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Abstract: This paper introduces a variational autoencoder network designed for video colorization
using reference images, addressing the challenge of colorizing black-and-white videos. Although
recent techniques perform well in some scenarios, they often struggle with color inconsistencies
and artifacts in videos that feature complex scenes and long durations. To tackle this, we propose
a variational autoencoder framework that incorporates spatio-temporal information for efficient
video colorization. To improve temporal consistency, we unify semantic correspondence with color
propagation, allowing for simultaneous guidance in colorizing grayscale video frames. Additionally,
the variational autoencoder learns spatio-temporal feature representations by mapping video frames
into a latent space through an encoder network. The decoder network then transforms these latent
features back into color images. Compared to traditional coloring methods, our approach accurately
captures temporal relationships between video frames, providing precise colorization while ensuring
video consistency. To further enhance video quality, we apply a specialized loss function that con-
strains the generated output, ensuring that the colorized video remains spatio-temporally consistent
and natural. Experimental results demonstrate that our method significantly improves the video
colorization process.

Keywords: video colorization; temporal consistency; variational autoencoder

1. Introduction

Colorizing black-and-white videos is a challenging task that requires not only accurate
color application but also maintaining temporal consistency across frames. This technique
is valuable in various fields, such as film and television production, education, and cultural
preservation. While significant progress has been made in image colorization, extend-
ing these techniques to videos remains complex. Researchers like Iizuka [1], Zhang [2],
and Larsson [3] have made strides in integrating image colorization methods into video
colorization, showing promising results on grayscale images. However, these methods
struggle when applied directly to videos, often failing to maintain temporal consistency
and resulting in flickering and artifacts.

To address this, Lai [4] and colleagues proposed end-to-end post-processing methods
to enhance temporal consistency. While somewhat effective, these methods still struggle
to ensure smooth continuity between color frames, often resulting in color fading and
blurring. Additionally, the need to process each video frame twice significantly increases
the processing time, reducing the efficiency of the colorization process.

Recent advancements in fully automated colorization techniques, developed by re-
searchers like Zhao [5], Deshpande [6], and others, utilize large-scale datasets to learn color
semantics. While these methods offer significant convenience, they face several challenges.
These include color inaccuracies due to insufficient training data, slow processing speeds
when handling large datasets, and poor generalization caused by model biases learned
from the training data.
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These challenges can be mitigated through reference picture-based methods. These
approaches use a specified color reference image to guide the colorization of entire grayscale
video frames, as exemplified by Zhang et al.’s [7] sample-based video coloring method.
Although these methods show promising results, they often fall short of delivering fully
satisfactory visual effects. Therefore, we propose optimizations and enhancements to
this framework.

Firstly, within the Semantic Correspondence Network module, we propose utilizing
RESNET-50 for feature extraction from images. This involves extracting features incre-
mentally at each stage and then merging these features to produce the final feature map.
These feature maps serve a dual purpose: they facilitate the calculation of image similar-
ity and, more importantly, they help the model understand video content by identifying
and differentiating between various objects. This, in turn, enables accurate coloring at
precise locations.

Secondly, to compute the similarity between the reference picture and the grayscale
frame, we employ the attention mechanism. This mechanism automatically learns the
interrelations between different color channels, enhancing the model’s ability to capture
correlations among various image features. Moreover, the attention mechanism is highly
adaptable, automatically adjusting attention weights based on the feature distribution
of different reference pictures. This adaptability improves the model’s robustness and
generalization in similarity calculations across images.

Finally, within the colorization network module, we employ a variational autoencoder
(VAE) to ensure both spatio-temporal continuity and visual consistency of the video.
By inputting video sequences, we map them into latent space through the encoder network
and subsequently generate color frames via the decoder network. This approach offers
greater training stability compared to the Generative Adversarial Network (GAN) used
by Zhang et al. [7]. This stability simplifies the experimental process, reducing the need
for extensive debugging and optimization, and results in videos that are more natural and
realistic, aligning better with human intuition and perception. Additionally, VAEs typically
have faster model convergence, requiring fewer iterations during training to achieve high
performance. For video colorization tasks, this advantage can reduce training costs and
speed up model deployment.

In terms of VAE’s reconstruction capability, it excels in accurately reconstructing input
data by learning latent representations from training data. During the coloring process,
VAE effectively captures semantic information from video frames and strives to preserve
original details, resulting in more-realistic coloring outcomes. These attributes collectively
position VAE favorably compared to GAN for video colorization.

