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Abstract: Spectral computed tomography (CT)-reconstructed images often exhibit severe noise and
artifacts, which compromise the practical application of spectral CT imaging technology. Methods
that use tensor dictionary learning (TDL) have shown superior performance, but it is difficult to obtain
a high-quality pre-trained global tensor dictionary in practice. In order to resolve this problem, this
paper develops an algorithm called tensor decomposition with total generalized variation (TGV) for
sparse-view spectral CT reconstruction. In the process of constructing tensor volumes, the proposed
algorithm utilizes the non-local similarity feature of images to construct fourth-order tensor volumes
and uses Canonical Polyadic (CP) tensor decomposition instead of pre-trained tensor dictionaries
to further explore the inter-channel correlation of images. Simultaneously, introducing the TGV
regularization term to characterize spatial sparsity features, the use of higher-order derivatives can
better adapt to different image structures and noise levels. The proposed objective minimization
model has been addressed using the split-Bregman algorithm. To assess the performance of the
proposed algorithm, several numerical simulations and actual preclinical mice are studied. The final
results demonstrate that the proposed algorithm has an enormous improvement in the quality of
spectral CT images when compared to several existing competing algorithms.

Keywords: tensor decomposition; total generalized variation; spectral computed tomography;
sparse-view CT reconstruction

1. Introduction

X-ray CT is a non-destructive imaging technique that provides information about the
internal tissue structures of organs and has found widespread applications in biomedical
imaging, security inspection, industrial non-destructive testing, and materials science [1,2]. But
conventional CT technology still cannot meet some actual needs because of its limitations,
such as a loss of energy-related information and strong beam hardening artifacts in the
images [3,4]. Additionally, the need for multiple scans to obtain multiple energy projections
increases the radiation risk [5,6]. To mitigate these limitations, spectral CT based on
a photon-counting detector has gained significant attention because of its capability to
provide spectral information [7]. However, single-channel projection often suffers from
serious quantum noise because of the limited number of photons in the corresponding
energy channels, degrading the image quality greatly [8]. Consequently, the pursuit of
enhancing spectral CT image quality has emerged as a popular research topic.

In order to improve the image quality from noisy projection, numerous algorithms
have been developed for the reconstruction of spectral CT. Initially, some traditional
CT reconstruction methods were used. Xu et al. incorporated a total variation (TV)
regularization term into the reconstruction model and constrained the CT images at each
energy level, enhancing the performance of spectral CT imaging [9]. In 2013, Zhao et al.
designed a tight frame-based iterative reconstruction algorithm for spectral CT called TFIR,
which found application in breast spectral CT imaging and achieved better reconstruction
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results with fewer projection data [10]. In 2016, Zeng et al. proposed a novel algorithm that
combines penalized weighted least squares (PWLS) with structural tensor total variation
(STV) regularization and employed an alternating optimization algorithm to solve the
objective function, resulting in higher-quality spectral CT images [11]. Subsequently, more
reconstruction algorithms based on single-energy channel regularization constraints have
been proposed, all of which have achieved satisfactory reconstruction results [12–16].
However, these algorithms only process CT images at each energy channel separately
during the image reconstruction stage, focusing solely on the correlation between single-
channel images.

To fully exploit the correlations among images at different energy channels, an increas-
ing number of algorithms are transforming multi-spectral CT images into tensor models,
leveraging prior information such as sparsity and low-rankness inherent in tensors to im-
prove the spectral CT image quality. Gao et al. proposed a PRISM (prior rank, intensity, and
sparsity model) reconstruction model based on features, such as low rankness, intensity,
and sparsity, and employed the split-Bregman algorithm to rapidly solve the objective
function [17]. Chu et al. combined TV regularization with low-rank constraints to capture
the sparsity of spectral CT tensors and verified the performance of their algorithm using
simulated data [18]. In 2014, Li et al. further extended the PRISM reconstruction model
by generalizing it to a tensor mode, making full use of the similarities across the energy
dimension [19]. Later, Li et al. improved upon this algorithm by introducing an adaptive
thresholding technique for spectral CT reconstruction, achieving excellent results [20].
Holt et al. proposed a novel regularization model called total nuclear variation (TNV),
which significantly improves upon the performance of the TV algorithm [21]. Rigie et al.
employed TNV regularization to constrain both spectral CT projections and images, which
effectively preserved image edges and achieved superior results [22]. He et al. proposed a
new spectral CT reconstruction algorithm that incorporates the nuclear norm and bilateral
weighted relative total variation (BRTV) to represent inter-channel correlations and extract
intra-channel structures and obtained promising reconstruction results [23]. Subsequently,
the tensor dictionary learning (TDL) algorithm has demonstrated immense potential in
spectral CT image reconstruction. It can more fully explore the correlations between en-
ergy channels, effectively preserving image structure while suppressing noise. In 2016,
Zhang et al. proposed a TDL-based method for spectral CT reconstruction, which combines
tensor operations with dictionaries to achieve sparse representation, effectively suppressing
noise and recovering image details [24]. To enhance the constraint in the image domain, Wu
et al. introduced the image gradient L0 norm within the tensor dictionary learning frame-
work, efficiently preserving image edges and details while reconstructing with low-dose
and sparse-view projection data [25]. Li et al. proposed an enhanced sparsity-constrained
tensor dictionary learning algorithm for spectral CT reconstruction, which incorporated the
image gradient L0 norm and full-spectrum reconstructed images with the TDL framework
to constrain the correlations among images, achieving better reconstruction results [26]. De-
spite the promising results achieved by these tensor dictionary learning-based algorithms,
there is an inevitable issue: The final image quality heavily relies on the quality of the train-
ing tensor dictionary datasets. In practical scenarios, noise is unavoidable in the training
datasets, making it difficult to obtain a high-quality pre-trained global tensor dictionary.

Tensor decomposition is an effective method for image representation and analysis,
which can obtain good sparsity results from complex signals or data matrices [27]. By con-
trolling the sparse representation of high-dimensional tensor data, noise can be effectively
suppressed and artifacts can be reduced [28,29]. It has been widely applied in various
application scenarios such as signal processing, video information processing, computer
vision, and hyperspectral image denoising [30–32]. Due to the similarities between spectral
CT images and multi-dimensional data, the idea of tensor decomposition can be borrowed
for spectral CT reconstruction. Zhang et al. proposed a spectral CT image denoising
method based on tensor decomposition and non-local means (TDNLM), which recovered
more fine structures in spectral CT images [33]. Wu et al. introduced a weight-bilateral
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image gradient with an L0 norm constraint into the tensor decomposition model, reducing
artifacts and noise in spectral CT images [34]. Chen et al. proposed a fourth-order non-local
tensor decomposition reconstruction algorithm, which introduced weighted kernel and TV
norm to constraint each fourth-order tensor unit, and efficiently removed noise and artifacts
from the image [35]. Compared to algorithms based on tensor dictionary learning, tensor
decomposition does not require pre-training a global tensor dictionary, thereby avoiding
the instability caused by the dependency of the tensor dictionary on the quality of the
training datasets.

