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Abstract: The YOLO series of target detection networks are widely used in transportation targets
due to the advantages of high detection accuracy and good real-time performance. However, it also
has some limitations, such as poor detection in scenes with large-scale variations, a large number of
computational resources being consumed, and occupation of more storage space. To address these
issues, this study uses the YOLOv8n model as the benchmark and makes the following four improve-
ments: (1) embedding the BiFormer attention mechanism in the Neck layer to capture the associations
and dependencies between the features more efficiently; (2) adding a 160 x 160 small-scale target
detection header in the Head layer of the network to enhance the pedestrian and motorcycle detection
capability; (3) adopting a weighted bidirectional feature pyramid structure to enhance the feature
fusion capability of the network; and (4) making WIoUv3 as a loss function to enhance the focus
on common quality anchor frames. Based on the improvement strategies, the evaluation metrics
of the model have improved significantly. Compared to the original YOLOv8n, the mAP reaches
95.9%, representing an increase of 4.7 percentage points, and the mAP50:95 reaches 74.5%, reflecting
an improvement of 6.2 percentage points.

Keywords: deep learning; vehicle and pedestrian detection; target detection; YOLOVS

1. Introduction

According to statistics, there are about 200,000 traffic accidents in China every year,
resulting in more than 60,000 deaths and 200,000 injuries, and property losses due to traffic
accidents exceed CNY 1 billion every year. Relevant studies indicate that only 10% of
traffic accidents are attributed to mechanical failures of the vehicle itself. In contrast, the
remaining 90% are caused by human factors, including driver fatigue, drunk driving,
overloading, speeding, and distracted driving [1]. If an automated driving system can take
over the vehicle instead of the driver before a traffic accident occurs and make a correct
response, the accident rate can be effectively reduced.

Autonomous driving systems utilize advanced sensors, cameras, and artificial intelli-
gence algorithms to sense the surrounding environment and assist the driver in responding,
when necessary, which can help reduce traffic accidents caused by driver inattention, de-
layed reaction time, or errors in judgment. In terms of environment perception, the onboard
camera provides a large amount of environmental information, and the automatic driving
system can carry out vehicle-pedestrian detection, lane line detection, road traffic sign
recognition, and other tasks through the video image information collected by the camera.

In real-world scenarios, the complexity of the traffic environment frequently results in
considerable variations in the sizes of vehicle and pedestrian targets depicted in photos and
videos. Moreover, these targets often overlap with each other and are subject to background
occlusion. These challenges significantly heighten the difficulty of deploying vehicle and
pedestrian detection techniques, thereby posing a stringent test to their accuracy and
robustness [2]. The accuracy of the vehicle detection model is critical to the precision of
vehicle information extraction. Consequently, research on vehicle-pedestrian detection
holds significant theoretical and practical values.
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2. Related Work
2.1. Optimizing Autonomous Driving Target Detection

In the realm of computer vision research for autonomous driving, the KITTI dataset [3]
has become a vital benchmark due to its extensive scene coverage and diverse target
categories, including small and fuzzy objects. Our study addresses the shortcomings of
the existing algorithms in handling occlusion, detecting small objects, and recognizing
omissions and proposes a new model to overcome these limitations. By thoroughly analyz-
ing the existing research, we aim to demonstrate the innovativeness of our work and its
contributions to the field.

Liu et al. [4] proposed an enhanced vehicle detection algorithm for intelligent trans-
portation applications, achieving significant results in coping with the dense distribution
of targets and scale variations in images, especially in small object detection, which was
improved over the baseline model YOLOX. However, the algorithm still faces challenges
for the detection of very small objects. Lou et al. [5], on the other hand, proposed the
DC-YOLOV8 model that focuses on small target detection. They combined down-sampling
techniques to preserve contextual features and effectively integrated shallow and deep
information through an enhanced feature fusion network. These innovations enable DC-
YOLOVS to perform well in complex scenes with improved detection accuracy compared
to YOLOvS8. Mahaur B et al. [6] further advanced feature extraction and localization classifi-
cation by proposing the HIC-YOLOvV5 model. The model employs a small target detection
head to process high-resolution feature maps and utilizes convolutional blocks for channel
information enhancement and incorporates CBAM to emphasize important features. The
detection accuracy of HIC-YOLOVS5 reached 36.95% mAP.