Our approach not only efficiently addresses video colorization but also achieves
notable improvements in generation quality and processing speed. Through rigorous
experimentation and comparison with existing methods, we validate the effectiveness of
our approach. Our results demonstrate that our method produces vibrant and clear videos
while operating at an accelerated pace.

In summary, this paper contributes to the field in several key ways:

1. We leverage RESNET-50 for comprehensive image feature extraction, utilizing deep-
level features in a layered merging approach.

2. The integration of an attention mechanism enhances the model’s ability to calculate
image similarity across different reference images, thereby improving generalization.

3. Our novel video coloring method based on Variational AutoEncoder (VAE) effectively
utilizes spatiotemporal data to ensure coherence and authenticity in generated videos.

Through this research, we aim to introduce innovative methodologies that advance
the state of the art in video coloring techniques.
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2. Related Work

In this section, we introduce related work on grayscale image and video colorization.
We categorize these efforts into two main areas: image colorization and video colorization.
Each of these areas can be further subdivided based on the specific methods employed.

2.1. Image Colorization

Image colorization has recently become a prominent topic in picture-to-picture trans-
lation. Adding appropriate colors to black-and-white images can enhance the accuracy of
related tasks such as image segmentation and recognition. Colorization techniques can be
broadly classified into two categories: example-based methods and fully automated methods.

Example-based approaches (e.g., Irony [8], Gupta [9], Zhao [10]) rely on user-provided
doodles or reference images to colorize grayscale pictures. In doodle-based methods,
the colorization process is driven by an optimization framework that spreads the given
doodle colors across the entire image. The quality of the coloring largely depends on
the colors and locations chosen by the user. In reference-image-based methods, deep
learning techniques establish semantic correspondence between the grayscale image and
the reference image, transferring color information from matching regions of the reference
to the target grayscale image.

Levin et al. [11] proposed an interactive colorization technique based on the premise
that adjacent pixels with similar intensity should have similar colors. Many subsequent
doodle-based methods have refined and improved this approach. A major advantage
of doodle-based methods is that users can select colors themselves, allowing them to
determine the final style of the colorized image. However, these methods can be tedious
and time-consuming, often requiring numerous scribbles for reliable results.

In contrast, reference-image-based colorization transfers color information from the
reference image to matching regions in the target grayscale image. This approach is
more efficient than doodle-based techniques but is dependent on the chosen reference
image. Therefore, the reference image should visually resemble the target image to achieve
optimal results.

In recent years, advancements in computer vision and deep learning have significantly
propelled image colorization. Cheng [12] was among the first to introduce deep neural net-
works for colorization, using them to automatically map pixel features in grayscale images
to color values. Baldassarre [13] proposed a model that combines convolutional neural
networks (CNNs) with a pre-trained Inception-ResNet-v2 network for feature extraction.
Furthermore, Generative Adversarial Networks (GANs), introduced by Goodfellow [14]
and colleagues, have had a profound impact on this field. GANs consist of two competing
neural networks: a generator that creates images from input data, and a discriminator
that assesses the authenticity of these generated images against real images. Variants of
GAN networks, such as DualGAN [15], ChromaGAN [16] and cGAN [17], have since been
adapted specifically for image colorization.

Overall, image colorization is a dynamic field of research incorporating advances in
deep learning, digital image processing, and computer vision. As technology continues to
evolve, even more effective image colorization methods are on the horizon.

2.2. Video Colorization

Compared to image colorization, relatively little research has been conducted on
video colorization [18–20]. Current methods can be grouped into three main categories:
extensions of image-based colorization, fully automatic video colorization, and example-
based video colorization.

Extensions of image-based methods: These methods treat a video as a collection of
frames, processing each frame individually using image-based techniques, and then apply-
ing post-processing to ensure temporal consistency across the frames. Bonneel et al. [21]
proposed a gradient-domain technique that provides color information to infer tempo-
ral relationships, guiding the colorization of uncolored frames. Lai [4] introduced an
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end-to-end recurrent neural network to improve temporal consistency. More recently,
Lei et al. [22] developed a novel approach to address the temporal inconsistencies com-
mon in video algorithms derived from image-based techniques, demonstrating strong
performance in experiments.

Fully automatic video colorization: These methods primarily rely on neural network
models trained on large datasets like ImageNet-10k [23] and DAVIS [24], learning both
video colorization and temporal correspondence. Lei [25] introduced an automatic video
colorization approach emphasizing regularity and diversity, while Kouzouglidis [26] used
a 3D conditional generative adversarial network to achieve automatic video colorization.
Building on end-to-end video colorization, Zhao [27] proposed a hybrid loop method using
a hybrid adversarial network.

