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Abstract: The unprecedented progress in artificial intelligence (Al), particularly in deep learning
algorithms with ubiquitous internet connected smart devices, has created a high demand for Al
computing on the edge devices. This review studied commercially available edge processors, and the
processors that are still in industrial research stages. We categorized state-of-the-art edge processors
based on the underlying architecture, such as dataflow, neuromorphic, and processing in-memory
(PIM) architecture. The processors are analyzed based on their performance, chip area, energy effi-
ciency, and application domains. The supported programming frameworks, model compression, data
precision, and the CMOS fabrication process technology are discussed. Currently, most commercial
edge processors utilize dataflow architectures. However, emerging non-von Neumann computing
architectures have attracted the attention of the industry in recent years. Neuromorphic processors
are highly efficient for performing computation with fewer synaptic operations, and several neuro-
morphic processors offer online training for secured and personalized Al applications. This review
found that the PIM processors show significant energy efficiency and consume less power compared
to dataflow and neuromorphic processors. A future direction of the industry could be to implement
state-of-the-art deep learning algorithms in emerging non-von Neumann computing paradigms for
low-power computing on edge devices.

Keywords: Al accelerator; Al frameworks; deep learning; edge computing; low-power applications;
quantization; PIM or CIM computing; neuromorphic computing

1. Introduction

Artificial intelligence, and in particular deep learning, is becoming increasingly pop-
ular in edge devices and systems. Deep learning algorithms require significant numbers
of computations ranging from a few million to billions of operations based on the depth
of the deep neural network (DNN) models; thus, there is an urgent need to process them
efficiently. As shown in Figure 1, two possible approaches for processing deep learning
inference on edge devices are carried out directly on the device using highly efficient
processors, fog, or cloud computing. A key benefit of fog/cloud-based processing is that
large, complex models can be run without overburdening the edge device. The drawbacks
of this approach are the need for a reliable communications channel, communications cost,
communications delay, and potential loss of privacy.

In situations where a rapid response is needed, privacy is paramount; a reliable
communications channel may not always be available, and processing of the deep learning
network on the edge device or system may be the only option [1-3]. As a result, a large
amount of academic and industrial research is being carried out to develop efficient deep
learning edge processors [3]. Several companies have already announced or have started
selling such processors. This paper provides details on these commercial deep learning edge
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processors and compares their performance based on manufacturer-provided information.
Additionally, the paper delves into the frameworks and applications related to these
processors. The scope of edge computing includes end devices and edge nodes [4]. End
devices include smartphones, wearables, autonomous cars, gadgets, and many more. Edge
nodes are switches, routers, micro data centers, and servers deployed at the edge [5,6].
Table 1 lists some of the key characteristics of edge deep learning processors that are
considered in this paper.
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Figure 1. Illustration of edge computing with cloud interconnection.

Table 1. Brief scope of this paper.

Architecture Precision Process (nm)  Metrics Frameworks Algorithm/Models  Applications
SNN Defense
4 "Fl{;niiotzﬂow (TF) MLP Healthcare
5 Caffed CNN Cyber Security
GPU 7 Area Pyvtorch VGG Vehicle
TPU 10 y ResNet Smartphone
. FP-8,16,32 Power MXNet .
Neuromorphic 14 YOLO Transportation
BF-16 Throughput ONNX . .
PIM INT-124816 16 En MetaTE Inception Robotics
SoC e 20 Eff(iegge}rllc Laiz MobileNet Education
ASIC 22 Y Nonoo RNN UAV Drones
28 o iCV GRU Communication
40 Dgka \ BERT Industry
¢ LSTM Traffic Control

There are multiple types of Al accelerators enabling DNN computing: central pro-
cessing units (CPUs), graphics processing units (GPUs), tensor processing units (TPUs),
application-specific integrated circuits (ASICs), system on-chip (SoC), processing in-memory
(PIM), and neuromorphic processors. ASICs, SoC, TPUs, PIM, and neuromorphic systems
are mainly targeted at low-power Al applications in edge and IoT devices. Google intro-
duced different versions of the TPU that are used in the Google cloud and the edge for
training and inference [7]. Neuromorphic processors are non-von Neumann computing sys-
tems that mimic human cognitive information-processing systems. They generally utilize
spiking neural networks (SNNs) for processing [8-15]. Several tech companies, including
Intel and IBM [8-10], have developed brain-inspired neuromorphic processors for edge
applications. PIM is another non-von Neumann computing paradigm that eliminates the
data transfer bottleneck by having the computation take place inside a memory array in a
highly parallel fashion [16-20].

PIM technology reduces data movement and latency compared to traditional archi-
tectures and makes computations significantly more efficient. Edge processors usually
perform inference with highly optimized DNN models. The models are often compressed
to reduce the number of computations, and the weight precision is usually quantized from
the floating point (FP) format normally used in training. The quantized integer (INT) and
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brain-float (BF) are used in inference processors. Typically, INT4, INTS, INT16, FP16, or
BF16 numerical precision is used in the inference processor. However, recently released
processors from multiple startups can compute with very low precision while trading off
accuracy to some extent [21].

The current trend in computing technology is to enable data movement faster for
higher speed and more efficient computing. To achieve this, Al edge processors need some
essential prerequisites: lower energy consumption, smaller area, and higher performance.
Neuromorphic and PIM processors are becoming more popular for their higher energy
efficiency and lower latency [9,10,19,20]. However, a single edge processor usually does
not support all types of DNN networks and frameworks. There are multiple types of
DNN models, and each usually excels at particular application domains. For example,
recurrent neural networks (RNNs), long short-term-memory (LSTM), and gated recurrent
units (GRUs) are suitable for natural language processing [22-28], but convolutional neural
networks (CNNSs), residual neural network (ResNet), and visual geometry group (VGG)
networks are better for detection and classification [29-31].

The CMOS technology node used for fabricating each device has a significant impact
on its area, energy consumption, and speed. TSMC currently uses 3 nm extreme ultraviolet
(UV) technology for the Apple Al7 processor [32]. TSMC is currently aspiring to develop
2 nm technology by 2025 for higher performance and highly energy-efficient Al computing
processors [33]. Samsung’s smartphone processor Exynos 2200, developed with 4 nm
technology, is on the market [34]. Intel utilized its Intel-4/7 nm technology for its Loihi
2 neuromorphic processor [9].

This article provides a comprehensive review of commercial deep learning edge
processors. Over 100 edge processors are listed along with their key specifications. We
believe this is the most comprehensive technical analysis at present. The main contributions
of this review are as follows:

1. It provides a comprehensive and easy-to-follow description of state-of-the-art edge
devices and their underlying architecture.

2. It reviews the supported programming frameworks of the processors and general
model compression techniques to enable edge computing.

3. It analyzes the technical details of the processors for edge computing and provides
charts on hardware parameters.

This paper is arranged as follows: Section 2 describes key deep learning algorithms
very briefly. Section 3 describes model compression techniques commonly used to optimize
deep learning networks for edge applications. Section 4 discusses the frameworks available
for deep learning Al applications. Section 5 describes the frameworks for developing Al
applications on SNN processors. The processors are reviewed briefly in Section 6. Section 7
discusses the data on the processors and performs a comparative analysis. A brief summary
of this review study is presented in Section 8.

2. Deep Learning Algorithms in Edge Application

Deep learning (DL) is a subset of Al and machine learning. It consists of multilayered
artificial neural network architectures that optimize the network learning parameters to
recognize patterns and sequences for numerous applications. The networks can be trained
for specific tasks, such as speech recognition [35], image recognition [36,37], security [38],
anomaly detection [39], and fault detection [40]. Deep learning algorithms can be classi-
fied into the following categories: supervised, semi-supervised, unsupervised, and deep
reinforcement learning [41,42].

This study is focused on Al accelerators for edge/IoT applications. Supervised and
semi-supervised DL categories are usually trained on high-performance computing systems
and then deployed to edge devices. Supervised learning models utilize labeled data
samples. These models usually extract key features from incoming data samples and use
the features to classify the sample. One of the most popular categories of supervised DL
networks is CNNs [42]. Some common CNN architectures include VGG [43], ResNet [44],
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and GoogleNet [45]. Semi-supervised neural networks use a few labels to learn categories
and could be generative models or time-based sequence learning models. The semi-
supervised topologies include GAN, GRU, RNN, and LSTM. The internal layers of these
NN models are composed of CNNs and fully connected network topologies. A number of
edge processors support semi-supervised network models for automation applications. For
example, DeepVision (now Kinara) introduced ARA-1 (2020) and ARA-2 (2022) [46], which
target autonomous applications such as robotics, autonomous vehicles, smart tracking,
and autonomous security systems. Kneron introduced KL720 in 2021, which supports
semi-supervised network topologies for a wide range of applications [47]. In 2021, Syntiant
released a new PIM Al processor for extreme edge applications, accommodating supervised
and semi-supervised network topologies and supporting CNN, GRU, RNN, and LSTM
topologies [20].

The computational complexity of DL models is a barrier to implementing these mod-
els for resource-constrained edge or IoT devices. For edge applications, the deep neu-
ral network should be designed in an optimized way that is equally efficient without
losing a significant amount of accuracy. Common deep learning application areas for
the edge include [48-55] image classification, object detection, object tracking, speech
recognition, health care, and natural language processing (NLP). This section will dis-
cuss some lightweight DL models for edge applications that perform classification and
object detection.

2.1. Classification

Classification is probably the most popular use of CNNs and is one of the key applica-
tions in the computer vision field [56-58]. While larger networks with higher accuracies
are utilized in desktop and server systems, smaller and more highly efficient networks are
typically used for edge applications.

SqueezeNet [59,60] utilizes a modified convolutional model that is split into squeeze
and expand layers. Instead of 3 x 3 convolution operations seen in typical CNNs, a
much simpler 1 X 1 convolution operation is used. SqueezeNet achieves AlexNet levels of
accuracy with 50 x fewer network parameters [60]. Using model compression techniques,
SqueezeNet can be compressed to 0.5 MB, which is about 510 x smaller than AlexNet.

MobileNet [61] was created by Google and is one of the most popular DL models for
edge applications. MobileNet substitutes the traditional convolution operation with a more
flexible and efficient depthwise separable operation, significantly reducing computational
costs. The depthwise separable technique performs two operations: depthwise convolution
and pointwise convolution. There are three available versions of MobileNet networks:
MobileNet v1 [61], MobileNet v2 [62], and MobileNet v3 [63]. MobileNet v2 builds on
MobileNet v1 by adding a linear bottleneck and an inverted residual block at the end. The
latest MobileNet v3 utilizes NAS (neural architecture search) and NetAdapt to design a
more accurate and efficient network architecture for inference applications [63].

ShuffleNet [64] utilizes group convolution and channel shuffle to reduce computation
complexity. It increases accuracy by retraining with minimal computational power. There
are two versions of ShuffleNet: ShuffleNet vl and ShuffleNet v2 [64,65].

EfficientNet is a type of CNN with a corresponding scaling method that is able to
find a balance between computational efficiency and performance. It can uniformly scale
all the network dimensions, such as width, depth, and resolution, by using a compound
coefficient [66]. The scaling method facilitates the development of a family of networks.
Unlike other DL models, the EfficientNet model focuses not only on accuracy but also on
the efficiency of the model.

2.2. Detection

Object detection is an important task in computer vision that identifies and localizes
all the objects in an image. This application has a wide range of applications, including
autonomous vehicles, smart cities, target tracking, and security systems [67]. The broad
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range of object detection and DL network applications are discussed in [56,68]. DL networks
for object detection can be categorized into two types: (i) single-stage (such as SSD, YOLO,
and CenterNet) and (ii) two-stage (such as Fast/Faster RCNN). There are multiple criteria
for choosing the right architecture for the edge application. Single-stage detectors are
computationally more efficient than two-stage architectures, making them a better choice
for edge applications. For example, YOLO v5 demonstrates better performance compared
to Faster-RCNN-ResNet-50 [67].

