
Citation: Hameed, Z.; Barzegar, H.R.;

Ioini, N.E.; Pahl, C. Robust-DSN: A

Hybrid Distributed Replication and

Encoding Network Grouped with a

Distributed Swarm Workflow

Scheduler. Electronics 2024, 13, 1861.

https://doi.org/10.3390/electronics

13101861

Academic Editor: Dimitris Apostolou

Received: 19 March 2024

Revised: 30 April 2024

Accepted: 7 May 2024

Published: 10 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Robust-DSN: A Hybrid Distributed Replication and Encoding
Network Grouped with a Distributed Swarm Workflow Scheduler
Zeeshan Hameed 1,*, Hamid R. Barzegar 1, Nabil El Ioini 2 and Claus Pahl 1

1 Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy;
hamidreza.barzegar@unibz.it (H.R.B.); claus.pahl@unibz.it (C.P.)

2 Faculty of Computer Science, University of Nottingham, Semenyih 43500, Selangor, Malaysia;
elioini.nabil@nottingham.edu.my

* Correspondence: zeeshan.hameed@student.unibz.it

Abstract: In many distributed applications such as the Internet of Things (IoT), large amounts of
data are being generated that require robust storage solutions. Traditional cloud solutions, although
efficient, often lack trust and transparency because of centralized management. To address these
issues, we present Robust-DSN, a distributed storage network leveraging the hybrid distributed
replication and encoding network (HYDREN) and the distributed swarm workflow scheduler (DSWS)
as its main components. Our system uses an interplanetary file system (IPFS) as an underlay storage
network and segments it into multiple regions to distribute the failure domain and improve the data’s
proximity to users. HYDREN incorporates Reed–Solomon encoding and distributed replication to
improve file availability, while DSWS optimizes resource allocation across the network. The uploaded
file is encoded into chunks and distributed across distinct optimal nodes leveraging lightweight
multithreading. Additionally, Robust-DSN verifies the integrity of all chunks by preserving the hashes
when uploading and validating each chunk while downloading. The proposed system provides
a comprehensive solution for resilient distributed data storage, focusing on the key challenges of
data availability, integrity, and performance. The results reveal that compared with a state-of-the-art
system, the proposed system improves file recovery by 15%, even with a 50% peer failure rate.
Furthermore, with replication factor 4 and the same failure resilience as IPFS, it saves 50% storage
and enhances file recovery by 8%. Robust-DSN acts as a distributed storage platform for emerging
technologies, expanding storage system capabilities in a wide range of distributed applications.

Keywords: distributed storage system; file availability; swarm intelligence; distributed replication;
interplanetary file system (IPFS)

1. Introduction

There is an exponential growth of data generated at the network edges due to the
growth of Internet of Things (IoT) devices and mobile applications. Cloud storage is
considered to be a potential solution for managing these data. Cloud storage solutions
provide a centralized remote system established through the cooperation of multiple
networked devices [1]. In a cloud storage system, a service provider is responsible for
managing and securing the user’s confidential data [2,3]. From the user’s point of view, a
single entity for data management may also be a single point of failure [4,5]. In addition,
questions of trust and transparency about how securely confidential user data are managed
and stored arise.

As an alternative to cloud services, distributed storage systems have emerged [6]. In a
decentralized storage system, multiple servers work together to provide desired services
to users. Distributed systems follow P2P networking, where every node in the network
has the same rights to provide the services [7]. Since the data are stored in multiple places,
these systems have the potential to be more robust against large-scale outages and possible

Electronics 2024, 13, 1861. https://doi.org/10.3390/electronics13101861 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13101861
https://doi.org/10.3390/electronics13101861
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9049-212X
https://doi.org/10.3390/electronics13101861
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13101861?type=check_update&version=1

Electronics 2024, 13, 1861 2 of 27

censorship. However, the decentralized features of these storage systems introduce various
challenges [8]. The major concern is that the collaborators are unreliable and untrusted.
To achieve adequate guaranteed data availability, the distributed storage systems must
apply a high level of redundancy to the content to ensure data availability when requested.
Moreover, data may be lost if a collaborator loses or leaves its link to the network.

To improve the level of data availability, distributed storage systems usually have
two independent primary approaches: coding-based techniques and data replication [9,10].
The replication approach is quick and simple; however, the system has to bear a large
storage overhead. In contrast, coding-based approaches are computationally complex
and may raise the issue of large computation overhead, resulting in degraded system
performance if used inappropriately. Moreover, the heterogeneous nature of storage nodes
in a distributed environment makes the process more complex for reliable data persistence
and fault tolerance. There should be an appropriate approach to analyze the inherent
trade-off between performance and storage overhead for effective utilization of the system
resources [11,12]. Therefore, a comprehensive solution needs to improve both aspects at
the same time in distributed storage systems.

Another challenge is related to task scheduling. Searching for suitable nodes for storing
chunks of data from a pool of diverse and heterogeneous storage nodes is a critical challenge.
This problem includes several concerns, including storage size, performance capabilities,
and availability to provide services. Another crucial function is associated with preserving
the integrity of each of the data chunks. The data would not be reconstructed even if a
single data chunk was tampered with by any of the storage nodes [13,14]. Moreover, the
issues related to the processing time of service requests are also crucial. Storage systems
might be slow, specifically if the data are not broadly replicated or because of network
congestion between collaborators storing the required data. Distribution and fetching of
data chunks would hence be executed concurrently to minimize the data retrieval time
for a user request. Thus, the algorithms of the overlay network and backend abstraction
layers should be synchronized to maximize concurrent work while minimizing recovery
time. Consequently, a system that collectively combines fault tolerance, data integrity, and
identification of the most suitable node for task placement and that provides an efficient
method for transferring and retrieving chunks to and from a distributed storage system
remains a research challenge.

