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Abstract: Photogrammetry depends critically on the quality of the images used to reconstruct accurate
and detailed 3D models. Selection of high-quality images not only improves the accuracy and
resolution of the resulting 3D models, but also contributes to the efficiency of the photogrammetric
process by reducing data redundancy and computational demands. This study presents a novel
approach to image quality evaluation tailored for photogrammetric applications that uses the key
point descriptors typically encountered in image matching. Using a LightGBM ranker model, this
research evaluates the effectiveness of key point descriptors such as SIFT, SURF, BRISK, ORB, KAZE,
FREAK, and SuperPoint in predicting image quality. These descriptors are evaluated for their ability
to indicate image quality based on the image patterns they capture. Experiments conducted on various
publicly available image datasets show that descriptor-based methods outperform traditional no-
reference image quality metrics such as BRISQUE, NIQE, PIQE, and BIQAA and a simple sharpness-
based image quality evaluation method. The experimental results highlight the potential of using
key-point-descriptor-based image quality evaluation methods to improve the photogrammetric
workflow by selecting high-quality images for 3D modeling.

Keywords: image quality evaluation; photogrammetry; structure from motion (SfM); 3D reconstruction;
learning to rank; ranking model

1. Introduction

Photogrammetry offers a sophisticated method to extract precise geometric informa-
tion from photographs. This technology enables the creation of detailed three-dimensional
(3D) models of objects [1–4] or scenes [5–8], transforming the way industries and sciences
approach visualization and analysis [9–15]. Utilization of photogrammetry spans a diverse
range of fields, underlining its significance in contemporary applications that demand
accuracy and detail [16–22].

The process of photogrammetry involves several stages, beginning with the collection
of images and followed by detailed image processing [23–25]. Techniques such as feature
detection, matching, and stereo correspondence are fundamental in transforming two-
dimensional data into three-dimensional forms [26–28]. This transformation is critical for
structure from motion (SfM) algorithms, which depend heavily on the ability to identify cor-
responding points across multiple images to effectively reconstruct 3D structures [29–32].
Any degradation in image quality, such as blurring, poor exposure, or noise, can lead to in-
creased errors in feature matching, subsequently affecting the entire reconstruction process
and impacting the accuracy and precision of the resultant 3D models [33–35]. Therefore,
at the heart of photogrammetry lies the crucial role of image quality.

Recent advancements in image pre-processing techniques have significantly enhanced
the accuracy and quality of the 3D reconstructions in various photogrammetric applications.
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Studies have shown that efficient pipelines involving color enhancement, image denoising,
and RGB-to-gray conversion can improve the performance of automated image processing
tools, particularly in cases with poor texture or sub-optimal datasets [36–38]. These pre-
processing methods not only enhance the automated orientation procedures but also
contribute to the production of dense 3D point clouds and texture models, which are crucial
for high-quality 3D reconstructions [37,39]. Additionally, research has indicated that JPEG
compression ratios below 10 maintain near-lossless image quality, thus minimally affecting
the accuracy of photogrammetric point determination [40]. Similarly, the application of SfM
photogrammetry has underscored the importance of image quality, network configuration,
and sensor optimization in generating accurate geospatial data [41].

Comparative analyses of photogrammetric workflows, particularly those employing
UAV-based methods, have highlighted the need for optimized procedures to enhance the
accuracy and repeatability of geospatial data products [42,43]. In challenging environments
like alpine valleys and underwater settings, terrestrial photogrammetry and low-cost
underwater photogrammetry have been validated as viable alternatives to more expensive
methods such as terrestrial laser scanning [36,44]. This is achieved through careful image
acquisition strategies and robust pre-processing steps that mitigate errors and improve
data reliability. Furthermore, quality assessment techniques, including modulation transfer
function analysis and reproducibility studies of UAS orthomosaics, have demonstrated
that high degrees of accuracy and reproducibility are attainable, reinforcing the utility of
photogrammetric methods in diverse environmental and research contexts [45,46]. These
studies collectively underscore the critical role of image quality and pre-processing in the
advancement of photogrammetric technologies.

These days, the ease of capturing images using smartphones, often through video
recording, offers a convenient method for collecting data for photogrammetry [47–50].
However, videos typically contain numerous similar frames that may not contribute to
increasing the model’s quality but could instead slow down the reconstruction process.
Collecting images for 3D reconstruction can result in redundant images if the object or scene
is photographed extensively (Figure 1). Therefore, it becomes essential to discern and filter
out these unnecessary and lower-quality frames from the collected image set. This selection
process requires robust image quality evaluation methods that do not depend on reference
images given the impracticality of having perfect reference images in real-world scenarios.

Traditionally, image quality evaluation approaches are categorized into reference-
based and reference-free assessments. While reference-based evaluations compare images
against a perfect-quality reference, they are often not feasible in practical, real-world scenar-
ios. Conversely, no-reference assessments are invaluable for photogrammetry as they judge
the quality of an image based on its inherent characteristics, such as texture sharpness, ex-
posure, and noise levels [51–53]. Technologies such as BRISQUE, NIQE, PIQE, and BIQAA
are well-known examples of reference-free quality evaluation methods.