2.3. Speech Recognition and Natural Language Processing

Speech recognition and natural language processing are becoming increasingly impor-
tant applications of deep learning. Speech emotion and speech keyword recognition are
the objectives of speech recognition. The process includes multiple state-of-the-art research
fields, such as Al, pattern recognition, signal processing, and information theory. Apple’s
Siri and Google’s Alexa illustrate the potential applications of speech recognition and
manifest better computer-human interfacing. RNN-based neural networks and time delay
DNN (TDNN) are popular choices for speech recognition [69]. Combined networks, such
as TDNN-LSTM [70] or RNN-LSTM, are also popular choices for speech recognition [71].

Detailed analysis of deep neural networks for NLP can be found in [70,72]. Important
applications of NLP are machine translation, named entity recognition, question-answering
systems, sentiment analysis, spam detection, and image captioning. An early NLP model
was sequence-to-sequence learning, based on RNNs. More recently, NLP was boosted by
the advent of the transformer model, BERT [73]. BERT utilizes an attention mechanism
that learns contextual relations between words [73]. Other state-of-the-art NLP models
are GPT-2 [74], GPT-3 [75], GPT-4 [76], and the switch transformer [77]. However, these
models run on HPC systems and are thus not compatible with edge devices. DeFormer [78],
MobileBERT [79], and EdgeBERT [80] are some of the examples of NLP models targeted
at edge devices. A more detailed discussion of NLP models for edge devices can be
found in [81].

Syntiant [20] has recently been building tiny Al chips for voice and speech recognition
and has attracted attention in the tech industry. Syntiant’s Neural Decision Processors
(NDPs) are certified by Amazon for use in Alexa-based devices [82]. Other voice recognition
Al chips include NXP’s i. MX8, i. MX9x [83-85] and M1076 from Mythic [86-88]. LightSpear
2803S from Gyrfalcon can be utilized for NLP [19,89]. IBM unveiled its NorthPole edge
processor for NLP applications at the HotChips 2023 conference [90].

3. Model Compression

Unoptimized DL models contain considerable redundancy in parameters and are
generally designed without consideration of power or latency. Lightweight and optimized
DL models enable Al application on edge devices. Designing effective models for running
on resource-constrained systems is challenging. DNN model compression techniques
are utilized to convert unoptimized models to forms that are suitable for edge devices.
Model compression techniques are studied extensively and discussed in [91-96]. The
techniques include parameter pruning, quantization, low-rank factorization, compact
filtering, and knowledge distillation. In this section, we will discuss some of the key model
compression techniques.

3.1. Quantization

Quantization is a promising approach to optimizing DNN models for edge devices.
Data quantization for edge Al has been studied extensively in [92-99]. Parameter quan-
tization takes a DL model and compresses its parameters by changing the floating point
weights to a lower precision to avoid costly floating point computations. As shown in
Table 2, most edge inference engines support INT4, 8, or 16 precisions. Quantization tech-
niques can be taken to the limit by developing binary neural networks (BNNs) [99]. A BNN
uses a single bit to represent activations and reduces memory requirements. Leapmind
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is a pioneer of low-precision computations in their edge processor, Efficiera [21]. It is an
ultra-low-power edge processor and can perform Al computations with 1-bit weights and
2-bit activations.

Table 2. Commercial edge processors with operation technology, process technology, and numeri-

cal precision.

- Max Energy
Company ]gltsst Ma):vl:;;wer P(r::f:)s S (Amr Ienaz) P;;c;;(;n Performance  Efficiency Architecture Reference
P (TOPS) (TOPS/W)
Analog MAX78000 1 p]/MAC ~ 64 1,2,4,8 - - Dataflow [100,101]
Devices
Apple M1 10 5 119 64 11 1.1 Dataflow [102]
Apple Al4 6 5 88 64 1 1.83 Dataflow [103]
Apple Al5 7 5 64 15.8 2.26 Dataflow [103]
Apple Ale6 5.5 4 64 17 3 Dataflow [104]
* AlStorm AlStorm 0.225 8 25 11 Dataflow [105]
* AlphalC RAP-E 3 8 30 10 Dataflow [106]
aiCTX [g{}%" 0.001 22 12 1 0.0002 02 Neuromorphic ~ [15,107]
* ARM Ethos78 1 5 16 10 10 Dataflow [108,109]
* AlMotive API%CIE‘ES 0.8 16 121 8 1.6-32 2 Dataflow [110,111]
" . Pathfinder, 64, FP-8,
Blaize EI Cano 6 14 BF16 16 2.7 Dataflow [112]
*Bitman BM1880 2.5 28 93.52 8 2 0.8 Dataflow [113,114]
* BrainChip Akida1000 2 28 225 1,2,4 15 0.75 Neuromorphic [115,116]
* Cannan Kendrite 2 28 8 15 1.25 Dataflow [117,118]
K210
CEVA- 2,5,8,12
M ,9,8,12,
CEVA Neuro-S 16 16 12.7 Dataflow [119]
. CEVA- 2,5,8,12,
CEVA Neuro-M 0.83 16 16 20 24 Dataflow [120]
* Cadence DNA100 0.85 16 16 4.6 3 Dataflow [121,122]
* Deepvision ARA-1 1.7 28 8,16 4 2.35 Dataflow [123]
* Deepvision ARA-2 16 Dataflow [124]
* Eta ECM3532 0.01 55 25 8 0.001 0.1 Dataflow [125]
* FlexLogic InferX X1 13.5 7 54 8 7.65 0.57 Dataflow [126]
* Google Edge TPU 2 28 96 8, BF16 4 2 Dataflow [127,128]
" LightSpeer )
Gyrfalcon 28035 0.7 28 81 8 16.8 24 PIM [47,89]
* Gyrfalcon ng;’;g}l)eer 0.224 28 36 8 2.8 12.6 PIM [89]
* Gyrfalcon Janux GS31 650/900 28 10457.5 8 2150 3.30 PIM [129]
* GreenWaves GAP9 0.05 22 12.25 8,16, 32 0.05 1 Dataflow [130-132]
* Horizon Journey 3 2.5 16 8 5 2 Dataflow [133]
* Horizon Journey5/5P 30 16 8 128 4.8 Dataflow [134,135]
* Hailo Hailo 8 M2 2.5 28 225 4,8,16 26 2.8 Dataflow [136,137]
Intel Loihi 2 0.1 7 31 8 0.3 3 Neuromorphic [9]
Intel Loihi 0.11 14 60 1-9 0.03 0.3 Neuromorphic [9,138]
®
* Intel Intel 2 16 71.928 16 4 2 Dataflow [139]

Movidius
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Table 2. Cont.
Latest Max Power Process Area Precision Max Energy
Company Chi W) (nm) (mm?) INT/FP Performance Efficiency Architecture Reference
P (TOPS) (TOPS/W)
IBM TrueNorth 0.065 28 430 8 0.0581 04 Neuroorphic [10,138]
IBM NorthPole 74 12 800 2,4,8 200 (INTS8) 2.7 Dataflow [90,140]
s PowerVR
* . /
Imagination Series3NX FP-(8, 16) 0.60 Dataflow [141,142]
* Imec DIANA 22 10.244 2 295 ((%))’ 0.14 144 PIM + Digital [143,144]
* Imagination IMﬁéi\I X 0.417 4,16 12.5 30 Dataflow [145]
* Kalray MPPA3 15 16 8,16 255 1.67 Dataflow [13]
* Kneron KL720 AL 1.56 28 81 8,16 1.4 0.9 Dataflow [47]
* Kneron KL530 0.5 8 1 2 Dataflow [47]
* Koniku Konicore Neuromorphic [12]
* LeapMind Efficiera 0.237 12 0.422 L2 é’28’ 16, 6.55 27.7 Dataflow [21]
. 4,8, 16, .,
Memryx MX3 1 - - BF16 5 5 Dataflow [146]
* Mythic M1108 4 361 8 35 8.75 PIM [87]
* Mythic M1076 3 40 294.5 8 25 8.34 PIM [18,86,88]
* mobileEye EyeQ5 10 7 45 4,8 24 24 Dataflow [147-149]
* mobileEye EyeQ6 40 7 4,8 128 32 Dataflow [150]
* Mediatek 1350 14 0.45 Dataflow [151]
" Jetson
NVIDIA Nano BO1 10 20 118 FP16 1.88 0.188 Dataflow [152]
* NVIDIA AGX Orin 60 7 - 8 275 3.33 Dataflow [153]
* NXP i.MX 8M+ 14 196 FP16 2.3 Dataflow [84,85]
* NXP i.MX9 4x10°° 12 Dataflow [83]
* Perceive Ergo 0.073 5 49 8 4 55 Dataflow [154]
TSU & Polar
Bear Tech QM930 12 12 1089 4,8,16 20 (INTS8) 1.67 Dataflow [155]
Qualcomm QCS8250 7 157.48 8 15 Dataflow [156,157]
Qualcomm Snagggfgon 5 5 FP32 32 6.4 Dataflow [158-160]
Snapdragon 4,8,16,
Qualcomm 8 Gen? 4 EP16 51 Dataflow [161]
* RockChip rk3399Pro 3 28 729 8,16 3 1 Dataflow [162]
. Amlogic
Rokid A311D 12 5 Dataflow [163]
Exynos
Samsung 2100 5 26 Dataflow [164,165]
Samsung Exynos 4 8,16, FP16 Dataflow [166]
2200
Samsung HBM-PIM 0.9 20 46.88 1.2 1.34 PIM [167,168]
Sima.ai MLSoC 10 16 175.55 8 50 5 Dataflow [169,170]
Synopsis EV7x 16 8,12, 16, 2.7 Dataflow [171,172]
* Syntiant NDP100 0.00014 40 2.52 0.000256 20 PIM [173,174]
* Syntiant NDP101 0.0002 40 25 1,2,48 0.004 20 PIM [173,175]
* Syntiant NDP102 0.0001 40 4.2921 1,2,4,8 0.003 20 PIM [173,175]
* Syntiant NDP120 0.0005 40 7.75 1,2,4,8 0.0019 3.8 PIM [173,176]
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. Max Energy
Company LCaltsst Ma);‘ll\’[())wer P(rr(:;f)s s (An: Ienaz) P[rlsjc"ll"jlli([)’n Performance Efficiency Architecture Reference
P (TOPS) (TOPS/W)
* Syntiant NDP200 0.001 40 1,2,4,8 0.0064 6.4 PIM [173,177]
® .
Think Silicon NEI\% Ipico 0003 28 0.11 EP16, 32 0.0018 6 Dataflow [178]
Tesla/Samsung FSD Chip 36 14 260 8, FP-8 73.72 2.04 Dataflow [179]
Videntis TEMPO Neuromorphic [11]
Verisilicon VIP9000 16 16, FP16 0.5-100 Dataflow [180,181]
Untether TsunAImi 400 16 8 2008 8 PIM [182,183]
UPMEM UPli\I/II\I/E[M- 700 20 32,64 0.149 PIM [184-187]

* Processors are available for purchase; Integer precision is indicated by only precision number(s). Floating point
precision is denoted FP in the precision column.

Recent hardware studies show that lower precision does not have a major impact on
inference accuracy. For example, Intel and Tsinghua University have presented QNAP [188],
where they utilize 8 bits for weights and activations. They show an inference accuracy loss
of only 0.11% and 0.40% for VGG-Net and GoogleNet, respectively, when compared to a
software baseline with the ImageNet dataset. Samsung and Arizona State University have
experimented with extremely-low-precision inference in PIMCA [189], where they utilized
1 bit for weights and activations. They showed that VGG-9 and ResNet-18 had accuracy
losses of 3.89% and 6.02%, respectively.

