tower top. At two of those points, in addition to the vertical direction for bending
moment measurement, the £45 deg directions were measured for torque measurement
with biaxial gages.

Measurement Points Coordinate Systems

Trailing edge

Suction.é v i\Pressure P I — "

side side 1.35 m cross section
2 / from the blade root

I

-~

.

Leading edge

= Optical strain gage
for bending moment
(blade axial direction) Nacelle

1.0 m cross section
below the tower top

Electrical strain gage

for bending moment pL oYV
(vertical direction) : MYF g
Tower —=s, CFYE D
. . “YF e XF MNF
== [lectrical strain gage \l/ e
for torque &\ //a
(£45° direction) a -

Figure 1. Coordinate systems and measurement points.

The measurement system is shown in Figure 2, and the instruments and sensors are
shown in Table 2. While general electrical strain gages were used to measure the tower,
fiber optic strain gages were used to measure the blades, which are highly resistant to
environmental conditions such as lightning strikes. Basically, wired CAN communication
was used for data transmission, but existing optical fiber communication was used for
transmission from the nacelle to the tower bottom. Strain at the blade root, strain at the
tower top, and wind turbine operating conditions output from the wind turbine controller
were integrated into a PC installed at the tower bottom, where they were synchronously
measured, and data were stored.

Table 2. Instruments and sensors.

Instrument/Sensor Model (Manufacturer) Specifications
. g Range: +3000 pe (min.)
Instrument 1 ENV-1030-CAN Resolution: 2 pe (typ.)

(Moog Insensys) Accuracy: 5 pe (short-term)

Obtical strain gage Composite retrofit blade sensor array set )
P 838 (Moog Insensys)
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Table 2. Cont.

Instrument/Sensor Model (Manufacturer) Specifications

Range: £30,000 pe
Resolution: 0.1 pe
Accuracy: 0.1%RD

NTB-500A, NTB-50A

Instrument 2 -
(Kyowa electronic instruments)

KFG-5-350-C1-11 L15C2R
Electrical strain gage KFG-5-350-D16-11 L15C2S -
(Kyowa electronic instruments)

Range: 10V
Resolution: 100 uV
Accuracy: 0.1%RD

NTB-500A, NTB-51A

Instrument 3 .
(Kyowa electronic instruments)

CAN-optical i
converter l l F

Instrument 1

<— Optical strain gage

Electrical strain gage —>

Instrument 2

Yotical fiber cz
Instrument 3 Optical fiber cable

= Analog cable
Wind turbine _ |
controller CAN cable
PC for __ CAN-optical
data logging converter

Figure 2. Measurement system.

3. Explanatory Variables and Machine Learning Models

In this section, variables that can be used in the evaluation of the target loads are
discussed in Section 3.1, and effective machine learning models are discussed in Section 3.2.

3.1. Explanatory Variables

To determine parameters with which to predict hub center loads, the correlations
among hub center loads, main loads, and wind turbine behavior were investigated. The
Pearson correlation coefficient was used as an index of correlation, with a value closer to 1
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indicating a positive correlation, a value closer to —1, a negative correlation, and a value of
0 no correlation. For the evaluation, 10 min data from an aeroelastic analysis at an average
wind speed of 14 m/s were used. The DataFrame.corr function of the Pandas library in the
Python programming language was used for the analysis.

The Pearson correlation coefficients for the hub center loads (MXN, MYN, MZN, and
FXN), the wind and operating conditions commonly obtained with SCADA (wind speed,
power, yaw misalignment, pitch angle, and azimuth angle), and the main loads (moments at
blade root, tower top, and tower bottom) are shown in Figure 3. The correlation coefficients
with absolute values greater than 0.9 were none for MXN, tower top MY for MYN, tower
top MZ and tower bottom MZ for MZN, and pitch angle and tower bottom MY for FXN.
Blade root MY did not have a high correlation on its own, but when combined with azimuth
and pitch angles, the hub center loads could be predicted.
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Figure 3. Pearson correlation coefficients for hub loads, wind and operating conditions, and main

loads.

Next, the correlations between hub center loads and nacelle behaviors are shown in
Figure 4. The correlation coefficients with absolute values greater than 0.9 were none for
MXN and MYN, yaw displacement for MZN, and fore—aft displacement and nod angle
for FXN. While strain measurement is necessary to determine the loads shown in Figure 3,
nacelle behavior may be more easily determined by using accelerometers, gyroscopes,
inclinometers, GPS, etc.