Example-based video colorization: This methodology harnesses hue data from selected
reference images, integrating it with monochrome video sequences. The process commences
by identifying reference images that embody the sought-after color schemes, scenery,
or subjects. Subsequently, a sophisticated deep learning algorithm correlates the chromatic
attributes of these references with the monochrome frames, encompassing operations such
as feature identification and hue alignment. This systematic approach guarantees the
precise replication of colors in the monochrome frames. Innovative methods, including
style transfer, facilitate the direct application of the reference’s color palette onto video
frames. Concurrently, advanced deep learning architectures like Generative Adversarial
Network (GAN) and Variational AutoEncoder (VAE), are adept at transferring the color
schemes from reference images onto grayscale frames. These models are refined through
extensive training regimes on diverse datasets, enabling them to master intricate color
mappings, thereby enhancing the colorization process. Scholars such as Zhang [7], Wan [28],
Chen [29], and Iizuka [30] have predominantly embraced this technique for imparting color
to grayscale video content, and it is this very technique that forms the crux of the present
paper’s investigation.

3. Methodology
3.1. Overall Framework

In this paper, we use N to represent the overall model architecture (as shown in
Figure 1), where R denotes the feature extraction network, A is the feature association
network, and C represents the final coloring network.

m
ea
n

m
ea
n

feature processing subnetwork coloring subnetwork

feature attention map

reference image

X

feature map
Resnet-50

parameter sharing

R A Cvideo frame t( )

y lab( )

1

X t( )labGenerate image

F

Figure 1. Overall network architecture diagram. Where F is feature processing subnetwork.

To start, assume the video consists of a series of frames, with the grayscale video
frame at time t denoted as Xl

t ∈ RH×W×1 and the reference image as ylab ∈ RH×W×3. Our
experiments are conducted in the Lab color space, where l and ab represent the luminance
and chromaticity of the color video frames, respectively. The ultimate objective is to
generate a reasonable ab. To produce a coherent color video, we condition the colorization
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of frame Xl
t on the colorization result Xlab

t−1 from the previous grayscale frame, as well as
the reference image ylab.

Xlab
t = N

(
X1

t | Xlab
t−1, ylab

)
(1)

3.2. Network Structure

Figure 1 shows the overall architecture diagram of our network. Each module is
described in turn below.

3.2.1. Feature Processing Network F

We utilize RESNET-50, pre-trained for image classification, to extract information
from the grayscale frame X1

t and the reference image ylab, establishing a semantic corre-
spondence between them. To accommodate different input dimensions, we removed the
average pooling and fully connected layers at the top of RESNET-50 and added additional
convolutional layers. This modification allows for flexible input processing. We then
extract feature maps from multiple layers (as shown in Figure 2) and combine them to
create multi-layer features Φx, Φy ∈ RH×W×C for the grayscale frame X1

t and the reference
image ylab, respectively.
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Figure 2. Image feature extraction diagram.

In the feature similarity section, we implement an attention mechanism to establish
a dense correspondence between the grayscale frame Xl

t and the reference image ylab (as
shown in Figure 3). First, we compute the similarity matrix f between them and then
convert the matrix into a corresponding similarity feature map. The similarity matrix is
computed as follows:

θ =
sel f .theta

(
X1

t
)

∥ sel f .theta
(
X1

t
)
∥ 2 + ε

(2)

ϕ =
sel f .theta

(
ylab
)

∥ sel f .theta
(
ylab
)
∥ 2 + ε

(3)

f = θTϕ (4)

The input features are denoted as X1
t , and the reference features as ylab. First, the fea-

tures are centered, and then L2 normalization is applied. These two steps yield the similarity
matrix f .

Using the similarity matrix, we compute the weighted color Wab. This weighted color
approximates the pixels with the highest attention scores in the reference image, allowing
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Wab to serve as a reference for aligning colors and guiding the colorization process in the
next step.

Wab
i = ∑

j
softmax

(
f (i, j)

τ

)
yab

i (5)

In summary, the feature processing network generates two outputs: the warped color
Wab and the feature attention map.