Lower precision increases the energy and area efficiency of a system. PIMCA can com-
pute 136 and 35 TOPS/W in 1- and 2-bit precision, respectively, for ResNet-18. TSMC [190]
has studied the impact of low-precision computations on area efficiency. They showed
221 and 55 TOPS/mm? area efficiency in 4- and 8-bit precision. Thus, with 4-bit computa-
tion, they achieved about 3.5 x higher computation throughput per unit area compared to
8-bit computation.

Brain-Float-16 (or BF-16) [191] is a limited precision floating point format that is
becoming popular for Al applications in edge devices. BF16 combines certain components
of FP32 and FP16. From FP16, the BF16 utilizes 16 bits overall. From FP32, BF16 utilizes
8 bits for the exponent field (instead of 5 bits for FP’16). A key benefit of BF16 is the format
obtains the same dynamic range and inference accuracy as FP32 [75]. BF16 speeds up the
MAC operation in edge devices to enable faster Al inference on the edge devices. Both
the GDDR6-AiIM from SK Hynix [192] and Pathfinder-1600 from Blaize [112,193] support
BF16 for Al applications. The supported precision levels of various edge processors are
presented in Table 2.

3.2. Pruning

Pruning is the technique used to remove unnecessary network connections to make the
network lightweight for deploying on edge processors. Several studies [92-100,194-196] show
that up to 91% of weights in AlexNet can be pruned with minimal accuracy reduction.
Various training methods have been proposed to apply pruning to pre-trained networks [99].
Pruning, however, has drawbacks such as creating sparsity in the weight matrices. This
sparsity leads to unbalanced parallelism in the computation and irregular access to the
on-chip memory. Several techniques have been developed [197,198] to reduce the sparsity.

3.3. Knowledge Distillation

Knowledge distillation, introduced by B. Christian et al. [199], is a technique wherein
the knowledge of an ensemble of larger networks is transferred to a smaller network
without loss of validity. This can reduce the computational load significantly. The effec-
tiveness of knowledge distillation is studied extensively in [92-100,200-204], where the
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authors show that the distillation of knowledge from a larger regularized model into a
smaller model works effectively. Various algorithms have been proposed to improve the
process of transferring knowledge, such as adversarial distillation, multi-teacher distil-
lation, cross-modal distillation, attention-based distillation, quantized distillation, and
NAS-based distillation [205]. Although knowledge distillation techniques are mainly used
for classification applications, they are also applied to other applications, such as object
detection, semantic segmentation, language modeling, and image synthesis [81].

4. Framework for Deep Learning Networks

At present, the majority of edge Al processors are designed for inference only. Network
training is typically carried out on higher-performance desktop or server systems. There
are a large variety of software frameworks used to train deep networks and also to convert
them into lightweight versions suitable for edge devices. Popular DNN frameworks include
Tensorflow (TF) [206], Tensorflow Lite (TFL) [207], PyTorch [208], PyTorch mobile [209],
Keras [210], Caffe2 [211], OpenCV [212], ONNX [213], and MXNet [214]. Some of these
frameworks support a broad class of devices, such as android, iOS, or Linux systems.

TFL was developed by Google and supports interfacing with many programming
languages (such as Java, C++, and Python). It can take a trained model from TensorFlow
and apply model compression to reduce the amount of computations needed for inference.

ONNX was developed by the PyTorch team to represent traditional machine learning
and state-of-the-art deep learning models [213]. The framework is interoperable across
popular development tools such as PyTorch, Caffe2, and Apache MXNet. Many of the
current Al processors support the ONNX framework, such as Qualcomm SNPE, AMD,
ARM, and Intel [215].

PyTorch mobile was developed by Facebook and allows a developer to train Al models
for edge applications. The framework provides a node-to-node workflow that enables
clients to have a privacy-preserving learning environment via collaborative or federated
learning [208,209]. It supports XNNPACK floating point kernel libraries for ARM CPUs
and integrates QNNPACK for quantized INTS8 kernels [209].

Caffe2 is a lightweight framework developed by Facebook [211]. This framework
supports C++ and Python APIs, which are interchangeable, and helps to develop prototypes
quickly (such prototypes may potentially be optimized later). Caffe2 integrates with
Android Studio and Microsoft Visual Studio for mobile development [211]. Caffe2Go
is developed for embedding in mobile apps for applying a full-fledged deep learning
framework for real-time capture, analysis, and decision making without the help of a
remote server [216].

Facebook uses Pytorch Mobile, Caffe2 and ONNX for developing their products.
Pytorch is used for experimental and rapid development, Caffe2 is developed for the
production environment, and ONNX helps to share the models between the two frame-
works [213].

MXNet is a fast and scalable framework developed by the Apache Software Founda-
tion [131]. This framework supports both training and inference with a concise API for Al
applications in edge devices. MXNet supports Python, R, C++, Julia, Perl, and many other
languages and can be run on any processor platform for developing Al applications [131].
As shown in Table 3 TFL, ONNX, and Caffe2 are the most widely used frameworks for Al
edge applications.

Table 3. Processors, supported neural network models, deep learning frameworks, and application

domains.
Company Product SuppN(Lrttii:ural Ff:ig::;iﬁg) Application/Benefits
Apple Apple Al4 DNN TFL iPhonel?2 series
Apple Apple A15 DNN TFL iPhonel3 series
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Table 3. Cont.
Supported Neural Supported s .
Company Product Networks Frameworks Application/Benefits
. CNN, RNN, Reservoir High-speed aircraft, IoT,
aiCTX-Synsense Dynap-CNN Computing SNN security, healthcare, mobile
TF, TFL, Caffe2,
ARM Ethos78 CNN and RNN PyTorch, MXNet, Automotive
ONNX
GoogleNet, VGG16, 19, Automotives, pedestrian
. Inception-v4, v2, detection, vehicle detection,
AlMotive Apache5 IEP MobileNet v1, ResNet50, Caffe2 lane detection, driver
Yolo v2 status monitoring
Fit for industrial, retail,
Blaize EI Cano CNN, YOLO v3 TFL smart-city, and
computer-vision systems
BrainChip Akida1000 CNN in SNN, MobileNet MetaTF Online learning, data
analytlcs, security
Smart homes, smart health,
BrainChip AKD500, 1500, 2000 DNN MetaTF smart city and smart
transportation
IoTs, smartphones,
CEVA Neuro-s CNN, RNN TFL surveillance, automotive,
robotics, medical
IoT, smartphones, AR/VR,
Cadence Tensilica DNA100 FCC, CNN, LSTM ONNX, Caffe2, smart surveillance,
TensorFlow .
autonomous vehicles
Deep Lab V3, Resnet-50, Smart retail, robotics,
Deepvision ARA-1 Resnet-152, Caffe2, TFL, MXNET, industrial automation,
p MobileNet-SSD, YOLO PyTorch smart cities, autonomous
V3, UNET vehicles, and more
Smart retail, robotics
.. Model in ARA-1 and . . ’ .
Deepvision ARA-2 LSTM, RNN,, TFL, Pytorch industrial au.t(.)matlon,
smart cities,
Smart homes, consumer
Eta ECM3532 CNN, GRU, LSTM - products, medical, logistics,
smart industry
. CNN-based, VGG, High-performance audio
Gyrfalcon LightSpeer 28035 ResNet, MobileNet; TFL, Caffe2 and video processing
Object detection and
. CNN-based, ResNet, . .
Gyrfalcon LightSpeer 5801 MobileNet and VGG16, TFL, PyTorch & Caffe2 tracking, NLR visual
analysis
Gvrfalcon Edee Smart cities, surveillance,
y Server & Janux GS31 VGG, REsNet, MobileNet TFL, Caffe2, PyTorch object detection,
recognition
CNN, LSTM, GRU, .
GreenWaves GAP9 MobileNet TF, Pytorch DSP application
Horizon Journey 3 CNN, MobileNet v2, TFL, Pytorch, ONNX, Automotives
y EfficientNet mxnet, Caffe2
Resnet18, 50, MobileNet
Horizon Journey5/5P v1-v2, ShuffleNetv2, TFL, Pytorch, ONNX, Automotives

EfficientNet
FasterRCNN, Yolov3

mxnet, Caffe2
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Table 3. Cont.

Supported Neural Supported s .
Company Product Networks Frameworks Application/Benefits
YOLO 3, YOLOvV4,
Hailo Hailo 8 M2 CenterPose, CenterNet, ONNX, TFL Edge vision applications
ResNet-50
Intel Loihi 2 SNN-based NN Lava, TFL, Pytorch Online learning, sensing,
robotics, healthcare
Intel Loihi SNN-based NN Nengo Online learning, robotics,
healthcare and many more
Smartphones, smart
Imagination PowerVR Series3NX MobileNet v3, CNN Caffe, TFL cameras, drones,
automotives, wearables
Imec & GF DIANA DNN TFL, Pytorch Analog computing in Edge
inference
KoniKu Konicore Synthet.@ biology + _ Ch(e'm%cal detect'lon,
silicon aviation, security
Deep network converted Autonomous vehicles,
Kalray MPPA3 p Kalray’s KANN surveillance, robotics,
to KaNN .
industry, 5G
Wide applications from
Kneron KL720 AI CNN, RNN, LSTM ONNXé;ff};; Keras, automotive to home
appliances
Vggl6, Resnet, .
Kneron KL520 GoogleNet, YOLO, Lenet, ONNXé;ff};; Keras, Airtllcticl)lac;tn;esa};c())n;is,
MobileNet, FCC Y
LeapMind Efficiera CNN, YOLO v3, Blueoil, Python & C++ maIc_:I}?irrrll:rs, l:ilxlfztilﬁilce
p MobileNet v2, Lmnet API Y
cameras, robots
Memryx MX3 CNN Pytorh, ONNX, TE, Automatlon, su.rvelll.ance,
Keras agriculture, financial
CNN, large complex Machine vision, electronics,
Mythic M1108 DNN, Resnet50, YOLO Pytorch, TFL, and smart homes, UAV /drones,
ONNX
v3, Body25 edge servers
Surveillance, vision, voice
. CNN, complex DNN, Pytorch, TFL, and ! ’ !
Mythic M1076 Resnet50, YOLO v3 ONNX smart homes, UAV, edge
servers
MobileEye EyeQ5 DNN Autonomous driving
MobileEye EyeQ6 DNN Autonomous driving
Vision and voice, biotech
Mediatek 1350 DNN TFL and bio-metric
measurements
NXP i.MX 8M+ DNN TFL, Arm NN, ONNX Edge vision
NXP i.MX9 CNN, MobileNet v1 TFL, Arm NN, ONNX  Craphics, ;Tgﬁ)es' display,
NVIDIA AGX Orin DNN TE, TFL, Caffe, Pytorch ~ Ropotics, retail, traffic,
manufacturing
Smartphones, tablets,
Qualcomm QCS8250 CNN, GAN, RNN TFL supporting 5G, video and
image processing
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Table 3. Cont.
Supported Neural Supported s .
Company Product Networks Frameworks Application/Benefits
Smartphones, tablets, 5G,
Qualcomm Snapdragon 888+ DNN TFL gamme, video uPscahng,
image and video
processing
VGG16, ResNE(50 TFL, Caffe, mxnet Smart homes, cities, and
RockChip rk3399Pro Tnceptiond ONNX, darknet 1ndust.ry., facial r?cognltlon,
driving monitoring
. . Inception V3, YoloV2, High-performance
Rokid Amlogic A311D YOLOV3 TFL, Caffe2 Darknet multimedia
Smartphones, tablets,
Samsung Exynos 2100 CNN TFL advanced image signal
processing (ISP), 5G
Samsung HBM-PIM DNN Pytorch, TFL Supercom}?utgr and Al
application
OpenCV, OpenVX and Robotics, autopilot cars,
Synopsis EV7x CNN, RNN, LSTM OpenCL C, TFL, Caffe2 vision, SLAM, and DSP
algorithms
Mobile phones, hearing
Syntiant NDP100 DNN TFL equipment, smartwatches,
IoT, remote controls
Mobile phones, smart
Syntiant NDP101 CNN, RNN, GRU, LSTM TFL homes, remote controls,
smartwatches, IoT
Mobile phones, smart
Syntiant NDP102 CNN, RNN, GRU, LSTM TFL homes, remote controls,
smartwatches, IoT
Mobile phones, smart
Syntiant NDP120 CNN, RNN, GRU, LSTM TFL home, wearables, PC, IoT
endpoints, media
streamers, AR/VR
Mobile phones, smart
. FC, Conv, DSConv, .
Syntiant NDP200 RNN-GRU, LSTM TFL homeg, security cameras,
video doorbells
Think Silicon Nema PicoXS DNN Wearable and embedded
devices
Tesla FSD CNN Pytorch Automotives
Can perform as intelligent
- TF, Pytorch, TFL, . .
Verisilicon VIP9000 All modern DNN DarkNet, ONNX eyes and intelligent ears at
the edge
DNN, ResNet-50, Yolo, .
Untether TsunAlImi Unet, RNN, BERT, TCNS, TFL, Pytorch NLF, inference at the edge
server or data center
LSTMs
Sequence alignment of
DNA or protein, genome
UPMEM UPMEM-PIM DNN

