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Abstract: In this paper, we propose a novel encryption method for JPEG bitstreams in which encrypted
data can preserve the JPEG file format with the same size as that without encryption. Accordingly, data
encrypted with the method can be decoded without any modification of header information by using a
standard JPEG decoder. In addition, the method makes two contributions that conventional methods
allowing bitstream-level encryption do not: spatially partial encryption and block-permutation-based
encryption. To achieve this, we propose using a code called restart marker for the first time, which can
be inserted at regular intervals between minimum coded units (MCUs) for encryption. This allows
us to define extended blocks separated by restart markers, so the two contributions are possible
with restart markers. In experiments, the effectiveness of the method is verified in terms of file size
preservation and the visibility of encrypted images.

Keywords: JPEG bitstream; partial encryption; restart marker; file size preserving

1. Introduction

The use of JPEG images has greatly increased because of the rapid growth of the
Internet and widespread use of cloud-based services. Many of these services do not
allow the use of arbitrary file formats and require compliance with the JPEG standard.
In addition, cloud services are generally unreliable due to incidents such as information
leakage. Accordingly, various encryption methods that can preserve the JPEG format
have been studied so far [1–17]. An example of encryption methods that can maintain
the JPEG format is methods used in encryption-then-compression (EtC) systems [1–3],
although the traditional way of securely transmitting images is to use a compression-then-
encryption (CtE) system. In EtC systems, image encryption is carried out prior to image
compression. Therefore, these encryption methods cannot be applied to JPEG bitstreams.
In addition, the file size of encrypted images is not the same as that of JPEG images
without encryption. When an image file is hooked in a transmission channel, the file size
information is transferred between applications and servers [16–18]. In such a case, the file
size of encrypted JPEG images should be equal to that before encryption.

Various bitstream-level encryption methods for JPEG compression have also been
studied to directly encrypt JPEG images [4–9,16,17]. Niu et al. [4] proposed a method that
first encrypts only DC coefficients and then scrambles the positions of DCT blocks and
embeds the information into AC coefficients. In Cheng et al.’s method [5], the positions
of DC and AC coefficients in each DCT block are permuted, and then the DC coefficients
and the quantization table are encrypted. In He et al.’s method [6], the substitution of
DC coefficients considering overflows and the substitution of MCUs not containing DC
coefficients guarantee that the encrypted image is compatible with the JPEG standard. In
Qin et al.’s method [7], the error histogram of an adaptive DC coefficient prediction is
encrypted. The AC coefficient-run-length pairs in the low-frequency domain are swapped
throughout the image, and the number of AC coefficients is manipulated so that it is less
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than 63 to prevent overflow. Yual et al. [8] proposed two methods that permute the AC
coefficients among different blocks in order to enhance the security. One is used to change
the number of non-zero coefficients and the energy of the AC coefficients, and the other is
used to change the position of the last non-zero coefficients.

Image data encrypted with these methods can preserve the JPEG format. However, the
file size of encrypted JPEG images is not equal to that of JPEG images without encryption.
In addition, the conventional methods cannot generate partially encrypted images that
have encrypted and unencrypted regions in an encrypted image.

There are other methods that can generate encrypted JPEG images [10–15]. In the
methods proposed in [10–12], encryption is applied in the DCT domain after quantization,
and a format-compliant encoded sequence is output. However, these methods cannot also
preserve the file size of original JPEG images without encryption, and they cannot generate
partially encrypted images.

Kobayashi et al. proposed a bitstream-based JPEG encryption method in which the
file size is unchanged before and after encryption [16,17]. Furthermore, encryption can
be performed independently of the application, e.g., by an https proxy server. However,
this method cannot generate partially encrypted images. In addition, since the positions
of DCT coefficients cannot be permuted, the visibility of encrypted images is not low
enough, so we can sometimes recognize the visual information of original images partly
from encrypted images.

Accordingly, we propose a novel encryption method for JPEG bitstreams by expanding
the method [16,17]. The proposed method allows us to generate partially encrypted images
while maintaining the same file size as that without encryption. We use a code called restart
marker, which can be inserted at regular intervals between MCUs. The restart marker is a
standard function described in the ITU, and it has been used for error propagation [19], but
here, the marker is applied to encryption for the first time. This allows us to define extended
blocks separated by restart markers, so the random permutation of extended blocks can be
used for image encryption so that the visibility of encrypted images is variable.