(Wab, Attenmap) = F(X1
t , ylab) (6)

In this formula, Wab denotes the weighted color Wab generated by the similarity matrix
in the attention mapping module is used to guide the next step of the coloring process,
map denotes the Attenmap, F denotes the feature processing sub-network, X1

t denotes the
grayscale frame, and ylabdenotes the reference image.
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3.2.2. Color Network C

Our main VAE network structure to achieve the coloring of grayscale frames, the col-
oring network (shown in Figure 4) C has four inputs, which are the distorted color map
Wab, feature attention map (Attenmap,), reference picture ylab, truth image Xlab and the
previous moment’s coloring frame X1ab

t−1. Eventually the coloring network C generates the
predicted color picture Xab

t of the current frame with the given luminance channel X1
t to

obtain the final colored video frame Xlab
t .
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Xlab
t = C(X1

t , Wab, Attenmap, ylab) (7)

3.3. Loss Function

The objective of our model is to produce coherent color videos without artifacts, while
ensuring that the style of the generated video aligns with that of the reference image.
Therefore, we employ specific loss functions to achieve this. In the coloring network C,
the mean and variance of the latent space are first generated using the encoder of the
VAE. Next, the mean and variance are sampled using a multilayer perceptron to obtain
the latent variable z = (mean, variance). Finally, the decoder maps these latent variables
to the reconstructed output, x = D(z). To meet this objective, we apply the following loss
functions to the network.

3.3.1. Perceptual Loss

We use perceptual loss to measure the difference between generated video frames and
real images and use L2 norm to constrain.

Lprec = ∥ϕL
Xlab

t
− ϕL

Xlab∥2
2 (8)

φL represents the feature map extracted from the last layer of the RESNET-50 network,
and we set L to 5. X1ab

t denotes the grayscale frame and X1ab represents the truth image.

3.3.2. KL Divergence Loss

KL divergence loss calculates the difference between the mean and variance of the
latent space and the prior distribution.

LKL = ∑
i=1

(
1 + log(variancei)− mean2

i − variance2
i

)
(9)

In this formula, information about the mean and variance is included in the calculation and
is responsible for calculating the KL divergence between two Gaussian distributions.

3.3.3. Context Loss

Context loss can be used as a loss function for image generation and image editing
tasks, aiming to measure the semantic similarity between two images. First we can calculate
the distance dL(i, j) between each pair of feature points (φL

x (i), φL
y (j)) and then normalize it.

Based on the above calculations, a similarity matrix A(i, j) can be constructed to represent
the similarity between each pixel in the two feature maps. To compute the loss based on
the similarity matrix, we use select the most similar pixel of each pixel in the other feature
map and compute the average value of the similarity as the loss value.

Lcontext = ∑
l

WL

[
− log

(
1

NL
∑

i
max f L

j (i, j)

)]
(10)

Here we use multiple feature maps: L equals 2 to 4. NL represents the number of features
of layer L, while WL coefficients are set for higher-level features.

3.3.4. Smoothness Loss

We take the smoothness loss to promote coherence between neighboring frames,
assuming that the pixels of neighboring frames should be similar if they have similar
chromaticity in the real image. We expect the neighboring pixels of xt to exhibit similarity
if they share similar chrominance values in the ground truth image xt. The smoothness loss
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can be positioned as the difference between the color of the current pixel and the weighted
color of its 10 contiguous regions.

Lsmooth =
1
N ∑

c∈(a,b)
∑

i

x̃c
t (i)− ∑

j∈N(i)
wi,j x̃c

t (j)

 (11)

where wi,j is the WLS weight measuring neighborhood correlation.
Combining all the above losses, the overall goal we want to optimize is

Loss = λprecLprec + λKLLKL + λcontextLcontext + λsmoothLsmooth (12)

We set Lprec = 0.001, LkL = 1.0, Lcontent = 0.2, Lsmooth = 5.0. Through meticulous adjust-
ment of these critical hyperparameters, we can achieve a finer equilibrium in the model’s
performance across perceptual similarity, distributional properties, semantic coherence,
and smoothness. This refined balance leads to more gratifying generation outcomes overall.

4. Experiment

In this section, we first perform ablation experiments to investigate the effectiveness
of the loss function and the attention mechanism, and then compare our method with the
improved Zhang [7]-based method and that of Zhao et al. [31].

4.1. Efficiency and Datasets

In this small section, we will present the efficiency of each method and the dataset
used for our model and related narratives, respectively.

4.1.1. Efficiency

First and foremost, all three of our models were meticulously trained utilizing the
computational prowess of an RTX 2080Ti (11 GB) GPU coupled with a robust 12 VCPU
INTEL(R) Xeon(R) Platinum 8255C CPU. The versions of Pytorch and Cuda are 1.5.1
and 10.1.