This study proposes a novel approach to image quality evaluation in photogram-
metric workflows through the use of key point descriptors. Key point descriptors like
SIFT (Scale-Invariant Feature Transform) [54,55], SURF (Speeded-Up Robust Features) [56],
BRISK (Binary Robust Invariant Scalable Keypoints) [57], ORB (Oriented FAST and Rotated
BRIEF) [58], KAZE [59], FREAK (Fast Retina Keypoint) [60], and SuperPoint [61] encap-
sulate robust and distinctive information about local features in images [62–64]. These
descriptors are not only pivotal for object recognition and image matching, but also have
the potential to indicate image quality based on the characteristics of the features they
extract. By leveraging these descriptors, this research aims to enhance the process of image
selection, ensuring that photogrammetry is performed with only the highest-quality images,
thereby optimizing the accuracy and resolution of the final 3D models.

The principal objective of this research is to explore whether key point descriptors can
autonomously predict image quality. We employ a machine learning approach, specifically,
a LightGBM [65] ranker model, which is renowned for its efficiency in ranking tasks.
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This model is expected to provide a robust framework for predicting image quality using
features derived from key point descriptors.

Groups of 
redundant or

similar images

Object being 
recontructed Camera 

locations

Figure 1. There is a need for and a problem with identifying the highest-quality images from a
collection during 3D object reconstruction employing a photogrammetry method. Collecting images
for 3D reconstruction can result in redundant images, particularly if the object is photographed
extensively or filmed. Selecting a subset of images reduces data redundancy and eliminates lower-
quality images, thereby speeding up the reconstruction process and improving the accuracy of the
resulting model.

In this research, key point descriptors will be extracted from a diverse dataset of
images, each characterized by varying levels of known distortions like motion and de-
focus blur and noise. These descriptors will then be utilized as features in a LightGBM
ranker model trained to predict the quality of images based on these features. Moreover,
the study will examine the influence of different types of key point descriptors on the
model’s performance, assessing whether certain descriptors provide more predictive power
than others.

The novelty and contributions of this work can be summarized as follows:

• Proposing a method for image quality evaluation based on key point descriptors.
The proposed method reuses the descriptors extracted for the purpose of feature
matching, which is performed in the photogrammetric sparse reconstruction stage,
thus minimizing the computational overhead of image quality evaluation;

• Presenting a dataset construction guide for the development of a descriptor-based
image quality evaluation method;

• Performing comparative evaluation of seven descriptor types (SURF, SIFT, BRISK,
ORB, KAZE, FREAK, SuperPoint) as feature sources used for image quality evaluation;

• Presenting comparative results of image quality evaluation methods using five pub-
licly available image datasets. Results show that the created method is effective and
performs better than simple sharpness-based, BRISQUE, NIQE, PIQE, and BIQAA
blind image quality metrics in choosing better-quality images and reducing image
redundancy for photogrammetric reconstructions.

The motivation for and problem with choosing the highest-quality image for pho-
togrammetric reconstruction are summarized in Figure 1.

The structure of the paper is organized as follows. Section 2 describes the proposed
method for evaluating image quality using feature descriptors, offers a brief overview
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of other standard image quality evaluation methods, and details the data preparation
and software tools employed. Section 3 presents a comparative analysis of image quality
evaluation methods, interprets the findings, and discusses their practical implications.
Section 4 concludes the paper by summarizing the outcomes of this research.

2. Materials and Methods

This section describes why evaluating the quality of images used in the photogram-
metric reconstruction of 3D models is helpful. We propose a method that exploits feature
descriptors extracted during a typical photogrammetry workflow. Additionally, we de-
scribe the process of experimental data preparation, as well as creation of the training and
testing datasets, and then outline the evaluation process for image quality methods.

2.1. Motivation and Method for Finding Higher-Quality Images

To achieve precise and reliable 3D models, it is essential to select the highest-quality
images for photogrammetric object reconstruction. High-quality images ensure superior
detection of features, which is essential for accurate image matching and alignment, thereby
minimizing errors during model construction. Image quality degradation simulations prove
that key point localization errors increase as the image motion or defocus blur strengthens
(see Figures 2 and 3). Photogrammetric reconstruction depends on the key point detection.
Hence, the reconstruction accuracy depends on key point localization accuracy. Therefore,
selection of high-quality images improves the overall accuracy of reconstructed models,
reduces computational requirements, and ensures the usability of the reconstructed object
or scene in various applications, such as the preservation of cultural heritage, virtual reality,
and industrial design. Thus, careful selection of images not only simplifies the workflow,
but also significantly impacts the fidelity and utility of the resulting models.
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Figure 2. Dependence of key point localization error on the image degradation level. Image degra-
dation is simulated using motion blur, followed by the addition of noise. All key point detectors
(SURF (a), SIFT (b), BRISK (c), ORB (d), KAZE (e), FAST (f), and SuperPoint (g)) show increasing
localization error as motion blur strengthens. Different colored lines (150 in total) represent the
dynamics of localization errors related to separate images. This simulation proves the importance of
finding the highest-quality images for photogrammetry reconstruction. It also lays the foundation
for the objective evaluation of image quality level through the evaluation of key point localization
errors. Therefore, key point localization error can be used to rank augmented images according to
their degradation level.
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Figure 3. Dependence of key point localization error on the image degradation level. Image degra-
dation is simulated using defocus blur, followed by the addition of noise. All key point detectors
(SURF (a), SIFT (b), BRISK (c), ORB (d), KAZE (e), FAST (f), and SuperPoint (g)) show increasing
localization error as defocus blur strengthens. Different colored lines (150 in total) represent the
dynamics of localization errors related to separate images.

