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Abstract: Digital twin technology is expected to transform agriculture. By creating the virtual
representation of a physical entity, it assists food producers in monitoring, predicting, and optimizing
the production process remotely and even autonomously. However, the progress in this area is
relatively slower than in industries like manufacturing. A systematic investigation of agricultural
digital twins’ current status and progress is imperative. With seventy published papers, this work
elaborated on the studies targeting agricultural digital twins from overall trends, focused areas
(including domains, processes, and topics), reference architectures, and open questions, which could
help scholars examine their research agenda and support the further development of digital twins
in agriculture.
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1. Introduction

Technology has been changing the world. Gone are the days when value creation
relied merely on manual labor and personal experience, especially with technologies like
artificial intelligence, machine learning, and digital twins making rapid progress in recent
years. Out of them, digital twin technology has attracted increasing attention as it enables
adopters to keep their eyes on the business situations, predict the outcomes, and make
better decisions from a digital-twinned environment. IoT analytics [1] reported that nearly
30% of global manufacturing companies have fully or partly used digital twin strategies.
The digital twin market is expected to rise from $10.42 million in 2022 to $204.56 million
by 2031 [2].

Like other emerging technologies, digital twins also brought a new field to various
industries, and agriculture is no exception. Like a time machine, digital twin technology
enables users to grasp their farms’ past, present, and future, removing the uncertainties
in agricultural production and management to some extent. Consequently, this new
technology could firmly support the effective transition towards Agriculture 4.0 [3] and the
industry’s sustainable development, which will advance food security. In recent years, tech
giants such as Microsoft and Siemens have actively made digital twins reach agriculture.
Scholars also started to approach related topics. However, it is noticeable that there is still
not much research, or rather published work, on this topic. Most digital twins in agriculture
are still at the conceptual or experimental stage [4]. Before practical application, there are
still a lot of problems that should be dealt with. For example, sensor data are hard to obtain
in agriculture, almost all the virtual representation methods have their limitations, and
agricultural digital twins often cost a lot. In order to achieve a leap in agricultural digital
twins, it is crucial to summarize the existing research, identify the research progress, and
offer insights into the future targets, calling on scholars to focus on and conduct in-depth
research. Therefore, a thorough literature review is necessary.

Agriculture is a complex and diverse field with various long value chains from the
initial sowing to production, distribution, and finally to fork. Each process or sector has its

Electronics 2024, 13, 2209. https://doi.org/10.3390/electronics13112209 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13112209
https://doi.org/10.3390/electronics13112209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13112209
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13112209?type=check_update&version=1


Electronics 2024, 13, 2209 2 of 26

unique features, which should be fully considered when building digital twins. Looking
back to the previous studies, we can find that some scholars have been making efforts
(e.g., [5–9]). Most of them concentrated on a specific but limited production process or
sector, such as irrigation and horticulture, calling for a comprehensive and comparative
study. Additionally, the review should reflect the latest research progress. After reviewing
the earliest studies, Pylianidis et al. [8] noticed that “digital twins have not been established
in agriculture yet”. From 2017 to 2020, digital twin technology adopted in agriculture was
in its early stage of development. Some landmark works were frequently cited even in
today’s research. However, researchers never stopped expecting and striving for digital
twins’ applications in this field in recent years (e.g., [10–12]). Thus, it is necessary to look
into the progress that has been made on the digital twin in agriculture after 2020, which
has not yet been elaborated on by most existing review papers. Based on the above, when
conducting the literature review of agricultural digital twins, we paid more attention to
two aspects: the differences between various sectors and the latest work after 2020. To put
together all the pieces, this work proposed and would answer the following four research
questions.

RQ1: Which domains or processes have researchers introduced digital twins into?
RQ2: What topics had received much attention?
RQ3: How did the current digital twin architectures build?
RQ4: What are the open questions for digital twins in agriculture?
By addressing those four questions, this paper could make threefold contributions.

First, we outlined the areas of interest and offered an in-depth investigation of current
digital twin technology’s role in agriculture and the differences between different sectors.
Second, this study reviewed the digital twin architectures in the current documents, offering
a technical basis for future study. Finally, we identified the topics or processes that require
further discussion, such as data acquisition and ownership, which could give insights
to researchers, technology practitioners, and stakeholders interested in the agricultural
digital twins.

1.1. Digital Twin Concept

Digital twin technology is quickly expanding its influence in many areas, but there is
still no consensus about who proposed this concept. A possible reason is that the digital
twin was initially introduced without a name [13]. Some scholars believed that NASA
took the lead [14,15], some considered the Air Force Research Laboratory (AFRL) as the
pioneer [16], while many scholars claimed that the origin of digital twins is attributed to
Grieves [12,17]. Tracing history, we can see that NASA or AFRL was the first to clearly
put forward the “digital twin” [18,19] (Based on the existing materials, “digital twin” first
appeared on NASA’s Draft Modelling, simulation, information technology & processing roadmap
Technology Area 11 [18]. However, a presentation by Kobryn and Tuegel [19] claimed that
AFRL had mentioned “digital twin” at the CBM+SI Workshop in Feb 2009. That is why we
use “NASA or AFRL”). NASA’s contribution was also recognized by Grieves [13]. Either
NASA or AFRL proposed the digital twin concept for monitoring the conditions of a space
vehicle, while Grieves [20] brought it (named the Mirrored Spaces Model in that research)
into a broader field—product lifecycle management and gave the principles behind the
digital twin vision [15].

With the application in various fields, like automotive, manufacturing, healthcare,
and education, digital twins have been explained from different perspectives [9,21,22]. It
is commonly agreed that a digital twin is the digital equivalent of a physical entity and
its context, to which it is both in real time and remotely connected [15]. Accordingly,
a digital twin reference architecture contains at least three main parts: physical entity,
virtual entity, and the connection between them. Based on the virtual counterparts, the
digital twin application users could monitor, optimize, and even predict real-world objects.
To better achieve those goals, researchers strived to optimize the digital twin reference
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architecture and leverage innovative approaches (e.g., [12,23,24]), which will be elaborated
on in Section 4.

1.2. Typology of Digital Twins

Different digital twins may serve distinct control purposes. To better investigate
them, scholars have developed the typology of digital twins (e.g., [8,15,25–27]), which
offers a theoretical basis for understanding the status of current agricultural digital twin
applications later in this study. To date, there are four representative classification methods.

Level of data integration. One of the most well-known is Kritzinger et al.’s [26]
three types, including digital model (DM), digital shadow (DS), and digital twin (DT).
It was based on the level of data integration between the physical entity and its virtual
counterpart. The integration level increases from DM to DT, and DT realizes a full data
integration between two entities in both directions.

Technology readiness levels (TRL). This method assesses the maturity level of a
certain technology, which is not only applicable to the digital twin technology. Explanations
from NASA and the European Union are both representative. When reviewing the digital
twin use cases in agriculture, Pylianidis et al. [8] introduced the European Commission’s
TRL scale [28]. They re-sorted the nine levels into three generic levels, including the
conceptual phase (i.e., TRL 1–2; a conceptual digital twin), prototype phase (i.e., TRL 3–6; a
digital twin with a working prototype), and deployed phase (i.e., TRL 7–9; a digital twin
implemented in production).

Roles during the product life cycle (PLC). Digital twins are promising in product
lifecycle management. Verdouw et al. [15] divided digital twins into six categories according
to the usage phase. The imaginary digital twin offers a conceptual entity of an object that
does not exist in real life. The monitoring digital twin digitally describes an existing
physical object’s actual state, behavior, and trajectory. Predictive digital twin shows a
digital representation of a physical object’s future states and behaviors via predictive
analytics. Prescriptive digital twin is an intelligent digital entity that gives corrective
and preventive suggestions on the physical objects based on optimization algorithms and
expert advice. The autonomous digital twin can operate autonomously and control a
physical object without human intervention. It could be self-adaptive and self-diagnostic.
Recollection digital twin saves the complete history of a physical object that no longer exists
in real life.