In order to compare the efficiency of each model, we used frames per second (FPS) and
average processing time (calculations are all in milliseconds), and the results of averaging
the three models after multiple trainings are shown in Table 1.

Table 1. Comparison of efficiency.

FPS (Frames per Second) Average Process Time
(Milliseconds)

Deep 24.7638 399.29 ms
SVC 10.7024 937.60 ms
Ours 25.3438 389.03 ms

As illustrated in Table 1, our approach is superior to deep and SVC in two key aspects.

4.1.2. Datasets

In the feature processing stage, we employed the ImageNet-10k dataset for feature
extraction pre-training. This dataset encompasses over 10,000 categories and approximately
15 million images, making it one of the most extensive publicly available image classification
datasets. Leveraging this dataset enables our model to acquire highly diverse and robust
visual representation features, serving as a solid foundation for subsequent coloring tasks.

During the colorization phase, we have selected 15 DAVIS videos at random to com-
prise the test set, while the remaining DAVIS videos constitute the training set. This
partition ensures the independence of the test set, preventing the model from accessing test
data during the training phase. Additionally, this random sampling method helps ensure
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the objectivity of the test results and provides an accurate reflection of the model’s perfor-
mance. Apart from the DAVIS dataset, we have proactively gathered 100 high-definition
videos from online resources, encompassing a diverse array of scenarios including urban
environments, landscapes, and human activities. This initiative aims to bolster the model’s
adaptability to a broad spectrum of real-world situations. We fine-tune the model on the
DAVIS dataset and self-collected heterogeneous datasets, which not only enhances the
generalization ability of the model, but also improves the colorization performance. We
employ a variety of evaluation metrics including, but not limited to, Structural Similar-
ity (SSIM) Peak Signal-to-Noise Ratio (PSNR), and Fréchet Inception Distance (FID) to
comprehensively evaluate the model’s colorization effectiveness.

The integration of both publicly available and self-collected datasets for training offers
a holistic approach to enhance the model’s performance in real-world scenarios. Primarily,
the expansive ImageNet-10k dataset is leveraged for robust feature learning. Subsequently,
the DAVIS dataset, along with the self-collected data, is utilized for training and fine-
tuning, ensuring adaptability to diverse visual contexts. Lastly, the DAVIS dataset serves
as the benchmark for evaluating the model’s performance. This sequential approach to
dataset utilization proves to be an effective strategy for comprehensive model training
and refinement.

4.2. Ablation Experiment
4.2.1. Loss Function Analysis

We conducted an ablation study to evaluate the effectiveness of each loss function
individually, as shown in Figure 5. When Lprec is removed, the coloring is still based on the
reference image, but the resulting video contains artifacts due to the lack of a loss function
to ensure semantic similarity between input and output. Without Lcontext, the output video
does not resemble the reference image. If Lsmooth is absent, the color information from the
reference image fails to propagate consistently across the video frames. In the absence of
LKL, the generated video may appear faded. When all four loss functions are included, our
complete model is able to produce vivid, coherent, and artifact-free color videos.

Input frameRef  Image Without Lprec context

kl Compete Model Truth Image

Without L

Without LWithout Lsmooth

Figure 5. Comparison of loss function ablation.
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We also calculated the appropriate metrics to demonstrate the ablation experiments,
as shown in Table 2.

Table 2. Comparison of ablation metrics.

SSIM PSNR FID LPIPS

Without Lprec 0.957 29.33 71.82 0.18
Without LKL 0.942 26.83 100.79 0.37

Without Lcontext 0.955 28.14 69.66 0.15
Without Lsmooth 0.948 28.06 80.75 0.23
Complete model 0.977 31.80 46.04 0.10

The synthesized results indicate that our holistic model achieves excellence when
evaluated across a spectrum of metrics. The distinct loss functions each play a crucial role
in different dimensions of image synthesis, underscoring the notion that a well-crafted
integration can substantially elevate the model’s efficacy. These insights are instrumental
in guiding the enhancement of our ablation study model.