To address these availability, integrity, performance, and scheduling challenges in
distributed storage networks, we present the robust distributed storage network (Robust-
DSN), which aims at improving data availability, integrity, task scheduling, and execution
time simultaneously. Our proposed solution creates a logical network on top of the physical
storage network and acts as an additional layer between the user and the distributed
storage network. We use the interplanetary file system (IPFS) as an underlay network
for content-based data management. Robust-DSN integrates a novel hybrid distributed
replication and encoding network (HYDREN) and distributed swarm workflow scheduler
(DSWS). Our contributions are summarized as follows: (1) constructing a HYDREN for
improving file availability, (2) designing a distributed optimizer (DSWS) for scheduling
the storage tasks effectively, (3) applying the message digest (md5) algorithm to each of
the data segments to maintain integrity, and (4) constructing a lightweight multithreading
approach for handling the chunk distribution and file reconstruction to improve overall
task execution time.

Our results prove that data availability and integrity for decentralized storage systems
can be achieved without substantial storage overhead. Our evaluations show that the
proposed system is capable of improving file availability and integrity, storage utilization,
and task execution performance simultaneously. Specifically, with the configuration of four
replication factors and the same failure resilience as IPFS, the proposed system uses 50%
less storage and offers 8% more file recovery likelihood. Compared with state-of-the-art
systems, our proposed system offers 15% more file recovery likelihood, even for a peer
failure rate of 50%.

Electronics 2024, 13, 1861 3 of 27

2. Related Work

The growth of distributed storage systems has been significant with the evolution
of data generation. Modern applications demand distributed storage solutions that are
not only fault-tolerant and storage-efficient but also efficient in terms of performance and
data integrity simultaneously. Researchers have proposed various techniques to deal with
data reliability [15]. To ensure data reliability, the replication strategy is the common
redundancy mechanism used for distributed storage systems. For instance, the Google
file system (GFS) forms three replicas of each of the data chunks and guarantees that all
replicas of a chunk are not stored on a similar rack. Although this approach ensures a high
level of data availability, a storage space of M + 1 times is required to deal with M failures.
This produces massive storage overhead. For instance, by creating three copies to tolerate
the failure of two data chunks, the rate of storage unitization of the system would only
be 33.3%.

Recently, erasure coding has received significant attention and emerged as a promising
alternative to replication for data storage in distributed storage systems [16]. In this method,
the original data are split into data chunks (d) and then encoded to generate additional
parity chunks (p). The benefit of erasure coding is its capability to provide comparable data
reliability with less storage space than the traditional replication approach. A prominent
application of this approach can be seen in Facebook’s F4 storage system, which applies
erasure coding with the parameters (p = 4, d = 10). This method not only improves system
resilience but also reduces storage space by about 1.6 times compared to the replication
approach. However, erasure coding also faces some challenges. It introduces the substantial
computational overhead of the data encoding and decoding. Furthermore, with the coding
parameters (d = 10, p = 4), at least 10 out of 14 untempered chunks are required to
reconstruct the data.

Understanding the importance of distributed storage systems, some special overlay
networks (e.g., IPFS, Swarm) have been developed that incorporate necessary protocols
and functions for building customized applications on top of them [6,17]. The nodes in
these systems are connected in a peer-to-peer topology to manage version control and
have been conventionally used as a storage layer for various applications. Implementing
IPFS and Swarm with blockchain has been an effective approach to improving system
functionalities in various aspects, such as access control and data integrity [18,19]. This
integration has been employed in various domains, including healthcare, agricultural
logistics, file management systems, and the Internet of Things (IoT) [20]. Moreover, these
networks are also effective without blockchain since they have been featured for unique
applications, for instance, to archive web content and to assist with edge and fog computing
storage requirements [21]. However, storage nodes in Swarm and IPFS are heterogeneous,
and the data are replicated based on the popularity of the data within the network. They
do not guarantee data persistence and fault tolerance as a built-in functionality. BitTorrent
is a file-sharing system that uses peer-to-peer (P2P) network topology [22]. BitTorrent
protocol splits larger files into smaller chunks and then shares them between the users.
It allows users to upload and download files simultaneously; while downloading a file,
the BitTorrent client helps to find other users who have the chunks of that file. The client
can download the chunks from different peers. Moreover, when the client receives the
file, it also starts uploading chunks to serve these chunks to other users. This is optional
and depends upon the clients and whether they want to be a part of distributing the
downloaded file (act as seeders). However, BitTorrent heavily relies on seeders. If a file has
limited seeders, the downloading speeds can be very slow, and a file may even become
unavailable [23]. Moreover, there is no built-in mechanism for data mutability, and users
need to rely on third-party solutions to guarantee the integrity of the data. Therefore,
BitTorrent might have similar issues to IPFS, as for both systems, it is impossible to change
or delete content once distributed.

To address the inherent constraints of the IPFS framework, specifically regarding data
persistence and redundancy, Filecoin is building an incentive layer over IPFS [24]. Adding

Electronics 2024, 13, 1861 4 of 27

an incentive layer, Filecoin incentivizes service providers with cryptocurrency tokens for
storing and duplicating the content, thereby improving content availability. Regardless
of its benefits, Filecoin’s replication methodology increases the associated storage costs,
network bandwidth, and latency.

There is a decentralized storage system called Arweave influenced by blockchain
technology. Arweave is a decentralized data storage platform that has a blockchain-based
structure called blockweave [25,26]. Its design primarily focuses on immutable long-term
data storage solutions. Arweave ensures that once a file is uploaded, it remains accessible
forever. Each piece of data is considered as a block that is linked to one or more previous
blocks to construct a chain, as blockchain does. The data retrieval process in Arweave is
performed via traditional hypertext transfer protocol (HTTP) GET requests using Arweave
gateways. However, the immutability of data on Arweave raises concerns regarding data
administration. Moreover, since it is an on-chain data storage platform, the scalability of its
structure may cause some issues; for example, the continuous growth of the blockweave
may lead to an increase in the operational burden and possibly slower data retrieval
time [27].

Hypercore is another group of protocols devised for building peer-to-peer (P2P)
applications including distributed file systems similar to BitTorrent. The Hypercore network
consists of different storage modes, where nodes decide which data of a directory and
version they want to store. The protocol can be assumed as a shared folder where the files
can be added, modified, and deleted. Since communication between peers is encrypted
using asymmetric encryption, it is compulsory to have a specific read key to look up and
read the data. However, in Hypercore, the data accessibility completely depends upon the
existence of peers storing the data. If a peer in the network is the only peer hosting crucial
data and it goes offline, the data would become inaccessible. Moreover, Hypercore does
not use content-based addressing; therefore, it relies on additional solutions to verify the
integrity of the data.