In the tensor approach, only the low-rankness and sparsity of the spatial-spectral
domain are considered, neglecting the sparsity in the individual image space domain,
which can lead to artifacts in the images. To further enhance the sparsity constraint in
the image domain, several common regularization terms have been introduced into the
reconstruction model, such as TV [9], adaptive weighted TV [36], and the image gradient
L0 norm [25]. However, TV tends to cause staircasing artifacts. Compared to TV, the
image gradient L0 norm performs better, as it enhances the image’s ability to preserve
edges and suppress noise. But the effectiveness of algorithms based on the L0 norm of
the image gradient assumes that the image is sparse in the gradient domain. However,
spectral CT images may contain streaking artifacts such as beam hardening and sparse-view
artifacts, which weaken the sparsity of the image in the gradient domain and degrade image
quality [37]. TGV uses higher-order derivatives and introduces two penalty terms: one for
smoothing large-scale variations in the image and the other for preserving small-scale detail
information. Therefore, the TGV regularization term can better adapt to different image
structures and noise levels, which enables the reconstruction algorithm to have better noise
and artifact suppression capabilities [38]. As an edge preservation constraint, TGV has
improved the performance of iterative CT reconstruction algorithm in the presence of noise
or sparse-view projection [39].

Based on the above considerations, to overcome TDL’s limitations and enhance the
sparsity constraint in the image spatial domain in spectral CT reconstruction, we developed
a tensor decomposition-based spectral CT image reconstruction model with TGV constraint
(TDTGV). Firstly, the algorithm utilizes the non-local similarity features of the image to
build a fourth-order tensor volume. Then Canonical Polyadic (CP) tensor decomposition
is used to explore the spectral image correlations in the different channels, replacing the
pre-trained tensor dictionary. Furthermore, in order to enhance the constraints in the
image domain and improve image quality, the TGV regularization term is introduced to
represent the spatial sparsity features, as the use of higher-order derivatives can better
adapt to different image structures and noise levels, enhancing the ability to suppress noise
and artifacts.

This paper’s main contribution is threefold. First, the proposed algorithm uses tensor
decomposition replacing pre-trained tensor dictionaries to explore the inherent relation-
ships within the image, addressing the instability caused by the dependency of tensor
dictionaries on the quality of training datasets. Second, a high-order TGV regularization
term is introduced to strengthen the constraints in the image domain. In comparison to TV
constraints and the L0 norm of image gradients, TGV could suppress artifacts and enhance
the quality of the reconstructed image effectively. Finally, the proposed reconstruction
model is solved by an efficient split-Bregman algorithm.

The paper is arranged as follows: Section 2 briefly reviews the associated mathe-
matical foundations. Section 3 presents the mathematical model and the solution of the
proposed algorithm. Section 4 reports on both numerically simulated and preclinical
dataset experiments. Finally, Section 5 presents the conclusion and discussion.

2. Mathematical Fundamental Theory
2.1. Canonical Polyadic Tensor Decomposition

Tensor is a multidimensional data array. N-order tensor could be denoted as X ∈
RI1×I2×···×Ik×···×IN , in which Ik represents the kth dimension length (k = 1, 2, . . . N). Elements
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of X are denoted as xi1i2···iN (1 ≤ ik ≤ Ik, k = 1, 2, . . . N). A tensor can be multiplied with a
vector or a matrix. The mode-k product (k = 1, 2, . . ., N) of a tensor X by a matrix P ∈ RJ×Ik

is denoted by X ×k P ∈ RI1×···×Ik−1×J×···×Ik+1×···×IN , whose element in (i1, ···, ik−1, j, ik+1,
···, iN) is computed by ∑Ik

ik=1 xi1i2···iN pjik .
CP tensor decomposition is a decomposition method for higher-order tensors, com-

monly used for dimensionality reduction and pattern analysis of multi-dimensional data,
and has become a powerful tool for handling high-order data [40]. In CP decomposition, a
higher-order tensor can be decomposed into a sum of several low-rank tensors, which can
be represented as follows:

X ≈
J

∑
j=1

µjx1j ◦ x2j . . . ◦ xnj ◦ . . . ◦ xNj = [µ; X1, X2, . . . , Xn, . . . XN ] (1)

where µj represents the column normalization coefficients, and J is a positive integer
denoting the number of low-rank tensors in the decomposition, which controls the sparsity
level of the representation, µ =

[
µ1, µ2 . . . µJ

]
∈ RJ , Xn =

[
xn1, xn2 . . . xnJ

]
∈ RIn×J . The

goal of CP decomposition is to find suitable xj and corresponding weights such that the
tensor obtained through this decomposition approximates the original tensor X . This
decomposition helps in understanding the underlying structures and patterns in the data,
making it widely applicable in fields such as signal processing, image processing, and
recommendation systems.

2.2. Image Restoration Based on Canonical Polyadic Tensor Decomposition

Similar to tensor dictionary learning, tensor decomposition can also be applied to
image restoration, which can be denoted as follows:

min
X ∗
∥X −X ∗∥2

F s.t.X ∗ = [µ; X1, X2, . . . , Xn, . . . , XN ] (2)

where X and X ∗ are both image tensors, which represent the noisy image and the image
to be restored, respectively. The optimization aims to minimize the error between X and
its estimate X ∗. The recovery of X ∗ can be obtained using the alternating least squares
(ALS) method [27], which is completed by solving alternately for each Xn while keeping
the other factor matrices fixed. The optimization process stops when a certain condition is
met. To elaborate further, we introduce two different expressions:

X (n) = XnQT
n (3)

(X1 ⊕X2)
∧ =

((
XT

1 X1

)
∗
(

XT
2 X2

))∧
(X1 ⊕X2)

T (4)

where X(n) represents the mode-n unfolding of tensor X , Qn = XN ⊕ . . . Xn+1⊕Xn−1 . . .⊕
X1, ⊕ denotes the Khatri–Rao product, and “ˆ” indicates the Moore–Penrose pseudoinverse
operator. Considering Equation (3), we can reformulate the update of X*

n in Equation (2)
as follows:

min
X∗n

∥∥∥X (n) −X∗nQT
n

∥∥∥2

F
, s.t.X∗n = Xn · diag(µ), n = 1, . . . N (5)

Equation (5) represents a linear least squares problem, which can be iteratively solved
using Equation (6):

X∗n = X (n)

[
QT

n

]∧
(6)

To reduce the computational cost of computing the pseudoinverse, X*
n can be updated

using Equation (7) [27]:

X∗n = X (n)(XN ⊕ . . . Xn+1 ⊕Xn−1 . . .⊕X1) ·
(

XT
1 X1 ∗ . . . XT

n−1Xn−1 ∗XT
n+1Xn+1 ∗ . . . ∗XT

NXN

)∧
(7)
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Subsequently, normalize the columns of X*
n to obtain Xn, and compute µj using

Equation (8):
µj =

∥∥∥x∗nj

∥∥∥
2

(8)

After updating {X∗n}
N
n=1, the solution for X can be obtained according to Equation (1).