4.2.2. Subnetwork Module Analysis

To substantiate the individual efficacy of the model components, an ablation analysis
has been executed. The VGG-19 network is used for feature extraction, we omit the
attention mechanism when computing similar feature maps, and the coloring network is
implemented using a GAN. Figure 6 illustrates our coloring network based on RESNET-50,
an attention mechanism, and VAE. Comparing these results with those from the VGG-19-
based network demonstrates the superiority and effectiveness of our chosen architecture.
Firstly, the VGG-19 network struggles to extract image features accurately, resulting in
some features of the output video appearing blurry. Secondly, incorporating the attention
mechanism makes color correspondence more precise. Lastly, the VAE network delivers
more accurate coloring, providing realistic and consistent colors.

In the realm of reference imagery, we have isolated and tailored the inaugural frame
of the source video to function as a reference, facilitating a more precise comparative
analysis. The input frames undergo a digitization process, transitioning the original video
into a grayscale sequence, which is then subjected to our network’s modeling protocol.
The evaluation is segmented into three distinct phases: initially, the deployment of the VGG-
19 model, followed by an examination in the absence of a channel attention mechanism,
and ultimately, the application of a GAN for colorization. Our comprehensive model,
an ensemble of RESNET-50, an attention mechanism, and a VAE, is juxtaposed with the
outcomes of these three distinct stages to assess the colorization proficiency.

Similarly, we similarly calculate metrics to make comparisons. The results are shown
in Table 3.

Table 3. Comparison of module metrics.

SSIM PSNR FID LPIPS

VGG-19 0.976 24.02 33.76 0.72
No Attenmap 0.967 23.56 70.33 0.70

GAN 0.959 25.94 68.60 0.71
Complete model 0.977 31.80 46.04 0.10

At the outset, the model showcases an impressive performance when assessed using
the metrics of Structural Similarity (SSIM) and Peak Signal-to-Noise Ratio (PSNR), a testa-
ment to the incorporation of the VGG-19 module. Nonetheless, it falls somewhat short in
the realms of Fréchet Inception Distance (FID) and the nuanced Learned Perceptual Image
Patch Similarity (LPIPS) measures. This disparity suggests that the VGG-19, while adept
at producing images of visual likeness, might make slight sacrifices in the finer aspects of
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quality and authenticity. In contrast, the utilization of the RESNET-50 model could offer
a strategic advantage in bolstering the model’s perceptual acuity, thereby enhancing and
refining the caliber of the synthesized imagery.

Input frame VGG-19Ref Image

Complete modelGANNo Attenmap

Figure 6. Comparison of subnetwork module ablation.

Additionally, the model’s omission of an attention mechanism led to underwhelming
results when evaluated through a comprehensive set of metrics. This suggests that neglect-
ing the integration of an attention mechanism could limit the model’s proficiency in critical
areas, including feature extraction, which in turn could adversely affect the fidelity of the
rendered images. The inclusion of such a mechanism is thus seen as a beneficial strategy
for bolstering the model’s overall efficacy.

Moreover, GAN-based networks, while demonstrating robust performance with re-
spect to the Peak Signal-to-Noise Ratio (PSNR), may not fare as well in other evaluative
categories. The deployment of GAN, although it can amplify the perceived quality of
the generated imagery, might do so at the cost of structural congruence and a sense of
authenticity. Conversely, VAE tend to produce images that are more faithful in terms of
visual similarity and realism, indicating a distinct advantage in these specific dimensions.

Finally, the comprehensive model demonstrates outstanding performance across all
metrics. This underscores the effectiveness of leveraging RESNET-50, attention mechanisms,
and VAE in tandem, allowing for the full realization of their respective strengths and
culminating in the attainment of optimal image generation results.

In summary, the findings illustrate the distinct contributions of various techniques
within the ablation learning model. Effective utilization of RESNET-50, attentional mecha-
nisms, and VAE not only enhances model performance but also offers valuable insights for
refining and optimizing the ablation learning approach further.
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4.3. Comparative Experiment

In our comparative experiments Table 4, our approach is assessed through both quan-
titative metrics and qualitative observations, juxtaposed against the latest deep learning-
driven video colorization methodologies. We have selected the Deep and SVC models to
serve as our points of reference. In the realm of image feature extraction, we have chosen
the RESNET-50 architecture, which has demonstrated superior precision over our baseline
models on the esteemed ImageNet test suite. The refined feature extraction capabilities of
this network contribute to the creation of more impactful and contextually rich colorization
outcomes. Additionally, our approach is fortified by the incorporation of an attention
mechanism alongside a Variational Auto-Encoder (VAE), which synergistically amplify the
overall visual and perceptual quality of the colorization process.

Table 4. Comparison table between RESNET-50 and VGG-19.