Our contribution is to propose a novel method that allows us not only to obtain
encrypted images with the same file sizes as images without encryption but to also choose
the visibility of encrypted images from various modes. In experiments, the effectiveness
of the method was verified in terms of the generation of partially encrypted images, the
visibility of encrypted images, and the file size of encrypted images.

The rest of this paper is structured as follows. Section 2 presents the preparation for
JPEG bitstreams and the method proposed in [16,17]. Section 3 puts forward the proposed
method. Experiments and results are presented in Section 4. Section 5 concludes this paper.

2. Related Work

We aim to propose a novel encryption method combined with image compression that
can generate JPEG files with hidden visual information. Accordingly, previous encryption
methods combined with image compression are summarized here. In addition, the structure
of JPEG bitstreams and the encryption method for JPEG bitstreams presented in [16,17] are
briefly explained to clearly indicate our contributions.

2.1. Combined Use of Encryption with Image Compression

Encryption methods combined with image compression are classified into the four
types below.

Type 1: Compression -then-encryption with standard cryptography.
For Type 1, images are compressed and then encrypted with a standard cryp-
tography such as AES (advanced encryption standard) (see Figure 1a) [20–22].
However, the format of the encrypted data is different from that of compressed
data, such as in the case of the JPEG format, so the data cannot be uploaded to
most cloud services such as Google Photos.

Type 2: Encryption-then-compression.
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For Type 2, the visual information of images is protected by using a perceptual
encryption method, called a compressible encryption method, and then the
encrypted images are compressed with a compression method [1–3,23,24] (see
Figure 1b). When using the JPEG compression method, the compressed data can
maintain the JPEG format [1–3]. In addition, this type of encryption has various
applications including privacy-preserving deep learning [25,26]. However, given
JPEG images prior to encryption, the JPEG images must be decompressed before
carrying out encryption. This restriction causes the quality of images to degrade
in addition to incurring additional computational costs.

Type 3: Joint encryption and compression.
For Type 3, encryption and compression are simultaneously carried out (see
Figure 1c) [10–15]. For example, the value and position of DCT coefficients
are randomly permuted to generate encrypted JPEG images in the middle of
encoding. Thus, given JPEG images prior to encryption, the JPEG images must
be decompressed before carrying out encryption as well. In addition, a non-
standard encoder has to be prepared.

Type 4: Compression-then-encryption with a bitstream-level encryption method.
For Type 4, images are compressed and then encrypted with a bitstream-level
encryption method [4–9,16,17], where bitstream-level encryption is carried out
with a stream cipher in many cases (see Figure 1d). Type 4 encryption allows
us not only to maintain the JPEG format but to also generate encrypted JPEG
images with the same size as that of JPEG images without encryption under
some requirements. Type 4 encryption also does not require any modification
of encoders and decoders. Encrypted data can be decoded by using a standard
JPEG decoder. In addition, the feature of the file size not changing makes it
possible to implement an encryption system using mitmproxy [27,28], which is
an open-source interactive HTTPS proxy, on a proxy server [17].

Compressed 
image data Encryption

No compatible
with compressed 
image formats

Standard cryptography

(a) Type 1

Compressed 
image data Decompression

Compressible
encryption

・File size changed
・Decompression

required
Compression

(b) Type 2

Compressed 
image data Decompression Compression

+ Encryption
・File size changed
・Non-standard encoder

required  

Joint algorithm

(c) Type 3

Figure 1. Cont.
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Compressed 
image data Encryption Partially-encrypted

image not allowed

Bitstream-level

(d) Type 4

Figure 1. Combined use of encryption and compression.

We focus on Type 4 encryption for JPEG images in this paper. Various Type 4 en-
cryption methods for JPEG images have been studied so far. This type has superior
properties, compared with other types, but it cannot generate images that have yet to be
encrypted with various visibility modes, including partially encrypted images. Increased
freedom of visibility is important for improving the convenience of encrypted images and
expanding applications.

2.2. JPEG Bitstreams

The proposed method handles the information of DC and AC coefficients in a bit-
stream, so the structure of JPEG bitstreams is reviewed here. Figure 2 shows an example
of the structure of JPEG bitstreams [29], where SOI and EOI indicate the start of an image
and the end of an image, respectively. The area between them, which consists of multiple
segments and image data, is called a frame.