Collecting images for 3D reconstruction often accumulates redundant images, espe-
cially when the object of interest is extensively photographed or filmed (see Figure 1).
For optimal results, it is crucial that the images uniformly cover the area surrounding the
object and maintain the highest quality possible. While using a smartphone to capture
images by filming the object is convenient, this approach can lead to over-sampling, par-
ticularly if the camera moves slowly, and vice versa; fast camera movement increases the
risk of capturing frames with motion blur, especially in low-light conditions. Additionally,
accidental hand tremors or sudden movements can worsen the motion blur in certain
frames. It is vital to identify and eliminate such degraded frames.

To address this issue, a method is needed that ranks frames based on factors affecting
image quality, such as motion blur, defocus blur, and sensor noise. This method should
prioritize images that show the least degradation, ensuring that the highest-quality images
are selected for the photogrammetric reconstruction process.

2.1.1. Proposed Method

A suitable image selection method for photogrammetry would identify the highest-
quality images by evaluating the images or specific regions within them. It would be
practical to repurpose feature point descriptors, which are already extracted during the
photogrammetric reconstruction process (Figure 4), to derive an image quality score. This
score could then be used to rank a group of images based on their quality.

The process of photogrammetry typically involves several critical steps, of which
the detection and description of key points (feature points) are fundamental components
(see Figure 4) [66]. Key points are distinctive locations in the image, such as corners, edges,
or blobs, where the underlying image structure changes significantly. Robust detection
and accurate description of these key points are critical for aligning and stitching multiple
images to create a coherent 3D model [67].

The identification of corresponding feature points between different images forms the
backbone of the structure from motion (SfM) algorithm. SfM uses these corresponding
points to infer the three-dimensional spatial relationships and orientations of the pho-
tographed object or scene. The primary output of the SfM process is a sparse reconstructed
3D point cloud that represents the salient features of the object or environment captured
across the set of images.
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8

Figure 4. Overview of the generalized sparse 3D reconstruction workflow including the introduced
image quality evaluation step (5th block). Image quality evaluation and ranking of the closest
images according to their quality allow selection of a subset of images, reduction of data redundancy,
elimination of low-quality images, acceleration of the reconstruction process, and improvement of
the accuracy of the reconstruction result. Descriptor-based image quality evaluation is performed
after feature descriptors are extracted. The quality information can be used to select the highest-
quality images from clusters of similar images or from consecutive video frames (6th block) or
after approximate camera locations are computed in the iterative structure from the motion step
(8th block).

The task of finding corresponding feature points essentially involves identifying
similar image patches across different images. This is facilitated by image descriptors, which
provide a compact representation of local image patches. A good descriptor encapsulates
the crucial visual information surrounding a feature point, potentially including aspects
of image quality such as sharpness, blurriness, and noise levels. By capturing these
characteristics, the descriptors not only help to match corresponding points across images,
but also implicitly convey information about the quality of the images used, which can
significantly influence the accuracy of the 3D reconstruction.

There are a variety of key point detectors and descriptors, each with unique strengths
and suitable for different types of images and applications [68–71]. In photogrammetry,
these descriptors can be used individually or in combination depending on the specific
requirements of the pipeline. Well-known feature point detectors and descriptors include
SURF (Speeded-Up Robust Features) [56], SIFT (Scale-Invariant Feature Transform) [54,55],
BRISK (Binary Robust Invariant Scalable Keypoints) [57], ORB (Oriented FAST and Rotated
BRIEF) [58], KAZE [59], FREAK (Fast Retina Keypoint) [60], and SuperPoint [61]. These
methods differ primarily in their computational efficiency, robustness to image transforma-
tions, and the types of image content they are best suited to handle [70,72–74]. MATLAB
Image Processing Toolbox implementations of these key point detectors and descriptors,
except for SuperPoint, are used in the experiments. The Python implementation of the
SuperPoint key point detector and descriptor is used.

SURF [56] extracts features by first using a Hessian-matrix-based approach to detect
interest points across multiple scales, facilitated by integral images for speed. The de-
terminant of the Hessian is computed at various scales to identify potential key points.
Once key points are identified, SURF assigns an orientation based on the sum of the Haar
wavelet responses around the key point, ensuring rotation invariance. The descriptor is
then formed from the sum of the Haar wavelet response in the cardinal directions within a
circular neighborhood around the key point, resulting in a feature set that is robust against
scale and orientation changes.

SIFT [54,55] feature extraction begins with the identification of scale-space extrema
using the Difference-of-Gaussians (DoG) method applied across multiple scales. Key
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locations are refined to subpixel accuracy, and low-contrast or poorly localized points are
discarded to enhance robustness. Orientation assignment to each key point is based on
local image gradients, ensuring rotation invariance. The SIFT descriptor is then created
from gradient histograms of image regions around each key point, providing distinctive
features that are invariant to scale and rotation and partially to changes in illumination
and viewpoint.