Algorithm 1 summarizes the implementation algorithm for the CP decomposition using
the ALS method.

Algorithm 1: CP decomposition using ALS algorithm implementation process.

Input: CP decomposition parameters L, ε, K; X
Initialize: Xn =

[
xn1, xn2 . . . xnJ

]
∈ RIn×J

While the termination condition is not satisfied, execute the loop:
for n = 1: N
(1) update Yn ← XT

1 X1 ∗ . . . XT
n−1Xn−1 ∗XT

n+1Xn+1 ∗ . . . ∗XT
NXN

(2) Compute X*
n according to Equation (7)

(3) Obtain Xn by normalizing the columns of X*
n

(4) Compute µj according to Equation (8)
end for
end while
output: X ∗ = [µ; X1, X2, . . . , Xn, . . . , XN ]

2.3. Total Generalized Variation

Total generalized variation (TGV) is an algorithm for image denoising, which was first
proposed by Bredies et al. in 2010 [41]. Unlike TV, which only considers first-order deriva-
tives, TGV has an order greater than or equal to two, involving higher-order derivatives.
This allows TGV to represent image edges, textures, and other detailed information more
effectively, resulting in better performance in image denoising tasks.

Mathematically, the TGV of an image u can be defined as follows:

TGVn
α (u) = sup

{∫
Ω

u divn ν dx
∣∣∣ν ∈ Cn

c

(
Ω, Symn

(
Rl
))

, ∥divqν∥∞ ≤ αq, q = 0, . . . n− 1
}

(9)

where Ω represents a bounded domain, div denotes the divergence operator, n represents
the order of TGV, v indicates the dual variable, Rl denotes the l-dimensional real space,
α = (α0, α1, . . . αn−1) represents the positive weight of TGV, and Symn

(
Rl
)

represents the
symmetric tensor space. For each β ∈ Mn−1, the q-divergence of the symmetric tensor
space can be expressed as follows:

(divqv)β = ∑γ∈Mq

q!
γ!

∂qvβ+γ

∂xγ
(10)

where Mn =
{

β ∈ Nl
∣∣∣∑l

i=1 βi = n
}

represents the n-th order multi-index. The ∞-norm of
v is denoted as follows:

∥v∥∞ = sup
x∈Ω


(

∑
β∈Mn

n!
β!

vβ(x)2

) 1
2
 (11)

In this study, we focus on the second-order TGV, which can be expressed as follows:

TGV2
α (u) = sup

{∫
Ω

u div2 v dx
∣∣∣v ∈ C2

c

(
Ω, Sl×l

)
, ∥v∥∞ ≤ α0, ∥div v∥∞ ≤ α1

}
(12)
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where Sl×l represents the symmetric l × l matrix space, α = (α0, α1) is a positive constant,
and the first- and second-order divergence calculation formulas for Sl×l are expressed
as follows: 

(div)i =
l

∑
j=1

∂vij
∂xj

div2v =
l

∑
i=1

∂2vii
∂x2

i
+ 2 ∑

i<j

∂2vij
∂xi∂xj

(13)

Similarly, the ∞-norm in Equation (11) can be expressed as follows:
∥v∥∞ = sup

x∈Ω

(
l

∑
i=1
|vii(x)|2 + 2 ∑

i<j

∣∣vij(x)
∣∣2) 1

2

∥div v∥∞ = sup
x∈Ω

 l
∑

i=1

∣∣∣∣∣ l
∑

j=1

∂vij
∂xj

(x)

∣∣∣∣∣
2
 1

2
(14)

Furthermore, the second-order TGV can be reformulated as follows:

TGV2
α (u) = min

w
α1

∫
Ω
|∇u− w|dx + α2

∫
Ω
|ε(w)|dx (15)

The minimum value is obtained over all vector fields Ω. ε(w) is the weakly symmetric
derivative, which can be computed using equation ε(w) =

(
∇w +∇wT)/2. From the

definition of the second-order TGV in Equation (15), it can be observed that for an image u,
the second derivative ∇2u has smaller values in smooth regions, which can be minimized
by setting w = ∇u according to Equation (15). Since ∇2u is large near edges, setting w = 0
in these regions works well for minimization. Thus, TGV2

α can explicitly describe gradient
information in edge regions by setting the first derivative. Although this argument is
intuitively valid, the actual minimum value of w can lie anywhere between 0 and ∇u [42].
Additionally, the first- and second-derivative terms can be balanced using weights α1 and
α2, and no significant staircasing artifacts are introduced by the second-derivative term.

3. Methods
3.1. Reconstruction Model

In spectral CT reconstruction, TDL-based algorithms have improved image quality,
but they still face some challenges: The performance of tensor dictionaries depends heavily
on the quality of the training samples. However, acquiring high-quality training samples is
challenging in practice, which can compromise the accuracy of the global tensor dictionaries,
degrade the quality of the reconstructed images, and make it easier to lose minute image
structures. To address this issue, this paper proposes a tensor decomposition-based spectral
CT image reconstruction model with a TGV constraint algorithm. This algorithm employs
CP tensor decomposition instead of pre-trained tensor dictionaries, thereby avoiding
the instability caused by the dependence of tensor dictionaries on the quality of training
datasets. This study only considers a third-order tensor X ∈ RN1×N2×C. In the construction
of the tensor volume, the non-local similarity features of the image are exploited to cluster
all similar tensors into a group of fourth-order tensors; the process of grouping tensor
volumes is shown in Figure 1.

Specifically, we first extract overlapping small tensors of size NW × NH × C from
the image tensor X (NW = NH = 8, C stands for the number of energy channels, which
is equal to 8 in the paper). The above process yields a set of tensor blocks denoted by
Y ∈ RNW×NH×C×P, where P represents the total number of tensor blocks extracted. Next,
these tensor blocks are divided into Q groups. Each group comprises Nq small tensor
blocks denoted as Tq(X ) ∈ RNW×NH×C×Nq , and Tq(X ) denotes the extraction operation
for a block. To ensure the similarity of tensors within each group, we employ the k-means
algorithm, which iteratively searches for tensors that exhibit similar characteristics and
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assigns them to the corresponding group. Once the tensor blocks are grouped, the CP
tensor decomposition is applied to the fourth-order tensors within each group to explore
the intrinsic correlations and latent structures within the image.
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To further improve the ability to preserve image structure and better suppress artifacts
and noise, this paper introduces a TGV regularization term in the single energy channel.
The specific reconstruction model constructed in this paper is given by Equation (16):

argmin
X ,{T∗q (X )}Q

q=1

1
2

C
∑

c=1
||Axc − pc ||22 +

C
∑

c=1
TGV2

α (xc) +
λ
2 (

Q
∑

q=1

∥∥∥Tq(X )− T∗q(X )
∥∥∥2

F
)

s.t. T∗q(X ) = [λq; X1, X2, X3, X4]

(16)

where xc and pc are the vectorized images and projections for the c-th channel, respectively,
and A is the system matrix. The TGV regularization term uses a second-order discrete form,
which can be expressed as follows:

TGV2
α (u) = min

w
α1∥Du− w∥1 + α2∥ε(w)∥1 (17)

where α1 and α2 are two positive regularization factors used to balance the minimization
process. u represents the image, and D = (D1, D2) represents the first-order differential
gradient operators in the x and y directions of the image. w = (w1, w2) represents a
two-dimensional tensor function, and ε is the symmetric gradient operator, which can be
expressed as follows:

ε(w) =

(
D1w1

D2w1+D1w2
2

D2w1+D1w2
2 D2w2

)
(18)

Substituting Equation (17) into Equation (16), we can obtain the final algorithmic
reconstruction model, which can be expressed as follows:
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argmin
X ,{T∗q (X )}Q

q=1

1
2

C
∑

c=1
||Axc − pc ||22 +

C
∑

c=1
(α1∥Dxc − w∥1 + α2∥ε(w)∥1) +

λ
2 (

Q
∑

q=1

∥∥∥Tq(X )− T∗q(X )
∥∥∥2

F
)

s.t. T∗q(X ) = [λq; X1, X2, X3, X4]

(19)

where X ∈ RN1×N2×C is the third-order tensor of the spectral CT image to be reconstructed,
with N1 and N2 representing the width and height of the reconstructed image, respectively.
The corresponding projection data tensor is denoted as P ∈ RJ1×J2×C, with J1 representing
the number of detectors and J2 representing the number of projection views. The first
term is the data fidelity term, the second term is the second-order TGV regularization
constraint, which is used to suppress noise and artifacts while restoring image details, and
the third term is the tensor decomposition, which aims to preserve the structure of the
reconstructed image. α1, α2, and λ are parameters that balance the data fidelity term and
the regularization terms, while q and Tq represent the group number and block extraction
operations, respectively.

3.2. Solution

To further solve Equation (19), we decompose the problem and alternatingly solve the
following subproblems:

Subproblem 1:

argmin
X

1
2

C

∑
c=1
||Axc − pc ||22 +

C

∑
c=1

(α1∥Dxc − w∥1 + α2∥ε(w)∥1) +
λ

2
(

Q

∑
q=1

∥∥∥∥Tq(X )−
(

T∗q(X )
)(k)∥∥∥∥2

F
) (20)

Subproblem 2:

argmin
{T∗q (X )}Q

q=1

λ

2
(

Q

∑
q=1

∥∥∥Tq

(
X (k+1)

)
− T∗q(X )

∥∥∥2

F
) s.t. T∗q(X ) = [λq; X1, X2, X3, X4] (21)

where k represents the current iteration number, and we will solve each subproblem separately.
To effectively solve subproblem 1, the split-Bregman algorithm can be used [43]. First,

we introduce two auxiliary variables y and z, and Equation (20) can be rewritten as a
constrained optimization model, which can be expressed as follows:

argmin
X ,{yc ,zc}C

c=1

1
2

C
∑

c=1
||Axc − pc ||22 +

C
∑

c=1
(α1∥Dxc − wc∥1 + α2∥ε(wc)∥1) +

λ
2 (

Q
∑

q=1

∥∥∥∥Tq(X )−
(

T∗q(X )
)(k)∥∥∥∥2

F
)

s.t. yc = Dxc − wc, zc = ε(wc), c = 1, . . . C

(22)

where yc and zc are the auxiliary matrices corresponding to each channel (c = 1, . . ., C), and
yc ∈ RN1×N2 , zc ∈ RN1×N2 . Using the augmented Lagrangian function [44], Equation (22)
can be transformed into the following unconstrained mathematical model, which can be
expressed as follows:

L(X , wc, zc, yc, tc, bc) = argmin 1
2

C
∑

c=1
||Axc − pc ||22 +

C
∑

c=1
(α1∥yc∥1 + α2∥zc∥1) +

λ
2 (

Q
∑

q=1

∥∥∥∥Tq(X )−
(

T∗q(X )
)(k)∥∥∥∥2

F
)

+ µ1
2

C
∑

c=1
∥yc − (Dxc − wc)− tc∥2

F +
µ2
2

C
∑

c=1
∥zc − ε(wc)− bc∥2

F

(23)

where tc and bc are the error feedback matrices corresponding to each channel (c = 1, . . ., C),
and tc ∈ RN1×N2 , bc ∈ RN1×N2 . µ1 and µ2 are the Lagrangian multipliers. Similarly,
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applying the alternating direction method of multipliers (ADMM) algorithm to Equation
(23) [45], we can further alternately solve the following subproblems:

X k+1 = argminL
(
X , wk

c , zk
c , yk

c , tk
c1, tk

c2

)
wk+1

c = argminL
(
X k+1, wc, zk

c , yk
c , tk

c1, tk
c2

)
zk+1

c = argminL
(
X k+1, wk+1

c , zc, yk
c , tk

c1, tk
c2

)
yk+1

c = argminL
(
X k+1, wk+1

c , zk+1
c , yc, tk

c1, tk
c2

)
tk+1
c = tk+1

c − µ1

(
yk+1

c − Dxk+1
c + wk+1

c

)
bk+1

c = bk+1
c − µ2

(
zk+1

c − ε
(

wk+1
c

))
(24)

where k represents the iteration number. The aforementioned minimization model is
a multivariate function that needs to be optimized, and it can be minimized using an
alternating approach.

The subproblem for X can be written as follows:

X k+1 = argmin
X

1
2

C

∑
c=1
||Axc − pc ||22 +

λ

2
(

Q

∑
q=1

∥∥∥∥Tq(X )−
(

T∗q (X )
)(k)∥∥∥∥2

F
) +

µ1
2

C

∑
c=1

∥∥∥yk
c − (Dxc − wk

c)− tk
c1

∥∥∥2

F
(25)

The solution to Equation (25) can be obtained using Equation (26):

xijc
k+1 = xijc

k −

[AT A]ij,+, λ[∑
q

Tq
TTq]

ijc

,+, µ1

2

∑
m=1

DT
mDm

−1
 [AT(Axc

k − pc)]ij + µ1
2
∑

m=1
DT

m
(

Dmxc
k − wk

c − yk
c − tc1

k)
ij

+λ[∑
q

Tq
T
(

Tq

(
X k
)
−
(

T∗q (X )
)k
)
]
ijc

 (26)

Adjusting the values of λ and µ1 can balance the data fidelity term and the sparse
representation regularization term. Since the TGV regularization term constrains the image
domain separately, the optimization models for the subproblems wc, yc, zc, tc, and bc can be
solved for a specific channel c. The detailed solution process for wc, yc, zc, tc, and bc can be
found in Appendix A.

Next, we will solve subproblem 2. Since each group is independent during the
optimization process, Equation (21) can be written as follows:

argmin
{T∗q (X )}Q

q=1

∥∥∥Tq

(
X (k+1)

)
− T∗q (X )

∥∥∥2

F
s.t. T∗q (X ) = [λq; X1, X2, X3, X4] (27)

The solution process can utilize the CP decomposition ALS algorithm introduced in Section 2.2

to obtain T∗q
(
X k+1

)
. Finally, the complete TDTGV algorithm process is presented in Algorithm 2.