SOI and EOI are special codes with two bytes, called marker code. The first byte of
any marker code is fixed to FF(16), i.e., “11111111”. Segments in a JPEG bitstream also have
FF(16) in the first byte and contain information used for decoding, such as a Huffman table
and a quantization table, in the second byte. Each segment can be identified by using the
second byte of the code. Note that 00(16) is outside the definition of marker codes.

SOI EOISegment SegmentSegment Segment Image data

Figure 2. Structure of JPEG bitstream.

Figure 3 shows the construction of image data in a JPEG bitstream. Image data are
divided into MCU units, and each MCU unit consists of four luminance components (Y)
and two chroma components (Cb, Cr), where the figure shows an example of 4:2:0 color
subsampling. Information of the DC and AC coefficients is included in each component as
Huffman codes and additional bits, although DC coefficients are stored as the difference
value from the previous DC coefficients. These bit sequences are stored in byte units, so
byte FF(16) occurs. In these cases, JPEG encoders insert 00(16) just after FF(16) in image data
so as to distinguish this FF(16) from the marker code. Moreover, JPEG decoders read only
FF(16) and skips 00(16) when FF00(16) is detected. This operation is called “byte stuffing”.

Restart marker (RST) is one of the marker codes. It can be placed at certain intervals
between MCUs. If an error occurs in a DC coefficient in a bitstream, the error propagates
and affects other DC coefficients because a DC coefficient in a bitstream is represented
as the difference from the previous DC coefficient. On the other hand, a DC coefficient
immediately after a restart marker is represented by its own value. Thus, inserting restart
markers at a certain interval interrupts the error propagation among the DC coefficients in
the encoded sequence. The restart interval (RI), which is an interval at which the restart
marker is inserted, is set during JPEG encoding.
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…MCU0 MCU1 MCUk-1 MCUk

Yk,0 Yk,1 Yk,2 Yk,3 Cbk Crk

DCk ACk,1 ACk,2 ACk,63…

Huffman Code Additional Bits

MCU : Minimum Coded Unit

Huffman Code Additional Bits

Figure 3. Structure of image data in JPEG bitstreams.

2.3. Bitstream-Level-Encryption Considering Marker Code Generation

Kobayashi et al. pointed out the requirements for being compliant with the JPEG
format and keeping file sizes unchanged for bitstream-level JPEG encryption [16,17]. How-
ever, all bitstream-level JPEG encryption methods, including their method, cannot generate
encrypted images with various modes of visibility such as partially encrypted images.
Accordingly, we propose a novel bitstream-level encryption method for JPEG images that
considers the use of the above requirements. An overview of the previous method [16,17]
is given in Figure 4. The encryption procedure and requirements are summarized below.

Step1: Generate a pseudo-random binary number (PRN) sequence consisting of 0 and 1
by using a secret key, K1.

Step2: Analyze an input bitstream and extract bytes that satisfy the encryption require-
ments from the bitstrem.

Step3: Carry out exclusive-or (XOR) operations between the additional bits of the ex-
tracted bytes and the PRN sequence.

Step4: Replace the additional bits with the XOR results.

Extract bytes that 
satisfy requirementsBitstreams Extracted

bytes
XOR Integrate bytes 

into bitstream

Other bytes

Encrypted
bitstreams

Random binary sequence

K1

Figure 4. Encryption procedure of previous method.

The Huffman code shown in Figure 3 represents the range of each DCT coefficient
value and the length of the additional bits. In contrast, the additional bits are used to identify
a coefficient value from the range. If Huffman codes are encrypted, the bitstream is not
compatible with the JPEG standard in general, so only additional bits are encrypted. When
a new FF(16) is generated through the encryption process in image data, byte stuffing is
conducted, and the file size increases. In contrast, when an existing FF(16) is lost through the
encryption process, the JPEG decoder does not skip FF(16) following the initial 00(16). Thus,
to avoid changing the file size of JPEG images, bytes that satisfy the above requirements
are extracted from a bitstream in Step 2. The requirements are summarized below.

When image data are divided into 1-byte units, the pattern of each byte is classified
into five types as shown in Figure 5, where Case 4 satisfies the requirements for the file size
of JPEG images. Each case is explained below.
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Case 1: It consists of only Huffman codes.
Case 2: It consists of only additional bits.
Case 3: It consists of Huffman codes and additional bits, and every bit in the Huffman

code is 1.
Case 4: It consists of Huffman codes and additional bits, and the Huffman code in-

cludes 0.
Case 5: It consists of 0 only, and the byte is located following FF(16).