BRISK [57] first applies a fast scale-space detection of key points using a space of
octaves (similar to SIFT) but with an accelerated and simplified scale determination method.
Key points are identified based on a FAST-like algorithm, adjusted for scale and orientation.
The BRISK descriptor itself is generated by forming a binary string based on intensity
comparisons of pixel pairs around each key point, within a sampled pattern defined by
concentric circles. This process results in a highly efficient binary descriptor that is both
rotation and scale invariant.

ORB [58] combines the FAST key point detector and the BRIEF descriptor, but with
significant modifications. ORB detects key points using a modified FAST detector that
is tuned to be more robust to noise, and it scores key points based on the Harris corner
measure to ensure that the points chosen are well distributed and stable. For the descriptor,
ORB steers BRIEF descriptors based on the orientation of key points, making them rotation
invariant. The resultant binary descriptor is efficient to compute and compare, making
ORB suitable for real-time applications.

KAZE [59] features are extracted using a method that differs fundamentally from
other descriptors by relying on a nonlinear scale space. Instead of the Gaussian blurring
used in linear approaches, KAZE uses nonlinear diffusion filtering to build the scale space.
This approach helps to preserve edge sharpness and detail better. Key points are detected
through a Hessian determinant measure in this space, and each is assigned an orientation
based on local gradients. The descriptor is computed using gradient responses around each
key point, similar to in SIFT but benefiting from the enhanced edge definition provided by
the nonlinear method.

FREAK [60] (Fast Retina Keypoint) is a binary key point descriptor inspired by the hu-
man retina’s structure, designed for efficiency and robustness. It operates by first detecting
key points using other methods like FAST. Each detected key point is assigned an orienta-
tion based on local gradient information, ensuring rotational invariance. FREAK employs a
distinctive retinal sampling pattern around each key point, where points are sampled in
concentric circles with varying densities, mimicking the human eye’s distribution of pho-
toreceptors. The descriptor is then formed by performing intensity comparisons between
pairs of sampled points, resulting in a binary string. This structure allows FREAK to be
both computationally efficient and robust, making it suitable for real-time applications.

SuperPoint [61] is a deep-learning-based approach to key point detection and de-
scription, leveraging a convolutional neural network (CNN) trained in a self-supervised
manner. The method integrates both key point detection and descriptor extraction into a
single network, which processes the input image to produce key point locations and their
corresponding descriptors simultaneously. The network consists of an encoder–decoder
architecture; the encoder extracts feature maps from the image, while the decoder gener-
ates key point probability maps and dense descriptors. SuperPoint is known for its high
accuracy, robustness to various image transformations, and suitability for tasks requiring
advanced feature extraction, such as visual SLAM and image matching.

The specifications of the feature descriptors utilized in the current research are sum-
marized in Table 1.

After extracting the key point descriptors, these features can be utilized to estimate an
image quality score. To simplify the process and reduce computational demands, up to the
100 strongest key points and their corresponding descriptors are selected to represent the
image. These descriptors are sampled from various regions across the image. While these
descriptors primarily encode distinctive image information, the repetitive elements within
them can capture quality-related image patterns.
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The goal of this method is to identify the highest-quality image from a set, focusing
on rank-one performance (ensuring the right image is ranked as the top prediction) rather
than the absolute score of the image quality. To address this, a ranking algorithm is
employed. The LightGBM [65] ranker model, specifically, the LGBMRanker class from
Python’s lightgbm package, is selected for its ability to score images based on degradation
signs using a traditional gradient-boosting decision tree approach.

Table 1. Summary of the feature descriptors investigated in the current research for suitability to
provide useful information for prediction of image quality.

Descriptor Dimensionality Precision

SURF 64/128 single/float
SIFT 128 8-bit unsigned integer (uint8)
BRISK 64 binary, stored in uint8 container
ORB (Rotated BRIEF) 32 binary, stored in uint8 container
KAZE 64/128 single/float
FREAK 64 binary, stored in uint8 container
SuperPoint 256 single/float

When selecting an algorithm for ranking tasks, LGBMRanker is a superior choice due
to its efficiency, scalability, and high predictive accuracy. Its fast training and prediction
capabilities make it particularly suitable for large datasets, a common requirement in
real-world ranking applications. The algorithm’s inherent ability to handle missing values
and automatically perform feature selection further enhances its practicality. In addition,
LGBMRanker’s robustness to outliers and overfitting, combined with its integration with
popular data science ecosystems, ensures that it is not only high performing, but also easy
to implement and deploy.

During the development of the gradient-boosting model, LambdaRank is used as
an objective function. Several other parameters are configured as follows: the maximum
tree leaves for the base learners (‘num_leaves’) is set to 51, the boosting learning rate
(‘learning_rate’) is set to 0.01, and the number of boosted trees to fit (‘n_estimators’) is set
to 10,000. Details on the collection and preparation of the training dataset are provided in
Section 2.2.

Once trained, the ranker model assesses the quality of images by processing a batch
of sampled features (Figure 5). A higher score from the ranker indicates superior image
quality, guiding the selection of the highest-quality image.