The presented study here also addresses the limitations of our previous work on the
improvement in file availability and performance of DSNs [28]. In our previous work,
several challenges were not sufficiently addressed. The file availability was improved based
on the encoding mechanism only, where the probability of the data loss can be expressed in
a restricted format (see Equation (6) below). Moreover, the PSO algorithm was designed
in a limited form, i.e., being executed in a single region at a time, and particles were only
evaluated in sequence. Furthermore, we provide here a broader range of solution-specific
and comparative evaluations.

Most existing distributed systems have not adequately addressed the trade-off between
improving data availability, storage overhead, and integrity persistence. Moreover, most
of the systems that improve file availability use a replication strategy and replicate a full
copy of the file to multiple nodes instead of splitting a file into multiple chunks and ideally
distributing them to distinct storage nodes. The level of file distribution depends upon the
number of copies present in the network. Moreover, the challenge of effectively scheduling
the workflows and finding the most suitable service providers for executing them from a
diverse group with heterogeneous resources is a critical challenge that demands greater
concentration for the development of distributed systems. Therefore, a significant research
gap regarding the evolution of methodologies remains that is required to improve file
availability and integrity, identify optimal nodes for data storage, and improve the overall
system performance. The comparison between proposed and various decentralized storage
systems is shown in Table 1.

Electronics 2024, 13, 1861 5 of 27

Table 1. Comparison of various storage systems.

Properties\Systems BitTorrent IPFS Swarm Hypercore Arweave Filecoin Proposed

Each node stores Entire file Entire file Entire file Entire file Entire file Entire file Chunk
Data persistence No No No No Yes Yes Yes
Immutability No Yes Yes No Yes Yes Yes
Load balancing No No No No No No Yes
Integrity (content address-based) No Yes Yes No blockweave Yes Yes
Allow modification and deletion No No No Yes No No Yes
Data availability (encoding-based) No No No No No No Yes
Data availability (replication-based) Yes Yes Yes Yes Yes Yes Yes
Storage location Random Random Random Random Random Random Find best nodes

3. Robust-Dsn System Design

Our complete solution, called Robust-DSN, consists of distinct solutions for distributed
replication and encoding, distributed swarm scheduling, and processes for the upload and
download of data. The overall system architecture and the distinct solution components
will now be introduced.

3.1. Architecture and Components

Our primary objective is to improve data availability, persist data integrity, and identify
optimal nodes for data storage in a cryptographic distributed storage network with as
minimal as possible storage overhead and processing time. Robust-DSN allows users
to control the resilience level and enables file recovery despite a large-scale failure of
storage nodes happening in the underlying storage network. Robust-DSN uses IPFS as
an underlay storage layer and requires no modification to the underlying storage system.
The system architecture of the Robust-DSN system is shown in Figure 1. This system
architecture is separated into three layers: DSN users, DSN infrastructure itself, and DSN
service providers. Figure 2 describes the underlay storage network where H is the home
region and H1, H−1, ...Hz is the chain of neighboring regions. Joining the DSN network
as a service provider is simple, requiring the installation of an IPFS node to connect to
the network. For our experiments, a virtual machine (with resources of 16 GB RAM,
256 GB of storage, and a five-core CPU) hosting multiple Docker containers was set up to
mimic a private cluster of DSN service providers. Each container was allocated different
resources to indicate a heterogeneous resource environment. The users request on-demand
and reliable storage selections from the service provider network, delivering their data
along with corresponding performance requirements. As the main components, the DSN
infrastructure incorporates a so-called HYDREN algorithm that ensures data reliability
and integrity, the DSWS component to search the most appropriate service providers
to ensure performance requirements, a REST API, and a mechanism for processing the
requests concurrently.

3.2. Distributed Replication and Encoding Network

HYDREN (hybrid distributed replication and encoding network) consists of the fol-
lowing major components: an encoder, a decoder, a replicator, and a message-digest (md5)
algorithm. In our distributed storage system, we split our underlay storage network into
multiple geographical areas. The purpose of this approach is to save the chunks of a file
as close as possible to the users. The chunks of a file will only be stored in other regions
when a region does not have the required resources to provide services. Moreover, this
approach distributes the failure domain of the storage network by distributing the chunks
to the neighboring region and replicating them to the global best nodes searched by the
DSWS algorithm to further enhance file availability. Thus, HYDREN begins by taking an
uploaded file and processing it using Reed–Solomon encoding. The encoding process splits
files into multiple data chunks, and using the data chunks d, it calculates and adds parity
chunks p. After that, to ensure the integrity of each of the chunks, the message-digest (md5)
algorithm is applied to calculate the hash of each of the chunks before distributing.

Electronics 2024, 13, 1861 6 of 27

Figure 1. Overall Robust-DSN system architecture.

Figure 2. Schematic network topology.

md5 is chosen here as a compromise between the performance and strength of the
security provided—the selection of other options would rebalance the two qualities.

The detailed formalization of encoding and decoding will now be explained. We can
consider a polynomial f (x) of degree n having n + 1 coefficients.

f (x) = c0 + c1x + c2x2 + + cnxn (1)

f (x0) = a0 + a1x0 + a2x2
0 + · · ·+ anxn

0 = y0

f (x1) = a0 + a1x1 + a2x2
1 + · · ·+ anxn

1 = y1

...

f (xn) = a0 + a1xn + a2x2
n + · · ·+ anxn

n = yn


1 x0 x2

0 · · · xn
0

1 x1 x2
1 · · · xn

1
...

...
. . .

...
...