Algorithm 2: Process of the proposed TDTGV algorithm

Input: Parameters ε, K, L, Q, α1, α2, µ1, µ2, λ

Initialization: X (0), w, y, z, t, b
while not satisfy the stopping criteria

do
Normalize the projection data;
Update the tensor image X k+1 using Equation (26);
Update wc1

k+1, wc2
k+1 using Equation (A3);

Update yc
k+1 using Equation (A5);

Update zc
k+1 using Equation (A8);

Update tc
k+1 and bc

k+1 using Equation (24);

Update
{

T∗q
(
X k+1

)}Q

q=1
using Algorithm 1;

Non-negative constraints to the tensor image X k+1;
end while
Output: Reconstructed spectral CT image X
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4. Results
To verify the feasibility and effectiveness of the proposed algorithm, experiments were conducted

on both simulated data and real datasets. The comparison methods include the SART algorithm,
TVM algorithm, the L0TDL algorithm [25], and the ESC-TDL algorithm [26]. All programming was
conducted using MATLAB (2019a), and the computer hardware specifications were 32 GB RAM,
Intel(R) Core (TM) i7 9800X @ 3.8 GHz CPU. For all iterative algorithms, the initial image was set to 0.
The number of iterations for both numerical simulation and real data experiments was set to 100.

4.1. Study of Numerical Simulation
For the numerical simulation experiment, we utilized a digital thoracic model of mice with a

1.2% iodine contrast agent added to the blood, as depicted in Figure 2. The phantom mainly consists
of three parts: soft tissue, bone, and iodine. The X-ray source had a tube voltage of 50 kVp, and the
energy spectrum was divided into eight channels: [16, 22) keV, [22, 25) keV, [25, 28) keV, [28, 31) keV,
[31, 34) keV, [34, 37) keV, [37, 41) keV, and [41, 50) keV, as depicted in Figure 3. The experiment was
conducted using an equidistant fan-beam scan. The specific data simulation parameters were set in
Table 1. A total of 640 projections were collected in a complete 360◦ full-view scan. In an X-ray path,
the number of photons was set to 5000.
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Figure 2. (a) A digital thoracic model of mice with iodine contrast and (b) decomposed image of
material: bone (red), soft tissue (green), and iodine contrast (blue).
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Figure 3. 50 kVp spectrum curve: Different colors represent the segmented ranges of the energy spectrum.

To evaluate the performance of the proposed algorithm, this paper reconstructed images at
projection views of 160 and 80 for all algorithms. The ground truth image was reconstructed from
noise-free full-scan projections using the FBP algorithm. For simplicity, this work only displays
three representative energy channels: channel 1, channel 4, and channel 8. Selecting algorithm
parameters is a challenging task in iterative algorithms. In this experiment, the algorithm parameters
were selected based on extensive experimental experience. For the 160 and 80 views reconstruction,
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the fixed parameter L is 32, K is 50, ε is 10−4, and the remaining reconstruction parameters are given
in Table 2.

Table 1. Parameters setting of the simulation projection.

Number Parameter Value

1 Distance from X-ray source to PCD 180 mm

2 Distance from X-ray source to rotation center 132 mm

3 Detectors number 512

4 Detector element size 0.1 mm

5 Reconstructed image size 256 × 256 × 8

6 Size of each pixel 0.15 mm

Table 2. The simulation experiment parameters setting.

Photon
Numbers

Projection
View λ α1 α2 µ1 µ2 Q

Simulation
experiment 5000

80 5.1 × 103 1 3 3 × 104 20 128
160 2.7 × 103 0.7 2.5 2.4 × 104 20 128

Figures 4 and 5 show the images reconstructed using SART, TVM, L0TDL, ESC-TDL, and
the proposed algorithm TDTGV at 160 and 80 views, respectively. In the figures, the three rows
represent the reconstruction results of various methods for channels 1, 4, and 8. It can be observed
from the figures that the proposed algorithm can achieve higher-quality images. Specifically, under
the simultaneous sparse view and low-dose conditions, the reconstructed images obtained by the
SART algorithm are contaminated by significant noise and obvious artifacts, resulting in the worst
reconstruction performance, as shown in Figure 4(b1–b3) and Figure 5(b1–b3). The TVM algorithm
improves the reconstruction results, but there is still a problem of image blurring, especially in
high-energy channels, as shown in Figure 4(c1–c3) and Figure 5(c1–c3). The L0TDL and ESC-TDL
algorithms improve the edge protection ability of the images to some extent; however, due to the
instability of tensor dictionary training samples, the recovery ability of fine image structures needs
to be improved, as shown in Figure 4(d1–d3,e1–e3) and Figure 5(d1–d3,e1–e3). Compared to the
previous algorithms, it can be seen from Figure 4(f1–f3) and Figure 5(f1–f3) that the proposed TDTGV
algorithm performs better in terms of image structure protection and detail recovery.
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Figure 5. Images representing a thoracic model of mice reconstructed from 80 projections using dif-
ferent methods: (a1–a3) Ground Truth, (b1–b3) SART, (c1–c3) TVM, (d1–d3) L0TDL, (e1–e3) ESC-
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Figure 4. Images representing a thoracic model of mice reconstructed from 160 projections using
different methods: (a1–a3) Ground Truth, (b1–b3) SART, (c1–c3) TVM, (d1–d3) L0TDL, (e1–e3) ESC-
TDL, and (f1–f3) TDTGV. From top to down, the display windows are [0, 0.25] cm−1, [0, 0.1] cm−1,
and [0, 0.06] cm−1, respectively.
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Figure 5. Images representing a thoracic model of mice reconstructed from 80 projections using dif-
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Figure 5. Images representing a thoracic model of mice reconstructed from 80 projections using
different methods: (a1–a3) Ground Truth, (b1–b3) SART, (c1–c3) TVM, (d1–d3) L0TDL, (e1–e3) ESC-
TDL, and (f1–f3) TDTGV. From top to down, the display windows are [0, 0.25] cm−1, [0, 0.1] cm−1,
and [0, 0.06] cm−1, respectively.

To facilitate a more detailed comparison of the reconstructed images, we selected two regions of
interest (ROIs) in Figures 4 and 5 and enlarged them to compare the reconstruction results further.
The selection of ROIs is shown in Figure 4(a1) and Figure 5(a1), marked by red boxes labeled as
regions A, B, C, and D, respectively. The enlarged results are displayed in the red boxes in Figures 4
and 5. By comparing the reconstruction results of each algorithm in the enlarged ROIs, it is evident
that the proposed algorithm can successfully recover more small image structures, as indicated by
the arrows, further verifying the advantages of the proposed algorithm.