Selecting ≤100 strongest key 
points and their corresponding 

descriptors

Predicting score for each 
descriptor using trained 

LGBMRanker

Averaging predicted scores, 
associated with the same 

image

Selecting the image with the 
highest score

Extracted descriptors

Highest quality image

1

2

3

4

Figure 5. Workflow chart of selecting the highest-quality image from a subset of images. Current
workflow elaborates the descriptor-based image quality evaluation (5th step) of the workflow pre-
sented in Figure 4.
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2.1.2. Baseline Methods

The evaluation of the proposed image quality assessment method’s variants is conducted
through a comparison with baseline methods. These include a fast image quality evaluation uti-
lizing image sharpness as a proxy [75] that was used in previous studies [76,77]. Additionally,
several no-reference image quality metrics, also known as blind methods, BRISQUE [51],
NIQE [52,78,79], PIQE [53,80], and BIQAA [81], are selected for comparison. MATLAB
Image Processing Toolbox implementation of these blind methods is used in the experi-
ments. Each of these approaches calculates a quality value without comparing an image to
a reference. This is beneficial when the highest-quality image must be selected from a set of
slightly varying images, such as those with overlapping camera positions or consecutive
video frames.

Here are short summaries of the baseline image quality evaluation methods:

• Sharpness uses measured image sharpness as an estimate of image quality. The
method applies a Laplacian of Gaussian (LoG) filter with a 3 × 3 filter size and σ = 0.5.
The variance of the filtered images is calculated, where a higher value indicates greater
image sharpness, thus implying lower blurriness;

• BRISQUE (Blind/Referenceless Image Spatial Quality Evaluator) is a no-reference
image quality assessment model that operates in the spatial domain. It evaluates
images based on natural scene statistics, specifically, the locally normalized luminance
coefficients. This metric does not require a transformation to another coordinate frame,
which differentiates it from many other no-reference IQA approaches. BRISQUE is
noted for its simplicity and low computational complexity, making it suitable for
real-time applications;

• NIQE (Natural Image Quality Evaluator) is a completely blind image quality assessor
that uses a statistical model of image features that are perceived as natural based on
a Gaussian scale mixture model. It does not require any subjective training using
human-rated distorted images, which distinguishes it from other methods that rely
on human-rated training sets. NIQE is designed to assess the naturalness of images,
making it useful for a variety of applications without the need for comparison to a
reference image;

• PIQE (Perception-Based Image Quality Evaluator) is a no-reference metric that quanti-
fies the perceptual quality of compressed images by measuring the visibility of artifacts
and the loss of natural scene statistics caused by compression. It is particularly useful
for evaluating JPEG images as it specifically measures the blockiness and blurriness
introduced by JPEG compression. PIQE computes a quality score based on how much
an image deviates from these expected statistical parameters, providing a measure of
perceptual degradation without reference to the original;

• BIQAA (Blind Image Quality Assessment through Anisotropy) is a no-reference image
quality assessment metric that evaluates image quality by analyzing the anisotropic
properties of natural images. It operates on the premise that high-quality images
exhibit certain statistical regularities and directional patterns. BIQAA measures the de-
viation from these expected anisotropic properties to quantify the degree of distortion
present in the image.

2.2. Data Preparation

Training and test datasets were prepared for the experimental evaluation of the pro-
posed method for image quality estimation based on feature descriptors.

The construction of training and test datasets by augmenting the original image is
explained in Figure 6.

The objective evaluation of image quality levels can be performed via the evaluation
of key point localization errors Ei:

Ei = ∥K0 − Ki∥, (1)
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Here, K0 and Ki—sets of matched key points detected in original I0 and augmented
(degraded) Ii images, respectively. Matched key points are characterized by being the clos-
est in both directions and the distance between key points being less than 3. The rationale
for the distance threshold comes from key point matching using the RANSAC algorithm.

Image degradation leads to instability in key point localization. This effect is demon-
strated by an experiment that shows how feature localization deteriorates as the amount
of motion or defocus blur increases (Figures 2 and 3). Given a set of differently degraded
images, key point localization errors Ei can be used to rank all degraded images accordingly.
Ranked degraded images correspond to gradually changing image quality, which correlates
with the reliability of key point matching.

...
f1 f2 f3 fN

K2 K3 KNK1K0

E2 E3 ENE1

(D1, r1) (D2, r2) (D3, r3) (DN, rN){ }...

I0

I1 I2 I3 IN

Image degrading transforms
(motion|defocus blur + noise)

Degraded images

Key point sets

Errors of key point 
localization

Training dataset
(Descriptors, ranks of 
degradations)

(a)

f1 f2

K2K1K0

E2E1

(D1, r1) (D2, r2){ }

I0

I1 I2

Image degrading random 
transforms
(motion|defocus blur + noise + 
affine transform)

Degraded images

Key point sets

Errors of key point 
localization

Testing dataset
(Descriptors, ranks of 
degradations)

(b)

Figure 6. Construction of the training (a) and test (b) datasets by augmenting original images. Here,
I0—original image; I1, I2, I3, ..., IN—augmented images using N different image augmentation
transforms fi leading to the degraded images Ii, respectively (transforms include motion blur or
defocus blur of various strengths followed by the corruption of Gaussian noise); Ki—sets of extracted
key points; Ei—errors of key point localization due to image quality degradation. Errors are used to
derive an objective ranking of image degradations (ri). A fixed number of strongest key points are
selected to extract descriptors that serve as input features for the ranker model. Training set (a) is
constructed via degrading images using a set of predefined degrading transforms fi. Test set (b) is
constructed by degrading each original image by two randomly selected transforms f1 and f2.