assembly, metagenomic
analysis

Some edge processors are compatible only with their in-home frameworks. For exam-
ple, Kalray’s MPPA3 edge processor is compatible with KaNN (Kalray Neural Network), so
any trained deep network must be converted to KaNN to run on the MPPA3 processor [13].
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CEVA introduced its own software framework, CEVA-DNN, for converting pre-trained
network models and weights from offline training frameworks (such as Caffe, TensorFlow)
for inference applications on the CEVA processors [119,217]. CEVA added a retrain feature
in CEVA-DNN for the Neuro-Pro processor to enable a deployed device to be updated with-
out uploading a database to the server [119]. The developer can also use CEVA-DNN tools
on a simulator or test device and then transfer the updated model to edge devices [217].

5. Framework for Spiking Neural Networks

Spiking neural networks (SNNs) utilize brain-inspired computing primitives, where a
neuron accumulates a potential and fires only when a threshold is crossed [218]. This means
that in spiking neural networks, the neurons have outputs sporadically. Thus, SNNs have
much fewer neuron-to-neuron communications compared to deep neural networks, where
all neurons always send outputs. The net result of this is that SNNs can be dramatically
more power-efficient than DNNs and can potentially implement a task with far fewer
operations. Thus, an SNN processor with the same operations-per-second capability as a
DNN processor could theoretically have a much higher task-level throughput.

To extract the highest efficiency from SNN processors, it is best to use algorithms that
are developed from the ground up to use spiking neurons. Examples of such algorithms
include constraint satisfaction problems [219] and genetic algorithms [220]. Several studies
have examined how to implement DNNs using SNNs [221]. Davidson et al. [222] show
through modeling of energies that this should not result in higher efficiency than the
original DNN using the same underlying silicon technology. However, P. Blouw et al. [223]
implemented keyword spotting on several hardware platforms and showed that the Loihi
was about 5x more energy-efficient than the Movidius deep learning processor. The
remainder of this section describes some of the key frameworks for implementing SNN
architectures for spiking neuromorphic processors.

Nengo is a Python-based framework developed by Applied Brain Research for spiking
neurons. It supports multiple types of processors, including Loihi [224] and Spinnaker [225].
Nengo is very flexible in writing code and simulating SNNs. The core framework is the
Nengo ecosystem, which includes Nengo objects and NumPy-based simulators. The Nengo
framework has Nengo GUI for model construction and visualization tools and NengoDL
for simulating deep learning models using SNNs [226].

Meta-TF [227] is a framework developed by BrainChip for edge applications in the
Akida neuromorphic chips [115,116,228]. Meta-TF takes advantage of the Python scripting
language and associated tools, such as Jupyter notebook and NumPy. Meta-TF includes
three Python packages [227]: (1) the Akida Python package works as an interface to the
Akida neuromorphic SoC; (2) the CNN2SNN tool provides an environment to convert a
trained CNN network into SNNs. Brainchip embeds the on-chip training capability in
the Akida processor, and thus, the developers can train SNNs on the Akida processor
directly [228]; (3) Akida Model Zoo contains pre-created network models, which are built
with the Akida sequential API and the CNN2SNN tool by using quantized Keras models.

Lava is a framework currently being developed by Intel to build SNN models and
map them to neuromorphic platforms [229]. The current version of the Lava framework
supports the Loihi neuromorphic chips [9]. Lava includes Magma which helps to map and
execute neural network models and sequential processes to neuromorphic hardware [229].
Magma also helps to estimate performance and energy consumption on the platform. Lava
has additional properties—including offline training, integration with other frameworks,
and a Python interface—and is an open-source framework (with proper permissions).
The Lava framework supports online real-time learning, where the framework adopts
plasticity rules. However, the learning is constrained to access only locally available
process information [229].
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6. Edge Processors

At present, GPUs are the most popular platform for implementing DNNSs. These,
however, are usually not suitable for edge computing (except the NVIDIA Jetson systems)
due to their high power consumption. A large variety of Al hardware has been developed,
many of which target edge applications. Several articles have reviewed Al hardware in
broad categories, giving an overall idea of the current trend in Al accelerators [230-232].
Earlier works [2,233-235] have reviewed a small selection of older edge Al processors.

This paper presents a very broad coverage of edge Al processors and PIM processors
from the industry. This includes processors already released, processors that have been
announced, and processors that have been published in research venues (such as the
ISSCC and the VLSI conferences). The data presented here are collected from open-source
platforms that include scientific articles, tech news portals, and company websites. The
exact numbers could be different than in this report. If someone is interested in a particular
processor, we suggest verifying the performance data with the providers. This section
is divided into four subsections: subsection (i) describes dataflow processors; subsection
(ii) describes neuromorphic processors; and subsection (iii) describes PIM processors. All of
these sections describe industrial products that have been announced or released. Finally,
subsection (iv) describes the processors in industrial research.

Table 2 describes the key hardware characteristics of the commercial edge-Al and PIM-
Al processors. Table 3 lists the same key characteristics for the processors from industrial
research. Table 4 describes the key software/application characteristics of the processors in
Table 2.

Table 4. Edge processors in industrial research with technology, process technology, and numerical

precision.
Power Process Area Precision Performance  E. Eff. .

Research Group Name W) (nm) (mm2) INT/EP * (TOPS) (TOPS/W) Architecture Reference
TSMC + NTHU 0.00213 22 6 2,4,8 0.418 195.7 PIM [236]
TSMC 0.037 22 0.202 4,8,12,16 3.3 89 PIM [237]
TSMC 0.00142 7 0.0032 4 0.372 351 PIM [238]
Samsung + GIT ~ FORMS 66.36 32 89.15 8 0.0277 PIM [239]
IBM + U Patra HERMES 0.0961 14 0.6351 8 2.1 21.9 PIM [240]
Samsung + ASU  PIMCA 0.124 20.9 1,2 49 588 PIM [189]
Intel + Cornell U CAPE 7 9 4 PIM [241]
SK Hynix AiM 6.08 1 PIM [192]
TSMC DCIM 0.0116 5 0.0133 4,8 2.95 254 PIM [190]
Samsung 0.3181 4 4.74 413%1166’ 39.3 11.59 Dataflow [242]
Alibaba + FU 0.0212 28 8.7 3 0.97 329 Dataflow [243]
Alibaba + FU 0.072 65 8.7 3 1 8.6 Dataflow [243]
Alibaba 0.978 55 602.22 8 Dataflow [244]
TSMC + NTHU 0.00227 22 18 2,4,8 0.91 960.2 PIM [245]
TSMC + NTHU 0.00543 40 18 2,4,8 39 718 PIM [246]
TSMC + GIT 0.000350 40 0.027 0.0092 26.56 PIM [247]
TSMC + GIT 0.131 40 25 1_8:;21 8, 7.989 60.64 PIM [248]
Intel + UC 0.0090 28 0.033 1,1 20 2219 PIM [249]
Intel + UC 0.0194 28 0.049 14,1 48 248 PIM [249]
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Table 4. Cont.

Research Group Name P?x;: ! P(r::f::)s S (1?1::12) II’;?;};;)E Pe(l:lf(())r;,n;)nce (Tf).PESf/f\.N) Architecture Reference
TSMC + NTHU nvCIM  0.00398 22 6 24 5.12 1286.4 PIM [69]
Pi2star + NTHU 0.00841 65 12 1-8 3.16 75.9 PIM [250]
Pi2star + NTHU 0.00652 65 9 4,8 2 35.8 PIM [251]
Tsing + NTHU 0.273 28 6.82 12 4.07 27.5 Dataflow [252]
Samsung 0.381 4 4.74 4,8, FP16 19.7 11.59 Dataflow [242]
Elliiiisr?fc S 44 12 60.4 13.8 Dataflow [253]
IBM 6.20 7 19.6 2.4, 102.4 16.5 Dataflow [254]

FP(8,16,32)

Intel + IMTU QNAP 0.132 28 3.24 8 2.3 175 Dataflow [188]
Samsung 0.794 5 5.46 8,16 29.4 13.6 Dataflow [255]
Sony 0.379 22 61.91 8,16, 32 1.21 497 Dataflow [256]
Mediatek 1.05 7 3.04 3.6 13.32 Dataflow [257]
Pi2star 0.099 65 12 8 1.32 13.3 Dataflow [74]
Mediatek 0.0012 12 0.102 86.24 PIM [257]
TSMC + NTHU 0.10 22 8.6 8,88 6.96 68.9 PIM [258]
TSMC + NTHU 0.099 22 9.32 8,8,8 24.8 251 PIM [258]
ARM + Harvard 0.04 12 FP4 0.734 18.1 Dataflow [259]
ARM + Harvard 0.045 12 FP8 0.367 8.24 Dataflow [259]
TSMC + NTHU 0.0037 22 18 8,822 0.59 160.1 Dataflow [260]
STMircroelectronics 0.738 18 424 1,1 229 310 Dataflow [261]
STMircroelectronics 0.740 18 4.19 4,4 57 77 Dataflow [261]
MediaTek 0.711 12 1.37 12 16.5 23.2 PIM [262]
TSMC+ NTHU 16 8 98.5 PIM [263]
Ei‘i‘rﬁi . 5.06 14 8 130.55 239 Dataflow [264]

* Integer precision is indicated by only precision number(s). Floating point precision is denoted FP in the precision
column.

6.1. Dataflow Edge Processor

This section describes the latest dataflow processors from the industry. Dataflow
processors are custom-designed for neural network inference and, in some cases, training
computations. The processors are listed in alphabetical order based on the manufacturer
name. The data provided are from the publications or websites of the processors.

Analog Devices Inc. developed a low-cost mixed-signal CNN accelerator MAX78000
that consists of a Cortex-M4 processor, a 32-bit RISC-V processor with a floating point
unit (FPU) and CPU for system control with a DNN accelerator [100,101]. The accelerator
has a SRAM-based 442 KB on-chip weight storage memory which can support 1-, 2-, 4-,
and 8-bit weights. The CNN engine has 64 parallel processors and 512 KB data memory.
Each processor has a pooling unit and a convolutional unit with a dedicated memory unit.
The processor consumes 1 p] /MAC operation. As the exact power consumption (W) and
performance (TOPS) data are not publicly available at the time of this writing, we did not
add it to our graphs. The size of the chip is 64 mm?. The architecture supports Pytorch and
Tensorflow toolsets for the development of a range of DNN models. The target application
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areas are object detection, classification, facial recognition, time series data processing, and
noise cancellation.