In addition, Iqra Nosheen [7] proposes a visual tracking method that combines speckle
detection and KCF to enhance vehicle detection through preprocessing techniques. Vali-
dated using the KITTI dataset, the method significantly improves the detection accuracy,
achieving 52% detection accuracy and 86% tracking accuracy. The technique helps to
improve traffic monitoring and flow management.

Our research builds on this series of existing studies, and by deeply analyzing the
limitations of these algorithms, we propose a vehicle—pedestrian detection method based
on an improved YOLOvVS, which effectively improves the detection ability of vehicle—
pedestrian targets.

2.2. Two-Stage and One-Stage Target Detection Algorithms

According to the different detection strategies, deep learning-based target detection
methods can be divided into two-stage target detection algorithms and single-stage (one-
stage) target detection algorithms.

Two-stage target detection algorithms first obtain the candidate region by selective
search and feature extraction, then feature extraction is performed on the candidate region
to obtain the feature matrix, and finally, feature matrix is fed into the classifier for prediction.
The R-CNN model proposed by Girshick et al. [8] in 2014 first applies a convolutional
neural network to the target detection task, and the PASCAL VOC 2012 dataset achieved
a detection accuracy of about 53%, which is about 30% better than the previous best
target detection algorithms and far better than traditional target detection algorithms.
However, thousands of candidate regions need to be extracted for each image, resulting
in a computationally intensive model and slow detection. He et al. [9] proposed a Spatial
Pyramid Pooling Network (SPP-Net), which drastically reduces the computational effort
of the network by adding an SPP layer between the convolutional layer and the fully
connected layer 2015. Girshick was inspired by the SPP-Net network to propose Fast
R-CNN, which uses an ROI pooling layer to normalize the feature maps at different scales
and employs a Softmax function instead of an SVM classifier, which effectively improves
the detection speed of the network. Ren et al. [10] proposed Faster R-CNN by further
investigating the Fast R-CNN. CNN, which introduces a Region Proposal Network (RPN)
instead of selective search, greatly improves the detection efficiency of the network. Later,
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many scholars improved and extended the Faster R-CNN from different perspectives.
Dai et al. [11] proposed the R-FCN (Region-based Fully Convolutional Network) in 2016,
which enhanced detection efficiency by generating a location-sensitive distribution map.
Cai et al. [12] proposed the Cascade R-CNN in 2018 effectively improves the detection
performance of small targets by cascading multiple detection heads. Overall, although
the two-stage target detection algorithm performs well in terms of detection accuracy, the
requirement to generate multiple candidate regions and classify each of them imposes
limitations on the detection efficiency of two-stage target detection algorithms.

Single-stage target detection algorithms do not need to extract candidate regions but
directly feed the image into the detection network to extract features and make predictions,
and the representative models include SSD, YOLO series, etc. YOLO [13] (You Only
Look Once), proposed by Joseph Redmon in 2016, uses regression ideas to perform target
detection, which significantly improves the target detection speed. YOLOV1 refers to the
GoogLeNet [14] classification network structure, which consists of 24 convolutional layers
and 2 fully connected layers, and its core idea is to partition the image to be detected
into S x S small grids, and the grid in which the centroid of the object to be detected is
responsible for predicting this object, and each small grid can only generate at most two
prediction frames, which results in low accuracy of small-scale object detection and easy
to miss detection. Later, on the basis of YOLOV1, the original authors proposed YOLOv2
and YOLOv3 and introduced the K-means clustering algorithm, DarkNet network, etc., in
order to improve the detection accuracy and speed of the YOLO algorithm. In recent years,
the YOLO series of algorithms have been updated and iterated rapidly, and up to now, it
has been developed to YOLOvS8. YOLO has been widely used in the field of vehicle and
pedestrian detection due to its fast and accurate characteristics.