The training set construction (Figure 6a) involves the use of motion blur and de-
focus blur followed by the addition of Gaussian noise. Defocus blur is simulated by
a disk-shaped moving average filter with the radius parameter selected from a set of
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{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Motion blur is simulated by a filter that approximates the camera’s
linear motion in a random direction, with the motion length parameter selected from a set
of {2, 3, 4, 5, 10, 15, 20, 25}. The addition of Gaussian noise (zero mean, 0.005 variance) prim-
itively simulates camera sensor noise. The full set of possible degradations is computed,
resulting in a set of 18 degraded images for an original image.

The construction of the test set (Figure 6b) is similar in the diversity of simulated
blur and noise. The difference is that, for each original image, two randomly selected
degradations are generated from all possible degradation functions. In addition, the small
affine transformation is added to simulate object capture from slightly different angles.

The image datasets used as image sources in the current research are summarized in
Table 2. Images with the largest border greater than 500 px were used in the experiments.

Table 2. Summary of the datasets used in the current research for training and testing. Number of
samples indicates number of images selected to be used in the experiments.

Dataset No. of Samples Resolution

– For training:
ISR [82] 3318 (501 − 4288)× (209 − 3176)
– For testing:
ISR 1106 × 10 (501 − 4288)× (209 − 3176)
DIV2K [83,84] 800 2024 × (648 − 2040)
KonIQ-10k IQA [85] 10, 373 1024 × 768
COCO val2017 [86] 4231 (520 − 640)× (159 − 520)
Flickr2K [87] 2650 (1536 − 2040)× (816 − 2040)

The images were obtained from the following databases:

• Indoor Scene Recognition (ISR) (https://web.mit.edu/torralba/www/indoor.html)
(accessed on 18 March 2024) [82]. The database contains 67 indoor categories and a
total of 15,620 images. The number of images varies across categories, but there are at
least 100 images per category. All images are in jpg format;

• DIV2K dataset (https://data.vision.ee.ethz.ch/cvl/DIV2K/) (accessed on 18 March
2024) [83,84]. Diverse 2K-resolution high-quality images;

• KonIQ-10k IQA Database (https://database.mmsp-kn.de/koniq-10k-database.html)
(accessed on 18 March 2024) [85]. KonIQ-10k is, at the time of publication, the largest
IQA dataset to date consisting of 10,073 quality-scored images. This is the first in-
the-wild database aiming for ecological validity with regard to the authenticity of
distortions, the diversity of content, and quality-related indicators;

• Common Objects in Context (COCO) val2017 (https://cocodataset.org/#download)
(accessed on 18 March 2024) [86]. COCO is a large-scale object detection, segmentation,
and captioning dataset;

• Flickr2K dataset (https://github.com/limbee/NTIRE2017), (accessed on 15 May
2024) [87]. Dataset of 2650 images collected by SNU_CVLab team for NTIRE2017
super-resolution challenge.

2.3. Evaluation of Methods for Finding Higher-Quality Images

The evaluation of the proposed and baseline methods for identifying higher-quality
images was performed using test data. The preparation of the testing dataset is detailed in
Section 2.2. The test set is constructed from augmented versions I1 and I2 of the original
image I0. All augmented versions are degraded by randomly selected image transforms:
defocus blur or motion blur, noise, and small geometric transform.

At the beginning of the photogrammetry pipeline, the goal is to select only the neces-
sary images of the highest quality for object reconstruction (refer to Figure 1). Selecting
the highest-quality image from a collection involves arranging these images by quality
and choosing the top one. The test dataset is designed so that the method must select
one image from a pair. This method assigns ranking scores to the images based on which

https://web.mit.edu/torralba/www/indoor.html
https://data.vision.ee.ethz.ch/cvl/DIV2K/
https://database.mmsp-kn.de/koniq-10k-database.html
https://cocodataset.org/#download
https://github.com/limbee/NTIRE2017
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most suitable image is selected. Our proposed method assigns a higher score for the
better-quality images, similarly to a sharpness-based method. No-reference image quality
assessment methods such as BRISQUE, NIQE, and PIQE assign lower scores to denote
superior perceptual quality.

2.4. Software Used

The software tools and programming languages used in this research are as follows:

• MATLAB programming and numeric computing platform (version R2023b, The Math-
works Inc., Natick, MA, USA) for the implementation of the proposed algorithm
(except for training LGBMRanker model and SuperPoint key point detection and
description) and for data analysis and visualization;

• Python (version 3.11.8) (https://www.python.org) (accessed on 18 March 2024), an in-
terpreted, high-level, general-purpose programming language with NumPy, SciPy,
and LightGBM packages. Used for the machine learning applications (LGBMRanker
tool) and SuperPoint key point detection and description;

• SuperPoint research project at Magic Leap (https://github.com/magicleap/Super
PointPretrainedNetwork, accessed on 15 May 2024) [61]. The repository contains the
pretrained SuperPoint network. This is a Python implementation of the SuperPoint
feature point detector and descriptor that was used in the descriptor comparison
experiments.