To verify the accuracy of different algorithms in reconstructed images, grayscale profiles were
plotted for two regions in Figure 2a: horizontal (red line) and vertical (yellow line). In this case, the
reconstruction results at 160 projection views were selected for analysis, and the grayscale profiles for
channel 1 and channel 8 were plotted, as shown in Figures 6 and 7, respectively. From the grayscale
profiles in the figures, it can be observed that the results reconstructed by the TVM algorithm exhibit
large oscillations, particularly in channel 8. The results of the other algorithms are better than those
of TVM, but upon comparing the profiles of the two regions, it is evident that the proposed algorithm
exhibits the highest level of reconstruction accuracy, which is closer to the ground truth.
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To further demonstrate the accuracy of the proposed TDTGV algorithm in reconstructing
images globally, Figure 8 shows the absolute difference images between the reconstructed images
and the ground truth image. As can be observed from Figure 8, the difference between the images
reconstructed by the SART algorithm and the reference image is the largest, followed by TVM,
L0TDL, and ESC-TDL. Compared to the above algorithms, the TDTGV algorithm can achieve results
closer to the original image in the global domain, further demonstrating the advantage of the
TDTGV algorithm.
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Next, three commonly used indicators such as PSNR (Peak Signal-to-Noise Ratio), RMSE (Root
Mean Square Error), and SSIM (Structural SIMilarity) are utilized for quantitative comparison of the
performance of each algorithm. In general, a smaller RMSE value and larger SSIM and PSNR values
indicate that the reconstruction result is closer to the ground truth image. The indicator calculations
are shown in Table 3. From the values in the table, it can be seen that the proposed TDTGV algorithm
achieves the optimal values in all three indicators, meaning that the TDTGV algorithm performs best,
further demonstrating its superiority.

Table 3. Index comparison of reconstruction results of different algorithms.

Views
Method

Channel RMSE SSIM PSNR

1st 4th 8th 1st 4th 8th 1st 4th 8th

80

SART 0.2407 0.2019 0.1731 0.6767 0.6446 0.5498 15.71 0.6167 0.5266
TVM 0.1646 0.1324 0.0436 0.9167 0.8985 0.8752 19.02 0.8831 28.16

L0TDL 0.1277 0.0624 0.0265 0.9431 0.9329 0.9204 28.78 0.9217 39.25
ESC-TDL 0.1216 0.0584 0.0213 0.9501 0.9437 0.9255 30.02 39.17 41.37
TDTGV 0.1032 0.0419 0.0181 0.9656 0.9519 0.9375 31.18 40.67 43.65

160

SART 0.2198 0.1602 0.1511 0.7867 0.6993 0.6249 16.57 24.17 26.78
TVM 0.1486 0.1028 0.0372 0.9313 0.9043 0.8982 20.25 29.16 32.84

L0TDL 0.1125 0.0573 0.0207 0.9601 0.9551 0.9364 30.41 38.91 40.93
ESC-TDL 0.1075 0.0433 0.0187 0.9672 0.9600 0.9394 30.87 40.11 42.75
TDTGV 0.0852 0.0349 0.0104 0.9740 0.9644 0.9487 32.36 41.73 44.25
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Figure 9 shows the average attenuation coefficients and relative deviations of bone, soft tissue,
and iodine contrast agents in each channel reconstructed with 160 projection views to verify the
reconstruction performance of the algorithms. The first row shows the relative deviations of three
basic materials, and the second row shows the average attenuation coefficients. The reference mean
values were obtained by reconstructing the noise-free projection data using the FBP algorithm.
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(a,d), soft (b,e), and iodine contrast (c,f).

The figure shows that TDTGV performs better in the average attenuation coefficients and
relative deviations of three basic materials. Concretely speaking, for the decomposition of bone,
as could be observed from Figure 9a, the TVM algorithm leads to the highest relative bias (about
8% in channel 8) and is then followed by L0TDL, ESC-TDL. The proposed TDTGV algorithm has a
relative deviation of less than 1.5% in all channels, which obtains the most accurate mean values.
For the decomposition of soft tissue, as can be seen in Figure 9b, the relative deviations of the
four algorithms are all below 1%; however, in all channels, the proposed algorithm TDTGV achieves
the smallest decomposition error. Regarding the iodine contrast agent, as shown in Figure 9c, the
relative deviations of the four algorithms do not exceed 3%, while the proposed algorithm has a
relative deviation of less than 1.8% for iodine in each channel. Overall, the proposed algorithm
achieves relatively accurate reconstruction results in all channels.

In addition, to further compare the capabilities of different algorithms in material component
characterization, the spectral CT images reconstructed by SART, TVM, L0TDL, ESC-TDL, and TDTGV
are characterized into the three basis materials. Taking the reconstruction results with 160 projection
views as an example, Figure 10 shows the final results and the color representation images of the
three basis materials. From the figure, it can be observed that in the bone region, the proposed method
and the L0TDL algorithm achieve high characterization accuracy; for the iodine contrast agent region,
SART, TVM, L0TDL, and ESC-TDL all mistakenly classify some bone pixels as iodine components
to some extent, while the proposed algorithm achieves relatively accurate characterization; for soft
tissue, as can be seen from the second column, the proposed algorithm has high characterization
accuracy (indicated by the red arrow), outperforming the other algorithms.

Table 4 presents the quantitative analysis results of RMSE for the characterization of the
three basis material components. It can be seen from the table that the proposed TDTGV algo-
rithm achieves the lowest RMSE values in all three basis material component characterizations,
further verifying the accuracy of the proposed algorithm in material component characterization.
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Figure 10. Material decomposition results from 160 views. The different color areas represent the
corresponding basic materials: (red) Bone, (green) Soft tissue, (blue) Iodine contrast agent. The
display windows are [0, 0.2] cm−1, [0, 1] cm−1, and [0, 0.5] cm−1, respectively.

Table 4. RMSE values for decomposed materials of three base components.

Algorithm Bone Soft Tissue Iodine Contrast
Agent

RMSE

SART 0.0894 0.1690 0.1029
TVM 0.0426 0.1131 0.0510

L0TDL 0.0141 0.0429 0.0289
ESC-TDL 0.0182 0.0420 0.0258
TDTGV 0.0113 0.0408 0.0233

To compare the convergence of various reconstruction algorithms, Figure 11 shows the con-
vergence of different algorithms and plots the relationship between the RMSE values and iteration
numbers. It can be observed from the figure that the proposed algorithm could converge and
simultaneously achieve the smallest RMSE value.
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4.2. Study of Actual Clinical Mice
In order to further verify the advantage of the TDTGV algorithm, experiments were conducted

on actual clinical mice. A mouse injected with 0.2 mL of 15 nm Aurovist II gold nanoparticles
(GNPs) (Nanoparticles; Yaphank, NY, USA) was used (mouse data provided by the MARS team
in New Zealand). The actual data projection parameters are set as shown in Table 5. In a full scan,
371 projections were uniformly acquired. The X-ray source was 120 kVp and was divided into
13 energy channels. The spectral CT images are third-order tensors of size 256 × 256 × 13, with an
area of 18.41 × 18.41 mm2.

Table 5. Parameters setting of the real projection.