Apple released the bionic SoC A16 with an NPU unit for the iPhone 14 [104]. The Al6
processor exhibits about 20% better performance with the same power consumption as
their previous version, A15. It is embedded with a 6-core ARMS8.6a CPU, 16-core NPU, and
8-core GPU [104]. The Apple M2 processor was released in 2022 primarily for Macbooks
and then optimized for iPads. This processor includes a 10-core GPU and 16-core NPU [265].
M1 performs 11 TOPS with 10 W of power consumption [109]. The M2 has an 18% and
35% more powerful CPU and GPU for faster computation.

ARM recently announced the Ethos-N78 with an 8-core NPU for automotive applica-
tions [108]. Ethos-N78 is an upgraded version of Ethos-N77. Both NPUs support INT8 and
INT16 precision. Ethos-N78 performs more than two times better than the earlier version.
The most significant improvement of Ethos-N78 is a new data compression method that
reduces the bandwidth and improves performance and energy efficiency [109].

Blaize released its Pathfinder P1600 El Cano Al inference processor. This processor
integrates 16 graph streaming processors (GSPs) that deliver 16 TOPS at its peak perfor-
mance [112]. It uses a dual Cortex-A53 for running the operating system at up to 1 GHz.
Blaize GSP processors integrate data pipelining and support up to INT-64 and FP-8-bit
operations [112].

AlMotive [110] introduced the inference edge processor Apache5, which supports a
wide range of DNN models. The system has an aiWare3p NPU with an energy efficiency
of 2 TOPS/W. Apache5 supports INT8 MAC and INT32 internal precision [111]. This
processor is mainly targeted at autonomous vehicles [266].

CEVA [119] released the Neupro-S on-device Al processor for computer vision appli-
cations. Neupro comprises two separate cores. One is the DSP-based Vector Processor Unit
(VPU), and the other is the Neupro Engine. VPU is the controller, and the Neupro Engine
performs most of the computing work with INT8 or INT16 precision. A single processor
performs up to 12.5 TOPS, while the performance can be scaled to 100 TOPS with multicore
clusters [119,120]. The deep learning edge processors are mostly employed for inference
tasks. CEVA added a retraining capability to its CDNN (CEVA DNN) framework for online
learning on client devices [217].

Cadence introduced the Tensilica DNA 100, which is a comprehensive SoC for domain-
specific on-device Al edge accelerators [121]. It has low-, mid-, and high-end Al products.
Tensilica DNA 100 offers 8 GOPS to 32 TOPS Al processing performance currently and
predicts 100 TOPS in future releases [122]. The target applications of the DNA 100 include
IoTs, intelligent sensors, vision, and voice application. The mid- and high-end applications
include smart surveillance and autonomous vehicles, respectively.

Deepvision has updated their edge inference coprocessor ARA-1 for applications to
autonomous vehicles and smart industries [123]. It includes eight compute engines with
4 TOPS and consumes 1.7-2.3 W of power [123]. The computing engine supports INT8
and INT16 precision. Deepvision has recently announced its second-generation inference
engine, ARA-2, which will be released later in 2022 [124]. The newer version will support
LSTM and RNN neural networks in addition to the networks supported in ARA-1.

Horizon announced its next automotive Al inference processor Journey 5/5P [133],
which is the updated version of Journey 3. The mass production of Journey 5 will be
starting in 2022. The processor exhibits a performance of 128 TOPS, and has a power of
30 W, giving an energy efficiency of 4.3 TOPS/W [134,135].

Hailo released its Hailo-8 M-2 SoC for various edge applications [136]. The com-
puting engine supports INT8 and INT16 precision. This inference engine is capable of
26 TOPS and requires 2.5 W of power. The processor can be employed as a standalone or
coprocessor [137].

Google introduced its Coral Edge TPU, which comprises only 29% of the floorplan
area of the original TPU for edge applications [127]. The Coral TPU shows high energy
efficiency in DNN computations compared to the original TPUs which are used in cloud
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inference applications [267]. Coral Edge TPU supports INT8 precision and can perform
4 TOPS with 2 Watts of power consumption [127].

Google released its Tensor processor for mobile applications, coming with its recent
Pixel series mobile phone [268]. Tensor is an 8-core cortex CPU chipset fabricated with 5 nm
process technology. The processor has a 20-core Mali-G78 MP20 GPU with 2170 GFLOPS
computing speed. The processor has a built-in NPU to accelerate Al models with a perfor-
mance of 5.7 TOPS. The maximum power consumption of the processor is 10 W.

GreenWaves announced their edge inference chip GAP9 [130]. It is a very low-cost,
low-power device that consumes 50 mW and performs 50 GOPS at its peak [132]. However,
it consumes 330uW /GOP [131]. GAP9 provides hearable developments through DSP, Al
accelerator, and ultra-low-latency audio streaming on IoT devices. GAP9 supports a wide
range of computing precision, such as INTS, 16, 24, 32, and FP16, 32 [131].

IBM introduced the NorthPole [90,140], a non-von Neumann deep learning inference
engine, at the HotChips 2023 conference. The processor shows massive parallelism with
256 cores. Each core has 768 KB of near-computer memory to store weights, activations,
and programs. The total on-chip memory capacity is 192 MB. The NorthPole processor
does not use off-chip memory to load weights or store intermediate values during deep
learning computations. Thus, it dramatically improves latency, throughput, and energy
consumption, which helps outperform existing commercial deep learning processors. The
external host processor works on three commands: write tensor, run network, and read
tensor. The NorthPole processor follows a set of pre-scheduled deterministic operations in
the core array. It is implemented in 12 nm technology and has 22 billion transistors taking
up 800 mm? of chip area. The performance data released on the NothPole processor are
computed based on frame/sec. The performance metrics of operations/sec in integer or
floating point are unavailable in the public domain currently. However, the operations
per cycle are available for different data precisions. In vector-matrix multiplication, 8-, 4-,
and 2-bit cases can perform 2048, 4096, and 8192 operations/cycle. The FP16 can compute
256 operations/cycle (the number of cycles/s has not been released at this time). NorthPole
can compute 800, 400, and 200 TOPS with INT 2, 4, and 8 precisions. The processor can
be applied to a broad area of applications and can execute inference with a wide range of
network models applied in classification, detection, segmentation, speech recognition, and
transformer models in NLP.

Imagination introduced a wide range of edge processors with targeted applications in
IoTs to autonomous vehicles [182]. The edge processor series is categorized as the PowerVR
Series3NX and can achieve up to 160 TOPS with multicore implementations. For ultra-low-
power applications, one can choose PowerVR AX3125, which has a 0.6 TOPS computing
performance [183]. IMG 4NX MC1 is a single-core Series 4 processor for autonomous vehicle
applications and performs at 12.5 TOPS with less than 0.5 W of power consumption [184].

Intel released multiple edge Al processors such as Nirvana Spring Crest NNP-I [269]
and Movidious [139]. Recently, they have announced a scalable fourth-generation Xeon
processor series that can be used for desktop to extreme edge devices [270]. The power
consumption for an ultra-mobile processor is around 9 W when computed with INT8
precision. The development utilizes the SuperFin fabrication technology with 10 nm
process technology. Intel is comparing its core architecture to the Skylake processor, and it
claims an efficient core achieves 40% better performance with 40% less power.

IBM developed the Artificial Intelligence Unit (AIU) based on their Al accelerator
used in the 7-nanometer Telum chip that powers its z16 system [271]. AIU is a scaled
version developed using 5 nm process technology and features a 32-core design with a total
of 23 billion transistors. AIU uses IBM’s approximate computing frameworks where the
computing executes with FP16 and FP32 precisions [272].

Leapmind has introduced the Efficiera for edge Al inference implemented in FPGA or
ASIC [21]. Efficiency is for ultra-low-power applications. The computations are typically
performed in 8-, 16-, or 32-bit precision. However, the company claims that 1-bit weight
and 2-bit activation can be achieved while still maintaining accuracy for better power and
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area efficiency. They show 6.55 TOPS at 800 MHz clock frequency with an energy efficiency
of 27.7 TOPS/W [273].

Kneron released its edge inference processor, KL 720, for various applications, such as
autonomous vehicles and smart industry [47]. The KL 720 is an upgraded version of the
earlier KL 520 for similar applications. The revised version performs at 0.9 TOPS/W and
shows up to 1.4 TOPS. The neural computation supports INT8 and INT16 precisions [47].
Kneron’s most up-to-date heterogeneous Al chip is KL 530 [47]. It is enabled with a brand
new NPU, which supports INT4 precision and offers 70% higher performance than that
of INT8. The maximum power consumption of KL 530 is 500 mW and can deliver up to
1 TOPS [47].

Memryx [146] released an inference processor, MX3. This processor computes deep
learning models with 4-, 8-, or 16-bit weight and BF16 activation functions. MX3 consumes
about 1 W of power and computes with 5 TFLOPS. This chip stores 10 million parameters
on a die and thus needs more chips for implementing larger networks.

MobileEye and STMicroelectronics released EyeQ 5 SoC for autonomous driving [147].
EyeQ 5 is four times faster than their earlier version, EyeQ 4. It can produce 2.4 TOPS/W
and goes up to 24 TOPS with 10 W of power [148]. Recently, MobileEye has announced
their next-generation processor, EyeQ6, which is around 5 x faster than EyeQ5 [149]. For
INTS precision, EyeQ5 performs 16 TOPS, and EyeQ6 shows 34 TOPS [150].

NXP introduced their edge processor . MX 8M+ for targeted applications in vision,
multimedia, and industrial automations [84]. The system includes a powerful Cortex-A53
processor integrated with an NPU. The neural network performs 2.3 TOPS with 2 W of
power consumption. The neural computation supports INT16 precision [85]. NXP is sched-
uled to launch its next Al processor, iMX9, in 2023, with more features and efficiency [84].

NVIDIA released the Jetson Nano, which can run multiple applications in parallel,
such as image classification, object detection, segmentation, and speech processing [152].
This developer kit is supported by the NVIDIA JetPack SDK and can run state-of-the-art Al
models. The Jetson Nano consumes around 5-10 W of power and computes 472 GFLOPS
in FP16 precision. The new version of Jetson Nano B01 can perform 1.88 TOPS [274].

NVIDIA released Jetson Orin, which includes specialized development hardware,
AGX Orin. It is embedded with 32 GB of memory, has a 12-core CPU, and can exhibit a
computing performance of 275 TOPS while using INT8 precision [152]. The computer is
powered by NVIDIA ampere architecture with 2048 cores, 64 tensor cores, and 2 NVDLA
v2.0 accelerators for deep learning [153].

Qualcomm developed the QCS8250 SoC for intensive camera and edge applica-
tions [156]. This processor supports Wi-Fi and 5G for the IoTs. A quad hexagon vector
extension V66Q with hexagon DSP is used for machine learning. An integrated NPU is used
for advanced video analysis. The NPU supports INT8 precision and runs at 15 TOPS [157].

Qualcomm has released the Snapdragon 888+ 5G processor for use in smartphones. It
takes the smartphone experience to a new level with Al-enhanced gaming, streaming, and
photography [158]. It includes a sixth-generation Qualcomm Al engine with the Qualcomm
Hexagon780 CPU [159,160]. The throughput of the Al engine is 32 TOPS with 5 W of
power consumption [159]. The Snapdragon 8 Gen2 mobile platform was presented at the
HotChips 2023 conference and exhibited 60% better energy efficiency than the Snapdragon
8 in INT4 precision.

Samsung announced the Exynos 2100 Al edge processor for smartphones, smart-
watches, and automobiles [164]. Exynos supports 5G network and performs on-device Al
computations with triple NPUs. They fabricate using 5 nm extreme UV technology. The
Exynos 2100 consumes 20% lower power and delivers 10% higher performance than Exynos
990. Exynos 2100 can perform up to 26 TOPS, and it is two times more power-efficient than
the earlier version of Exynos [165]. A more powerful mobile processor, Exynos 2200, was
released recently.