3.2. Machine Learning Model

There are various models for machine learning. As reported in this section, we
examined analysis accuracy and training time. Here, neural networks were excluded.
Pycaret, a Python wrapper, was used for this study. Table 3 shows the evaluation results
of each machine learning model when the objective variable is MYN, the explanatory
variables are three operating conditions (power, pitch angle, and generator speed) and
six-blade root section bending moments, and 10 min data from the aeroelastic analysis at
an average wind speed of 14 m/s are used. Here, the evaluation indices are mean absolute
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error (MAE), mean squared error (MSE), root mean squared error (RMSE), coefficient of
determination (R?), log mean squared error (RMSLE), mean absolute percentage error
(MAPE), and training time (TT).
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Figure 4. Pearson correlation coefficients for hub loads and nacelle behaviors.
Table 3. Performance of machine learning models.
Model MAE MSE RMSE R? RMSLE MAPE TT (s)
Extra Trees Regressor 0.0077 0.0001 0.011 0.98 0.0095 0.32 0.98
CatBoost Regressor 0.0081 0.0001 0.011 0.98 0.0098 0.32 1.76
Random Forest Regressor 0.0117 0.0003 0.017 0.95 0.0140 0.50 2.56
K Neighbors Regressor 0.0126 0.0003 0.017 0.95 0.0146 0.44 0.47
Extreme Gradient Boosting 0.0130 0.0003 0.017 0.95 0.0151 0.41 0.83
Light Gradient Boosting Machine 0.0139 0.0004 0.019 0.94 0.0160 0.53 0.59
Decision Tree Regressor 0.0196 0.0009 0.030 0.84 0.0247 0.68 0.52
Gradient Boosting Regressor 0.0302 0.0015 0.039 0.73 0.0306 1.61 1.17
AdaBoost Regressor 0.0509 0.0039 0.063 0.31 0.0514 1.99 0.62
Ridge Regression 0.0579 0.0053 0.073 0.06 0.0580 3.05 0.46
Linear Regression 0.0590 0.0055 0.074 0.03 0.0589 3.11 0.98
Lasso Least Angle Regression 0.0590 0.0055 0.074 0.03 0.0589 3.12 0.46
Lasso Regression 0.0590 0.0055 0.074 0.03 0.0589 3.12 0.47
Elastic Net 0.0590 0.0055 0.074 0.03 0.0589 3.12 0.47
Huber Regressor 0.0592 0.0055 0.075 0.02 0.0591 3.14 0.47
Orthogonal Matching Pursuit 0.0593 0.0056 0.075 0.02 0.0591 3.15 0.46
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Table 3. Cont.
Model MAE MSE RMSE R? RMSLE MAPE TT (s)
Dummy Regressor 0.0602 0.0057 0.075 0.00 0.0598 3.22 0.64
Passive Aggressive Regressor 0.0604 0.0058 0.076 —0.01 0.0607 3.04 0.46
Least Angle Regression 0.0614 0.0060 0.077 —0.06 0.0622 3.08 0.48
Bayesian Ridge 0.2656 0.2139 0.328 —35.11 0.1945 8.05 0.45

Models that use ensemble learning of decision trees rank highly. This is thought to be
because of the nonlinear behavior that output and rotational speed are limited to a rated
value, and the pitch angle is only adjusted when energy above a certain level is input,
which decision trees are excellent at reproducing. In this study, we used a nonlinear model
called Extra Tree Regressor (hereinafter referred to as “ET”), which combines decision trees
and ensemble learning using bagging to provide a good balance between analysis accuracy
and analysis time, and a linear model called Linear Regression (hereinafter referred to as
“LR”), which is simple and makes results easy to interpret.

4. Predictive Model Development

In this section, we attempt to establish a method to predict the hub center loads using
machine learning models with relatively simple measurement parameters by aeroelastic
analysis. The analysis flow is shown in Section 4.1, and the evaluation results of the model’s
predictive accuracy are shown in Section 4.2.

4.1. Analysis Flow

The data used were the results of an analysis conducted by using Bladed aeroelastic
analysis software [26]. The input wind conditions for the aeroelastic analysis are shown
in Table 4. The average wind speed was set to 8 m/s for optimal efficiency operation and
14 m/s for rated output operation. A total of 192 cases were analyzed for 10 min each
and an output period of 0.04 s, with two average wind speeds, four turbulence intensities,
four wind shear values, and six turbulent seeds.