Hierarchical levels. Tao et al. [27] introduced Guo and Jia’s classification from the
perspective of hierarchy. Three different levels are the unit level, system level, and system
of systems (SoS) level. The unit level means the smallest unit of an interested activity,
like a piece of equipment in manufacturing activities. By integrating multiple unit-level
digital twins, the system level can be generated. For example, a production line consists of
unit-level factors, such as equipment and material. The SoS level can support cross-system
interconnection, interoperability, and collaborative optimization.

When answering the research questions later, this study would focus on the last three
classification methods because the technology readiness level can somewhat reveal the
progress made by recent studies, and the other two methods, i.e., roles during the PLC and
hierarchical levels, will reflect the construction of current agriculture digital twins.

2. Materials and Methods

This study obtained the final documents following two stages. In the first stage,
relevant literature was searched on Google Scholar and SCOPUS. Then, we amplified the
document set via the reference list of the downloaded literature. In the second stage, a final
database was determined according to the selection criteria.

2.1. Data Collection

Digital twin technology is not a very new concept. Verdouw et al. [15] found that
some applications are already in agriculture, but they were not framed as digital twins. To



Electronics 2024, 13, 2209 4 of 26

ensure the accuracy of the database scope, however, when collecting the literature, we only
focused on the literature that clearly mentioned “digital twin”, which was also applied in
previous review articles (e.g., [4]).

On 26 December 2023, searches were conducted on Google Scholar and SCOPUS with
the search string “Digital Twin” + “Agriculture”. We downloaded the documents written
in English. In this way, 153 papers were collected.

To avoid missing out on related works, we also went through the reference list of
selected articles. The articles whose title clearly mentioned “digital twin” in the agricultural
area could be carded. After deleting the duplicates, 23 articles were added, extending the
literature database. The final selection, therefore, includes 176 publications.

2.2. Selection Criteria

This study narrowed the selection set further according to the following exclusion criteria.
First, after reading over the documents, we removed 17 works that did not directly

focus on the digital twin in Agriculture.
Second, a quality assessment was conducted to ensure the article’s quality. The journal

papers should be published after a peer-review process and in the SSCI/SCIE journals. The
conference papers must be published after a peer-review process, and only the statement on
the conference website or final publication shall be the standard for determining whether a
peer-review process has been carried out. If there is no explicit mention, we have to filter
the document out. Based on that, 4 unpublished papers and 38 works not being published
in the SSCI/SCIE journals were excluded, and 32 conference papers had to be discarded.

Third, since research after the year 2021 is our major concern, we further deleted
the 13 papers published before 2021. The primary reason for removing those studies at
this stage instead of filtering them out initially is to gain a deep understanding of the
agricultural digital twin research before 2021 and their differences from the follow-up
studies. Additionally, one conference paper and one book chapter that cannot be accessed
were also deleted.

Based on the above, 70 documents were ultimately retained in the review database,
including 43 journal articles, 25 conference papers, and 2 book chapters (see Figure 1).

Figure 1. Types of published works in this study. Note: Those published at the conference first, but
compiled as a book chapter afterward, were categorized as the conference paper.

3. Trends, Domains, and Topics of Digital Twins in Agriculture, 2021–2023

To answer RQ1 and RQ2, this section first gave an overview of papers published from
2021 to 2023. Then, we discussed their core foci, including the domains and topics. Through
them, we can track the status and trends of digital twins in agriculture.
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3.1. An Overview of Published Papers

Figure 2 counts the number of published papers per year. Less than thirty high-quality
works are published each year, indicating that the agricultural digital twin is still in its
infancy. Many issues are still awaiting exploration, resulting in an annual increase in the
quantity of literature.

Figure 2. Number of published works per year after 2020.

As mentioned above, digital twins have not been established in agriculture yet before
2020 [8]. That means although digital twin technology benefits agriculture, most of the
modeling or architectures remain in the conceptual phase, far from being implemented. A
document classification is necessary in order to inspect the situation after that period. First,
we grouped the literature into three categories: digital twin framework-related research,
review, and others that are almost qualitative research. Second, we evaluated the maturity
level of the digital twin frameworks in the collected studies according to the European
Commission’s TRL scale which was re-sorted into three categories, including Concept,
Prototype, and Deployed level [8]. Figure 3 presents the final publication types.

Figure 3. Distribution of publication types.

Fifty documents contributed to the digital twin framework. Compared with Pylian-
idis et al. [8], studies only proposing an idea and those applying the digital twin in the
operational environment remained almost unchanged in quantity but both decreased in
proportion. On the other hand, research that brought digital twin ideas into the lab or
relevant environment has grown significantly in recent years, indicating digital twin ap-
plications’ promising progress in agriculture. However, the validation and application of
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agricultural digital twin cases were often limited to a small-scale setting with only a few
factors considered. Thus, the comprehensive test in a large-scale context still needs to be
carried out.

For other publication types, the amount of review articles increased, and most of them
particularly targeted a specific agricultural sector or process, implying the penetration of
digital twin in agriculture. In addition, we found some pure qualitative studies that did
not investigate the digital twin framework. However, some of them were no longer merely
figuring out the definition of digital twin but have noticed the pending issues, such as
simulation sickness when using digital twin-assisted tools (e.g., [22]).

3.2. Domains Received Attention

Section 3.1 concluded that the digital twin is expanding its influence in various agri-
cultural sectors or processes. To identify the trends of applications, we further classified
the documents according to the thematic cluster (see Figure 4).

Figure 4. Agricultural domains mentioned in 2021–2023 studies.

The types of publications in different thematic clusters are distinct. According to Figure 5,
prototype research almost dominates each domain.

Figure 5. Types of publications in different agricultural domains.

3.2.1. Controlled Growing Setting, including Horticulture and Food Supply Chain

Agriculture is a highly complex and dynamic industry. Compared with production
in the manufacturing or service industries, that process in agriculture depends more on
natural conditions, like soil conditions, weather, and seasonal variation. The objects of labor
(e.g., plants and animals) may take on a new form in the next second. Thus, developing
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agricultural digital twins would meet significant challenges, while a relatively stable setting
can be simulated more easily. That could explain why controlled growing settings, such
as horticulture and food supply chains, lead the way in agricultural digital twins at the
current stage.

Horticulture. Greenhouses and indoor farming, like plant factories and aquapon-
ics, have received much attention. According to the research focus, related studies that
proposed a digital twin framework can be divided into two streams: (1) studies on the
growing status and process of plants [29–32]. Using digital twins, scholars aimed to moni-
tor and/or predict plant growth. Asfarian and Wulandari [29] focused on watering and
fertilizer of smart aeroponic potato cultivation. With in-farm sensor networks, the back-end
database system in the cloud, and a front-end module based on sensor data, the platform
can monitor and visualize the potato’s actual condition. Ghandar et al.’s [30] simulation of
aquaponic installations at the smallest scale of a production unit can represent and predict
fish growth. Howard et al.’s [31] digital twin framework can monitor and predict the
greenhouse production process flow from cutting arrival to shipment. Spyrou et al. [32]
proposed and tested a digital twin reference architecture for pharmaceutical cannabis
production. However, they used data from sensors in greenhouse production facilities of
different crops instead of cannabis. (2) Studies on the growing environment of plants.
Different from the industrial field, plants in agriculture are even sensitive to each environ-
mental parameter [33]. Digital twin technology is promising in keeping a healthy growing
environment for plants [33–35] and more effectively leveraging energy to achieve sustain-
able development [36–38]. For example, Isied et al. [34] explored how to meet the solar
greenhouse’s power generation level and photosynthetic power absorption. To do so, they
enabled the digital twin framework with a geometric ray-tracing algorithm and genomic-
based optimization techniques to optimize a greenhouse’s geometry, translucency, and
material characteristics. Zhang et al. [33] collected multi-environmental parameters of the
leafy vegetable plant factory and established the digital copy. The system helps managers
adjust relative variables according to the stages of plant growth. Hull et al. [36] leveraged
temperature monitoring instruments and the SVR algorithm to build a thermal model. This
data-driven model can accurately predict a one-hour temperature inside a greenhouse tun-
nel, which allows users to make better decisions in terms of resource usage. Liu et al. [37]
validated the plant factory designed with a digital twin, which could continuously measure
the power consumption and represent it by a color-coded gradient map.