1 xn x2
n · · · xn

n


︸ ︷︷ ︸

Vandermonde matrix (V)


a0
a1
...

an

 =


y0
y1
...

yn



Electronics 2024, 13, 1861 7 of 27

One of the important characteristics of the polynomial is that a polynomial of degree
n− 1 can be uniquely characterized by any n points that lie on that polynomial function.
In other words, for any n distinct values of x, we can derive the n + 1 coefficients c0 to
cn, and these coefficients will remain the same, making no difference in which n values of
variable x we use. Since we need only n points to define the n− 1 polynomial, the points
n + 1, n + 2. . . ., and so on are redundant. After finding the coefficients, we can evaluate
the polynomial with as many values of x as we want. Those extra points are redundant
and are not essential to define the polynomial. This redundant information allows us to
find the original values in case the data are corrupted during transmission. Therefore, we
performed the following operations to design an effective encoder: (1) split the data into
d chunks, (2) set the data chunks as the values of the polynomial p(x) at values of x; we
consider it as the order of the data chunk, (3) determine the coefficients of this polynomial
p(x) from the (xi, di) pairs, (4) evaluate polynomial p(x) for an additional p values of x
to create parity chunks, and (5) calculate the hash of all n(d + p) chunks. This metadata
related to a particular file is preserved for successfully decoding the file. Hashes of the
chunks and the order of the chunks help us to authenticate and locate the corrupted chunks.
When we receive the chunks, we calculate the hash of the chunks. Since hash is a unique
identifier of that particular chunk, we can identify the order associated with that chunk.
If we lose the data chunk, any d rows of the Vandermonde matrix can be taken to make a
d× d matrix, which will be invertible and used to generate lost chunks.

The encoding process converts original data into coded data that consist of both
data and parity chunks by applying a generator matrix G [29,30]. The generator matrix
is a Vandermonde matrix that is used to perform matrix operations on data chunks for
generating parity chunks [31]. The property of the Vandermonde matrix is that any subset
of rows that forms a square matrix guarantees an invertible matrix. For an encoding with d
data chunks and p parity chunks (total n = d + p), the generator matrix would be an n× d
matrix. It is structured as follows, where xi are nonzero elements of a finite field (generally
GF(28)):

G =


1 x1 x2

1 · · · xd−1
1

1 x2 x2
2 · · · xd−1

2
...

...
...

. . .
...

1 xn x2
n · · · xd−1

n


For the data chunks D = [D1, D2, . . . , Dd], the encoding process would be a matrix

multiplication:
C = G ·D (2)

The resulting vector C contains both the original data and the parity chunks. If some
of the chunks are lost or tampered with, we can retrieve the original data by employing
any d out of the n = d + p chunks. A subset of the encoded vector C′ and the associated
rows of the generator matrix G would be used to generate C′ (denoted as G′); the decoding
process consists of solving the following linear equation:

C′ = G′ ·D (3)

Since we need d chunks to reconstruct the file, G′ would be a square matrix (if we
have exactly d chunks). The original data D can be reconstructed by inverting G′, which
essentially implements a Lagrange interpolation using a matrix:

D = (G′)−1 · C′ (4)

Algorithm 1 presents the pseudocode of the encoding (line 1), decoding (line 15), and
hashing (line 9) processes.

Electronics 2024, 13, 1861 8 of 27

Algorithm 1 Encoding, Decoding, and Hashing.

1: function ENCODE(data, No.dataChunks, No.parityChunks)
2: Chunks← Split(data)
3: chunkSize← length(data)/No.dataChunks
4: G ← generator matrix(x, No.dataChunks, No.parityChunks)
5: for k← 0 to length(chunks) do
6: vectord ← extracting the data symbols from chunk(k)
7: Parity← G · vectord calculating parity
8: encodeddata← concatenate(vectord, Parity)
9: Hash← Calculated MD5 hash of chunk[k]

10: metadata.ChunkHashes[k]← Hash
11: metadata.ChunkOrders[i]← k
12: end for
13: return encodeddata, metadata
14: end function
15: function DECODE(EncodedData, metadata)
16: C′ ← EncodedData
17: d = metadata.datachunks
18: p = metadata.paritychunks
19: n = d + p
20: for k← 0 to length(EncodedData) do
21: Hash← Calculate hashchunk[k]
22: if Hash ̸= metadata.ChunkHashes[k] then
23: locationCurruptedChunk[k] = metadata.ChunkOrder[k]
24: end if
25: end for
26: if length(locationCurruptedChunk) ̸= 0 then
27: G′(d∗d) ← selecting any d rows out of n to form a square matrix

28: (G′)−1 ← Calculating the inverse
29: D = (G′)−1 · C′ ← Reconstructing the data matrix
30: end if
31: return D
32: end function
33: function GENERATORMATRIX(x, rows, columns)
34: for i← 0 to rows-1 do
35: for j← 0 to columns-1 do
36: G[i][j]← x(i·j)
37: end for
38: end for
39: return G
40: end function

3.3. Distributed Swarm Workflow Scheduler

After dividing the file into chunks, the next step is to select DSN (distributed storage
network) service providers for storing these chunks. When a storage request is initiated,
the system prefers to use the resources of the local region to which the user belongs (home
region) until the local region has reached its capacity. In the proposed DSWS (distributed
swarm workflow scheduler) approach, the system executes particle swarm optimization
(PSO) in the local region as well as neighboring regions in parallel to find the best service
providers in each of the regions.

PSO is an exploratory bio-inspired algorithm that helps to find the optimal solution
from a large population of candidate solutions [32]. Each PSO particle indicates a potential
solution to the problem of allocating file chunks to a storage node in a storage network.
Here, we have a swarm of workflows (d + p chunks) and a pool of storage nodes. The
goal is to discover the best storage node for each of the workflows. The structure of the

Electronics 2024, 13, 1861 9 of 27

particles consists of a position, velocity, best-known position, and cost of that position. The
particles indicate a potential solution for the file chunks across available storage nodes in
the network. Each particle’s position is initialized randomly because the randomness allows
the algorithm to explore an extensive range of potential solutions during the iterations.
The initial velocity of particles is set to zero, which indicates a neutral starting direction of
movement for all particles in the search space. This is standard in PSO for allowing the
algorithm to adapt the velocity dynamically depending upon both the particle’s exposure
and that of its neighbors. Since the objective is to minimize the cost function, the initial
best cost is set to a very large value, indicating that any feasible solution will be better than
this initial setting. The evaluation of a particle is performed based on the cost function
(see Algorithm 2, lines 57–61). It is constructed to evaluate the suitability of storing file
chunks on different IPFS nodes based on their available resources (CPU, storage space,
and memory). The cost function ensures that nodes with higher available resources are
preferred for providing the storage service.