Top-1 Top-5

RESNET-50 80.1% 93.0%
VGG-19 75.5% 92.4%

4.3.1. Qualitative Analysis

The specific experiment is shown in Figure 7. The first and second rows represent
the input grayscale frames and the reference image, respectively, while the third through
fifth rows depict the results of Deep, SVC, and our experimental method. According to the
results, SVC tends to exhibit color overflow in the test samples, and Deep lacks vibrant
colors, with some features appearing blurred. In comparison, our method demonstrates
more vivid colors and fewer artifacts, delivering superior experimental results.

Ref
Image

Input
Frame

SVC

Deep

Ours
（DAVIS  
+
   Our 

      videos）

Ours
(DAVIS)

Figure 7. Comparison of experimental results.

This part demonstrates the effect of artifact processing, as shown in Figure 8.
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SVC

Deep

Ours

SVC

Deep

Ours

SVC

Deep

Ours

Figure 8. Comparison of artifact processing.

Finally the image generated by our method is compared with the real image and the
result is shown in Figure 9.

4.3.2. Quantitative Analysis

In this section, we use two widely adopted indicators, Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM) [32], Fréchet Inception Distance (FID) and
the Learned Perceptual Image Patch Similarity(LPIPS) [33], to comprehensively assess the
experimental effectiveness. PSNR measures the difference between the reconstructed image
and the original image at the pixel level. It calculates the peak signal ratio between the
reconstructed and original images. The formula for PSNR is as follows:

PSNR = 10 × log10

(
2k − 1

)2

MSE
(13)

MSE =
1

M × N

M−1

∑
x=0

N−1

∑
y=0

(
f (x, y)− f̃ (x, y)

)2 (14)

where k denotes the number of binary bits corresponding to the image (typically 8) and
MSE is the mean square error (which denotes the square of the pixel difference between the
reconstructed image and the original image). The higher the value of PSNR, the smaller
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the difference between the reconstructed image and the original image, and the better the
quality of the generated image result.

Input
Frame

Ours

Ground
Truth

Input
Frame

Ours

Ground
Truth

Input
Frame

Ours

Ground
Truth

Figure 9. Comparison of real effect.

SSIM is a metric used to measure the structural similarity between images, which
takes into account the information of brightness, contrast and junction at the same time, so
it is more comprehensive compared to PSNR. Its calculation formula is as follows:

SSIM(x, y) =

(
2µxµy + C1

)
(2σ_xy + C2)(

µ2
x + µ2

y + C1
)(

σ2
x + σ2

y + C2
) (15)

where x and y denote the local windows of the original and reconstructed images, respec-
tively, µ denotes the mean of the pixel values, σ denotes the standard deviation of the pixel
values, σxy denotes the covariance between the two images, and C1 and C2 are constants
used for stabilization calculations. The range of the SSIM values is from −1 to 1, and the
closer it is to 1 means that the structural similarity between the reconstructed and the
original images is higher, and the quality of the reconstruction is better.

FID (Fréchet Inception Distance) is a metric used to evaluate the quality of generated
generated images. It combines the realism and diversity of the generated images and is
calculated by comparing the difference between the feature distribution of the generated
image and the feature distribution of the real image. It combines the realism and diversity
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of the generated images and is calculated by comparing the difference between the feature
distribution of the generated image and that of the real image.

Its calculation formula is as follows:

FID = ∥µxlab − µxlab
t
∥2 + Tr

∑
xlab

+ ∑
xlab

t

−2

∑
xlab

∑
xlab

t

 1
2
 (16)

where µlab
x denotes the feature mean of the real image, µlab

xt represents the feature mean of the
generated image, xlab represents the covariance matrix of the real image, xlab

t represents the
skewness matrix of the generated image and Tr denotes the trace of the matrix (i.e., the sum
of the diagonal elements). The smaller FID is, the higher the quality of the generated image
and the closer it is to the real image set.

LPIPS (Learned Perceptual Image Patch Similarity) is a metric for comparing the
similarity between two images, which simulates human perception of images. Unlike
traditional image similarity metrics, LPIPS takes into account the perceptual properties
of images and is more in line with human perception of image quality and content. We
define a LPIPS (Learned Perceptual Image Patch Similarity) computational function whose
mathematical formula can be expressed as

LPIPS =
1
N

N

∑
i=1

∣∣∣ϕi

(
xlab
)
− ϕi

(
xlab

t

)∣∣∣ (17)

where xlab denotes the real image xlab
t denotes the generated image N denotes the number

of features. Similarly, the smaller the value of LPIPS, the better. We use pre-trained VGG-16
to extract their feature representations, then calculate the absolute difference between two
feature representations, and finally average the absolute difference between all features.
This averaged absolute difference value represents the perceptual similarity between the
images xlab and xlab

t , that is, the extent to which they are visually different. We calculated
the average PSNR, SSIM, FID, and LPIPS for the three experimental scenarios on the DAVIS
dataset and the joint dataset (DAVIS dataset and our self-collected dataset), and the data
tables are shown in Table 5.