Apart from the above studies on the digital twin framework, there are three other
studies. One of them reviewed the digital twin applications in greenhouse horticulture
before early 2021 [5]. They finally found eight papers explicitly dealing with the digital
twin in this area. Coupled with studies implicitly doing that, they concluded that most
research described the monitoring type of digital twins. Based on the above, however, we
can see that many studies after 2021 have started to look beyond it. The other two studies
belong to the qualitative studies. Defraeye et al. [39] gave insight into how digital twins
benefit the postharvest supply chain of fresh horticultural produce. Slob et al. [22] noticed
that the simulation sickness might challenge the prolonged and regular use.

Food supply chain. Most studies in this area have considered multi-phases and even
stakeholder relationships, indicating a high granularity level. Scholars harnessed digital
twins to visualize and control food conditions, optimize decisions, and improve the in-
formation interaction among actors in the supply chain [40]. For example, digital twins
assisted Burgos and Ivanov [41] in analyzing the influences of the COVID-19 pandemic on
the food retail supply chain and improving its resilience. With data from open literature
and actual breweries, Koulouris et al. [17] simulated the brewery process from brewhouse,
fermentation to filling on SuperPro Designer v11. They also discussed the challenges and
opportunities in food processing industries. From the holistic perspective, Valero et al. [42]
took eight sectors of the meat supply chain into account, including land management,
animal management, food processing, food products and packaging, transportation, retail,
household and hospitality, and waste management, and established a conceptual digital



Electronics 2024, 13, 2209 8 of 26

twin framework. Based on two datasets obtained in 2018 and 2019, Shoji et al. [43] cre-
ated virtual representations of imported fruits. They followed them from suppliers to
distribution centers and finally to retail stores, which helped them identify the key factors
influencing fruits’ quality, like shipment period. There are two use cases that can be sorted
into the “deployed” level. Both of them were designed by Maheshwari et al. [44,45] based
on a highly industrialized ice cream making company. Maheshwari et al. [44] concluded
that compared with the traditional method, the digital twin application improved the
production performance; they further developed a digital twin reflecting the procurement,
production, and distribution processes to optimize their performance [45].

Four review articles and one qualitative study also contributed to this domain. Singh et al. [24]
identified fifty key determinants of digital twins in the food supply chain to enhance its resilience
and sustainability, which could pave the way for model creation. When Tebaldi et al. [46]
reviewed papers before August 2020, they found that specific literature is lacking, and
monitoring might still be digital twins’ primary position currently [21,40], but based on
the above, we can find that documents after 2020 do make some progresses and expand
the digital twin’s function into optimization and prediction. Overall, research in this area
is relatively leading and more systematic. However, some issues need to be carefully
considered. For example, van der Burg et al. [47] brought up questions worth noticing
in the agri-food domain, such as privacy issues and unintended consequences caused by
digital twins.

3.2.2. Crop Production

Studies in this area have discussed the possibility of digital twins in many processes of
crop production. In addition to three review articles, all the remaining studies aimed to de-
sign a digital twin framework (see Figure 6). We found that plant monitoring and irrigation
caught much more attention; four out of five deployed use cases were all from irrigation,
revealing that research on this topic currently precedes. Only a little research attempted to
investigate the multi-processes or other processes. For example, Edemetti et al. [48] used
sensor-equipped UAVs instead of sensors in the field to offer a 3D digital model of the
vineyard. With this platform, farmers can check the physical vineyard out remotely, make
data-driven decisions, improve profitability, and even decrease energy waste.

Figure 6. Designed digital twins for different crop production processes.

Plant monitoring. Three studies on plant monitoring belong to the concept type [49–51]
and two to the prototype type [23,52]. (1) Studies as the concept type. Majore and
Majors [49] designed a digital twin solution for organic potato production and applied it
to four places in Latvia. We only had to classify it into the concept type because they did
not give the testing results. However, it is worth noticing that this study considered the
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growth processes from potato’s establishment to maturity. Skobelev et al. [50] developed
a digital twin of crop. By analyzing external environmental parameters, like climate and
soil types, it can plan crop growth, predict yield, and make recommendations. Their
further study especially focused on winter wheat [51]. (2) Studies as the prototype type.
Li et al. [23] applied deep learning in leaf reconstruction to improve the digital twin system
for plant growth. This new approach has higher accuracy and predictive results, allowing
the recovery of the leaves from a single view. Skobelev et al. [52] developed an intelligent
system of the plant digital twin. According to weather and climatic conditions and external
events, the functions—modeling duration of plant growth and forecasting yield—have
been implemented.

The above shows that scholars have tried to consider more plant growth processes
and develop their digital twin architectures. However, only the limited units or functions
could be examined when bringing them into the lab environment. A possible reason lies in
the dynamicity and complexity of crop growth.

Irrigation. The demand for freshwater in agriculture is increasing, while the use of
freshwater in this area is often inefficient [11]. Accordingly, the current literature had a
common goal of leveraging digital twins to tackle this issue, and some of the solutions had
been implemented on a small scale. We finally sorted two use cases as the prototype [11,53]
and four as the deployed [3,54–56]. (1) Studies as the prototype type. Alves et al. [53]
validated a digital twin system for monitoring and automatically controlling the irrigation
system. Manocha et al. [11] proposed a digital twin-based irrigation approach to predict
soil moisture for the upcoming days and give irrigation suggestions based on sensor data,
including soil moisture, humidity, and temperature. (2) Studies as the deployed type.
Tsolakis et al. [3] combined the digital twin and UAVs to monitor the water stress in
orchards. They simulated the orchard layout, inside trees, a UAV with sensors and cameras,
and conducted a pilot test in an orchard. Bellvert et al. [54] successfully adopted the digital
twin-supported automated irrigation scheduling at a commercial vineyard in Aranyó. The
framework calculates water requirements and automatically arranges the irrigation by
assimilating in the nearly real-time estimation of fIPARd. Moreira et al. [55] held that the
digital twin could improve the collective irrigation system (CIS). They proposed a system
of primary and secondary pressurized CIS network and executed a field test in Southern
Portugal. Thapa and Horanont [56] introduced a digital twin-based zero-energy farm
with a drip irrigation system using data from a 1200-square-meter farm in Thailand. The
application allowed users to remotely access the information to monitor and control the
farm manually or by setting a timer or automatically.

Other processes, including fertilization, machinery, and field monitoring/management.
Corresponding studies show that various uncertainties and scenarios must be considered
when applying digital twins in agriculture again. The smart agriculture framework can
support the fertilization decision through nitrogen management in crops, but it must be
tailored to local conditions [57]. Foldager et al. [58] developed a model for agricultural
vehicles in the open-source multi-physics code. They attempted to figure out the effects
of the field condition—terrain in two settings, i.e., different track widths and loading and
unloading, via simulations. Kaburlasos et al. [59] tested a grape-harvesting robot hand’s
capacity by grasping different objects. Kalyani [60] united microservices and multi-agent
systems to develop a digital twin conceptual architecture, especially for winter wheat.
The system can mainly realize two functions: farm access service and field management.
Khatraty et al. [61] argued that the source of data should be consistent. They innovatively
leveraged and compared two sources of data (i.e., IoT sensors collected weather data and
satellite data) to keep the field management decisions more accurate.