3. Vehicle-Pedestrian Detection Model

To improve the environment sensing ability of self-driving cars, we proposed a high-
precision vehicle-pedestrian detection algorithm. To address the challenges of large-scale
differences and target occlusion in road traffic scenes, we propose several enhancements.
Firstly, by embedding the BiFormer attention mechanism in the Neck layer and adding
an additional detection head in the Head layer, the network’s detection capabilities for
small targets such as pedestrians and motorcycles are significantly improved. Secondly,
the weighted bidirectional feature pyramid structure is utilized to enhance the network’s
feature fusion ability. Additionally, WIoUv3 [15] is employed as the loss function to
improve the network’s focus on high-quality anchor frames. Our proposed network model
is illustrated in Figure 1.

3.1. BiFormer Attention Mechanism

The attention mechanism aims to enhance the model’s focus on input data for weight
allocation in computer engineering. It automatically identifies the relevance and impor-
tance of data, enabling the model to concentrate more on various inputs. By dynamically
assigning weights between elements, the model can prioritize the most critical parts of the
input data. However, the introduction of the attention mechanism leads to an increase in
computation and memory usage.
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Figure 1. Diagram of the proposed network structure.

Although our task is to detect vehicles and pedestrians in road traffic images, which
may be applied to environmental sensing for autonomous vehicles in the future, the
autonomous vehicle chip is highly sensitive to the model’s computation and memory usage
for each task, as it needs to process multiple tasks simultaneously. To tackle the limitations
posed by computational and memory constraints, this paper adopts the BiFormer Attention
mechanism proposed by Zhu et al. [16], which utilizes Bi-level Rounding Attention (BRA)
with a two-level rounding path as its main building block. Compared to other attention
mechanisms, BRA employs an area-to-area routing index matrix with fine-grained labeling
of each query token and attention to all key-value pairs within the set of routing areas. In
other words, BRA has a more precise selection of sensing regions, which is very beneficial
for detecting small objects such as pedestrians, and it improves model performance while
reducing computational load. It is well suited for the vehicle and pedestrian detection task
in this paper.

BiFormer utilizes a four-stage pyramid structure with BRA as its core module. In the
first stage, overlapping patch embedding is employed, while in the second to fourth stages,
a patch merging module is used to decrease the input spatial resolution while increasing the
number of channels. Then, N consecutive BiFormer blocks are employed to transform the
features. Indicates a convergence between the two. In each BiFormer Block, a 3 x 3 deep
convolution is first used to implicitly encode the relative position information. Then, the
BRA module and the 2-layer MLP module are applied sequentially for cross-position
relation modeling and position-by-position embedding, respectively. The overall structure
of BiFormer is depicted in Figure 2.
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Figure 2. BiFormer’s overall structure.

Theoretically, the directed graph routing between regions enables the feature graph to
optimize the selection of associated content part by part, which is the core of the BiFormer
attention mechanism. BiFormer attention mechanism based on two-layer routing has a
finer sensory field selection ability, which can not only select the target more accurately as
a whole but also capture the sensory field content more accurately in the local region.

3.2. Multi-Scale Prediction Network

After feature extraction and feature fusion, YOLOvVS8 outputs three scale feature maps,
80 x 80,40 x 40, and 20 x 20, where 80 x 80 feature maps are used to predict small targets,
40 x 40 feature maps are used to predict medium targets, and 20 x 20 feature maps are
used to predict large targets. However, in real road scenarios, the differences in target
scales can be very large. For example, the volume of pedestrians is much smaller than the
volume of trucks, and when pedestrians are far away, they occupy fewer pixel points in
the image, the features are not obvious after multiple down-sampling, and they are easily
missed during detection.

To address this issue, this paper proposes a four-scale prediction network, which adds
a 160 x 160 prediction head on the basis of the original three-scale prediction network and
is specifically used to improve the efficiency of small target detection. An up-sampling
operation is added to the Neck layer of YOLOvVS, which outputs a feature map with a scale
of 160 x 160 and connects it to the 160 x 160 feature map output from the Backbone layer.
By incorporating this high-resolution feature map, the network gains the ability to capture
finer details, thereby enhancing the detection accuracy for small targets.