The flow of developing a machine learning model is shown in Figure 5. Here, the
aeroelastic analysis results were divided into a training dataset and a test dataset, but rather
than dividing all the data randomly, the cases with turbulent seeds 1 to 4 were used as the
training dataset (128 cases), and the cases with turbulent seeds 5 and 6 were used as the test
dataset (64 cases). This is because when the data for the same analysis case are divided into
training and test datasets, the data for adjacent times are very similar and not completely
independent, and there is a risk of overestimating prediction accuracy due to data leakage.

Aeroelastic Simulation

Random Seed Random Seed
1~4 5,6
Training Data Set Test Data Set
Prediction Model

Quality Assessment

Figure 5. Analysis flow for machine learning model development.
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Table 4. Wind parameter values for aeroelastic simulation.

Parameter Values
Mean wind speed [m/s] 8,14
Turbulence intensity (Iref) [—] 0.12,0.14,0.16,0.18
Wind shear exponent () [—] 0.14,0.2,0.33,0.5
Turbulent seed [—] 1~6

4.2. Model Evaluation

Two machine learning models were used: Linear Regression (LR) and Extra Trees
Regressor (ET), which are discussed in Section 3.2. The set of explanatory variables was set
in four ways, as shown in Table 5, based on the study presented in Section 3.1. Here, Prl
consists of variables normally used in wind turbine control and does not require additional
sensors. Pr2 is P1 plus the three directional nacelle accelerations that are standardly
measured. Pr3 is Prl plus three moments at the tower bottom, and Pr4 is Pr1 plus three
moments at the tower top. Pr3 and Pr4 require strain measurements at the tower, but it is
easier to measure the strain at the tower because it is not a rotating part, compared with
strain measurements at the blades or hub, which is generally performed when evaluating
hub center loads.

Table 5. Explanatory variable sets.

Parameter Number
Prl Power, pitch angle, and generator speed 3
Pr2 Power, pitch angle, generator speed, nacelle acceleration X, Y, and Z 6
Pr3 Power, pitch angle, generator speed, tower bottom MX, MY, and MZ 6
Pr4 Power, pitch angle, generator speed, tower top MX, MY, and MZ 6

For the analytical accuracy of the prediction model, the coefficients of determination
(R?) are shown in Figure 6, and the ratios of the predicted value of damage equivalent load
(DEL) to the true value when the slope () of the SN curve is 10 (hereinafter referred to as
“m = 10") are shown in Figure 7. DEL is the fatigue load expressed as a scalar quantity and

calculated by Equation (1).
DEL = (M) (1)
Nyef

where S; is the load of i-th range bin of the fatigue load spectrum, 7; is the number of cycles
in the i-th range bin of the fatigue load spectrum, and 1, is the reference number of load
cycles. MXN LR results show that the DEL ratio can be small even when R? is close to 1, so
caution is required. The results of Pr1, Pr2, and Pr3 for MXN and FXN show that changing
the machine learning model from LR to ET improves the analysis accuracy of DEL. On
the other hand, MYN Pr4 has high analytical accuracy with LR but slightly lower with
ET, so ET is not necessarily superior. FXN is below 0.95 for all models and indices, so if
higher prediction accuracy is required, it is necessary to consider changing the explanatory
variables, etc. While MYN requires the inclusion of loads at the tower top to improve the
analysis accuracy, MZN has high prediction accuracy even with loads at the tower bottom,
so the variables to be obtained depend on the target load.