For the remaining three review articles, Melesse et al. [62] presented the approaches,
adoption levels, and challenges of crop predictive monitoring with digital twins. They
found that digital twins for this process are still in the lab stage. Nasirahmadi and
Hensel [14] offered a general framework of digital twins in multi-processes of crop produc-
tion; Silva et al. [63] reviewed studies on applying digital twins in soil quality assessment.
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Both studies agreed that soil management called for a more thorough exploration. These
conclusions still can be found in this study, indicating that the diffusion of digital twins in
crop production is generally slow.

3.2.3. Domains, including Husbandry, Forestry, and Aquaculture

Livestock farming can be improved by digital twins in many aspects, like energy man-
agement, growth management, animal status understanding, and disease prediction [7]. In
the collected database, documents mainly focused on two aspects: (1) energy management.
Purcell et al.’s digital twin model [64] has a high precision in measuring the herbage mass of
the grassland. Their study proved the feasibility of a digital twin for grassland management
to reduce related labor requirements. Jeong et al. [65] paid attention to the energy manage-
ment of pig houses. They created a virtual pig house and simulated the actual data from
the physical one to find a solution with the highest energy efficiency. With data from bin
stocks, Raba et al. [66] applied a computer-aided system to control and optimize the animal
feed supply chain from feed mills to livestock farms. (2) animal status understanding.
Han et al.’s [67] AI-enabled digital twin can monitor the physiological cycle of cattle in real
time and forecast its next behavioral state with the LSTM model. Zhang et al. [68] proposed
a digital twin architecture for the feeding behavior of dairy cows during their adult stage.
They proved that the architecture could identify feeding and non-feeding behaviors at an
accuracy rate of 95.07%.

Real-time monitoring forestry data are hard to obtain [69], making it hard to create a
forestry digital twin. To better visualize the forest structure, Buonocore et al. [70] claimed
that the individual tree is the core element. Their conceptual proposal aimed to record
variables of the tree and its environment through real–virtual digital sockets. In that manner,
the digital twin can report the health status of forests and ultimately achieve sustainable
forest management. Qiu et al. [71] graded the spatial structure of Chinese fir trees, leveraged
various data like remote sensing data, and constructed a dynamic stand growth model.
The framework can enhance the simulation of digital twins. Cirulis et al. [72] developed a
BogSim-VR system for bog ecosystems or peatlands, which can give their 3D replicas and
allow experiments with different human actions. Jiang et al. [69] used historical remote
sensing images as the input of a machine learning-based digital twin. With the LSTM
model, it can even effectively predict the forest’s future image. However, none of the
studies can be categorized as deployed, i.e., there is no study being demonstrated in the
operational environment.

The application of digital twins in aquaculture is relatively low [9]. We only collected
two studies that introduced digital twins to aquaponics. Zhao et al. [12] combined numeri-
cal simulation and artificial neural network to construct a digital twin for damage detection
of fishing nets. The proposed framework can accurately detect the net damage at more than
93% under different wave conditions. Teixeira et al. [73] leveraged the virtual duplicate of
aquaculture farms to monitor and control the water quality of its physical twin.

3.2.4. Agriculture in General

Some works did not focus on a particular sector in agriculture. They attempted to
discuss the digital twin in a broader context, such as smart agriculture or even agriculture,
which were thus sorted into “agriculture in general”. Compared with other studies on a
specific area, those in this domain contribute to more reviews (three works) and qualitative
studies (four works). Regarding the review, Pylianidis et al. [8] found that until early 2020,
digital twins had not been established in agriculture. They suggested that digital twin ap-
plications can begin with simple setups and be enhanced with more components. The other
two reviews concentrated on the research status of digital twins in smart agriculture [74]
and irrigation and smart farming [6], respectively. The remaining four qualitative studies
have noticed some new issues in agricultural digital twins. Nie et al. [75] compared the
usage of artificial intelligence (AI) and digital twins in agriculture and concluded that
digital twins face many more challenges in this area than in other industries, including
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the complexity of data, and the realization of intervention-free simulation and interoper-
ability issues. They also concluded that the development of digital twins and AI should
be complementary, which was recognized by Liu et al. [76]. Their study emphasized the
cooperation between digital twins and Generative AI in agriculture; generative AI can help
overcome the challenges faced by digital twins. Rogachev et al. [77] pointed out that digital
twins could pose threats, such as high costs, digital security, and unemployment. They
held that only government agencies, scientific organizations, technology organizations,
and agricultural organizations jointly work, and digital twins maximize their effectiveness.
Purcell et al. [4] also warned that while bringing chances, digital twins exert adverse and
unforeseen technical and social–ecological impacts, like wealth inequality, negative ecologi-
cal feedback loops, and difficulties in maintenance. Such possible consequences should be
considered early to achieve sustainable development. These works offered new insights
into the development of the digital twin.

Six other documents discussed the design or application of agricultural digital twins.
Perhaps because agriculture in general covers a wide range, however, the applications in
practical environments only account for a small portion (one work, i.e., [15]). Five digital
twin-enabled smart agriculture use cases were briefly mentioned, including arable farm-
ing, dairy farming, greenhouse horticulture, organic vegetable farming, and livestock
farming [15]. From the basic information, we can trace the monitoring, prediction, and
optimization functions of digital twins. The rest of the documents designed a concep-
tual framework or validated the possibility of their digital twin framework [78–82]. For
example, Kalyani and Collier [80] introduced a fresh approach to integrate MAS and
Cloud–Fog–Edge with digital twins that can be used in smart agriculture to monitor crop
growth and manage farms better. Chukkapalli et al. [79] proposed that the monitor-
ing function of digital twins can be vital in dealing with the security risks from Cyber-
Physical Systems. They applied a digital twin-supported security surveillance framework
to detect abnormal scenarios. Cho et al. [78] integrated Building Information Modeling
and Geographic Information Systems to design a web-based digital twin to visualize the
agricultural infrastructure.

3.3. A Further Investigation of Current Topics

Based on the above, we can find that from 2021 to 2023, digital twins in agriculture
have received more attention than before. Although progress is still slow, most studies have
focused on designing, examining, and demonstrating digital twins in various agricultural
environments. The monitoring function dominates, but quite a few studies have constructed
or validated the prediction and optimization functions. Additionally, some scholars also
noticed the challenges of implementing related architectures, which pave the way for
large-scale applications. The topics of current research can be mainly summarized into
three aspects as follows.

(1) Manage the objects of labor to raise agricultural productivity. Studies often
developed digital twin architectures to monitor the growth or behaviors of objects of labor
(e.g., plant and animal) to help farmers understand their status in real time and remotely.
According to that, farmers can make better decisions. Some studies started to predict the
yield, provide recommendations, and even control the production system autonomously
without human intervention. Objects of labor frequently mentioned include winter wheat,
grape, potato, fresh food, cow, and tree, while many other studies had not clearly defined a
certain kind of plant or animal.

(2) Focus on the means of labor to promote sustainable development. The demand
for more land, fresh water, and energy is increasing to feed the growing population.
However, resources for agricultural production are limited and currently unable to be
effectively used. To address these issues, scholars leveraged digital twins to model the
conditional elements of agricultural production virtually. The monitoring or prediction
from the system can offer a basis for optimizing resource utilization. Solar energy and
water resources are the key resources of interest.
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(3) Discuss the challenges of digital twins in agriculture and formulate solutions. Re-
lated studies are often conducted from two perspectives. Some studies primarily discussed
how to better design the digital twin framework. Except for introducing new methods
to improve the virtual copy construction, the acceptance of farmers and the interaction
between digital twins and human labor also gradually came into some scholars’ view
(e.g., [22,37]). Other studies mainly investigated the possible threats of digital twins and
then gave corresponding suggestions.

4. Current Digital Twin Architectures in Agriculture

To answer RQ3 (i.e., How did the current digital twin architectures build?), we pro-
ceeded to list the digital twin frameworks built in the current literature database. The
study first extracted the three main parts of a digital twin reference architecture, i.e., the
physical entity, the virtual entity, and the connection between them. Especially, the con-
nection involves the data source, input data, and technologies coupling the physical entity
with the virtual one. We further categorized the frameworks from two perspectives, i.e.,
hierarchical levels and roles during the PLC. Table 1 details 50 works that proposed the
digital twin model.