SiMa.ai [169] introduced the MLSoC for computer vision applications. MLSoc is
implemented on TSMC 16 nm technology. The accelerator can compute 50 TOPS while
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consuming 10 W of power. MLSoC uses INT8 precision in computation. The processor has
4 MB of on-chip memory for deep learning operations. The processor is 1.4 x more efficient
than Orin, measured in frames/W.

Tsinghua and Polar Bear Tech released their QM930 accelerator consisting of seven
chiplets [155]. The chiplets are organized as one hub chiplet and six side chiplets, forming
a hub-side processor. The processor is implemented in 12 nm CMOS technology. The
total area for the chiplets is 209 mm? for seven chiplets. However, the total substrate area
of the processor is 1089 mm?. The processor can compute with INT4, INT8, and INT16
precision, showing peak performances of 40, 20, and 10 TOPS, respectively. The system
energy efficiency is 1.67 TOPS/W when computed in INT8. The power consumption can
be varied from 4.5 to 12 W.

Verisilicon introduced VIP 9000 for face and voice recognition. It adopts Vivante’s
latest VIP V8 NPU architecture for processing neural networks [180]. The computing
engine supports INT8, INT16, FP16, and BF16. The performance can be scaled from 0.5 to
100 TOPS [181].

Synopsis developed the EV7x multi-core processor family for vision applications [171].
The processor integrates vector DSP, vector FPU, and a neural network accelerator. Each
VPU supports a 32-bit scalar unit. The MAC can be configured for INTS8, INT16, or INT32
precisions. The chip can achieve up to 2.7 TOPS in performance [172].

Tesla designed the FSD processor which was manufactured by Samsung for au-
tonomous vehicle operations [179]. The SoC processor includes two NPUs and one GPU.
The NPUs support INT8 precision, and each NPU can compute 36.86 TOPS. The peak
performance of the FSD chip is 73.7 TOPS. The total TDP power consumption of each FSD
chip is 36 W [179].

Several other companies have also developed edge processors for various applications
but did not share hardware performance details on their websites or through publicly
available publications. For instance, Ambarella [275] has developed various edge pro-
cessors for automotive, security, consumer, and IoTs for industrial and robotics applica-
tions. Ambarella’s processors are SoC types, mainly using ARM processors and GPUs for
DNN computations.

6.2. Neuromorphic Edge Al Processor

In 2022, the global market value of neuromorphic chips was USD 3.7 billion, and by
2028, the estimated market value is projected to be USD 27.85 billion [276]. The neuromor-
phic processors described in this section utilize spike-based processing.

Synsense (formerly AICTx) has introduced a line of ultra-low-power neuromorphic
processors: DYNAP-CNN, XYLO, DYNAP-SE2, and DYNAP-SEL [15]. Of these, we were
able to find performance information on only the DYNAP-CNN chip. This processor is
fabricated on a 22 nm process technology and has a die area of 12 mm?. Each chip can
implement up to a million spiking neurons, and a collection of DYNAP-CNN chips can be
utilized to implement a larger CNN architecture. The chip utilizes asynchronous processing
circuits [107].

BrainChip introduced the Akida line of spiking processors. The AKD1000 has 80 NPUs,
3 pJ/synaptic operation, and around 2 W of power consumption [115]. Each NPU consists
of eight neural processing engines that run simultaneously and control convolution, pool-
ing, and activation (ReLu) operations [116]. Convolution is normally carried out in INT8
precision, but it can be programmed for INT 1, 2, 3 or 4 precisions while sacrificing 1-3%
accuracy. BrainChip has announced future releases of smaller and larger Akida processors
under the AKD500, AKD1500, and AKD2000 labels [116]. A trained DNN network can be
converted to SNN by using the CNN2SNN tool in the Meta-TF framework for loading a
model into an Akida processor. This processor also has on-chip training capability, thus
allowing the training of SNNs from scratch by using the Meta-TF framework [227].

GrAl Matters Lab (GML) developed and optimized a neuromorphic SoC processor
named VIP for computer vision application. VIP is a low-power and low-latency Al
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processor with 5-10 W of power consumption, and its latency is 10x less than the NVIDIA
nano [277]. The target applications are for audio/video processing on end devices.

IBM developed the TrueNorth neuromorphic spiking system for real-time tracking,
identification, and detection [10]. It consists of 4096 neurosynaptic cores and 1 million
digital neurons. The typical power consumption is 65 mW, and the processor can execute
46 GSOPS/W, with 26 p] per synaptic operation [10,278]. The total area of the chip is
430 mm?, which is almost 14 x bigger than that of Intel’s Loihi 2.

Innatera announced a neuromorphic chip that is fabricated using TSMC’s 28 nm
process [279]. When tested with audio signals [280], each spike event consumed about
200 £J, while the chip consumed only 100 uW for each inference event. The target application
areas are mainly audio, healthcare, and radar voice recognition [280].

Intel released the Loihi [9], a spiking neural network chip, in 2018 and an updated
version, the Loihi 2 [9], in 2021. The Loihi 2 is fabricated using Intel’s 7 nm technology
and has 2.3 billion transistors with a chip area of 31 mm?. This processor has 128 neuron
cores and 6 low-power x86 cores. It can evaluate up to 1 million neurons and 120 million
synapses. The Loihi chips support online learning. Loihi processors support INT8 precision.
Loihi 1 can deliver 30 GSOPS with 15 p] per synaptic operation [138]. Both Loihi 1 and Loihi
2 consume similar amounts of power (110 mW and 100 mW, respectively [221]). However,
the Loihi 2 outperforms the Loihi 1 by 10 times. The chips can be programmed through
several frameworks, including, Nengo, NxSDK, and Lava [229]. The latter is a framework
developed by Intel and is being pushed as the primary platform to program the Loihi 2.

IMEC developed a RISC-V processor-based digital neuromorphic processor with
22 nm process technology in 2022 [281]. They implemented an optimized BF-16 processing
pipeline inside the neural process engine. The computation can also support INT4 and
INTS precision. They used three-layer memory to reduce the chip area.

Koniku combines biological machines with silicon devices to design a micro electrode
array system core [12]. They are developing hardware and an algorithm that mimic the
smell sensory receptor that is found in some animal noses. However, the detailed device
parameters are not publicly available. The device is mainly used in security, agriculture,
and safe flight operation [282].

6.3. PIM Processor

PIM processors are becoming an alternative for Al application due to their low latency,
high energy efficiency, and reduced memory requirements. PIMs are in-place computing
architectures that can be analog, and they reduce the burden of additional storage mod-
ules. However, there are some digital PIM systems have been developed, and schematic
representations of a common PIM computing architectures have been presented. These
systems consist of a crossbar array (N x M) of any popular storage devices. The crossbar
array performs as the weight storage and analog multiplier. The storage devices could be
SRAM, RRAM, PCM, STT-MRAM or a flash memory cell. The computing array is equipped
with the peripheral circuits, a data converter (ADC or DAC), sensing circuits, and written
circuits for the crossbar. Some of the PIM processors are discussed in this section.

Imec and GlobalFoundries have developed DIANA, a processor that includes both
digital and analog cores for DNN processing. The digital core is employed for widely
parallel computation, whereas the analog in-memory computing (AiMC) core enables
much higher energy efficiency and throughput. The core uses a 6T-SRAM array with a
size of 1152 x 512. Imec developed the architecture, while the chip is fabricated using
GlobalFoundries’ 22FDX solution [143]. It is targeted at a wide range of edge applications,
from smart speakers to self-driving vehicles. The analog component (AiMC) computes
at 29.5 TOPS with and the digital core computes at 0.14 TOPS. The digital and analog
components have efficiencies of 4.1 TOPS/W and 410 TOPS/W, respectively in isolation.
The overall system energy efficiency of DIANA is 14.4 TOPS/W for Cifar-10 [144].

Gyrfalcon has developed multiple PIM processors, including the Lightspeeur 5801,
2801, 2802, and 2803 [24]. The architecture uses digital AI processing in-memory units that
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compute a series of matrices for CNN. The Lightspeeur 5801 has a performance of 2.8 TOPS
at 224 mW and can be scaled up to 12.6 TOPS/W. The Lightspeeur 2803S is their latest
PIM processor for the advanced edge, desktop, and data center deployments [19]. Each
Lightspeeur 28035 chip performs 16.8 TOPS while consuming 0.7 W of power, giving an
efficiency of 24 TOPS/W. Lightspeeur 2801 can compute 5.6 TOPS with an energy efficiency
of 9.3 TOPS/W. Gyrfalcon introduced its latest processor, Lightspeeur 2802, using TSMC’s
magnetoresistive random access memory technology. Lightspeeur 2802 exhibits an energy
efficiency of 9.9 TOPS/W. Janux GS31 is the edge inference server which is built with
128 Lightspeeur 2803S chips [129]. It can perform 2150 TOPS and consumes 650 W.

Mythic has announced its new analog matrix processor, M1076 [18]. The latest version
of Mythic’s PIM processor reduced its size by combining 76 analog computing tiles, while
the original one (M1108) uses 108 tiles. The smaller size offers more compatibility to implant
on edge devices. The processor supports 79.69 M on-chip weights in the array of flash
memory and 19,456 ADCs for parallel processing. There is no external DRAM storage
required. The DNN models are quantized from FP32 to INT8 and retrained in Mythic’s
analog compute engine. A single M1076 chip can deliver up to 25 TOPS while consuming
3 W of power [88]. The system can be scaled for high performance up to 400 TOPS by
combining 16 M1076 chips which require 75 W [86,87].

Samsung has announced its HBM-PIM machine learning-enabled memory system
with PIM architecture [16]. This is the first successful integration of a PIM architecture of
high bandwidth memory. This technology incorporates the Al processing function into
the Samsung HBM2 Aquabolt to speed up high-speed data processing in supercomputers.
The system delivered 2.5 better performance with 60% lower energy consumption than
the earlier HBM1 [16]. Samsung LPDDR5-PIM memory technology for mobile device
technology is targeted at bringing Al capability into mobile devices without connecting to
the data center [167]. The HBM-PIM architecture is different from the traditional analog
PIM architecture, as outlined in Figure 2. It does not require data conversion and sensing
circuits as the actual computation takes place in the near-computing module in the digital
domain. Instead, it uses a GPU surrounded by HBM stacks to realize the parallel processing
and minimize data movement [168]. Therefore, this is similar to a dataflow processor.

Write Circuit

Data Converter

[ ] Sensing Circuit

Memory Cell

.....

Data Converter

Figure 2. Schematic representation of a processing-in-memory macro system.
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Syntiant has developed a line of flash memory array-based edge inference processors,
such as NDP10x, NDP120, NDP200 [173]. Syntiant’s PIM architecture is very energy-
efficient and it combines with an edge-optimized training pipeline. A Cortex-MO0 is embed-
ded in the system that runs the NDP firmware. The NDP10x processors can hold 560 k
weights of INT4 precision and perform MAC operation with an INT8 activation. The
training pipeline can build neural networks for various applications according to the spec-
ifications with optimized latency, memory size, and power consumption [173]. Syntiant
released five different versions of application processors. NDP 100 is their first Al processor,
updated in 2020 with a tiny dimension of 2.52 mm? and ultra-low power consumption, less
than 140 uW [174]. Syntiant continues to provide more PIM processors named NDP 101,
102, 120, and NDP 200 [175,177,283]. The application domains are mainly smartphones,
wearable and hearable pieces of equipment, remote controls, and IoT endpoints. The neural
computations are supported by INT 1, 2, 4, and 8 precision. The energy efficiency of the
NDP 10 x series is 2 TOPS/W [284], which includes NDP100, NDP 101, and NDP 102. NDP
120 [175] and NDP 200 exhibit 1.9 GOPS/W and 6.4 GOPS/W [177], respectively.