Number Parameters Values

1 Distance from X-ray source to PCD 255 mm

2 Distance from X-ray source to rotation center 158 mm

3 Detectors number 512

4 Detector element size 55 µm

5 Reconstructed image size 256 × 256 × 13

In this experiment, images were reconstructed at projection views of 120 and 60 to verify the
algorithm’s performance under sparse views. In the following experiments, only three typical energy
channels (channels 1, 7, and 13) will be displayed. The algorithm parameters used in the experiment
are as follows: the fixed parameter L is set to 64, K is set to 50, ε is set to 10−4, and the remaining
reconstruction parameters are shown in Table 6.

Table 6. Parameters setting of the real experiment.

Photon
Numbers

Projection
View λ α1 α2 µ1 µ2 Q

Real
experiment

---- 60 5.5 × 103 1.4 3.6 3.8 × 104 30 256
120 3 × 103 1 3.1 2.9 × 104 30 256

Figures 12 and 13 show the images reconstructed using SART, TVM, L0TDL, ESC-TDL, and
the proposed algorithm TDTGV at 120 and 60 views, respectively. From the figures, it could be
seen that the SART algorithm reconstructs images with severe noise and artifacts, resulting in the
loss of image details. The TVM algorithm exhibits image blurring in soft tissue regions, as shown
in Figure 12(b1–b3) and Figure 13(b1–b3). The L0TDL and ESC-TDL algorithms improve the edge
protection of images to some extent, but they also suffer from the loss of some fine image structures,
as illustrated in Figure 12(c1–c3,d1–d3) and Figure 13(c1–c3,d1–d3). In comparison to the previous
algorithms, the proposed TDTGV algorithm performs best in terms of reconstructed image quality, as
shown in Figure 12(e1–e3) and Figure 13(e1–e3), recovering more fine structures. At the same time, it
can be observed from the enlarged views of regions B and D in the figures that the TDTGV algorithm
can effectively suppress artifacts that appear near bones, as indicated by arrows “1”, “2”, “3”, and “4”.

In order to further verify the effectiveness of the algorithm proposed in this paper, regions of
interest A and C were extracted from Figures 12 and 13 and enlarged for separate display in Figure 14.
From the enlarged images of the regions of interest, it can be observed that the image quality obtained
by reconstructing with SART and TVM algorithms is relatively low, making it difficult to distinguish
the image structures indicated by the red arrows. For the image structure indicated by red arrow “6”,
the reconstruction using the L0TDL algorithm appears blurred, while the ESC-TDL algorithm and
the TDTGV algorithm yield clearer image structures. However, the ESC-TDL algorithm also exhibits
some blurriness for the image structure shown by red arrow “5”. For the bone structure indicated by
arrow “7”, all compared algorithms exhibit varying degrees of blurriness. In comparison, the TDTGV
algorithm yields a clearer structure, further verifying the effectiveness of the proposed algorithm.

To demonstrate the ability of algorithms in material component characterization, the spectral
CT images reconstructed using SART, TVM, L0TDL, ESC-TDL, and the proposed TDTGV algorithm
were characterized into three basis materials. Taking the images reconstructed with 120 projection
views as an example, the results and corresponding color images are displayed in Figure 15.
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Figure 13. Images representing actual clinical mice reconstructed from 60 projections using different 
methods: (a1–a3) SART, (b1–b3) TVM, (c1–c3) L0TDL, (d1–d3) ESC-TDL, and (e1–e3) TDTGV. The 
display windows are [0, 0.08] cm−1. 

Figure 12. Images representing actual clinical mice reconstructed from 120 projections using different
methods: (a1–a3) SART, (b1–b3) TVM, (c1–c3) L0TDL, (d1–d3) ESC-TDL, and (e1–e3) TDTGV. The
display windows are [0, 0.08] cm−1.

Electronics 2024, 13, x FOR PEER REVIEW 18 of 25 
 

 

and ESC-TDL algorithms improve the edge protection of images to some extent, but they also 
suffer from the loss of some fine image structures, as illustrated in Figures 12(c1–c3,d1–d3) 
and 13(c1–c3,d1–d3). In comparison to the previous algorithms, the proposed TDTGV al-
gorithm performs best in terms of reconstructed image quality, as shown in Figures 12(e1–
e3) and 13(e1–e3), recovering more fine structures. At the same time, it can be observed 
from the enlarged views of regions B and D in the figures that the TDTGV algorithm can 
effectively suppress artifacts that appear near bones, as indicated by arrows “1”, “2”, “3”, 
and “4”. 

SART TVM L0TDL ESC-TDL TDTGV

ROI A

(a1) ROI B

1
2

(a2)

(a3)

(b1)

(b2)

(b3)

(c1)

(c2)

(c3)

(d1)

(d2)

(d3)

(e1)

(e2)

(e3)

(Channel 1)

(Channel 7)

(Channel 13)

 
Figure 12. Images representing actual clinical mice reconstructed from 120 projections using differ-
ent methods: (a1–a3) SART, (b1–b3) TVM, (c1–c3) L0TDL, (d1–d3) ESC-TDL, and (e1–e3) TDTGV. 
The display windows are [0, 0.08] cm−1. 

(b1)

TVM L0TDL ESC-TDL TDTGV

(a2)

(a3)

(b2)

(b3)

(c1)

(c2)

(c3)

(d1)

(d2)

(d3)

(e1)

(e2)

(e3)

SART

3

ROI C

ROI D

(a1) 4

(Channel 1)

(Channel 7)

(Channel 13)

 
Figure 13. Images representing actual clinical mice reconstructed from 60 projections using different 
methods: (a1–a3) SART, (b1–b3) TVM, (c1–c3) L0TDL, (d1–d3) ESC-TDL, and (e1–e3) TDTGV. The 
display windows are [0, 0.08] cm−1. 

Figure 13. Images representing actual clinical mice reconstructed from 60 projections using different
methods: (a1–a3) SART, (b1–b3) TVM, (c1–c3) L0TDL, (d1–d3) ESC-TDL, and (e1–e3) TDTGV. The
display windows are [0, 0.08] cm−1.

Red arrows “8”, “9”, and “10” indicate some detailed parts. From the bone region, it can be
observed that the ESC-TDL and TDTGV algorithms identify clearer bone images. However, in the soft
tissue region, the TDTGV algorithm produces fewer artifacts in the decomposition image compared to
other algorithms. Regarding the GNP component, the ESC-TDL and TDTGV algorithms demonstrate
higher accuracy in characterizing the GNP region. Overall, from the fused color image, the proposed
algorithm in this paper outperforms other reconstruction algorithms in terms of material component
characterization, resulting in sharper image boundaries.
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Figure 15. Material decomposition results from 120 views. From left to right columns are SART,
TV, L0TDL, ESC-TDL, and the proposed TDTGV algorithm. From top to bottom rows, the display
windows are [0.1, 0.5] cm−1, [0, 1] cm−1, and [0, 1.5] cm−1, respectively.