The variable importance, time history, correlation, and frequency distribution for each
prediction model are shown in Figures 8-23. Here, only Prl and Pr4 are displayed as
explanatory variable sets. Prl is the case using only common operation conditions, and
Pr4 is the case that was shown to work well. Variable importance is defined differently
depending on the machine learning model: coefficient importance for LR is the proportion-
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ality constant multiplied by the standard deviation, and feature importance for ET is the
reduced contribution of Gini impurity; however, both are indicators of the importance of
each explanatory variable to the prediction.
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Figure 6. Model accuracy: R2 of (a) MXN; (b) FXN;; (c) MYN;; (d) MZN.
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Figure 7. Model accuracy: DEL (m = 10) ratios of (a) MXN, (b) FXN, (c) MYN, and (d) MZN.
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Figure 8. LR model prediction of MXN using input feature set Prl: (a) Coefficient importance.
(b) Time history. (c) Correlation. (d) Frequency distribution.
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Figure 9. ET model prediction of MXN using input feature set Prl: (a) Feature importance. (b) Time
history. (c) Correlation. (d) Frequency distribution.
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Figure 10. LR model prediction of MXN using input feature set Pr4: (a) Coefficient importance.
(b) Time history. (c) Correlation. (d) Frequency distribution.
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Figure 11. ET model prediction of MXN using input feature set Pr4: (a) Feature importance. (b) Time
history. (c) Correlation. (d) Frequency distribution.
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Figure 12. LR model prediction of FXN using input feature set Prl: (a) Coefficient importance.
(b) Time history. (c¢) Correlation. (d) Frequency distribution.
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Figure 17. ET model prediction of MYN using input feature set Prl: (a) Feature importance. (b) Time
history. (c) Correlation. (d) Frequency distribution.
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Figure 18. LR model prediction of MYN using input feature set Pr4: (a) Coefficient importance.
(b) Time history. (c) Correlation. (d) Frequency distribution.
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Figure 19. ET model prediction of MYN using input feature set Pr4: (a) Feature importance. (b) Time
history. (c) Correlation. (d) Frequency distribution.
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Figure 20. LR model prediction of MZN using input feature set Prl: (a) Coefficient importance.
(b) Time history. (c¢) Correlation. (d) Frequency distribution.
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Figure 21. ET model prediction of MZN using input feature set Prl: (a) Feature importance. (b) Time
history. (c) Correlation. (d) Frequency distribution.
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Figure 22. LR model prediction of MZN using input feature
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Figure 23. ET model prediction pf MZN using input feature set Pr4: (a) Feature importance. (b) Time
history. (c) Correlation. (d) Frequency distribution.

For the prediction of MXN (Figures 8-11), the linear model LR using operating condi-
tions Prl (Figure 8) can predict slow fluctuations due to the contribution of the output but
not fast fluctuations. When the nonlinear model ET is used (Figure 9), fast fluctuations are
also predicted, but the oscillation phases are not aligned. By adding the tower top loads to
the explanatory variables (Figures 10 and 11), we can also predict fast fluctuations due to
the contribution of tower top MX.

For FXN prediction (Figures 12-15), even the linear model LR using operating condi-
tions Pr1 (Figure 12) can predict slow fluctuations due to the contributions of pitch angle,
power, and generator speed but cannot predict fast fluctuations. When the nonlinear model
ET is used (Figure 13), the prediction accuracy of fast fluctuations improves, but the phases
are not aligned. Adding the tower top loads to the explanatory variables (Figures 14 and 15)
slightly improves the prediction accuracy due to the contribution of tower top MX, but
not significantly.
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Blade Strain

For MYN prediction (Figures 16-19), the linear model LR using operating conditions
Prl (Figure 16) outputs almost constant values and cannot be predicted. When the non-
linear model ET is used (Figure 17), the fast fluctuation component is included, but the
oscillation phase is not correct. Adding the tower top loads to the explanatory variables
(Figures 18 and 19) improves the prediction accuracy due to the contribution of tower top
MY, and both slow and fast fluctuations are generally predicted. However, in the case of
the nonlinear model ET (Figure 19), the prediction is not accurate when the true value is
large, and this may be because the training dataset does not contain such large values.

MZN prediction (Figures 20-23) was almost the same as MYN prediction.

From the above, it was found that MXN, FXN, MYN, and MZN are generally pre-
dictable for both linear and nonlinear machine learning models when a set of explanatory
variables are operating conditions and tower top loads. It should be noted, however, that
FXN has slightly lower prediction accuracy.

5. Predictive Model Validation

As presented in this section, the predictive models of hub center loads developed
in Section 4 were validated by using measured data from the actual wind turbine. The
validation method is shown in Section 5.1, and the results in Section 5.2.

5.1. Validation Flow

The verification flow is shown in Figure 24. By using the strain measured at the blade
root, the blade loads were calculated, and by combining them with the pitch angle and
azimuth angle data, the measured hub center loads were calculated and used as the true
values. On the other hand, the tower top loads were calculated by using the strain measured
at the tower top and the nacelle direction angle, and the three operating conditions were
added to them as explanatory variables; finally, the hub center loads were calculated by
using the linear (LR) or nonlinear (ET) machine learning model developed as shown in
Section 4 and used as the predicted values.