Table 5. Indicator calculation table.

SSIM PSNR(dB) FID LPIPS

Deep 0.971 29.3 60.55 0.15
SVC 0.953 19.9 130.25 0.23

Ours (DAVIS) 0.976 30.0 46.53 0.14
Ours (DAVIS +

our videos) 0.977 31.8 46.04 0.10

In order to show the comparison more clearly, we plotted the corresponding curves to
visualize the experimental results. First, the PSNR curve is shown in Figure 10, illustrating
the trend of PSNR values as the number of frames increases. Comparing the results, we
observe that SVC consistently maintains lower PSNR values. While the Deep method
initially performs better with fewer frames, our method consistently surpasses Deep as the
frame count increases, ultimately achieving higher PSNR values and producing excellent
experimental results.
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SVC
Deep

Ours

PSNR Variation

PS
N
R

Sample

Figure 10. PSNR comparison chart.

The second curve is the SSIM, as shown in Figure 11. The SSIM values for all three
methods exhibit similar trends, but our approach achieves the best results in most cases.

SVC
Deep

Ours

SSIM Variation

SS
IM

Sample

Figure 11. SSIM comparison chart.

The third curve is the FID, As illustrated in Figure 12. Initially, the FID value was
higher than both of them. However, following training, our model effectively leveraged
historical information, resulting in smoother coloring and consistently maintaining a very
low FID value.
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Figure 12. FID comparison chart.

The last curve represents LPIPS, As shown in Figure 13. Before training commenced,
the LPIPS value was smaller compared to the other two methods. As training progressed,
all three methods exhibited a similar trend. However, after a certain number of iterations,
our approach began to stabilize.

Figure 13. LPIPS comparison chart.

By comparing the experimental outcomes, we showcase the effectiveness and supe-
riority of our approach. Using the four evaluation metrics, PSNR, SSIM, FID, and LPIPS,
we can objectively quantify the differences between our method and others. In qualitative
terms, our approach generates natural coloring results, while quantitatively it excels in all
four metrics.
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5. Conclusions

The video coloring method based on variational autoencoder holds immense potential
for diverse applications. Firstly, it can significantly impact the field of historical image
restoration by seamlessly combining historical scenes and color information, thereby trans-
forming black and white movies and documentaries into vibrant, realistic portrayals of the
past. This process enriches historical scenes, enabling audiences to connect with the depth
and allure of history. Furthermore, this method is invaluable in movie and TV production
for colorizing video footage of special effects scenes, thereby enhancing the overall environ-
mental realism. Through meticulous coloring of special effects and scenes, the visual impact
of films is elevated, captivating audiences and drawing them into immersive experiences.
Lastly, this approach also has substantial implications for the digital industry, particularly
in improving the quality and realism of game images. By applying colorization to game
scenes and characters, visual performance is enhanced, ultimately elevating the gaming
experience and transporting players into a more authentic virtual realm.

The details of the test results can be found in the experimental section in Section 4.
We conducted a large number of experiments to validate and compare the results with
traditional coloring methods. Through qualitative and quantitative analyses, we found that
our proposed method has made significant progress in terms of accuracy and efficiency.
Although there are still some challenges in dealing with complex scenes and multi-domain
coloring, satisfactory results were achieved in general. These test results demonstrate the
practicality of the method and lay the foundation for its application in real-world situations.

In this study, we propose a variational autoencoder for video coloring, which not
only solves the difficulties faced in traditional video coloring but also makes progress in
terms of accuracy and efficiency. By combining the variational self-encoder, we successfully
improve the video coloring effect and also increase the processing efficiency. This opens up
new opportunities for deep learning in video processing.

Despite the breakthrough of our approach, there are still some limitations that need to
be further overcome. In particular, there are still some challenges in processing complex
scenes and multi-domain colorization. Future research can focus on how to better handle
these challenges to achieve more comprehensive video coloring effects. This will bring
more possibilities to the field of video processing and promote the development of deep
learning techniques in practical applications.
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