Based on the above 50 studies, we can construct a general and brief conceptual frame-
work for digital twins in agriculture (see Figure 7). It should be noted that although
previous studies have commonly accepted that digital twins consist of three main parts
(i.e., physical entity, virtual entity, and the connection between them), there has been no
consensus on the detailed layers of digital twin reference architecture, e.g., [11,32,53,61,68].
When drawing the framework, we referred to the more developed research on manufac-
turing digital twins, e.g., [83–85], carefully considering digital twin’s concept and current
studies on agricultural digital twins.

Figure 7. Architectural framework of agricultural digital twins.
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Table 1. Overview of documents that designed the agricultural digital twins.

Citation Physical Entity Data Source

Input Data
Technologies

Coupling
PE and VE

Virtual
Representation

Digital Twin Type

Sensor Data Other Data
Levels Roles during the PLC

U. Sys SoS IM MO PD PS AU RE

[58] Agricultural
vehicle Sensors

Not specified,
but mentioned
operational data

N/A Machine learning Simulation • The design is still in the initial step
of development.

[52]
Plant
(winter wheat
in particular)

Available monographs
and reference books N/A Air temperature and

humidity, soil humidity,
hydrothermal coefficient

Ontologies and
multi-agent
technologies

Dashboard • • • •

[41] Food retail
supply chain

Data from supermarket,
retail company,
and Statista

N/A Product demand, product
price, inventory
spending, locations

Simulation
(anyLogistix) Simulation • •

[79] Smart farm Data collected by other
scholars from sensors

Time, air humidity, air
pressure, air temperature,
light intensity,
soil moisture

N/A

Ontologies, Cloud,
PCA based
anomaly detection
model

Simulation • •

[30] Aquaponics unit Sensors

pH, humidity, room
temperature, light
intensity, water
temperature, water flows,
dissolved salts

N/A
IoT, Raspberry Pi,
Cloud, Machine
learning, Simulation

Dashboard • • •

[17]
Beer production
and filling
facility (process)

Open literature and
actual breweries N/A

Operating conditions,
timing, and
resource consumption

Simulation
(SuperPro
Designer v 11)

Simulation • • •

[82] Solar farm with
16 panels Simulation N/A

Panel inclination,
refractive index of panels,
dimensions of panels,
shape of panels, ground
refractive index, panel
height above ground

Genomic machine
learning Simulation • • •

[3] Orchard UAV with sensors Water stress of plant N/A Not specified Not specified • • •

[55]
Pressurized
collective
irrigation system

GIS, weather station, field
measurements N/A

Water input, water
delivery to the irrigation
system, level variation in
the reservoirs, energy
consumed in electric
pumps and
recovered energy

IoT, cloud,
hydrodynamic
model

Simulation • • •

[15]
(five cases)

Arable field Sensors, GPS tracker Not specified
e.g., FIWARE
Orion Context
Broker

Dashboard
Cannot identify based
on the available
information.

• • •

Cow Sensors mentioned Not specified e.g., Cloud Dashboard • •
Tomato
greenhouse Sensors mentioned Not specified e.g., Wi-Fi, cloud Dashboard • • •

Not specified Sensors, weather
station, etc.

Weed pressure,
crop growth Weather e.g., WLAN Dashboard • • • •

Not specified On-farm sensors and
slaughterhouse data Not specified e.g., Wi-Fi, cloud Dashboard • •
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Table 1. Cont.

Citation Physical Entity Data Source

Input Data
Technologies

Coupling
PE and VE

Virtual
Representation

Digital Twin Type

Sensor Data Other Data
Levels Roles during the PLC

U. Sys SoS IM MO PD PS AU RE

[29] Potato plant Sensors

pH, light intensity, TDS,
stereo camera, ultrasonic,
water temperature,
humidity,
temperature, etc.

N/A

Edge
Computation,
Microcontroller,
Cloud

Dashboard • •

[70] Forest

IoT devices, image
sensing technologies,
flux towers, field
measurements, metadata

Tree variables
(e.g., variables related to
trees, the soil where the
tree stands, and climate
factors in the near space
of the tree), forest
variables (e.g., wildlife
and herbivores, weather,
air quality pollution)

Hydrological basin
parameters, stand
structure, species
diversity, atmospheric
gaseous and energy
exchanges, forest
inventories

Cloud computing,
blockchain and
smart contracts

Not specified • •

[49] Potato plant Physical equipment
mentioned (e.g., UAV)

Environmental factors
(i.e., soil characteristics)
and biological
phenomena of the
potato plant

Biological phenomena of
the potato plant, but
not specified

Not specified Not specified • • •

[50]
Plant, taking
winter wheat
as an example

Filed sensors mentioned
Not specified, but including climate, weather, types and
characteristics of the soil, biological features of
the plant, etc.

Multi-agent
technologies Dashboard • • • •

[51] Winter wheat Not specified Not specified, but including air temperature,
precipitation, relative air humidity, soil moisture, etc.

Ontologies and
multi-agent
technologies

Simulation • • • •

[42] Circular meat
supply chain Sensors Not specified (only

conceptual framework) N/A

Microcontroller,
Wireless
communication
technologies, Data
Mining, AI,
Machine Learning

Not specified • • • • •

[72] Bog ecosystem GIS, LIDAR data from
a drone

Mentioned IoT network,
but not specified

Amount of snow and rain,
temperature, sun
radiation, humidity, peat
depth, etc.

Simulation, Virtual
Reality 3D visual • • •

[48] Vineyard Sensor-equipped UAV

Weather conditions, sun
exposure, amount of
water, leaf conditions,
fertilizer or fungicides use

N/A
5G, cloud,
machine learning,
AI

3D visual • • •

[34] Solar greenhouse Pysolar Python package N/A

Number of light rays,
ground refractive index,
speed of light, solar panel
thickness, generalized
radii, geometric exponent

Simulation tools
(e.g., HELIOS,
Raytrace3D),
genomic
optimization
algorithm

Simulation • • •
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Table 1. Cont.

Citation Physical Entity Data Source

Input Data
Technologies

Coupling
PE and VE

Virtual
Representation

Digital Twin Type

Sensor Data Other Data
Levels Roles during the PLC

U. Sys SoS IM MO PD PS AU RE

[67] Cattle Sensors

Cattle’s status, e.g.,
resting, rumination, high
activity, medium activity,
planting (heavy
breathing), grazing,
walking

N/A
IoT, AI, deep
learning
(i.e., LSTM)

Not specified, but
analyzed on the

computer
• • •

[31] Horticulture
greenhouse

Facility API, sensors,
historical database Compartment parameter

Indoor climate data,
environment data,
production planning data

Multi-agent-based
simulation
(AnyLogic in
this study)

3D visual • • •

[69] Forest image Landsat 7 ETM + C2 L1
data set Remote sensing images N/A Machine learning

(i.e., LSTM)

Not specified, but
analyzed on

the computer
• •

[23] Plant leaf Self-collected datasets Not specified, but including point clouds with normal
vectors, RGB images

Deep learning
(i.e., ResNet) 3D visual • •

[64] Pasture Sensors Grass and
weather information N/A

Grasshopper grass
assessment tool,
simulation (i.e.,
AgPasture grass
simulation model)

Not specified • •

[43]

Fruits, including
cucumber,
eggplant,
strawberry,
and raspberry

Sensors Air temperature,
geolocation N/A

Simulation
(continuum
multi-physics
model, COMSOL
Multi-physics)

Not specified, but
analyzed on

the computer
• •

[35] Hydroponic grow
beds Sensors

pH, electroconductivity,
air temperature, water
temperature, humidity,
light intensity

N/A
IoT, Raspberry Pi,
PHP, MySQL,
GPIO

Dashboard • • • • •

[12] Fishing net Sensors

Data related to complete
and damaged fishing nets,
e.g., net length, net width,
net solidity ratio,
diameter of net
twines, etc.