3.3. Weighted Bidirectional Feature Pyramid Structure

In YOLOVS, the feature maps are divided into five scales, denoted as B1-B5 for the
backbone, P3-P4 for the FPN, and N4-N5 for the PAN. The original model adopts the
PAN-FPN structure [17], which is an optimized version of the traditional FPN structure.
The traditional FPN structure conveys deep semantic information through a top—down
approach. However, in YOLOVS, the fusion of B3-P3 and B4-P4 is executed to enhance
the semantic features of the feature pyramid, but this may lead to a part of the localized
information being lost. To solve this problem, PAN-FPN introduces a bottom-up PAN
structure at the top of the FPN to compensate for the lost localization information. In
YOLOVS, P4-N4 and P5-N5 are fused to enhance the learning of localization features to
achieve a complementary effect. The structure of YOLOVS is shown in Figure 3.
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Figure 3. Structure of YOLOvS using BIFPN.

Although the PAN-FPN structure enriches semantic and localization information,
there is still room for improvement. First, the PAN-FPN structure may not be able to
adequately handle large-scale feature maps, which may ignore some valuable information
and lead to a degradation of detection quality. In addition, after up-sampling and down-
sampling, the feature map loses some original information, leading to a relatively low
reuse rate.

To more effectively address the aforementioned challenges, this study introduces an
advanced feature fusion component reconstruction strategy grounded in the principles of
the Bidirectional Feature Pyramid Network (BiFPN) [18]. The BiFPN structure, initially
introduced by Google in the Efficient Det object detection algorithm, is specifically devised
to augment semantic information within features via efficient bidirectional cross-scale
connectivity and weighted feature fusion.

In vehicle—pedestrian target detection, the limited feature information extracted from
small-scale targets often leads to low detection accuracy. BiFPN helps to overcome this
challenge by extending the sensory field of the model by fully utilizing high-resolution
features. No additional processing is applied for feature maps with a single input path due
to their low contributive value. When fusing feature maps with two input paths, given
that the feature maps have the same scale, cross-level fusion requires the introduction of
new paths from the main feature map, as shown by the red line in Figure 3. This approach
improves the spatial information of the feature maps and enhances the detection accuracy
of the network for small targets.

3.4. WloU Loss Function

In road traffic scenarios, the design of the loss function is crucial to the detection
performance of the model due to the high percentage of small targets and significant
differences in target scales (e.g., pedestrians, cars, trucks, etc.).

WIoUv3 employs a dynamic non-monotonic mechanism to evaluate the quality of
anchor frames and designs a reasonable gradient gain allocation strategy, which reduces
the occurrence of large or harmful gradients in extreme samples. In this way, WloUv3
gives more attention to the anchor frames of ordinary quality, thus improving the detection
accuracy and generalization performance of the model. The WIoU calculation formula is
as follows:

Lwiou = Rwrou X Liou 1)
t 2 2
(bch - bC:() + (bgyt - bcy)
(sz + Ch2>

_JANB
|AUB|

(2)

Rwiou = exp

)

Lpu=1
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bg ; b‘?yt —coordinates of the center point of the real frame;
be,; bcy—coordinates of the center point of the prediction frame;

cy—difference between the lengths of the prediction frame and the real frame;
cp—height difference between the prediction frame and the real frame;

WIoUv3 defines an outlier on the basis of WilolU to measure the quality of the anchor
frame and constructs the non-monotonic focus factor r based on the outlier, and the formula
of WIoUwv3 is as follows:

Lwrouws = Lwiou X 1 (4)
_ B
" Sapd ©)

wherea =19, =3

4. Experiment and Analysis
4.1. Correlation Dataset

The experiments are conducted on the merged KITTI dataset, which is currently the
world’s largest computer vision evaluation dataset for autonomous driving scenarios,
and the dataset has a total of nine classes of targets. The experiments only detect road
vehicles and pedestrians, among them, Cars (small cars), Van, and Truck are extracted from
the original dataset, Cyclists (Motorcycle, Bicycle), four classes of targets, and combined
Pedestrian, Person sitting into Person (Pedestrian) class, while deleting the Tram, Misc, Do
not Care classes, and finally obtaining 7481 images with labels, which were divided into
a training set and a test set according to the ratio of 8:2 for training and evaluation of the
performance of the model. The dataset label distribution is shown in Table 1.