3. Results and Discussion

This research focuses on evaluation of various methods for assessing image quality in
the context of photogrammetry. The research aims to determine the most effective technique
for selecting the highest-quality images, which is essential for accurate and efficient 3D
model reconstruction. This research proposes a method for image quality evaluation based
on key point descriptors. The method reuses the descriptors extracted for feature matching,
which is performed in the photogrammetric sparse reconstruction stage, thus minimizing
the computational overhead of image quality evaluation.

An experimental comparison of key-point-descriptor-based methods against tradi-
tional no-reference image quality metrics, as well as a sharpness-based approach, was
conducted across multiple image datasets. The results of the experimental comparison of
the methods for selecting the higher-quality image from a pair of images are summarized
in Table 3 and in Figure 7.

The findings show that the proposed descriptor-based methods, particularly those uti-
lizing SURF (64- and 128-dimensionality variants), SIFT, and KAZE (64- and 128-dimensionality
variants) descriptors, consistently outperform other evaluated techniques, suggesting that
they are advantageous for photogrammetric applications. This performance is likely due to
the descriptors’ ability to encapsulate more detailed information about image characteristics
such as texture, sharpness, and noise, which are crucial for photogrammetry. Additionally,
both SURF and KAZE descriptors share a common characteristic, the highest numerical
precision, as shown in Table 1. This attribute likely contributes significantly to their superior
performance. Though BRISK and ORB descriptors-based rankers perform adequately, they
do not reach the effectiveness of SURF, SIFT, or KAZE. BRISK, ORB, and FREAK rankers
do not perform as well as SURF, SIFT, and KAZE, possibly due to the binary nature of their
descriptors, which may not capture subtle quality variations as effectively.

The SuperPoint ranker method demonstrates a relatively strong performance among
the key-point-descriptor-based approaches. Despite not achieving the highest performance,
SuperPoint’s efficiency lies in its deep-learning-based architecture, which allows it to
capture more complex and abstract image features. The drawback of this method is its
availability in photogrammetric reconstruction software. The rationale for using descriptor-
based image quality evaluation is to reuse already computed data, thus minimizing the
computational overhead of image quality evaluation. The photogrammetry software mainly

https://www.python.org
https://github.com/magicleap/SuperPointPretrainedNetwork
https://github.com/magicleap/SuperPointPretrainedNetwork
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utilizes handcrafted key point detectors and descriptors. Therefore, deep-learning-based
descriptor availability would be limited in the proposed setup.

Table 3. Results of the method comparison for selecting the higher-quality image from a pair of
images. Values in the table are the percentages of selections that are correct. The first five methods
(1–5) are the baseline image quality evaluation methods. The rest of the methods (6–14) are proposed
key-point-descriptor-based image quality evaluation methods. Suffixes “64” and “128” near the
descriptor name denote the dimensionality of the descriptor.

Results of Selecting a Better-Quality Image from a Pair [% Correct Selections]
Method

ISR (Test) DIV2K KonIQ10kIQA COCO Flickr2K Overall

1. Sharpness 78.0 78.4 78.2 77.5 76.0 77.6
2. BRISQUE 73.8 73.6 72.2 73.1 72.6 73.1
3. NIQE 76.4 77.7 76.5 77.1 79.6 77.5
4. PIQE 73.0 74.5 73.7 73.7 78.9 74.8
5. BIQAA 65.8 64.8 65.1 63.2 60.5 63.9
6. SURF64-ranker 84.1 83.5 84.7 84.8 82.4 83.9
7. SURF128-ranker 82.9 82.9 83.1 83.1 81.5 82.7
8. SIFT-ranker 86.0 85.3 84.4 87.3 85.1 85.6
9. BRISK-ranker 79.1 79.3 78.3 81.2 76.3 78.8
10. ORB-ranker 77.1 78.9 78.6 79.1 76.1 78.2
11. KAZE64-ranker 85.1 85.6 85.6 85.5 83.4 85.0
12. KAZE128-ranker 85.4 85.8 87.2 84.7 84.7 85.6
13. FREAK-ranker 69.8 73.2 70.7 69.4 67.8 70.2
14. SuperPoint-ranker 82.2 81.8 80.4 77.4 79.4 80.2

Traditional no-reference metrics, such as BRISQUE, NIQE, PIQE, and BIQAA, fall
behind in this specific application. These methods do not perform as well, likely due to
their inability to detect subtle degradations or due to their universality and applicability for
evaluating image perceptual quality. Similarly, the sharpness-based method, although rela-
tively effective, does not match the performance of the best descriptor-based approaches.
This highlights that sharpness alone may not be a sufficient indicator of image quality in
the context of photogrammetry, where other factors like texture, noise, and detail integrity
play crucial roles.

Practical applications of this method extend across various fields where high-quality
3D reconstructions are critical. In the field of archaeology, accurate 3D models are essential
for preserving and studying artifacts and sites. The proposed method can enhance the qual-
ity of these models, ensuring that minute details are captured accurately. In construction
and civil engineering, high-quality images are vital for creating precise models of buildings
and infrastructure. The method can improve the accuracy of these models, facilitating better
planning, monitoring, and maintenance processes. Additionally, in the field of cultural
heritage preservation, the method can aid in creating detailed and accurate digital replicas
of historical monuments and artworks, which is crucial for restoration and virtual tourism.

One area of future research involves investigating the potential of combining feature
descriptors with various ranking algorithms. Additionally, exploring ensemble methods
that combine multiple ranking algorithms could provide a more robust and generalized
image quality assessment framework.