N/A
Simulation,
machine learning
(i.e., ANN)

Simulation • •

[66] Farm Sensors Bin stocks, served diet,
breed size N/A IoT, machine

learning Dashboard • • • • •

[73] Aquaculture farm Sensors
Physico-chemical
variables, water
quality variables

N/A IoT, AI Dashboard • • • • •

[56]
Zero-energy farm
with a drip
irrigation system

Sensors

Environmental
conditions, e.g.,
temperature, humidity,
moisture

Geospatial data (not
specified the source, but
we may infer)

Simulation (i.e.,
EnergyPlus,
DSSAT), Wi-Fi,
MQTT, Raspberry
Pi, AI

Dashboard • • • •

[60]
Arable farming
(winter wheat
in particular)

Not specified Not specified, but mentioned farm data and weather
Microservices and
multi-agent
systems

Dashboard • • • •
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Table 1. Cont.

Citation Physical Entity Data Source

Input Data
Technologies

Coupling
PE and VE

Virtual
Representation

Digital Twin Type

Sensor Data Other Data
Levels Roles during the PLC

U. Sys SoS IM MO PD PS AU RE

[80]

Farms and fields
used for Arable
Farming (winter
wheat in
particular)

Sensors, third-party
data sources

Parameters related to
farms and fields

Weather, satellite,
financial data

Not specified, but
mentioned
“integrating MAS and
Cloud–Fog–Edge
with Digital Twin”

Not specified • • • •

[37] Plant factory Sensors, Cameras

Electricity consumed by
air conditioner,
ventilation, lighting,
and humidifiers

360◦ environmental
pictures IoT, JSON Virtual Reality • • •

[81]

Not specified, but
mentioned farm,
crop, etc. in the
crop management
and sales

IoT systems
Not specified, but including soil quality, weather
conditions, irrigation systems, crop types, crop quality,
crop quantity, market prices, etc.

IoT, machine
learning Dashboard • • • •

[53]
Irrigation system
with its physical
components

Field tests, external
services, simulation N/A Soil data, weather data,

and crop information

IoT, MySQL,
Siemens Plant
Simulation
software, OPC UA,
Orion Context
Broker

Dashboard • • • • •

[78]
Agricultural area
(i.e., a test bed area
of a reservoir)

Filed surveys, photos
captured by UAVs N/A

Land shape, sluices,
channels of the entire
beneficiary area

DJI Terra software 3D visual • • •

[36] Greenhouse tunnel Sensors Temperature, humidity N/A

Telegram and
DropBox (for data
collection),
Raspberry Pi,
Simulation,
i.e., SVR

Simulation • • •

[65] Enclosed pig
house

Not specified,
but mentioned
sensing entities

Parameters related to environment, operation, and
biometrics from a real pig house

Simulation
(i.e., EnergyPlus
and OpenStudio
simulation
software for
building energy
simulations)

Dashboard • • •

[59] Robot hand Human hand N/A Human hand
grasping data

Parametric
mathematical
models
implemented in
software

Not specified • The design is still in the initial step
of development.

[61] Rice field Sensors, satellite Precipitation, wind speed,
temperature, air humidity

Overview of the
field’s state IoT, deep learning

Not specified, but
analyzed on

the computer
• • • •

[44] Ice cream
manufacturing

Data from ice cream
manufacturing company N/A Manufacturing

parameters
Simulation
(AnyLogicTM) Simulation • • •
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Table 1. Cont.

Citation Physical Entity Data Source

Input Data
Technologies

Coupling
PE and VE

Virtual
Representation

Digital Twin Type

Sensor Data Other Data
Levels Roles during the PLC

U. Sys SoS IM MO PD PS AU RE

[45]

Procurement,
production, and
distribution of the
ice cream
manufacturer

Data from ice cream
manufacturing company N/A

Market demand forecasts,
production capacity,
procurement data

Mixed-integer
linear programming,
agent-based
simulation, AI,
machine learning,
IoT

Simulation • • • •

[38] Enclosed indoor
farm Simulation N/A

Aperture parameters (for
light direction), source
tube values, total
power values

Genomic
optimization,
Simulation

Simulation • •

[71] Forest UAV, field measurements N/A

Individual tree indices
(coordinates, tree age,
diameter at breast
height, etc.),
neighborhood indices
(uniform angle,
openness, etc.)

Cloud, Bayesian,
and grading
theory

Virtual Reality • • • •

[68] Adult cow Cameras, collars, and
other sensor devices

Real-time location and
neck movement data of
the cow

N/A SVM, KNN, LSTM Dashboard • • •

[33] Leafy vegetable
plant factory Sensors

Temperature, humidity,
illumination intensity, soil
humidity, TVOC
concentration, CO2
concentration

N/A IoT (e.g., Wi-Fi),
Simulation Dashboard • • • •

[54] Irrigation sector
Sensors, weather stations,
satellite, field
measurements

Soil moisture, irrigation,
precipitation events

Meteorological data,
biophysical variables of
the vegetation, actual
evapotranspiration

TSEB-PT modeling
approach,
Penman–Monteith
approach

Simulation • • • • •

[11] Irrigation
framework Sensors Soil moisture, humidity,

temperature N/A IoT, Genetic
algorithm, ANFIS Simulation • • • •

[57] Cultivated area GPS, yield prediction,
GIS, RS, Sensors

Spatial variability of ECa,
multi-spectral reflectance

Spatial variability of area,
soil properties, crop
growth and yield

Not specified Not specified • • •

[32]
Pharmaceutical
cannabis production
process

Sensors (but not directly
related to pharmaceutical
cannabis, collected as
other data)

N/A
CO2, PAR, humidity
deficit, dewpoint,
temperature, etc.

3G/4G,
Greenhouse LAN,
Wi-Fi, JSON, API

3D visual • •

Note: Data clearly labeled “collected from sensors” can be sorted as sensor data. The digital twin reference architectures were categorized based on the functions that had been realized
rather than all the functions envisaged by the author(s), i.e., those that have not been realized at the current stage were excluded. PE: Physical entity; VE: Virtua entity. U.: Unit;
Sys: System; IM: Imaginary; MO: Monitoring; PD: Predictive; PS: Prescriptive; AU: Autonomous; RE: Recollection. • marks true.
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Figure 7 shows five layers in the agricultural digital twin, including data collection
and exchange, data storage and processing, communication, cloud computing and storage,
emulation and simulation (together with the user domain). In the first layer, information
about physical entities, such as the environment, living organisms, and physical objects,
was collected or exchanged between sensors, actuators, and the local controller or data
acquisition devices. Data preprocessing should be performed to keep them accurate and
available before modeling. The collected data are stored in the local data repositories that
should connect with the local controller and data acquisition devices in the first layer and
the IoT Gateway in the third layer both. The data will be transferred via the communication
level (aka Data-to-Information Conversion Level [85]). By converting data collected in the
first layer to information to be sent to the cloud-based information repository, this level links
the second layer with the fourth layer. The communication level also supports real-time bi-
directional and seamless communication between physical entities and their digital entities,
indicating the significant role of IoT in the digital twin. The cloud computing and storage
level includes cloud services that save historical information reflecting physical entities’
status from the third layer. As Redelinghuys et al. [85] claimed, hosting the repositories
in the cloud enables the agricultural digital twins to be more available, accessible, and
connected. In the emulation and simulation layer, relevant software should be used to
help users interact with this layer. Three methodologies to develop agricultural digital
twin modeling can be summarized, including data-driven, physics-based, and agent-
based models. For the data-driven model, technologies like machine learning and deep
learning to represent the status and characteristics through collected data were receiving
attention. For the physics-based model, observing actual phenomena gives a sound basis
for mathematically incorporating them into virtual representation. The agent-based model,
or rather ontological multi-agent model, is also a common method in this area. This model
enables the usage of heterogeneous data, which helps identify patterns of physical entities’
growth and development in agriculture [62]. Additionally, the emulation and simulation
layer also offers users representation of the physical entities and their status, such as graphs
on the dashboard, 3D visualization, and Virtual Reality. With it, users can evaluate the
physical entities and make decisions.