Power, Generator Speed | Tower Top Strain |
Pitch Angle

Azimuth Angle | Nacelle Direction | I:Simulation

Blade

Load

(Axis1,2,3), (MX, MY)

Tower Top Load
MX, MY, MZ7) | ML Model Creation |

Hub Load Prediction Model |

True Fixed Hub Load Predicted Fixed Hub Load
(MY, MZ)

(MY, MZ)

Model Validation

Figure 24. Model validation flow.

Only MYN and MZN were evaluated as hub center loads. This is because it is diffi-
cult to derive MXN and FXN from blade loads; further, determining MYN and MZN is
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particularly important for preventing damage to equipment in the nacelle, and prediction
techniques for them are not well established.

5.2. Validation Results

The data used were 10 min data with average wind speeds of approximately 7, 14,
and 22 m/s. The first two values (7 and 14 m/s) were selected because they were close to
the wind speeds (8 and 14 m/s) used for the development of the machine learning model,
and a wind speed (22 m/s) that deviated from them was further selected.

Comparisons of true and predicted MYN values are shown in Figures 25-27, and MZN
comparisons are shown in Figures 28-30. The predicted average values are slightly larger
than the true values at the wind speeds of 7 and 14 m/s, but the fluctuation components
are generally consistent in both amplitude and phase. Predictions are generally equivalent
to whether the machine learning model is linear (LR) or nonlinear (ET).
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Figure 25. Validation of MYN prediction models at wind speeds of 7 m/s: (a) Wind speed time
history. (b) Load time history. (c) Correlation. (d) Frequency distribution.
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Figure 26. Validation of MYN prediction models at wind speeds of 14 m/s: (a) Wind speed time
history. (b) Load time history. (c) Correlation. (d) Frequency distribution.
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Figure 27. Validation of MYN prediction models at wind speeds of 22 m/s: (a) Wind speed time
history. (b) Load time history. (c¢) Correlation. (d) Frequency distribution.
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Figure 28. Validation of MZN prediction models at wind speeds of 7 m/s: (a) Wind speed time
history. (b) Load time history. (c) Correlation. (d) Frequency distribution.
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Figure 29. Validation of MZN prediction models at wind speeds of 14 m/s: (a) Wind speed time
history. (b) Load time history. (c) Correlation. (d) Frequency distribution.
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Figure 30. Validation of MZN prediction models at wind speeds of 22 m/s: (a) Wind speed time
history. (b) Load time history. (c) Correlation. (d) Frequency distribution.

The coefficient of determination R? and the DEL (m = 10) ratios for the true and
predicted values are shown in Table 6. R? was lower for both MYN and MZN, especially
at7 and 14 m/s, suggesting that the effect of the shifted mean was significant. The error
for DEL (m = 10) was within 10% for MYN, while for some data for MZN, it was over 20%.
As for the cause of the lower prediction accuracy for MZN compared with MYN, the
measurement accuracy of tower top MZ, which contributes the most to the prediction of
MZN, was suspected to be responsible since the analysis in Section 4 did not show such
a trend. In the measurement of tower top MZ, strain gauges are installed at +45 degrees
and —45 degrees from the vertical, and their values are subtracted to eliminate the bending
effect, but there are some difficulties, such as the introduction of bending effects if the
installation angle is off.
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Table 6. Validation results.

R? DEL (i = 10) Ratio
7 m/s 14 m/s 22 m/s 7 m/s 14 m/s 22 m/s
MYN LR —1.752 —0.841 0.626 0.905 1.024 0.983
ET —2.081 —0.992 0.627 0.937 1.032 0.952
LR 217 . . .807 . 77
MZN 0 0.039 0.553 0.80 0.999 0.778
ET 0.173 0.106 0.541 0.839 1.011 0.787

6. Individual Pitch Control

The advantage of obtaining the time history of the hub center loads is that it can
be used for individual pitch control (hereinafter referred to as “IPC”) in addition to load
evaluation. Normally, blade strain is often measured in the implementation of IPC, but the
blade where the sensor is installed and the hub where the measurement device is installed
are rotating bodies, so there is a risk of damage, and communications using a slip ring or
wireless connection have the risk of communication failure. On the other hand, the method
established in Section 4 is more reliable because it can be measured on a stationary tower.
As reported in this section, the performance of IPC with the tower top loads was verified
with simulation. The evaluation method is shown in Section 6.1, and the evaluation results
are in Section 6.2.