Our DSWS (distributed swarm workflow scheduling) algorithm allows us to identify
the regional and global best nodes from the entire network. The system employs the follow-
ing methodology for the scheduling process, incorporating the particle swarm optimization
(PSO) technique:

• Defining the fitness function: PSO requires a fitness function to assess solution quality.
In the context of storing file chunks, this function is developed based on the cost of
storing a specific chunk on a certain storage provider. The primary objective here is to
find a service provider that minimizes the storage cost.

• Defining the search space: The search space consists of all potential solutions that
the algorithm may explore. In this scenario, the search space contains all available
storage providers in each of the regions that are capable of storing data chunks. It
is important to periodically update the status and available resources of the storage
providers for each execution. This adjustment is essential to indicate any modification
in the search space.

• Executing the PSO in home and neighboring regions concurrently: Execute PSO
to explore each search space concurrently to find regional and global best storage
providers. It assesses the fitness function and identifies the storage providers that offer
the most cost-efficient solution.

In general, in multidimensional search spaces, optimization algorithms such as ours
do often not perform well because of the resulting computational complexity, specifically in
a single-threaded environment. They might potentially also take a longer time to converge.
Our proposed algorithm can evaluate multiple particles concurrently to scale well with the
number of existing computational cores. In other words, DSWS can more effectively use
available CPU resources by spreading the workload across multiple cores, thus reducing
the time for convergence to an optimal solution.

Therefore, when there is a need to store some of the chunks in other regions, the
incoming storage requests from the home region will be handled immediately. Moreover,
DSWS also finds the global best service providers that are used for replication (Algorithm 2,
line 19). The DSWS algorithm makes sure that data are stored as close to the user as possible
by first locating the best storage nodes within local regions (Algorithm 2, line 8), reducing
latency, and possibly lowering communication costs. Figures 3 and 4 explain the overall
functionality of the Robust-DSN. Local optimization helps to balance the storage load
across regions and prevents any single region from becoming a bottleneck, especially when
a region does not have the required resources or becomes overburdened and there is a need
to store some of the chunks in other regions. DSWS facilitates the distributed replication
that enables the separation of the failure domain. Storing replicas at the globally best
nodes, separate from the original data location, ensures that data are not only stored across
different nodes but also across diverse geographic and network domains. This further
reduces the risk of simultaneous failures affecting all data chunks. Algorithm 2 shows the
pseudocode of the DSWS algorithm.

Electronics 2024, 13, 1861 10 of 27

Algorithm 2 Distributed Swarm Workflow Scheduler.
1: function DSWS(wList, nodesInAllRegions)
2: regionalBest← initialize empty list of NodeListWithCost
3: for each nodeGroup in nodesInAllRegions do
4: nodeMat← PSO(wList, nodeGroup)
5: for p in nodeMat do
6: Sort nodeMat[p] based on cost
7: end for
8: regBest← appendnodeMat to regBest
9: end for

10: homeRegionNodes, homeRegionIndex, f ound← initialize variables
11: listO f AllNodes← aggregate all nodes from regionalBest
12: update homeRegionNodes, homeRegionIndex, f ound
13: Sort listO f AllNodes based on cost
14: Map← map to track selected nodes
15: Mark nodes in homeRegionNodes as selected in Map
16: globalBest← initialize empty list of NodeListWithCost
17: for each node in listO f AllNodes do
18: if node is not in Map then
19: globalBest← append node to globalBest
20: end if
21: end for
22: return regionalBest, globalBest
23: end function
24: function PSO(wList, nList)
25: particles← Particle structure (position, velocity, bestPosition, bestCost)
26: particles← population(PopSize, len(nList), len(wList))
27: for each i in range(particles) do
28: particles[i].position← rand.Float32() ▷ Randomly initialized
29: particles[i].velocity← 0 ▷ Starting velocity
30: particles[i].bestPosition← 0 ▷ Will be updated during iterations
31: particles[i].bestCost← (>> 1) ▷ Since we minimize the cost function, set possible

maximum value
32: end for
33: gBest← arrayO f Zeros(length(wList))
34: gBestCost← maxFloat64Value
35: convergence← newArrayO f Size(maxGenerations)
36: for i← 0 to maxGenerations− 1 do
37: for j← 0 to length(particles)− 1 do
38: Concurrently do for particle j:
39: p← particles[j]
40: p.Cost← EVALUATEPARTICLE(wList, nList)
41: if p.Cost < p.PBestCost then
42: p.PBestCost← p.Cost
43: p.PBest← copyO f (p.Position)
44: end if
45: if p.Cost < gBestCost then
46: gBestCost← p.Cost
47: gBest← copyO f (p.Position)
48: end if
49: end for
50: for j← 0 to length(particles)− 1 do
51: updateVel − Pos(particles[j], gBest, length(nList))
52: end for
53: convergence[i]← gBestCost
54: end for
55: return NodesBasedOnSuitability(gBest, wList, nList)
56: end function
57: function EVALUATEPARTICLE(w, n)
58: if n.cpu ≥ w.cpu & n.mem ≥ w.mem & n.ram ≥ w.ram then
59: return w.cpu/n.cpu + w.ram/n.ram + w.mem/n.mem
60: end if
61: end function

Electronics 2024, 13, 1861 11 of 27

Communication with the DSN service providers is controlled through an API adver-
tised by the DSN cluster, which organizes the functions of file uploading and downloading.
This API plays an important role in accessing the current state of the service providers and
their available resources and assists in the communication and management of processes
within the DSN system. To participate in this ecosystem, any peer can operate as an access
point for the DSN using an API to enable interaction. For enhanced resilience and to miti-
gate the risks of a single point of failure, multiple entry points can be configured, ensuring
a continuous operation even if some of the entry points fail. By configuring multiple APIs
and spreading entry points, we established a resilient and reliable distributed storage sys-
tem capable of tolerating potential disruptions. This process can be seen in the APIHANDLE
function in Algorithm 3, line 21.