00000000

10110010 11100110 101 11111

11101101

Case 1 Case 2 Case 3

Case 4 Case 5

Figure 5. Five patterns of divided bytes. White, blue, and red regions represent Huffman codes,
additional bits, and byte inserted by byte stuffing, respectively.

In Cases 1 and 5, the bytes do not contain any additional bits, so we do not encrypt
them. In Case 2, the byte consists of additional bits only, so if the byte is encrypted, a new
FF(16) might be generated unintentionally. Further, in Case 3, if all the additional bits are
turned to 1 by encryption, FF(16) is generated.

Conversely, if all of the additional bits are 1 and the byte indicates FF(16), the encryp-
tion could cause 0 in the additional bits, resulting in the loss of the FF(16). Thus, the bytes
should not be encrypted in those two cases. Consequently, we can encrypt additional bits
in Case 4 to avoid not only generating FF(16) but also losing FF(16) due to encryption.

It can be concluded that the requirements used in Step 2 mean only selecting 1-byte
units that apply to Case 4. The use of the requirements allows us not only to generate
encrypted JPEG images with the same file size as that of JPEG images without encryption
but to also use a standard JPEG decoder.

3. Proposed Method

The proposed method is explained here. The method allows us to generate encrypted
images with various types of visibility including partially encrypted images by using restart
markers while maintaining the same file size as that of JPEG images without encryption.
The details are given below.

3.1. Encryption Using Extended-Block Permutation

As shown in Figure 6, we use restart (RST) markers for the first time, which can
be inserted at regular intervals between MCUs for encryption so that a series of MCU
blocks separated by RST markers is defined as an extended block. Figure 7a illustrates the
encryption procedure of the proposed method, where a JPEG bitstream with RST markers
is input.

RST0 RST2RST1MCU0 MCU1 MCU2 MCU3 MCU4 MCU5 MCU6 MCU7

Extended blockExtended block Extended block Extended block

Figure 6. Bitstreams after insertion of restart markers.
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Extract bytes that 
satisfy requirements

Bitstreams
with

restart markers 

Extracted
bytes XOR

Integrate bytes 
into bitstream

Other bytes

Permutate
extended blocks

Encrypted
bitstreams

Random binary sequence

K1

Random integer sequence

K2

Select
encryption regions

(a) Encryption

BitstreamsExtracted
bytes

XOR Integrate bytes 
into bitstream

Other bytes

Permutate
extended blocks

Encrypted
bitstreams

Random binary sequence

K1

Focus on
encryption regions

Random integer sequence

K2

Extract bytes that 
satisfy requirements

(b) Decryption
Figure 7. Procedure of proposed method.

Step1: Select extended blocks to be encrypted and those to be encrypted and position-
shuffled from an original image.

Step2: Extract bytes that satisfy the encryption conditions described in Section 2.3 from
the extended blocks selected in Step 1.

Step3: Generate a PRN binary sequence by using secret key K1. Carry out an exclusive-or
(XOR) operation between the PRN sequence and additional bits of the extracted
bytes.

Step4: Replace the additional bits with the XOR results.
Step5: Permute the positions of the extended blocks selected in Step 1 by using secret

key K2.

Figure 8 shows several practical examples of encrypted images after all the above steps
have been applied. Note that Figure 8a,c were selected from the DeepLesion dataset [30]
and Kodak Lossless True Color Image Suite [31], respectively. The differences between the
method and the previous one [16,17] are in Step 1, Step 5, and the use of RST markers. A
user first determines the regions of an image to be encrypted and then encrypts extended
blocks that cover the determined regions. An extended block is composed of a series of
MCUs separated by restart markers and is the smallest unit of encryption. The user can
select arbitrary regions in units of extended blocks. Note that the encrypted regions cannot
be selected in pixel units. The requirements in Step 2 are the same as those in [16,17].

3.1.1. Selection of Encrypted Regions

The proposed method can generate partially encrypted images that have both en-
crypted and unencrypted regions in them. In addition, the mode of visibility of the
encrypted images can be selected as illustrated in Figure 9. This property of our method is
made possible by using restart markers.

Figure 10 shows an example of a JPEG bitstream including RST markers, where the
restart interval (RI) is the number of MCU blocks between RST markers. The method
allows us to freely choose whether to encrypt each extended block or not. In the figure,
blue and white regions represent encrypted and unencrypted blocks, respectively, and red
regions are RST markers. By using RST markers, the effects of DPCM used for compressing
DC coefficients can be prevented within each extended block. Our method uses RST
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markers for bitstream-level JPEG encryption for the first time so that the effects of DPCM
are prevented.