Another future research direction could be integrating these image quality evaluation
techniques into existing photogrammetry software. This integration will allow for com-
prehensive testing of the methods on real-world objects and the subsequent evaluation of
their impact on 3D reconstruction accuracy. Comparing the reconstructed 3D models with
ground truth models will provide insights into the effectiveness of the proposed methods
in practical applications.
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Figure 7. Graphical summary of the experimental results of methods comparison. The results are the
percentage of correct selections of the higher-quality image from a pair of images. The color of the
bars represents the dataset from which the test results came. A solid line above the bars indicates the
overall accuracy of the method. The names of the methods are shown on the horizontal axis. Suffixes
“64” and “128” near the descriptor name denote the dimensionality of the descriptor. The proposed
key-point-descriptor-based image quality evaluation methods are named by descriptor name and
“ranker” suffix.

Another direction for future research could be integration of descriptor-based eval-
uation methods with advanced machine-learning-based image quality metrics. By com-
bining the information captured by feature descriptors with the predictive power of ma-
chine learning models, it is possible to achieve higher accuracy and efficiency in image
quality assessment.

While the proposed method shows promise, it also has limitations that need to be ad-
dressed. One major limitation is its dependence on the key point descriptors. The availabil-
ity of certain descriptors in photogrammetric software packages could limit the immediate
adoption of this method. The rationale of reusing already extracted descriptors restricts the
usage of descriptors to those selected for use in the 3D reconstruction pipeline.

By integrating descriptor-based image quality assessment into photogrammetric work-
flows, users can ensure that only the highest-quality images are used. This not only
enhances the accuracy and reliability of the reconstructed models but also optimizes the
entire reconstruction process by reducing unnecessary computational overhead.

4. Conclusions

The efficiency of photogrammetry workflows significantly depends on the integrity
and quality of the initial images. As such, employing robust image quality evaluation
mechanisms is imperative. Automated image quality evaluation promises an improvement
in the processing speed and reliability of photogrammetric methods, facilitating more
accurate and detailed 3D models.

This research presents a novel approach to the evaluation of image quality specifically
tailored for photogrammetric applications leveraging the capabilities of key point descrip-
tors to capture image quality. Through a comprehensive analysis employing the LightGBM
ranker model and various key point descriptors, this study demonstrates that the proposed
method can enhance the selection process of high-quality images essential for accurate 3D
model reconstruction.
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The study’s core findings indicate that descriptor-based methods, particularly those
utilizing SURF, SIFT, and KAZE descriptors, are superior in selecting high-quality im-
ages compared to traditional no-reference quality metrics such as BRISQUE, NIQE, PIQE,
and BIQAA, or the simple sharpness evaluation method. These methods, which cap-
italize on the inherent properties of the key point descriptors for feature matching in
photogrammetry, not only provide a reliable means of assessing image quality, but also
offer a pragmatic solution to one of the challenging steps in photogrammetry, the selection
of high-quality images for 3D modeling.

Future research should explore combining feature descriptors with various ranking
algorithms and ensemble methods to enhance image quality assessment. Integrating these
evaluation techniques into existing photogrammetry software will allow for comprehensive
testing and validation against ground truth models. Additionally, combining descriptor-
based methods with advanced machine-learning-based quality metrics could improve
accuracy and efficiency. However, limitations include dependency on available key point
descriptors in photogrammetry software, which may restrict immediate adoption and use.
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8. Sledevič, T.; Serackis, A.; Plonis, D. FPGA Implementation of a Convolutional Neural Network and Its Application for Pollen
Detection upon Entrance to the Beehive. Agriculture 2022, 12, 1849. [CrossRef]

9. Ban, K.; Jung, E.S. Ear shape categorization for ergonomic product design. Int. J. Ind. Ergon. 2020, 80, 102962. [CrossRef]
10. Mistretta, F.; Sanna, G.; Stochino, F.; Vacca, G. Structure from motion point clouds for structural monitoring. Remote. Sens. 2019,

11, 1940. [CrossRef]
11. Varna, D.; Abromavičius, V. A System for a Real-Time Electronic Component Detection and Classification on a Conveyor Belt.

Appl. Sci. 2022, 12, 5608. [CrossRef]
12. Vacca, G. Overview of open source software for close range photogrammetry. In Proceedings of the 2019 Free and Open Source

Software for Geospatial, FOSS4G 2019, Bucharest, Romania, 26–30 August 2019; Volume 42, pp. 239–245.
13. Pang, T.Y.; Lo, T.S.T.; Ellena, T.; Mustafa, H.; Babalija, J.; Subic, A. Fit, stability and comfort assessment of custom-fitted bicycle

helmet inner liner designs, based on 3D anthropometric data. Appl. Ergon. 2018, 68, 240–248. [CrossRef] [PubMed]
14. Matuzevicius, D.; Navakauskas, D. Feature selection for segmentation of 2-D electrophoresis gel images. In Proceedings of the

2008 11th International Biennial Baltic Electronics Conference, Tallinn, Estonia, 14 April 2008; pp. 341–344.
15. Luhmann, T. Close range photogrammetry for industrial applications. Isprs J. Photogramm. Remote. Sens. 2010, 65, 558–569.

[CrossRef]
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