Untether has developed its PIM Al accelerator card TsunAImi [182] for inference
at the data center or in the server. The heart of the TsunAlmi is four runAI200 chips
which are fabricated by TSMC in standard SRAM arrays. Each runAI200 chip features
511 cores and 192 MB of SRAM memory. runAl200 computes in INT8 precision and
performs 502 TOPS at 8 TOPS/W, which is 3x more than NVIDIA’s Ampere A100 GPU.
The resulting performance of TsunAImi system is 2008 TOPS with 400 W [183].

UPMEMP PIM innovatively placed thousands of DPU units within the DRAM memory
chips [184]. The DPUs are controlled by high-level applications running on the main CPU.
Each DIMM consists of 16 PIM-enabled chips. Each PIM has 8 DPUs; thus, 128 DPUs are
contained in each UPMEM [185].

However, the system is massively parallel, and up to 2560 DPUs units can be as-
sembled as a unit server with 256 GB PIM DRAM. The computing power is 15X of a
x86 server with the main CPU. The throughput benchmarked for INT32 bit addition is
58.3 MOPS/DPU [186]. This system is suitable for DNA sequencing, genome comparison,
phylogenetics, metagenomic analysis, and more [187].

6.4. Processors in Industrial Research

The PIM computing paradigm is still in its rudimentary stage; however, it is a very
promising system for efficient MAC operation and low-power edge application. A good
number of industries and industry—-academic research collaborations are escalating the de-
velopment of PIM technologies and architectures. In this section, PIM processors in industry
and industry—university collaboration are briefly discussed. The recent developments of
PIM research are tabulated in Table 4.

Alibaba has developed SRAM and DRAM-based digital CIM and PNM systems for
low-precision edge applications [243]. The CIM architecture uses multiple chiplet modules
(MCMs) to solve the complex problem instead of a single SoC. The CIM architecture in [247]
proposes a computing-on-memory boundary (COMB), which is a compromise between
in-memory and near-memory computation. This technique exhibits high macro computing
energy efficiency and low system power overhead. This CIM architecture demonstrated
scalable MCM systems using a COMB NN processor. Layerwise pipeline mapping schemes
are utilized to deploy different sizes of NNs for the required operation. The chip operation
is demonstrated with keyword spotting, CIFAR-10 image classification, and object detection
with tiny-YOLO NN using one, two, and four chiplets.

IBM and the University of Patra together presented their PCM-based CIM proces-
sor, HERMES [240]. This CIM is a 256 x 256 in-memory computed core fabricated in a
14 nm CMOS process technology for edge inference. HERMES is demonstrated for image
classification operation on MNIST and CIFAR-10 datasets.

Samsung technology has been working on various CIM architectures for Al applica-
tions for the edge to the datacenter. The company has released HBM-PIM recently [167,168].
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HBM-PIM is for high-speed memory access, which is fabricated with DRAM in a 20 nm
process. Samsung and Arizona State University (ASU) presented a PIMCA chip for Al
inference [189]. PIMCA consumes a very low amount of power (124 mW). PIMCA is highly
energy-efficient (588 TOPS/W), as shown in Table 2. TSMC has designed and fabricated
analog [237,238] and digital [190] CIM systems for inference.

Besides TSMC’s own research, the company has multiple CIM research projects on
various emerging memory devices such as ReRAM [235], STT-MRAM [245], PCM [246],
RRAM [247], and RRAM-SRAM [248] in collaboration with various research groups in
the academia. The performance of these macro inference chips has been demonstrated
in various high-tier conferences or scientific forums very recently. The best performance
was demonstrated in ISSCC 2022 with PCM devices, and it exhibited 5.12 TOPS in 2-bit
precision [69], which was 1286.4 TOPS/W. This CIM processor supports INT2 and 4-bit
computing precision. The digital CIM system is fabricated with FinFETs in 5 nm process
technology, and it performs at 2.95 TOPS and 254 TOPS/W [190].

In addition to the Al accelerators introduced above, there are a handful of companies
that are working on edge processors. The companies working on neuromorphic processors
are MemComputing [107,285], GrAl [277], and iniLabs [286]. Memryx is a recently formed
a startup which is building high-performance and energy-efficient Al processors for a
wide range of applications, such as transportation, IoT, and industry [149]. It can compute
Bfloat16 activation with 4/8/16-bit weight and performs at about 5TFLOPS.

7. Performance Analysis of Edge Processors

This section discusses the performance analysis of the edge processors described earlier.
The discussion is focused on different architectures for edge processors. At first, overall
performance is discussed based on the computing performance, power consumption, chip
area, and computing precision. Then, only PIM processors are discussed. At the end of
this section, we focus on the devices still under research and development or awaiting
commercial availability.

7.1. Overall Analysis of Al Edge Processors

We compare all the edge Al processors listed in the previous section using the follow-
ing key metrics:
1. Performance: tera-operations per second (TOPS);
2. Energy efficiency: TOPS/W;
3. Power: Watt (W),
4.  Area: square millimeter (mm?).

Performance: Figure 3 plots performance vs. power consumption, with different
labels for dataflow, neuromorphic, and PIM processors. The processors within a power
consumption range of 1 W to 60 W have a performance of 1 to 275 TOPS. These are geared
towards comparatively high-power applications such as surveillance systems, autonomous
vehicles, industries, smart cities, and UAVs. The highest-throughput processors in this
list are the EyeQ6 from MobileEye, the Journey 5 from Horizon, and the Jetson Orin from
Nvidia. The Jetson Orin is about 2.15 times faster than both the EyeQ6 and Journey 5.
From the company datasheet [153], the Jetson Orin has 275 TOPS at INT8 precision with
60 W of power. The Orin consumes about 1.5 and 2 times more power than the EyeQ6 and
Journey 5, respectively. The processors with a power consumption of less than 1 W have
a performance of 0.2 GOPS to 17 TOPS. These are targeted at edge and IoT applications.
The least power is needed for PIM processors of the NDP series by Syntiant, which are
flash-memory-based PIM processors [20].
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Figure 3. Power consumption and performance of Al edge processors.

The IBM NorthPole has 200 TOPS for INTS precision at 60 W (based on a discussion
with IBM). However, the NorthPole can have higher TOPS of 400 and 800 at 4 and 2 bit
precision, respectively. According to a recent NorthPole article, the maximum power
consumption of the NorthPole processor is 74 W [90].

Among neuromorphic processors, Loihi 2 outperforms other neuromorphic processors,
except for the Akida AKD1000. The AKD1000, however, consumes 20x more power than
the Loihi 2 (see Table 2). Although the neuromorphic processors seem less impressive in
terms of TOPS vs. W, it is important to note that they generally need far fewer synaptic
operations to perform a task if the task is performed with an algorithm that is natively
spiking (i.e., not a deep network implemented with spiking neurons) [287].

The neuromorphic processors consume significantly less energy than other processors
for inference tasks [227]. For example, the Loihi processor consumes 5.3 x less energy than
the Intel Movidious and 20.5% less energy than the Nvidia Jetson Nano [227]. Figure 3
shows that higher-performance PIM processors (such as the M1076, M1108, LS-2803S, and
AnlA) exhibit similar computing speeds as dataflow or neuromorphic processors within
the same range of power consumption (0.5 to 1.5 W).

Precision: Data precision is an important consideration when comparing processor
performance. Figure 4 presents the precision of the processors from Figure 3. Figure 5 shows
the distribution of precision and total number of processors for each architecture category.
A processor may support more than one type of computing precision. Figures 3 and 4 are
based on the highest precision supported by each processor.

Among dataflow processors, INT8 is the most widely supported precision for DNN
computations. NVIDIA’s Orin achieves 275 TOPS with INT8 precision, the maximum
computing speed for INT8 precision in Figure 5. However, some processors utilize INT1
(Efficiara), INT64 (A15, A14, and M1), FP16 (ARA-1, DNA10O, Jetson Nano, Snapdragon
888+), and INT16 (Ethos78, and Movidius). Neuromorphic and PIM processors mainly
support INT1 to INTS8 data precisions. Lower computing precisions generally reduce the
inference accuracy. According to [236], VGG-9 and ResNet-18 have accuracy losses of
3.89% and 6.02%, respectively, for inference while computed with INT1 precision. A more
in-depth discussion of the relationship between quantization and accuracy is presented in
Section 3.1. A higher precision provides better accuracy but incurs more computing costs.
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Figure 5 shows that the most common precision in the processors examined is INT8. This
provides a good balance between accuracy and computational costs.
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Figure 4. Power vs. performance of edge processors with computing precision.
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Figure 5. Number of edge processors supporting various degrees of data precision. The total number
of processors is indicated in the legend.

As shown in Figures 4 and 5, almost all the neuromorphic processors use INT8 for
synaptic computations. The exception to this is the AKD1000, which uses INT4 and shows
the best performance among neuromorphic processors in terms of operations per second
(1.5 TOPS). However, it consumes around 18 x more power than Loihi processors. At
INTS precision, the Loihi 1 performs 30 GSOPS using 110 mW [138,223], whereas Loihi 2
surpasses this throughput by 10x, with a similar power consumption [9].

As shown in Figures 4 and 5, PIM processors primarily support precisions of INT1 to
INTS. Figure 5 shows the performance of PIM processors in INT4 and INT8 precisions due
to the unavailability of data for all supported precisions. Mythic processors (M1108 and
M1076) manifest the best performance among PIM processors. Mythic and Syntiant have
developed their PIM processors with flash memory devices. However, Mythic processors
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require significantly higher power to compute DNNs in INT8 precision with its 76 comput-
ing tiles. Syntiant processors use INT4 precision and compute with about 13,000x lower
throughput than Mythic M1076 while consuming about 6000 less power. The Syntiant
processors are limited to smaller networks with up to 64 classes in NDP10x. On the other
hand, Mythic processors can handle 10 x more weights with greater precision [283]. The
Samsung DRAM architecture-based PIM processor uses computing modules near the
memory banks and supports INT64 precision [16].

Energy Efficiency: Figure 6 presents the performance vs. energy efficiency of dataflow
for PIM and neuromorphic processors. Efficiency determines the computing throughput
of a processor per watt. The energy efficiency of all PIM processors is located within 1 to
16 TOPS/W, whereas most of the dataflow processors are located in the 0.1 to 55 TOPS/W
range. The PIM architecture reduces latency by executing the computation inside the mem-
ory modules, which increases computing performance and reduces power consumption.
Loihi 2 manifests the best energy efficiency among all neuromorphic processors. Energy
efficiency vs. power consumption, as shown in Figure 7, gives us a better understanding
about the processors. Loihi 2 shows better energy efficiency than many high-performance
edge Al processors, while it consumes very low power. Ergo is the most energy-efficient
processor among all dataflow processors, which shows 55 TOPS/W.
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Figure 6. Performance and energy efficiency of edge processors.

Chip Area: The area is an important factor for choosing a processor for Al applications
on edge devices. Modern processor technologies are pushing the boundaries to fabricate
systems with very high density and superior performance at the same time. The smaller die
area and lower power consumption is very important for battery-powered edge devices.
The chip area is related to the cost of the silicon fabrication and also defines the application
area. A smaller chip with high performance is desirable for edge applications.