Algorithm 3 Distribute Chunks
1: function DISTRIBUTEDATA(encodedData, regionalBest, globalBest, metadata, api)
2: for each i, data in encodedData do
3: Concurrently do for data i:
4: bu f f er ← new buffer with data
5: f ileHash← add buffer to IPFS using api
6: if f ileHash generation failed then
7: Log error and exit
8: end if
9: rgBest← regionalBest[i].peer

10: gbBest← globalBest[i].peer
11: response← apiHandle with f ileHash, rgBest, gbBest
12: if response generation failed then
13: Log error and exit
14: end if
15: metadata.Ip f sHashes[i]← f ileHash
16: Print “Sending data to storage node”
17: end for
18: Wait for all data to be distributed
19: SaveMetadata(metadata)
20: end function
21: function APIHANDLE(f ileHash, rgBest, gbBest)
22: addresses← list of API addresses
23: lastError ← initialize as nil
24: for each address in addresses do
25: url ← construct URL with f ileHash, rgBest, gbBest
26: response, err ← POST request to url
27: if err is not nil then
28: lastError ← update error with err
29: continue to next address
30: end if
31: return response, nil
32: end for
33: return nil, lastError
34: end function

3.4. Uploading Process

The data uploading process can be seen in Figure 3. To reduce the complexity of the
flowchart, the process of chunk distribution to the regional best nodes is explained in a
separate flowchart (Figure 4). In the uploading process, when a user submits a storage
request, the system uses Reed–Solomon encoding (Algorithm 1, line 1) to split that data into
multiple chunks (data and parity). A Reed–Solomon encoder takes a block of digital data
and divides it into equal-sized data chunks. After this, by applying arithmetic operations,
parity chunks are calculated. The parity chunks are extra redundant bits to deal with the
chunk loss. An objective here is to tolerate the loss that could be caused by the distributed
nature of the chosen platform and the resulting failure of some nodes. In that case, a fresh

Electronics 2024, 13, 1861 12 of 27

copy of the status and the available resources of each solution space (home and neighboring
regions) is fetched via the API so that the information can be used by DSWS. Here, the
distributed swarm workflow scheduler DSWS (Algorithm 2) is executed, which uses the
required resources of each of the chunks and scans all solution spaces concurrently to
identify the regional and global best service providers. Once regional and global best DSN
service providers are found, one copy of the chunks will be distributed to the regional best
by giving preference to the home region, and replicas will be distributed to the global best
(Algorithm 3, line 11). Algorithm 3 (line 3) concurrently executes the chunk distribution task
using a lightweight multithreading technique and responds to the user for task completion.
Each of the storage requests is processed asynchronously to parallelize the process of
storing data chunks on the storage nodes based on available logical cores of the CPU,
improving the system performance.

Figure 3. General storage workflow.

Electronics 2024, 13, 1861 13 of 27

Figure 4. Detailed chunk distribution.

The Go programming language offers a powerful feature of goroutines, providing
lightweight multithreading for running pieces of code concurrently. Goroutines are con-
trolled by the Go runtime scheduler, which multiplexes routines onto smaller operating
system threads and then executes on the available logical cores of the CPU. A logical core
generally indicates a hardware thread. In processors with hyperthreading, each physical
core can execute two threads, expanding the number of logical cores. However, whether
each of the goroutines runs on independent CPU cores entirely depends on the number
of available CPU cores. By default, the scheduler detects the number of available logical
cores including those offered by hyperthreading. This enables the scheduler to fully utilize
the availability of the CPU for concurrent processing. Usually, the operating system treads
are 2 MB in size, while the the size of the goroutine is only 2 KB. Therefore, goroutines are
very light compared with threads that enable us to handle hundreds of goroutines at the
same time. Implementing the particle swarm optimization (PSO) algorithm and chunks
distribution and fetching to and from IPFS storage nodes within our system are designed
to run concurrently using these goroutines. Each PSO execution, which corresponds to
determining an optimal node allocation for the given workflow, is encapsulated within
a separate goroutine, allowing multiple PSO processes to execute in parallel depending
upon the availability of logical cores. In our experiment, we used a Core i5-10210U CPU
that contains eight logical cores because of hyperthreading (four physical cores). This
lightweight multithreading approach reduces the time taken to find optimal solutions and
maximizes the utilization of available computational resources.

3.5. Downloading Process

The download procedure involves two important functions: getdata and
downloadchunks (Algorithm 4). The getdata function retrieves the IPFS hashes using
the file name provided by the user from the metadata of the desired file (Algorithm 4,
line 4). These hashes are then used by the API advertised by the storage network for
asynchronously requesting the chunks, employing lightweight multithreading (line 9).
The downloadchunks function fetches all chunks asynchronously and verifies the valid-
ity of each received chunk by computing its hash and comparing it with the associated
metadata-stored hash. Algorithm 4 is designed to wait only for the minimum number of
valid chunks required for file reconstruction (equivalent to the number of data chunks). As
soon as this threshold of the minimum required number of valid chunks is met, ongoing

Electronics 2024, 13, 1861 14 of 27

and remaining threads beyond this requirement are ended (line 27). Finally, Algorithm 4
applies the decoding process to reconstruct the original data (line 16).

Algorithm 4 Download Data
1: function GETDATA
2: Print “Provide the name of the file you want to retrieve:”
3: f ileName← read user input
4: metadata← LoadMetadata(f ileName)
5: api← initialize new shell with localhost:5001
6: Create context ctx and cancel function cancel
7: done← create channel for signaling completion
8: Start a new concurrent process:
9: Chunks, No.ValidChunks← DOWNLOADCHUNKS(ctx, cancel, metadata, api, done)

10: if No.validChunks < metadata.DataShards then
11: Print “Not enough valid chunks to reconstruct the file”
12: Exit
13: end if
14: Sort results based on index
15: Copy data from results to retrievedData
16: Data← decodingData(Chunks, metadata)
17: Comment “Save the decoded Data”
18: end function
19: function DOWNLOADCHUNKS(ctx, cancel, metadata, api, done)
20: results← initialize empty array for chunk results
21: validChunks← 0
22: for each i in range of metadata.Ip f sHashes do
23: Start a new concurrent process for index i:
24: Retrieve data from IPFS using metadata.Ip f sHashes[i]
25: Validate retrieved data
26: Update results and No.validChunks accordingly
27: If enough valid chunks are retrieved, signal completion
28: end for
29: return results, No.validChunks
30: end function

4. Evaluation

To demonstrate the effectiveness of our proposed system, we carried out a compre-
hensive evaluation of our Robust-DSN solution. Our system provides the users with the
flexibility to adjust the parameters to enhance both redundancy and performance according
to explicit requirements. We benchmarked our Robust-DSN with full uniform replication,
where every chunk has the same number of copies. Our assessment includes individual
and joint evaluations of HYDREN and DSWS.