(a) (b)

(c) (d)
Figure 8. Example of encrypted images. (a) Medical image (768 × 768 pixels). (b) Encrypted medical
image. (c) Image with face (2048 × 3072 pixels). (d) Encrypted image with face.

(a) (b) (c)

(d) (e) (f)
Figure 9. Example of encrypted images. (a) Original image. (b) Previous method. (c) Proposed
method with block permutation. (d) Proposed method with only AC coefficients. (e) Proposed
method with partial encryption and block permutation. (f) Proposed method with partial encryption
for only AC coefficients and block permutation.

RST0 RST2RST1MCU0 MCU1 MCU2 MCU3 MCU4 MCU5 MCU6 MCU7

Extended blockExtended block Extended block Extended block

Figure 10. Example of encrypted and unencrypted regions. Red and blue regions represent RST
markers and encrypted regions, respectively (RI = 2).

3.1.2. Position Scrambling of Extended Blocks

The proposed method can randomly permute the positions of extended blocks consist-
ing of multiple MCUs. In contrast, the conventional method in [16,17] cannot permute them,
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so the visibility of encrypted images is not low enough (see Figure 9b), so images encrypted
with the conventional method still have some visual information from the original images.
Accordingly, our method can provide images with enhanced privacy-preserving. Figure 11
depicts an example of the position scrambling of extended blocks, where the positions of
all extended blocks are permuted in Figure 11a. In contrast, some of the extended blocks
are permuted to generate partially encrypted images in Figure 11b. As a precondition,
MCU positions within the extended block are not moved. AC and DC coefficients in
each extended block are encoded independently. Since the restart interval is constant, all
extended blocks contain the same number of MCUs. The first DC coefficient value that
appears in each extended block is not the difference from the previous DC coefficient but
the original value itself. Therefore, overflows never occur, even if the extended blocks are
reordered randomly. Using Figure 11b as an example, the value of the first DC coefficient of
MCU2 is not the difference from the last DC coefficient of MCU5 but the original coefficient
value itself. As described above, a standard JPEG codec can decode the image.

Accordingly, the proposed method can provide images with various visibility modes
as demonstrated in Sections 4.2 and 4.3.

RST0 RST2RST1MCU0 MCU1 MCU2 MCU3 MCU4 MCU5 MCU6 MCU7

RST0 RST2RST1MCU4 MCU5 MCU0 MCU1 MCU6 MCU7 MCU2 MCU3

(a) Positions of all extended blocks are permuted.

RST0 RST2RST1MCU0 MCU1 MCU2 MCU3 MCU4 MCU5 MCU6 MCU7

RST0 RST2RST1MCU0 MCU1 MCU4 MCU5 MCU2 MCU3 MCU6 MCU7

(b) Positions of selected blocks are permuted.
Figure 11. Example of bitstreams with permuted blocks.

3.1.3. Selection of Visibility Modes

The proposed method enables the visibility of encrypted images to be chosen from
various modes as follows.

(a) We can divide an image into encrypted and unencrypted regions.
(b) We can freely choose whether to permute extended blocks in each encrypted region.
(c) We can freely choose whether to encrypt AC and DC coefficients in each extended

block, respectively.
(d) We can choose a restart interval (RI) value.

A combination of the four selection items can be used when encrypting images, so
we can choose the strength of visual protection for each region. Accordingly, our method
allows us to freely choose convenience and security for each region.

By combining these options that a user can select, the user can control the intensity
of partial encryption in terms of visual confidentiality and convenience. Applying more
options from (a) to (c) leads to the enhancement of attack resistance. In particular, block
scrambling in (b) is expected to significantly improve the attack resistance. However, the
more options are applied, the higher the processing cost. In (d), the minimum value of
RI is 1. The number cannot be greater than the total number of MCUs. Setting a small
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value improves the attack resistance but increases the original file size. If fewer options
are applied, the attack resistance is lower. However, even in such cases, it is expected to be
effective in preventing unauthorized secondary use of the encrypted image.