Table 1. Dataset label distribution.

D?t.ase.t Pedestrian Car Cyclist Van Truck Total
Partitioning
Training set 3840 22,823 1304 2368 859 31,194
Test set 869 5919 323 546 235 7892
total 4709 28,742 1627 2914 1094 39,086

In the training process, the Mosaic data enhancement method is used. Specifically,
nine images are randomly selected, randomly arranged, and spliced together to generate
new training samples. Mosaic data enhancement is an effective method, as the spliced
images contain more objects and backgrounds, providing richer contextual information for
the model, this helps to improve the model’s performance and generalization ability.

4.2. Experimental Platform and Evaluation Indexes

Vehicle—pedestrian detection experiments use precision (P), recall (R), mAP50, mAP50:95,
and model size as evaluation metrics. mAP50 denotes the average precision when the IoU
is 0.5, and mAP50:95 denotes the average precision when the IoU threshold ranges from 0.5
to 0.95, an increment of 0.05.

TP
P=Tp1Fp (6)
AP = /l (t)dt 7
=) P )

1 N
mAP = Ni; AP; (8)

AP—average precision;
N—total number of categories;
AP;—the i category accuracy rate.
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The experimental parameters are configured as follows: the initial learning rate is set
to 0.01, while the final learning rate is adjusted to 0.001. The cosine annealing algorithm is
employed, and the warm-up epochs are designated to be threefold. The input image size is
640 x 640, the size is 16, the number of iterations is 200 epochs, the SGD optimizer is used,
the momentum is set to 0.937, and the Mosaic data enhancement is turned off for the last
10 epochs.

4.3. Incorporating BiFormer Effects at Different Locations

Given the considerable variance in the impact of integrating the attention mechanism at
various network locations, this study endeavors to integrate BiFormer at different junctures
within YOLOv8n and subsequently conducts experiments. The specific integration points
are delineated in Figure 4, while the resultant experimental outcomes are presented in
Table 2.

CBS CBS Upsample Concat
Cof Caf Concat *'/ BIF(OCr)mer

l < l 77777777 )

BiFormer Cof OoF

T ' !
" BiFormer  BiFormer

- @@y B0xE0

Detect

Figure 4. Attention mechanism incorporation modes: (al) before incorporating SPPF module;
(a2) after incorporating SPPF module; (b) after incorporating each C2f module of the Neck layer; and
(c) before incorporating the C2f module connected to the first detection layer.

Table 2. Experiments of fusing BiFormer at different locations.

Class Location P (%) R (%) mAP50 (%) mAP50:95 (%)
/ 93.3 83.7 91.2 68.3
al 925 83.1 90.4 67.5
, a2 93.8 83.6 91.8 68.9
BiFormer b 90.2 81.1 89.7 66.5
c 94.4 85.4 9.5 70.1
a2 +c 935 834 9223 69.7

Upon examining the experimental findings in Table 2, it becomes evident that the
BiFormer attention mechanism fails to enhance the detection performance of the network
across all positions.

Incorporating BiFormer at position b, i.e., after each C2f module in the Neck layer, is
the least effective, with the average detection accuracy decreasing by 1.5 percentage points;
adding a separate layer of BiFormer at position al, i.e., in front of the SPPF module in the
Backbone layer, is also less effective.

Fusing BiFormer at positions a2 and c has some improvement in network performance,
and experiments are conducted by simultaneously fusing BiFormer at these two positions.
From the experimental results, it can be seen that, when the BiFormer attention mechanism
is fused at the same time, the average detection accuracy reaches 92.3%, which is up by
0.5 percentage points compared to fusing the attention at position a2 alone, but not as good
as fusing the attention mechanism at position c alone.
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In summary, incorporating the BiFormer attention mechanism before the C2f module,
which is connected to the first detection layer of YOLOvS8n, and after the Concat module is
the most effective. It can be seen that BiFormer can effectively enhance the network sensory
field and improve the network’s ability to detect vehicle-pedestrians after feature maps of
different scales have been spliced by the Concat module.