Our first evaluation focuses on the probability of data loss in Section 4.1. The next
evaluation in Section 4.2 addresses assessing the effectiveness of HYDREN in ensuring data
availability and encoding time by benchmarking with a state-of-the-art solution. Following
this, in Section 4.4, we evaluate our optimization algorithm, DSWS (distributed swarm
workflow scheduler), in terms of convergence time. Finally, in Section 4.5, we evaluate our
system for overall data uploading and downloading performance. The fault tolerance of
our algorithm is evaluated by examining the probability of data availability in different
failure scenarios.

4.1. Evaluation of Probability of Data Loss

To formulate the probability of data loss with a hybrid distributed replication and
encoding network, we need to define the following parameters:

• N ← The total number of storage nodes in the system.
• n← The number of nodes storing file chunks.
• Pfail ← The probability of a node failing.

Electronics 2024, 13, 1861 15 of 27

• Pavailable = 1− Pfail is the probability of a node being available or operational.

Our objective is to minimize the probability of data loss, since without using any data
persistence approach to deal with fault tolerance, all chunks are required for data recovery.
Thus, the probability of preserving all chunks is the product of the individual probabilities:

Pall chunks available = (1− Pfail)
n (5)

Therefore, we can say that the probability of missing at least one chunk can be calcu-
lated as follows:

Pmissing at least one chunk = 1− (1− Pfail)
n = 1− Pn

available (6)

It is worth noticing that as n increases, Pavailable decreases quickly. If we need more
nodes to reconstruct a file, the probability of all of them being available decreases exponen-
tially. This situation can be mitigated by implementing data persistence algorithms such as
encoding and replication mechanisms to improve overall file availability.

4.1.1. Probability of Data Loss Using Rs-Encoding

For Reed–Solomon encoding, the data are split into d chunks and calculated, and p
parity chunks are added, making a total of d + p chunks. Only d out of d + p chunks are
needed to reconstruct the original data.

In this scenario, the objective is to compute the probability of losing enough chunks to
make the data reconstruction impossible. Since we need at least d out of d + p chunks, we
can say that if we lose more than p chunks, the file cannot be reconstructed. The range can
be p + 1, p + 2, . . . , p + d chunks.

Pfail the probability of losing a single chunk, which corresponds to the probability
of the failure of the node which is storing that chunk. So, the probability of losing any
specific set of k chunks can be written as Pk

fail. If there are a total of d+p chunks, the
number of ways to choose k can be expressed as a combination formula (d+p

k). The total
probability of losing more than p chunks is the sum of probabilities for each k that ranges
from p + 1, p + 2, . . . , p + d. Thus, the probability of losing enough chunks such that the
data reconstruction is impossible can be expressed as

Pdata loss(Encoding) =
d+p

∑
k=p+1

(
d + p

k

)
Pk

fail (7)

Figure 5 illustrates, by keeping node failure probability set to 30, how the probability
of data loss changes by varying the number of data and parity chunks in a distributed
storage system using Reed–Solomon encoding only. From the color slope, which denotes
the likelihood of data loss, we can see that the probability of data loss reduces as the
number of parity chunks grows. This was expected since additional parity chunks indicate
more redundancy and, consequently, a greater tolerance for node failure. Conversely, for a
constant number of parity chunks, the probability of data loss also rises as the number of
data chunks grows. This is because more data chunks could potentially be lost. Overall, the
figure shows the trade-off between fault tolerance and storage efficiency. By using more
parity chunks, the system shows more robustness against data loss but at the cost of large
storage overhead. Thus, the optimal balance between p and d may depend on the particular
requirements of storage capacity and fault tolerance.

Interpreting storage usage, the total storage consumption S for the data, applying
Reed–Solomon encoding, can be calculated as

S = (p + d)× c (8)

Electronics 2024, 13, 1861 16 of 27

where c is the chunk size, d are the data chunks, and p represents the parity chunks.
Although this method improves file availability to a certain extent, we cannot manage the
loss of more than p chunks.

Figure 5. The probability of data loss for varying d and p.

4.1.2. Probability of Data Loss Using Replication

In case of replication, each data chunk is copied x times to improve data availability.
We have a total of d chunks, and each chunk is replicated x times to make a total of d× (x)
chunks. So, the probability of losing all the replicas of a single chunk can be expressed
as Pfail

x. Since any of the d chunks could be the one that loses all its replicas, the total
probability can be expressed as

Pdata loss(Replication) = d× (Pfail)
x (9)

Figure 6 shows, by keeping the node failure probability set to 30, how the probability
of data loss changes by varying the replication factor and the number of data chunks in
a distributed storage system using replication only. As the replication factor rises, the
probability of data loss reduces, which is aligned with our expectation because more
replicas of each data chunk decrease the probability of data loss. On the other hand, the
probability of data loss increases as the quantity of data chunks increases because more
chunks might potentially fail. Moreover, it also emphasizes the deteriorating effect of the
replication factor, as the probability of data loss rapidly increases exclusively for lower
replication factors.

Figure 6. The probability of data loss vs. d and x.

Electronics 2024, 13, 1861 17 of 27

Interpreting storage usage, the total storage consumption S for the data, applying
replication, can be calculated as

S = c× d× x (10)

where S is the total storage utilization of a file when we use replication, c is the chunk size,
d represents the data chunks, and x represents the replication factor.