3.2. Decryption Process

A JPEG bitstream encrypted with the proposed method can be decoded by using a
standard JPEG decoder, but the visual information of the image is protected if the keys are
not shared. The standard decoder does not have parameters for decryption such as the
keys and encryption positions in the proposed method. Thus, the standard decoder cannot
carry out any of the steps related to decryption. Only a user having these parameters can
decrypt and decode the original image. To decode the original image, the user should
decrypt the encrypted bitstream before decoding the image. Conversely, a user without
these parameters can decode only the encrypted image by using the standard decoder. The
procedure of decrypting an encrypted bitstream with secret keys is explained below (see
Figure 7b).

Step1: Select encrypted extended blocks from the encrypted image.
Step2: Restore the position of the permuted extended blocks by using secret key K2.
Step3: Extract bytes that satisfy the encryption conditions described in Section 2.3 from

the extended blocks to be decrypted.
Step4: Generate a PRN binary sequence by using secret key K1. Carry out an exclusive-or

(XOR) operation between the PRN sequence and additional bits of the extracted
bytes.

Step5: Replace the additional bits with the XOR results.

Images decrypted with the above procedure are the same as those decoded from JPEG
images without encryption.

3.3. Threat Model

The objective of an attacker is to recover visual information from encrypted JPEG
images. We assume that the attacker has access to encrypted images and the encryption
algorithm but does not possess the secret key. That is to say, we assume that the attacker
can only carry out a cipher-text-only attack (COA) using encrypted images.

Several COAs have been proposed to restore visual information from encrypted
images [6,7,11,16,32]. In addition, security analysis methods are used to evaluate the
robustness of encryption methods against attacks in general. In this paper, we use a brute
force attack, the sketch attack [6,7,11], and key sensitivity analysis [7,11,16] to evaluate the
proposed method.

A key space is the total number of patterns that can be generated by a given encryption
algorithm. There is an attack called the sketch attack, which attempts to obtain a rough
sketch of an original image from its encrypted image. Here, we assume the non-zero-
counting attack (NZCA), which is one type of sketch attack. Resistant image-encryption
methods are required to be sensitive to even the slightest key change. If the key is changed
by one bit, the decrypted image should be completely different from the original image.

The details on the security analysis will be given in Section 4.5, and the proposed
method will be compared with other encryption methods for JPEG bitstreams. Our method
has a similar performance to the conventional one [16,17], but it will be demonstrated to be
more robust than the conventional one due to the use of restart markers.

4. Experimental Results and Discussion

In experiments, the effectiveness of the proposed method was evaluated in terms
of the generation of partially encrypted images and the selection of visibility modes. In
addition, the method was demonstrated to be a file-size-constant method.
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4.1. Experimental Setup

In experiments, we used 24 test images with 2048 × 3072 pixels or 2048 × 3072 pixels
from Kodak Lossless True Color Image Suite [31]. We used libjpeg [33] for JPEG compres-
sion, where the color subsampling and quality factor Q were set to 4:2:0 and 80, respectively.
The restart interval RI was four or eight. PRN binary sequences were generated by using
the pseudo-random number generator of HMAC_DRBG [34] with a 384-bit key.

4.2. Effects of Block Permutation

We first encrypted all areas of each image and permuted the position of all extended
blocks to confirm the effects of block permutation. Figure 12 shows images encrypted
with/without block permutation. The previous method [16,17] cannot carry out block
permutation, but the proposed one can due to the use of RST markers. From the figure,
the images encrypted without block permutation still had the outline of the original ones
and information on colors. In contrast, the visibility of images encrypted with block
permutation was much lower than that of the images without block permutation. From the
result, the permutation of extended blocks was demonstrated to be effective in protecting
the visibility of images.

(a) (b) (c)
Figure 12. Effects of block permutation (kodim03 and kodim23). (a) Original image; (b) Encrypted
image without block permutation (RI = 4); (c) Encrypted image with block permutation (RI = 4).

4.3. Generating Partially Encrypted Images

Next, partially encrypted images were generated by using our method. We defined
encrypted regions as shown in Figure 13a. Figure 13 also shows an example of encrypted
images without block permutation, but DC and AC coefficients in the encrypted region
were encrypted. As shown in Figure 13b,c, partial-encrypted images were demonstrated to
be generated by using our method without block permutation, so the method allows us
to protect the visual information of sensitive regions. No conventional methods for JPEG
bitstream-level encryption can generate such partially encrypted images.

Our method can generate encrypted images that have various types of visual informa-
tion. One of the types is selected encrypted regions such that all regions were selected for
encryption as in Figure 12, and a part of an image was selected in Figure 13. In addition,
depending on whether or not block permutation is carried out, the visibility of encrypted
images is changed as illustrated in Figures 13 and 14.