The above description is usually for a unit-level digital twin. When building the
system-level or SoS-level model, a hierarchical structure is necessary. Since each physical
entity does not exist independently, how to better integrate all components and reduce
the complexity should be noticed. Studies like Buonocore et al. [70] attempted to create
hierarchical frameworks, but many remained in the conceptual stage.

Table 1 further reveals that the current digital twin reference architectures in agriculture
have four significant features.

(1) The physical entity from the system or SoS level received increasing attention.
Agriculture is a complex and diverse field. Thus, merely building a digital twin frame-
work on individual plants or animals can hardly meet the demand. However, previous
studies seldom looked beyond plants or a single production unit ([5], the study reviewed
greenhouse horticulture digital twins). Similar results can be obtained in this review—the
current studies still mainly focused on a certain process or a single production area; it is
more common to mark “not specified” among the research considering system-level and
SoS-level digital twins as some of them only proposed a conceptual framework or idea. Yet,
compared with earlier research, more and more studies have started to design the digital
twin architecture at the system and even the SoS level. That means scholars are applying
the digital twin to agriculture from a broader perspective, such as the entire crop growth
process, beer production line, and food supply chain from suppliers to retailers, making
the digital twin expand its influence in the agricultural sector.

(2) According to Qiu et al. [71], compared with technologies like XR and CAVE2, digital
twin enables two-way interaction and virtual–real synchronization, but it depends on the
reliability and stability of IoT and sensor data. Table 1 shows that in the current studies,
input data mainly came from environmental sensors, which precisely signals real-time
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changes of the relatively static physical entities. However, much research also analyzed
the growth behaviors or statuses of living plants or animals based on environmental
information. That might lead to low accuracy of virtual representation and communication.
As a result, some scholars chose to add external databases, such as third-party data and
field surveys, but it is worth noting how to deal with the distinctions between different data
sources. Other scholars tried to obtain data directly from the living object (e.g., [67,68]),
but the related model requires plenty of data. Therefore, obtaining sufficient data and
properly preprocessing them is necessary. Additionally, offering essential models and
methods representing the growth and development of living organisms also needs to be
solved [51]. Taking crops as an example, Skobelev et al. [51] suggested that crop variety and
characteristics should be considered. That could also explain scholars’ efforts to provide
new methods for better virtual representation of plants or animals from the unit level
(e.g., [23]). As Asfarian and Wulandari [29] claimed, the digital twin platform can initially
be formed from the unit level and then improved to higher levels.

(3) Scholars are introducing emerging technologies such as AI and machine learning to
support better matching between physical entities and virtual ones. One of the direct results
is that the number of predictive and autonomous digital twins gradually increases over
time, which would alter the situation that predictive, prescriptive, and autonomous digital
twins are still in the infancy stage. On the other hand, technologies like IoT, cloud, and
Wi-Fi have almost become the standard configuration of digital twin architectures, offering
a firm basis for data storage and transmission. That also explains why most frameworks can
be labeled with the monitoring function. However, it should be noted that the imaginary
and recollection digital twins received little attention, consistent with [5,15]’s findings. Due
to the irreversibility of living organism growth, it is necessary to investigate the two types
in the future.

(4) Except for the documents not mentioning virtual representation, over half of the
digital twins (19 use cases) chose the dashboard with graphical representation to show
the digital twin. Surprisingly, an increasing number of the studies used advanced user
interfaces: simulation (15 use cases), 3D visualization (6 use cases), and Virtual Reality
(2 use cases), accounting for a considerable proportion. In particular, works with the
approach of 3D visualization and Virtual Reality occurred at a later stage. The last two
interaction methods make the digital twin applications more comprehensible and actionable.
Farmer users then may operate and accept the applications more easily. At the same time,
a series of issues await to be solved. For example, it is hard to use a 3D rendering model on
a large scale, and inconsistencies will appear when the physical entity changes [37]; the
application of Virtual Reality needs to take into account some limitations like high cost and
simulation sickness [22].

5. Discussion
5.1. Research Progress of Digital Twins in Agriculture 2021–2023

According to the literature review, the influence of digital twins in agriculture has
been expanding in recent years. Compared with the studies before 2021, the latest research
progressed mainly from the following three aspects.

(1) Layers in the reference architecture of agricultural digital twins have been further
developed. The above review indicates three main changes. First, most physical entities
of interest previously were agricultural fields, farms, and landscapes [8], but currently,
many are living organisms or living systems, such as crops, animals, perishable agri-food,
and food supply chains. Some scholars pointed out that the unique features of those
living objects should be weighed, e.g., [51]. Second, emerging technologies, like machine
learning and Generative AI, were finding their roles in coupling physical entities with
virtual ones. Third, compared with the dashboard in earlier studies, more and more digital
twin frameworks leveraged simulation, 3D visualization, and Virtual Reality for virtual
presentation, enhancing the ease of use.
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(2) Studies expanded design perspectives, sub-fields, and benefits of agricultural
digital twins. In terms of design perspective, more and more studies have started to design
digital twin reference architectures based on a system and even the SoS level. Digital
twins can play roles in agriculture from a broader perspective, such as the entire crop
growth process, beer production line, and food supply chain from suppliers to retailers.
Meanwhile, studies tried to apply their digital twin systems in the operational environment,
and some of the digital twins, especially the system-level ones, have been implemented
in the real context. However, most digital twins at the SoS level are still in the conceptual
or experimental stage, calling for possible debugging and a better integration with all
operational hardware/software. When it comes to the sub-fields, domains like the food
supply chain and horticulture received increasing attention; studies brought the digital
twin into forestry in which several open issues like collection of real-time data are worth
noting [69]. The above twofold progress finally leads to the richer benefits of agricultural
digital twins in relevant areas.

(3) Several new issues received attention instead of the pure concept. On the one hand,
a considerable proportion of digital twin frameworks were not labeled as “conceptual” but
“prototype” with richer functions, including prediction, prescription, and automation. That
is, studies expect the digital twin to play a more significant role in agriculture. On the other
hand, qualitative research has put forward some fresh topics, or rather concerns, such as
possible threats, simulation sickness, and the high cost of agricultural digital twins. We can
find that many of them could have a bearing on real-world implementation of digital twins
in agriculture. That scholars consider the digital twin with a dispassionate attitude can not
only benefit this technology but the agricultural industry.

5.2. Open Questions for Agricultural Digital Twins

Agriculture has unique characteristics, such as various living organisms, dynamic
environmental factors, and quantity of smallholder farmers, making it harder to apply
digital twins in related sectors compared to in other industries, like the manufacturing
industry. Obviously, there is still a long way to go for the agricultural digital twins. Thus,
it is imperative to shed light on RQ4 (What are the open questions for digital twins in
agriculture?). To do so, this section lists some representative issues that need to be addressed
urgently, which could give insights into future research.

5.2.1. Building Digital Twins Adaptable to Agriculture

As we mentioned, a long value chain exists in agriculture from the initial sowing
to production, distribution, and finally to fork. In addition to the hierarchical structure
integrating unit-level digital twins into the system, even SoS-level digital twins, the partic-
ular characteristics of each process should also be sufficiently considered. Some scholars
have realized this. For example, Pylianidis et al. [8] summarized two main distinctive
characteristics of agricultural digital twins. The first lies in the direct or indirect connection
with living systems and perishable products. During the preharvest process, measures such
as using ontologies to describe the crop in detail [51] and introducing a new method to
enhance the coupling precision of the virtual leaf [23] were proposed. The second one is the
spatiotemporal dimension of digital twins’ operation. Taking the temporal dimension as an
example, Pylianidis et al. [8] proposed that it may not be necessary to build high-frequency
interactions initially between the physical entity and its virtual one because living organ-
isms grow slowly. Thus, future studies should carefully consider the variety of plants or
animals, the environment, and their interactions. For example, the current agricultural
digital twins were applied in specific scenarios, but many studies did not explain if the
operational environment can affect the digital twin’s introduction to other settings or areas.
Also, when constructing the digital twin from a company or whole value chain perspective,
studies need to take more stakeholders, like suppliers and consumers, into account. Fur-
thermore, due to the irreversibility of living organism growth, the imaginary, predictive,
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and recollection digital twins deserve more attention. Technologies like Generative AI,
Virtual Reality, and blockchain could help.