4.4. Comparison Effect of Different Attention Mechanisms

In order to verify the advantages and disadvantages of CA attention mechanism com-
pared with other attention mechanisms on the original network performance enhancement,
this paper conducts comparison experiments on the best experimental effect of ¢ position
and fusion of SE [19], CBAM [20], and ECA [21], the three popular attention mechanisms,
and the experiment’s results are shown in Table 3.

Table 3. Comparison experiment of different attention mechanisms.

Model Attention P (%) R (%) mAP50 (%)  mAP50:95 (%)
Mechanisms
/ 93.3 83.7 912 683
SE 933 83.9 913 683
YOLOvS8n CBAM 92.9 83.1 90.8 67.9
ECA 93.8 84.5 91.9 68.5
BiFormer 94.4 85.4 925 70.1

From Table 3, it can be seen that not all attention mechanisms can improve the detection
performance of the model, for example, imposing the CBAM attention mechanism leads
to a decrease in the mAP of the network. SE and ECA exhibit a slight improvement in the
detection performance of the model, while BiFormer is more advantageous in terms of
detection accuracy and recall.

4.5. Experiments of Different Loss Functions

To verify the effect of applying different loss functions on the detection accuracy of the
model, four versions of the improved model, CloU, DIoU, SloU, and WIoU, were applied
and compared experimentally. The experiment’s results are shown in Table 4.

Table 4. Comparison experiment of different loss functions.

Loss Function Map50 (%) Map50:95 (%)
CloU 94.6 73.5
DIoU 94.4 (—0.2) 733 (—0.2)
Improved SIoU 95.1 (+0.5) 73.8 (+0.3)
YOLOv8n WIoU v1 94.3 (—0.3) 73.3 (—0.2)
WIoU v2 (y = 0.5) 95.2 (+0.6) 74.1 (+0.6)
WiloU 95.9 (+1.3) 74.5 (+1.0)

v3(x=19,v=23)

The experimental results show that the map50 when improving YOLOv8n by applying
the original loss function CIoU is 94.6%, and the map50:95 is 73.5, and after replacing the
loss function with SIoU, the map50 and map50:95 are improved by 0.5 and 0.3 percentage
points, respectively, which is because SloU introduces the angle of the predicted frame and
the real frame based on the CloU vector information and adds it to the penalty criterion,
which effectively solves the problem of the possible direction mismatch between the target
frame and the real frame. DIoU and WIoUv1 reduce the detection accuracy of the model,
and the highest accuracy is achieved when WIoUv3 is used as the loss function. map50
reaches 95.9, which is improved by 1.3% compared to CloU, and map50:95 reaches 74.5,
which is improved by 1.0%.
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4.6. Comparison Experiment with Other Models

To verify that the model proposed in this paper has better performance compared
with other classical models, the model in this paper is compared with other models on the
same dataset. The model in this paper is compared with SSD, Faster R-CNN, YOLOv3Tiny,
YOLOvV5n, YOLOvVZtiny, and YOLOv8n on the same dataset. All models are trained on
the merged KITII dataset from Section 4.1, and the experimental results are shown in
Table 5. As depicted in Table 5, the Map50 of the model presented in this paper stands at
95.9%, representing a notable improvement of 4.7 percentage points compared to the pre-
improvement of YOLOVS8n, and 5.0 and 5.8 percentage points when compared to SSD300
and Faster R-CNN, respectively. Moreover, compared to YOLOv3 tiny, YOLOv5n, and
YOLOV? tiny, the improvement is even more substantial, with gains of 9.4, 6.4, and 6.8 per-
centage points, respectively, showcasing enhancements of 9.4, 6.4, and 10.0 percentage
points, respectively. Comparison experiments in Table 5 show that the improved model is
more capable of detecting vehicle-pedestrian features, and the algorithm is more robust in
the face of partial occlusion.

Table 5. Comparison experiment of different algorithms.