Our method provides more ways for changing the visibility of encrypted images.
Figure 14 illustrates that an RI value is also a variable that can affect the visibility of
encrypted images. In addition, Figure 15 shows other examples of encrypted images, where
only AC coefficients are encrypted in Figure 15b, and the encryption of AC coefficients and
block permutation are carried out in Figure 15c. From Figure 15b, when only AC coefficients
ae encrypted, the visual information of the images is not completely confidential. However,
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the image quality within the red frame is degraded compared with the original image.
Therefore, as shown in Figure 15b, the detailed features of the image such as small letters
are difficult to see.

In contrast, when block permutation is carried out for encryption in addition to
the encryption of AC coefficients, the visibility in Figure 15c is significantly degraded
compared with Figure 15b. Since DC coefficients are not encrypted, Figure 15c shows
no color tone change. Accordingly, the proposed method is verified not only to provide
partially encrypted images but to also generate encrypted images with various types of
visual information. Contrarily, the previous methods [4–9,16,17] have not been designed to
partially encrypt an image, so it is difficult for them to accomplish partial encryption.

(a) (b) (c)

Figure 13. Partially encrypted images without block permutation (kodim03). (a) Target area for
encryption; (b) Partially encrypted image (RI = 4); (c) Partially encrypted image (RI = 8).

(a) (b)

Figure 14. Partially encrypted images with block permutation. (a) Partially encrypted image (RI = 4);
(b) Partially encrypted image (RI = 8).

(a) (b) (c)
Figure 15. Partially encrypted images with encryption of only AC coefficients (kodim03, RI = 4).
Zoom-in of the boxed region is shown in bottom of each image. (a) Target area for encryption;
(b) Partially encrypted image without block permutation; (c) Partially encrypted image with block
permutation.
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4.4. File Size Preserving

Finally, we demonstrate that the proposed method can generate encrypted JPEG
images with the same file size as JPEG images without encryption. The eight images in
Figure 16 are examples of images used in the experiment, and 24 images were used for
evaluation in total. Experiment results are given in Table 1, where the proposed method
uses block permutation, and the encryption of DC and AC coefficients is carried out under
RI = 4.

From the table, the file size of the JPEG images is confirmed to be unchanged before
and after encryption. We also confirm that the file size of all 24 encrypted images is the
same as that of the JPEG images without encryption. Consequently, our encryption process
does not affect the file size of JPEG images.

Furthermore, Table 2 shows the change in file size of three images, Lena, Mandrill,
and Peppers, for each method, where the images are encoded with Q = 80. From the table,
for the previous bitstream-level methods (Type 4) [16,17], the size of all the images is equal
to that of the original files without encryption. In contrast, for Cheng et al.’s method [5]
(Type 4), the file size was slightly changed due to the generation and loss of FF(16) caused
by block replacement. In the case of the occurrence of FF(16), 00(16) was inserted, resulting
in an increase in the file size. On the other hand, in the case of the loss of FF(16), the file size
decreased because the 00(16) immediately after FF(16) was deleted to correctly handle the
encoded sequence. Similarly, the methods of [4,6–9] never ensure that the encrypted file
size will be exactly matched to the original file size. For encryption-then-compression (EtC)
(Type 2) [1], the file size was also changed due to the use of a decoder and encryption, where
only block scrambling was performed in 16 × 16 units for encryption. By reordering blocks,
the difference value of the DC coefficients becomes larger, resulting in a change in file
size. Accordingly, when only bitstream-level encryption was applied to byte units carefully
selected in consideration of marker code generation, the file size of the JPEG images was
not changed. In addition, the proposed method allows us to generate encrypted images
with various visibility modes including partially encrypted images, which are important
for convenience and security, while maintaining the file size-preserving property.

Table 1. File size before and after encryption.

Image Before Encryption [Bytes] After Encryption [Bytes]

kodim03 570,731 570,731
kodim04 738,287 738,287
kodim10 843,457 843,457
kodim12 529,742 529,742
kodim14 841,642 841,642
kodim18 1,259,498 1,259,498
kodim23 592,913 592,913
kodim24 749,104 749,104

Table 2. File size before and after encryption for each method ([bytes]).

Image Lena Mandrill Peppers

Original 44,293 89,057 48,671
Previous method [16,17] 44,293 89,057 48,671

Cheng [5] 44,275 89,059 48,670
EtC [1] 45,300 90,109 49,739
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(a) kodim03

(b) kodim04 (c) kodim10

(d) kodim12

(e) kodim14

(f) kodim18

(g) kodim23 (h) kodim24

Figure 16. Example of test images.