4.3. Parameters Analysis
The two regularization terms involved in the objective function in Equation (17) require several

parameters for optimization. Firstly, the parameters for the CP tensor decomposition regularization
term mainly include the accuracy level ε, sparsity level L, the number of atom K, group number
Q, and regularization factor λ. Similar to tensor dictionary learning, a smaller ε may lead to noise
artifacts, while a larger ε may destroy structural details. For L, a lower value will result in blurred
edges. Similar to the literature [24], the fixed parameters are set as L = 32, K = 50, and ε = 10−4. Here,
we focus on the group number Q, regularization parameter λ, and the parameters of the second
regularization term: α1, α2, µ1, and µ2. The settings of these parameters have a significant impact on
image quality, and different values will lead to reconstructed images of varying quality. During the
parameter selection process, only one or two free parameters are relaxed while the others are fixed,



Electronics 2024, 13, 1868 19 of 23

and the changes in image quality with respect to the parameters are observed through experiments.
The RMSE and SSIM are used as metrics for selecting parameters. Figure 16 shows the RMSE and
SSIM values for different parameter values of the algorithm.
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From Figure 16, it can be observed that when Q = 128 and Q = 256, the RMSE values are similar,
but the SSIM value is higher for Q = 128. The parameter λ regulates the correlation between various
channels. As λ increases, the correlation becomes stronger but easily results in a smoother image.
However, when λ exceeds 2.7 × 103, the image becomes overly smooth, leading to a decrease in
quality. α1 and α2 are the coefficients of the two penalty terms in TGV, which affect the image quality
significantly. Lower values may cause noise to appear in the image, while higher values may result
in over-smoothing of the image edge. From Figure 16, it could be observed that when appropriate
values are set, both RMSE and SSIM values reach optimal levels. The same conclusion can be drawn
for µ1 and µ2. As the values rise, the RMSE decreases and the SSIM increases. However, if the values
keep rising, unsatisfactory results are obtained, and the corresponding image quality deteriorates.

5. Discussion and Conclusions
To address the issue that spectral CT image quality obtained by tensor dictionary-based algo-

rithms faced, we propose a reconstruction algorithm that combines total generalized variation and
tensor decomposition in this paper. First, we analyze the characteristics of the tensor decomposition
algorithm for image recovery and introduce it into the CT reconstruction model, overcoming the
instability of tensor dictionaries that depend on the quality of the training dataset. Then, we use the k-
means clustering algorithm to group the extracted tensor blocks and explore the intrinsic relationships
within each group’s fourth-order tensor volume by CP tensor decomposition. In the single-channel
image domain, we employ a high-order TGV regularization term to better adapt to different image
structures and noise levels, as well as effectively suppress artifacts. The subproblems are solved by
the ADMM algorithm efficiently. Finally, experimental results validate that the proposed algorithm
improves the ability to preserve image structures and suppress noise artifacts.
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Although the method has yielded improved outcomes, there are still some challenges at present.
Firstly, there is a plethora of parameters that require determination. In this paper, the parameters
are chosen empirically through extensive experimentation. Consequently, the question of how to
automate the optimization of parameters remains an unsolved issue that demands further exploration.
Secondly, the small size (8 × 8) of the spatial-spectral block tensors used to construct the fourth-order
tensor volume is insufficient to accurately describe the sparsity and low rankness of the tensor
volume. Lastly, in practical applications, operations involving fourth-order tensor volumes often pose
difficulties, with high computational costs and memory loads. In this paper, we compare the runtime
costs of the experiments under the same conditions. The back-projection reconstruction times for
all algorithms are identical, so we only compare the regularization constraint times. Table 7 lists
the runtime per iteration for each algorithm. From the table, it could be observed that the TDTGV
algorithm takes the longest computation time due to operations such as tensor block similarity
extraction and clustering, as well as CP tensor decomposition on the fourth-order tensor volume.
Therefore, these issues require further discussion and resolution and are the focus of our future
research directions.

Table 7. Computation time of all methods (unit: s).

Methods TVM L0TDL ESC-TDL TDTGV

Computation time 6.1 ± 0.3 29.5 ± 0.9 35.1 ± 1.3 58.7 ± 1.6

In conclusion, we propose a spectral CT reconstruction model based on total generalized
variation and tensor decomposition. The proposed algorithm employs CP tensor decomposition
instead of pre-trained tensor dictionaries, overcoming the instability of tensor dictionaries that depend
on the quality of the training dataset while preserving more image structures. In the construction of
the tensor volume, we utilize the non-local similarity features of the image to build a fourth-order
tensor volume and further explore the internal image relationships by CP tensor decomposition.
Meanwhile, to enhance the constraints in the image domain, the concept of TGV regularization is
used. The introduction of high-order derivatives allows for better adaptation to different image
structures and noise levels, as well as effective suppression of artifacts, further improving the accuracy
of image reconstruction.
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Appendix A The Solution for wc, yc, zc, tc, and bc

The subproblem wc can be written as follows:

wk+1
c = argmin

wc

µ1
2

∥∥∥yc
k − (Dxc

k+1 − wc)− tc

∥∥∥2

F
+

µ2
2

∥∥∥zc
k − ε(wc)− bc

k
∥∥∥2

F
(A1)

Separating wc1 and wc2, we can obtain Equation (A2):
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∥∥∥zc3
k − 1
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(A2)

Taking the partial derivatives of wc1 and wc2, respectively, and rearranging and combining them,
we can obtain the solutions as shown in Equations (A3):

wc1
k+1 =

µ1(D1xc
k+1−yc1

k+tc1
k)+µ2[DT

1 (zc1
k−bc1

k)+DT
2 (zc3

k−bc3
k)]+ µ2

2 DT
2 D1wc2

k

µ1+µ2(DT
1 D1+

1
2 DT

2 D2)

wc2
k+1 =

µ1(D2xc
k+1−yc2

k+tc2
k)+µ2[DT

2 (zc2
k−bc2

k)+DT
1 (zc3

k−bc3
k)]+ µ2

2 DT
1 D2wc1

k+1

µ1+µ2(DT
2 D2+

1
2 DT

1 D1)

(A3)

The subproblem yc can be written as follows:

yc
k+1 = argmin

yc

α1∥yc∥1 +
µ1
2
∥yc − (Dxc − wc)− tc∥2

F (A4)

For Equation (A4), the soft-thresholding algorithm can be employed to obtain the solution:

yc
k+1 = shrink2(Dxc

k+1 − wc
k+1 + tc

k,
α1
µ1

) (A5)

The shrink2 operator can be defined as follows:

shrink2(a, µ) =

{
0, a = 0

(∥a∥2 − µ) a
∥a∥2

, a ̸= 0
(A6)

The subproblem zc can be written as follows:

zc
k+1 = argmin

zc

α2∥zc∥1 +
µ2
2

∥∥∥zc − ε
(

wk+1
c

)
− bc

k
∥∥∥2

F
(A7)

Similar to solving yc, the solution for zc can also be obtained using the soft-thresholding algorithm:

zc
k+1 = shrinkF(ε

(
wk+1

c

)
+ bk

c ,
α2
µ2

) (A8)

The shrinkF operator can be defined as follows:

shrinkF(b, µ) =

{
0, b = 0

(∥b∥F − µ) b
∥b∥F

, b ̸= 0
(A9)

where 0 refers to the zero matrix of size 2×2, and ||•||F represents the Frobenius norm of a matrix.
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