Figures 7 and 8 present the power consumption and performance, respectively, vs. the
chip area. It can be observed that in general, both the power consumption and performance
increase with chip area. Based on the available chip sizes, the NothPole has the largest chip
size of 800 mm? and performs 200 TOPS in INT8. The lowest-area chips have a dataflow
architecture. Figure 9 shows the energy efficiency vs. area as the combined relationship
of Figures 8 and 9. In this Figure, the PIM processors form a cluster. The overall energy



Electronics 2024, 13, 2988 27 of 44

efficiency of this PIM cluster is higher than that of dataflow and neuromorphic processors
of similar chip area. Some dataflow processors (such as Nema Pico, Efficiera, and IMG 4NX)
exhibit higher energy efficiency and better performance vs. area than other processors.
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7.2. Al Edge Processors with PIM Architecture

While Figures 3-11 describe processors of all types, Figure 12 shows the relationship
only between PIM processors that have either been announced as products or are still in
industrial research. The research processors are presented in the conferences, such as ISSCC
and VLSI. The PIM processors at the lower right corner of Figure 11 are candidates for data
center and intensive computing applications [182-187]. PIM processors with higher energy
efficiency are suitable for edge and IoT applications because of their smaller size, lower
power consumption, and higher energy efficiency. From Figure 12, we can see that most of
the PIM processors under industrial research show higher energy efficiency than already
announced processors. This indicates that future PIM processors are likely to have much
better performance and efficiency.

The PIM processors compute the MAC operation inside the memory array, thus reduc-
ing the data transfer latency. Generally, PIM processors compute in lower-integer/fixed-
point precision. A PIM processor generally supports INT 1-16 precision. However, accord-
ing to our study, we found around 59% of the PIM processors support INT8 precision for
MAC operation, as shown in Figure 5. Low-precision computation is faster and requires
lower power consumption compared to dataflow processors. PIM edge processors consume
0.0001 to 4 W for deep learning inference applications, as presented in Table 2 and Figure 3.
However, the dataflow processors suffer from high memory requirements and latency
issues, and they consume higher power than most of the PIM processors in order to achieve
the same performance that we see in Figures 3-5.

From Figures 3 and 4, Syntient’s NDP200 consumes less than 1 mW and shows the
highest performance for extreme edge applications. Mythic M1108 consumes 4 W and
exhibits the highest performance (35 TOPS) of all dataflow and neuromorphic processors
that consume below 10 W of power. For the same chip area, the M1108 consumes 9 x less
power than Tesla’s dataflow processor FSD, while FSD computes 2 x faster than M1108, as
presented in Figures 8 and 9.
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Figure 11. Area vs. energy efficiency per unit area of edge processors.

For the processors below 100 mm?, Gyrfalcon’s LS2803 shows the highest performance

except for EyeQ5. However, EyeQ5 consumes about 14 x higher power and performs 1.4 x
better than LS2803. The benefit of deploying PIM processors for edge applications is high
performance with low power consumption, and the PIM processors reduce the computing
latency significantly as the MAC operations are performed inside the memory array.
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7.3. Edge Processors in Industrial Research

Several companies, along with their collaborators, are developing edge computing
architectures and infrastructures with state-of-the-art performance. Figure 13 shows the
power consumption vs. energy efficiency of the industrial research processors which
were presented at high-tier conferences (such as ISSCC, VLSI). The chart includes both
PIM [69,189,192,236-241,245-251,257,258,262,263] and dataflow [74,188,242-244,252-257,
259,261,264] processors.
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Figure 12. PIM (red) and dataflow (blue label) processors in industrial research. The references
are used in this chart are [69,189,192,236-241,245-251,257,258,262,263] for PIM and [74,188,242-244,
252-257,259,261,264] for dataflow architecture.
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released or announced by the manufacturer. For industrial PIM processors the examples are used
from references [69,189,192,236-241,245-251,257,258,262,263].
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Renesas Electronics presented a near-memory system in ISSCC 2024 developed in a
14 nm process that achieved 130.55 TOPS with 23.9 TOPS/W [264]. TSMC and National
Tsing Hua University presented one near-memory system in a 22 nm CMOS process in
ISSCC 2023 that computes 0.59 TOPS and 160 TOPS/W in 8-8-26-bit (input-weight-output)
precision [260]. This system showed the highest energy efficiency amongst the near-
memory and dataflow processors. The energy efficiency is achieved by a 90% input sparsity,
while a 50% input sparsity gives an energy efficiency of 46.4 TOPS/W [260]. Alibaba and
Fudan University [243] presented a processing near-memory system in ISSCC 2022 with
0.97 TOPS and 32.9 TOPS/W energy efficiency while computing with INT3 precision. This
accelerator is a SRAM-based near-memory computing architecture. Tsing Microelectronics
and Tsinghua University [252] demonstrated a dataflow processor in ISSCC 2022 for NLP
and computer vision applications, which shows an energy efficiency of 27.5 TOPS/W in
INT12 precision. Renesas Electronics [253] exhibited 13.8 TOPS/W in INT8 computing
precision. Many other companies, such as IBM [254], Sony [256], MediaTek [257], and
Samsung [242,255] have also demonstrated their research on dataflow edge processors with
energy efficiencies around 11 to 18 TOPS/W.

PIM processors generally manifest better energy efficiencies than dataflow processors.
TSMC and National Tsing Hua University presented a PIM system in a 16 nm CMOS process
in ISSCC 2024 that achieved 98.5 TOPS/W in 8-8-23 precision (input-weight-output) [263].
MediaTek and TSMC presented a digital PIM system in ISCC 2024 developed in a 3 nm
process that achieved 23.2 TOPS/W with 16.5 TOPS performance [262]. Intel and Columbia
University demonstrated a PIM processor [249] in ISSCC 2022 that shows the performance
and energy efficiency of 2219 TOPS/W and 20 TOPS, respectively, which is around 33 x
more efficient than the processor mentioned in [249].

However, the former processor uses far lower precision (INT1). TSMC and Ts-
inghua University [258] presented a PIM accelerator in ISSCC 2023 with 6.96 TOPS and
68.9 TOPS/W, which is about 12x faster than the near-memory computing system pre-
sented in [260] while computing in INT8 precision. STMicroelectronics presented a PIM
accelerator that computes 57 TOPS and 77 TOPS/W in INT4 precision [261] that performs
about 25x better than near-memory computing presented in ISSCC 2021 [188]. TSMC
and Tsinghua University [246] presented a PCM-based processor in ISSCC 2022, which
shows 65 TOPS/W in INT8 precision and is around 5x better than [260]. Samsung and
Arizona State University [189] demonstrated PIMCA in VLSI” 2021 and showed an energy
efficiency of 437 TOPS/W computed in INT1 precision. Other companies such as TSMC
and collaborators [69,236,245-248,258,260], Samsung and collaborators [189], Intel and
collaborators [188,241,249], and HK Hynix [192] have demonstrated their PIM processors
at recent ISSCC and VLSI conferences.

7.4. Processor Selection, Price and Applications

This review is primarily focused on categorizing edge processors based on their
underlying hardware architecture and computing techniques. The charts and tables reflect
the different types of hardware architectures. Table 2 indicates the architecture types of
the processors, such as dataflow, PIM or neuromorphic. However, it is also important to
find the right processor for any application. Table 3 shows the manufacturer’s suggested
application areas of the processors. From the charts presented in Figures 3 and 4, the
application fields of the processors can be determined based on the power consumption
and performance metrics. Processors located in the lower left corner of Figures 3 and 4 are
targeted at extreme edge applications such as wearable devices (smart watches, headphones,
earbuds, and smart sunglasses). Syntiant’s NDPs, Nema-Pico, DynapCNN processors are
the candidate processors for these applications. The mid-range processors consume 0.1 to
10 W of power and are targeted at applications in security and surveillance. The processors
include LS5801, DNA100, and CEVA-Neuro-M. The high-end processors are targeted at
comparatively high-powered applications with about 100 TOPS computing performance.
Target application areas include autonomous vehicles and industrial automation. The
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candidate processors are Horizon's Journey series, Tesla’s FSD, NVIDIA’s Orin, Mobileye’s
EyeQ and IBM’s NorthPole.

However, if we analyze the price of commercially available processors for edge appli-
cations, the prices vary based on the computing capability, energy efficiency and the types
of applications. From this context, we can say that in general, the cost of a processor varies
with performance (TOPS). The processors located in the lower left corner in Figures 3 and 4
exhibit the lowest performance and are in use in wearable Al devices that cost only a few
dollars (USD 3-USD 10) [177]. The mid-range processors cost around USD 100, and the
target applications are security and tracking applications. In this category, the Google Coral
Edge TPU board costs USD 98 [288]. High-end edge processors can compute more than
100 TOPS and cost a few hundred to a couple of thousand dollars. These processors are
mainly used in autonomous vehicles and in industry. For example, the current market
price of the Tesla FSD is USD 8000 [289], and the NVIDIA Jetson Orin costs around USD
2000 [290].

8. Summary

This article reviewed different aspects and paradigms of Al edge processors released or
announced recently by various tech companies. About 100 edge processors were examined.
This work, however, did not cover DNN algorithms, HPC computing processors, or
cloud computing. We categorized state-of-the-art edge processors and analyzed their
performance, area, and energy efficiency to support the research community in edge
computing. Multiple processing architectures including dataflow, neuromorphic, and PIM
were examined. The performance and power consumption were analyzed for narrowing
down edge Al processors for specific applications. Deep neural networks and software
frameworks supported were discussed and are presented in tables.

Several of the edge processors offer on-chip retraining in real time. This enables the
retraining of networks without having to send sensitive data to the cloud, thus increasing
security and privacy. Intel’s Loihi 2 and Brainchip’s Akida processor can be retrained on
local data for personalized applications and faster response rates.

This study found the power consumption and performance of processors varies in
different architectures and application domains. For extreme wearable edge devices, power
consumption ranges from 100 uW to a few mW, and computing throughput is around
1 GOPS. We found that many applications require higher computing performance, such as
video processing and autonomous car operations. These high-performance applications
consume a higher amount of power than extreme edge processors. For example, IBM's
NorthPole computes at 200 TOPS with INT8 while consuming 60 W of power. This study
found that for the same range of power consumption and chip size, PIM architectures
perform better than dataflow or neuromorphic processors. This review found that the
PIM processors show significant energy efficiency and consume less power compared to
dataflow and neuromorphic processors. For example, the Mythic M1108 is a PIM processor
and has the highest performance (35 TOPS), among dataflow and neuromorphic processors
that consume less than 10 W of power. Neuromorphic processors are highly efficient
for performing computation with less synaptic operations but may not be ideal for deep
learning applications yet.

There are different types of deep learning frameworks for developing edge accelerators.
The most common frameworks are TFL, ONNX, and Caffe2. Some providers developed
their own framework to ease the development for users; for example, KaNN provides
Kalray, and CEVA-DNN provides CEVA. Overall, TFL, Caffe2, and ONNX are the most
popular platforms for developing DNN accelerator systems. Neuromorphic processors
have different frameworks which support spike generation and computation, such as
Nengo and Lava.

There are several emerging deep learning applications that are attracting significant
interest. This includes generative Al models, such as transformer models used in ChatGPT
and DALL-E for automated art generation. Transformer models are taking the Al world by
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storm, as manifested by their super-intelligent chatbot and search queries. Generative Al
models also now have a place in image and creative art generation. Transformer engines
are mainly designed for data centers or cloud applications, but some processors, such as
NVIDIA Hopper H100 [291], can be used for edge workloads. Samsung has released digital
PIM for generative Al applications in the data center and edge [292]. ResNet, GoogleNet,
and YOLO models are also being used in various industries for facial recognition, lane
keeping assistance, and surveillance. Deep reinforcement learning is becoming popular for
autonomous learning models in dynamic environments. All of these applications could
benefit from highly efficient specialized processors that could run the applications locally,
without the need for cloud access. Future directions for industry could be to implement
these algorithms in emerging non-von Neumann computing paradigms for low-power
computing on edge devices. Current dataflow processors, such as the NVIDIA Orin or the
IBM NorthPole, would probably be able to handle these applications without any changes.
More emerging architectures, such as PIM and neuromorphic technologies, may need more
enhancements to enable these applications to run on edge devices.
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