The postharvest process also calls for an investigation. As we mentioned above, many
agri-foods are perishable. The losses and waste from farm to fork happen a lot. Moreover,
smallholder farmers often live in rural areas and are unaware of the changing market
information. The digital twin offers an ideal solution to tackle this [39]. On the one hand,
studies can design the digital twin of the product and its supply chain to figure out the key
factors influencing losses and waste. As such, it can further diagnose and predict negative
situations and intervene in them. On the other hand, connecting the preharvest process
with the postharvest one matters. For example, sales prediction and even contact farming
can help farmer users make wise decisions at the early production stage.

Finally, future studies should take note of uncontrolled environment agriculture (UEA,
aka open-space agriculture). This study found that the current studies paid more attention
to controlled settings where the organisms and their surroundings are more stable and
manageable. There is no denying that digital twin applications built in such spheres make
significant contributions, but equally, UEA is one of the dominant production methods until
now, especially in rural areas. In terms of crop production, studies can further investigate
crops like corn and processes, including soil management, fertilization, and multi-processes.
For husbandry, research can pay attention to animals like sheep and chickens and processes,
including growth management and disease prediction. Other domains, such as aquaculture
and forestry, are also noteworthy.

5.2.2. Data Acquisition Issues

According to the review, we found that data acquisition is the fundamental key but
also one of the biggest obstacles in constructing agricultural digital twins. Sufficient and
accurate data can support more system-level or SoS-level digital twins. However, three
major problems must be solved: input data, data sources, and data accuracy. The first one
has been discussed to some extent in the above section. We suggest fully considering the
characteristics of agricultural physical entities.

For data sources, previous studies obtained or mostly expected to obtain data from
sensors. It should be noted that the agricultural industry involves various processes with
multi-agents. Obviously, it takes work to coordinate their relations. If sensors cannot be
mounted in one step or data cannot be transferred among the processes, the digital twin
design from a broader level would face challenges. That also explains why many use
cases were sorted as the prototype and/or unit-level digital twin. The lab environment is
relatively closed, and not all the factors could be mentioned. Some studies can only test the
twinning between the physical entity and its virtual one based on another physical entity’s
data. For example, limited by data, Spyrou et al. [32] had to analyze the pharmaceutical
cannabis production digital twin with other crop data. Therefore, studies tended to combine
different databases and/or simulate the digital twin by giving preset data, but that could
raise questions about the data accuracy.

For data accuracy, as Moreira et al. [55] pointed out, the more progress we make in
data acquisition, the greater the need to examine the data. Combining data from different
sources requires calibration and validation in particular [61]. They compared sensor data
with satellite data to ensure that sensor data were reliable. However, data in agriculture are
complex and usually from diverse sources [66]. Sometimes, researchers can only match
different datasets instead of two or more comparable datasets for the same object. For
example, Shoji et al. [43] leveraged two datasets collected at different times with different
methods and ranges. They aimed to map a longer postharvest process of imported fruits,
but the consistency of the two datasets also needs to be tested.

5.2.3. The Possible Dark Side of Digital Twins in Agriculture

A digital twin must be reliable and secure [15,49,74]. However, technology is a
double-edged sword, not excepting the digital twin. Although some scholars consider
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that the real-world implementation of agri-food digital twins could not be very soon [47],
avoiding or mitigating the possible negative influences can prepare for unexpected news
and fuel the application. In addition to the simulation sickness [22], the study identified
the following issues.

First, digital twins require actual data from actors involved in the value chain, such as
farmers, traders, retailers, and consumers, which could cause privacy issues. Raba et al. [66]
found that farmers are reluctant to offer access to their data due to ownership and security,
hindering the development of digital twins. Effective privacy protection technologies and
policies are thus indispensable.

Second, as we mentioned above, the worry of data ownership is one of the possible
reasons farmers hesitate to offer data. In the age of information, data are king. Farmers
or other producers should have the right to obtain their data, but overall, developers are
relatively well financed and have access to the whole database, which could easily lead to
the digital twin privilege [47]. Thus, whether digital twins can increase the gap between
rich and poor? How can we prevent the digital divide in advance? These questions are
worth pondering.

Finally, agricultural digital twins are mainly based on three methodologies, including
data-driven, physics-based, and agent-based models [62]. Generally, they can monitor,
predict, and optimize the physical entity based on preset goals or rules. However, living
organisms might not always grow alongside the established patterns. Possible situations
that machines may not understand could also occur. In such conditions, will digital twins
underreact or overreact? Are all the reactions applicable to every organism? Who should
be responsible for the inadequate reaction? Is there any mechanism to recognize and block
the intervention of digital twins?

5.2.4. The Acceptance of Farmer Users

The digital twin in agriculture is still in its infancy, no matter the academic research or
practical use. This technology requires users to invest heavily [37], and farming is labor-
intensive and time-consuming, making it hard for farmers to adopt new technologies [60].
Thus, persuading farmer users or other small and medium-sized practitioners to accept
digital twins should be a focus.

As we know, the food production business has always been risky. Thus, showing
producers that digital twins are a great help in capturing profit is important. On the one
hand, cost reduction is necessary. For example, creating cheaper and more precise electronic
sensors is still an open challenge [40]. Also, developers need to design new business models
for agricultural digital twins, like the leasing system. On the other hand, studies need to
provide more quantitative evidence that digital twins benefit agriculture.

Governments or other non-profit organizations (NPOs) should actively take responsi-
bility. Food producers operating on a small scale seldom know the emerging technologies
due to a lack of resources or education opportunities. In this case, we should figure out
what governments or NPOs can do to help them better understand and leverage the digital
twin. Therefore, future studies can explore the influences of measures like infrastructure
construction, subsidies, finance inclusion, and training.

6. Conclusions

Technology has changed agriculture. In the Agriculture 4.0 era, farmers will run
their businesses in a very different way, primarily thanks to advanced technologies like
sensors, machines, information technology, and other developing but sophisticated tech-
nologies [86]. However, agriculture is different from industries like manufacturing and
service industries. Characteristics like unpredictable changes in living organisms and the
natural environment, marginal farming, and small-sized operations often slow down the
development and adoption of technologies in this area. The same trend has occurred for
digital twin technology until now. By creating a virtual representation of the physical entity,
it assists users in monitoring, predicting, and optimizing the production process, which
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will transform the traditional operations of agribusinesses. However, the technology is still
in the early stages. To elaborate on the current status and progress in agricultural digital
twins can shed light on future studies.

Based on 70 documents published after a peer-review process or in the peer-reviewed
SSCI/SCIE journals, this study introduced the studies on agricultural digital twins from
overall trends, focused areas (including domains, processes, and topics), reference architec-
tures, and open questions. The review found that digital twin technology is expanding its
influence in agriculture. Scholars have begun to establish the digital twins from a broader
level with more comprehensive functions. However, there is still a long way to go. For
example, future studies should pay much attention to the characteristics of living organisms
and their twinning with virtual entities; leveraging a broader perspective to design the
digital twin is worth noticing in agriculture; governments need to take measures to prevent
privacy issues and data privilege; more evidence should be given to prove digital twins
profit a lot in agriculture. With digital twins, agriculture will step into a new level, which
requires the cooperation of all stakeholders.
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