FLOPs Model o o Map50
Model (10%) Size (M) P (%) R (%) (°/£))
SSD300 60.9 100 91.3 82.1 90.9
Faster R-CNN 105 108 90.5 80.9 90.1
YOLOV3 Tiny 129 17.0 87.6 70.4 86.5
YOLOv5n 4.1 3.7 91.6 76.5 90.5
YOLOv7Ztiny 13.1 12.0 86.1 68.9 85.9
YOLOvS8n 8.1 6.1 93.3 83.7 91.2
Ours 12.5 13.3 95.5 86.1 95.9

4.7. Ablation Experiments

In rigorously demonstrating the effectiveness of the enhanced BiFormer attention
mechanism, the four-scale feature detection network, the weighted bidirectional pyramid
structure, and the WIoU loss function presented in this paper, ablation studies are con-
ducted to evaluate the impact of each component on the performance of the detection
algorithm under identical experimental conditions. These ablation studies utilize the orig-
inal YOLOv8n network’s experimental results as the baseline and explicitly indicate the
employment of the respective improvement strategies.

From the results of the ablation experiments as shown in Table 6, it can be seen that
the use of the four-scale feature prediction network improves the detection accuracy of
the model greatly, with the mAP50 improved by 2.6 percentage points and the mAP50:95
improved by 4.5 percentage points, which indicates that the addition of a detection head
can significantly improve the detection accuracy of the small targets, and the use of the
weighted BiFPN and the WIoU loss function can, respectively, improve the mAP by 0.6
and 1.0 percentage points. The weighted bidirectional feature pyramid structure can
effectively fuse features of different scales, thus improving the detection ability of targets
of different sizes; the WloU function can better measure the degree of alignment between
the prediction frame and the real frame, which helps the model to locate the target more
accurately. The simultaneous use of the four improvement strategies makes the model’s
mAP reach 95.9%, which is 4.7 percentage points higher compared to the pre-improvement
period, and the mAP50:95 reaches 74.5%, which is 6.2 percentage points higher compared
to the pre-improvement period. The improved YOLOv8n ‘s P-R curve is shown in Figure 5.
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Table 6. Ablation experiment. (As indicated by the checkmark, the model in this paper adopts the
aforementioned improvement strategy).

Model  BiFormer Four-Scale  BiFPN WIoU  mAP50 (%) mA(PO/S)O:%
91.2 683
v 925 70.1
v 93.8 72.8
v 91.8 69.0
YOgLO v 92.2 69.8
von v v 943 73.6
v v v 94.6 73.8
v v v 95.4 74.1
v v v v 95.9 74.5

Precision-Recall Curve
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Figure 5. P-R curve of this paper’s model.

4.8. Visualization of Results

As evident in Figure 6, in the first row of images, YOLOv8n fails to detect the pedes-
trian on the lower right, despite only a portion of their body being visible in the frame.
However, the improved model successfully detects this pedestrian. In the second row of
images, the target on the right is a partially occluded van, which is incorrectly identified
as a Car by YOLOvVS8n, while the improved model correctly identifies it as a Van, and the
confidence level of the improved model in detecting other vehicles is also higher than that
of YOLOvS8n.
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Figure 6. Comparative effect of the algorithm before and after improvement.

5. Conclusions

In this paper, due to the shortcomings of YOLOvVS8n in vehicle-pedestrian detection
scenarios, a vehicle-pedestrian detection method based on improved YOLOvVS is proposed,
which effectively improves the detection capability of vehicle-pedestrian targets. The
specific improvement measures encompass the following:

(1) Embedding the BiFormer attention mechanism in the Neck layer to capture the
association and dependency between features more effectively.

(2) Addinga 160 x 160 small-scale target detection head at the network Head layer to
enhance the network’s detection capability for pedestrians and motorcycles.

(38) Using a weighted bidirectional feature pyramid structure to enhance the feature fusion
capability of the network.

(4) Making WIoUv3 a loss function to enhance the network’s focus on common quality
anchor frames.

The detection performance of the improved network is validated on the merged KITTI
dataset, and the results of the ablation experiments show that the use of the four-scale
feature prediction network improves the average detection accuracy of the model by 2.6%,
and the mAP50:95 by 4.5 percentage points; the usage of the weighted bi-directional feature
pyramid structure and the WloU loss function improves the mAP by 0.6 and 1.0 percentage
points, respectively. The map50 of the model for vehicle—pedestrians reaches 95.9%, an
improvement of 4.7%, and map50:95 reaches 74.5%, an improvement of 6.2%.
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