4.5. Security Analysis

The security robustness of the proposed method depends on the options defined in
Section 3.1.3. Here, we analyzed the proposed method in the case that all DCT coefficients
in the entire image were encrypted for the entire image, and the positions of all extended
blocks were permuted. As an example, we show the result of the security analysis in the
case of Figure 16g.

The encryption algorithm proposed in this paper consists of the encryption of addi-
tional bits in bytes that satisfy the conditions and position permutation of extended blocks.
We suppose that JPEG encoding is applied to an M × N-pixel image with RI = r and
4:2:0 color subsampling. First, in the case where the bytes to be encrypted are T bytes, the
minimum and maximum sizes of the key space resulting from encrypting the additional
bits Senc_max and Senc_min are expressed by

Senc_min = 2T , (1)

Senc_max = 27T , (2)

since the number of bits to be encrypted in each of T bytes is at least one bit and at most seven
bits. The key space resulting from the permutation of the extended block Sbp is given by

Sbp =

⌊(⌈
M
16

⌉
×

⌈
N
16

⌉
× 1

r

)⌋
!. (3)

Consequently, the overall minimum key space Smin and maximum key space Smax are
obtained by

Smin = Senc_min × Sbp = 2T ×
⌊(⌈

M
16

⌉
×

⌈
N
16

⌉
× 1

r

)⌋
!, (4)

Smax = Senc_max × Sbp = 27T ×
⌊(⌈

M
16

⌉
×

⌈
N
16

⌉
× 1

r

)⌋
!. (5)
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Assuming a 512 × 512-pixel image, RI = 4, and 55,206 bytes to be encrypted, the key
space is 255,206 × 256!. Thus, the proposed method provides a large key space. As the
restart interval becomes shorter, the key space becomes larger since the number of extended
blocks increases. In the case of partial encryption, the numbers of bytes to be encrypted
and extended blocks to be permuted are limited, so the key space is smaller.

NZCA was performed on the luminance component of the encrypted image. As shown
in Figure 17, in the conventional method [16,17], the original image is revealed in its outline.
In comparison, the proposed method completely conceals the original image. This is
achieved by replacing enlarged blocks. The proposed method is as robust as other methods
that use coefficient replacement [6,7,11] since it includes the replacement of extended blocks.

Previous method Proposed method

Original 
image

Encrypted image

Result of NZCA 

Figure 17. Results of non-zero-counting attack (NZCA).

We decrypted the image in Figure 12c with incorrect keys that were changed by one bit
from the original keys K1 and K2. The result is shown in Figure 18. This confirms that the
decryption was not successful at all and that the image content remained confidential. The
peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) values for
Figure 18b,c relative to Figure 18a were 9.28 dB/0.3410 and 9.25 dB/0.3414, respectively. It
is clear that when using a key that is incorrect by even one bit, the encrypted image cannot
be decrypted at all. We also confirmed that the original image in Figure 18a was perfectly
retrieved when using correct keys.

(a) (b) (c)
Figure 18. Key sensitivity. (a) Original image; (b) Encrypted image (RI = 4, PSNR = 9.28 dB,
SSIM = 0.3410); (c) Decrypted image with incorrect keys (RI = 4, PSNR = 9.25 dB, SSIM = 0.3414).

In this experiment, we assumed that an attacker carried out COAs. We evaluated
the attack resistance of the proposed method using typical attack methods in terms of the
difficulty in recovering visual information. The analysis results showed that the proposed
method was as resistant to the attacks as other methods. In addition, the proposed method
is more attack resistant than the conventional method [16,17] owing to the permutation of
extended blocks. Although an example was shown here, we confirmed that the analogous
trends were obtained for the other images.
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5. Conclusions

We proposed a novel bitstream-level encryption method for JPEG images. The method
allows us to generate partially encrypted images that conventional methods for JPEG
bitstream-level encryption cannot. In addition, it can generate encrypted images with
various types of visual information while maintaining the same file size as that of JPEG
images without encryption. To achieve this, we proposed using a code called RST marker
for the first time. In experiments, the method was compared with the state of the art, and
the effectiveness of the method was verified in terms of file size preserving and the visibility
of encrypted images. We plan to extend the method to other file formats such as video
coding in future work.
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