6.1. Evaluation Flow

The performance evaluation flow of IPC is shown in Figure 31. Three controllers were
prepared for the simulation. The first one was a controller without IPC, the second one
a controller that implements general IPC based on MYN and MZN, and the third one a
controller that predicts the hub center loads by using a machine learning model with tower
top loads and operating conditions as inputs (see Section 4) and implements IPC based
on the predicted loads. Here, due to software constraints, only MY and MZ were input as
tower top loads, and MX was not used. However, since the contribution of tower top load
MX to the prediction of MYN and MZN is small (see Figures 18 and 22), the impact is minor.
For the machine learning model, we used the easy-to-implement Linear Regression (LR)
model because there was no significant difference in prediction accuracy between linear
and nonlinear models when the tower top loads were used (see Sections 4 and 5). The
performance of IPC with the tower top loads was evaluated by performing an aeroelastic
analysis on the three controllers and comparing the results. IPC was carried out according
to Equation (2).

'81 COS(Q + 650;/) Sln(e + GCOT’) PI
Bo | = [ cos(6 + 6cor +271/3)  sin(0 + eor + 271/3) ( p IMYN) )
B3 coS(6 + Ocor +471/3)  sin(0 + Oeor + 477/3) MZN

where 1, B2, and B3 are the pitch demands for pitches 1, 2, and 3 by IPC, 6 is the rotor
azimuth angle, 6, is the rotor azimuth correction angle, and Plyn and Pl 7y are the
results of PI control for MYN and MZN.

6.2. Evaluation Results

For the aeroelastic analysis, three input winds with different turbulent seeds were
prepared for average wind speeds of 8, 12, 16, 20, and 24 m/s, and the analysis was
performed for 10 min for each. The results of the evaluation for blade root MY, MYN, and
MZN with the DEL (m = 10) are shown in Figure 32. No significant effect of IPC was seen
in MYN or MZN, but a significant effect was seen in blade root MY at high wind speeds
above 16 m/s. This is an effect for a wind turbine with a rated power of 2 MW and a rotor
diameter of 86 m, which is relatively small for today’s wind turbines, and a larger effect
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can be expected for larger wind turbines due to the large variation in wind speed on the
rotor plane. IPC with the tower top loads was shown to be as effective as general IPC with
hub center loads, indicating the potential of IPC with tower top loads.

l

Generator Speed Hub Load(MY, MZ) Tower Top Load(MY, MZ)

and so on Power, Generator Speed

Aeroelastic Pitch Angle
Simulator Controller

| Hub Load Prediction Model(LR) |

Normal
Pitch Demand

’ Predicted Hub Load(MY, MZ) ‘

Load Load with Load with Individual Pitch Control ‘

without IPC || Normal IPC Tower Top Load IPC

Pitch Demand Pitch Demand with Pitch Demand with
without IPC Normal IPC Tower Top Load IPC

Performance Evaluation

Figure 31. IPC performance evaluation flow.
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Figure 32. IPC performance evaluation results: (a) blade root MY; (b) MYN; (c) MZN.

7. Conclusions

In this study, we developed a method for predicting the time history of hub center
loads, which is important for investigating equipment failures in the nacelle, by combining
simple measurement and machine learning. We also performed IPC using the predicted
values. The main results obtained from this study are described as follows:

e  When a linear machine learning model is insufficient for predicting MXN and FXN, a
nonlinear machine learning model can improve the prediction accuracy.

e In predicting MXN, MYN, and MZN, the linear machine learning model provides
sufficient prediction accuracy when tower top loads are added to the set of explana-
tory variables.

e In the prediction of FXN, when operating conditions, nacelle accelerations, tower top
loads, and tower bottom loads are used as explanatory variables, there is a DEL error
of more than 5%, even with a nonlinear machine learning model.
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e  While MYN prediction requires tower top loads, MYN can be predicted with tower
bottom loads, so the explanatory variables required depend on the target load.

e  The prediction models for MYN and MZN developed from the aeroelastic analysis
based on tower top loads and operating conditions as explanatory variables were
validated by using measured data, and the DEL (m = 10) errors were within 10% for
MYN and within 23% for MZN.

e  The time history of the hub center loads was predicted by a machine learning model
with tower top loads and operating conditions as explanatory variables, and IPC was
implemented by using these loads. The results show that the load reduction effect was
equivalent to that of general IPC based on hub loads.

As future developments of this research study, the following are planned:

e Investigate whether analysis accuracy can be improved when a neural network is used
as a machine learning model.
e  Examine whether hub loads can be predicted from the behaviors of the nacelle.
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