4.1.3. Probability of Data Loss Using Hydren

If we use only replication, the file becomes irrecoverable if all (x) replicas of even
a single chunk are lost. On the other hand, for the encoding method, the file will be
irrecoverable in the case of losing more than p chunks. To deal with a large-scale failure
(many nodes going down) with minimum storage overhead, a hybrid approach can be
tuned to provide a balance between storage efficiency and failure probability. In this
approach, a file is split into d chunks and calculated, and p parity chunks are added,
making a total of d + p chunks. After that, each of the chunks is replicated x times to make
a total of x(d + p) chunks of a file. For a file to be lost in this hybrid approach, we must
lose all the (x) replicas of more than p chunks. As described in Section 3.5 (replication
only), the probability of losing all the replicas of a single chunk can be expressed as (Pfail)

x.
The probability of losing all replicas of k chunks can be expressed as ((Pfail)

x)k. Moreover,
we have a total of d + p chunks; the number of ways to choose k can be expressed as a
combination formula (d+p

k). So, the total probability of losing more than p chunks with
their replicas at the same time can be expressed as

Pdata loss(HYDREN) =
d+p

∑
k=p+1

(
d + p

k

)
(Px

fail)
k (11)

Interpreting storage usage, the total storage consumption S for the data, applying
Reed–Solomon encoding, can be calculated as follows:

S = (p + d)× c× x (12)

where c is the chunk size, x is the replication factor, d represents the data chunks, and p
represents the parity chunks. Although this method improves file availability to a certain
extent, we cannot afford the loss of more than p chunks.

Figures 7 and 8 demonstrate the probability of data loss using HYDREN, which
employs distributed replication and encoding. The graphs highlight the significance of
parity chunks in protecting the data. There is an optimal bound for parity chunks that can
minimize the probability of data loss efficiently, keeping the replication factor constant.
From Figure 7, which uses replication factor 2 only, it can be seen that even with a parity-to-
data chunk ratio of 1:6, the system provides a probability of data loss of 0.2, which shows
significant improvement in data availability and effectiveness of the HYDREN approach.
Moreover, Figure 8 describes the impact on the probability of data loss when we increase
the replication factor to 3. Figure 8 shows that even with a parity-to-data chunk ratio of
1:10, the probability of data loss is around 0.04. With the increase in replication factor, each
chunk (data and parity) has more replicas and is distributed across the regions, which
have different failure rates and should in principle facilitate the system in dealing with
large-scale failures.

Electronics 2024, 13, 1861 18 of 27

Figure 7. The probability of data loss, varying d and p with replication factor 2.

Figure 8. The probability of data loss, varying d and p with replication factor 3.

4.2. Evaluation of Hydren Data Availability and Encoding Speed

We evaluated HYDREN for data availability and encoding speed by benchmarking it
with existing systems.

Data Availability

Figure 9 demonstrates the data recovery likelihood versus the peer failure rate for
three distinct storage systems: HYDREN, Swarm network, and Snarl [33]. The Swarm
network is a decentralized, self-sustaining, undelaying infrastructure of storage for the
Ethereum ecosystem. The Swarm network allows the storage and distribution of data across
a peer-to-peer network of nodes [34]. Snarl is an overlay network that creates a logical
network on top of Swarm and acts as an additional layer between the user and the storage
network. Figure 9 illustrates that the data recovery likelihood for all the systems reduces as
the peer failure rate increases. For this experiment, a 100 MB file was taken to evaluate the
systems. Thus, for 100 MB of data, HYDREN utilized 506.66 MB for configuration (r = 4,
d = 15, and p = 4) and 1405.55 MB for configuration (r = 11, d = 18, and p = 5). The

Electronics 2024, 13, 1861 19 of 27

blue line plot, indicating HYDREN, sustains a data recovery likelihood close to 100% even
if the peer failure rate grows to around 50% for configuration (r = 4, d = 15, and p = 4)
and 79% for configuration (r = 11, d = 18, and p = 5). This indicates that HYDREN is
highly robust to peer failure and can maintain excellent data availability even in large-scale
peer failure circumstances.

Figure 9. File recovery likelihood vs. peer failure rate.

Conversely, the green and red plots represent Snarl and Swarm, respectively, indicating
a quick deterioration in the data recovery likelihood as the peer failure rate grows. Our
proposed system shows dual advantages against the Swarm network. For a peer failure
rate of 50%, saving around half of the storage, the proposed system provides about 8%
higher data recovery likelihood compared with the Swarm network for replication factor
10. Likewise, for a peer failure rate of 80%, the proposed system uses 5.122 times less
storage and provides about 21.6% higher data recovery likelihood compared with the
Swarm network with r = 72. Furthermore, Snarl also cannot match the effectiveness of
HYDREN here. HYDREN and Snarl consume around the same storage. For a peer failure
rate of 50%, the data recovery likelihood of the proposed system is about 100%, while Snarl
provides 83.3%. Similarly, for a peer failure rate of 80%, the data recovery likelihood of the
proposed system is about 95%, while Snarl gives 90.6%.

4.3. Data Integrity

The uploaded file is encoded into multiple pieces when a storage call is initiated. The
system calculates the hashes of all chunks that are used as unique fingerprints to validate
the integrity of each chunk. In the downloading procedure, as a chunk is fetched from
the storage node, it is verified by recomputing and comparing its hash with the associated
reference hash. If a retrieved chunk is identified as corrupted or tampered with, it is
leftover, and the system carries over to the next chunk. This procedure makes sure that only
validated chunks are considered to be a part of the file reconstruction process. To improve
the system’s performance and minimize the latency, the algorithm stops the process of
integrity verification as soon as it collects an adequate number of valid chunks; specifically,
this is the number equivalent to the data chunks, which is the minimum required number
of chunks for file reconstruction. This facilitates resource optimization and fast processing,
as unessential verification of chunks is prevented once the required proportion of valid
chunks is obtained.

Encoding Speed

We also evaluated the effectiveness of HYDREN by assessing its encoding speed and
comparing it against Snarl as a state-of-the-art solution. Figure 10 provides a 3D vision

Electronics 2024, 13, 1861 20 of 27

of HYDREN’s encoding speeds using a 10 MB file, modifying both the parity and data
chunks. For the smaller number of parity chunks, the encoding time stays reasonable
across a spectrum of data chunks, showing only an insignificant increase. However,
there is a substantial increase in encoding time with a rise in parity chunks, which was
expected because of the additional computation needed for generating the parity chunks.
Table 2 shows a processing comparison between HYDREN and Snarl for different file sizes.
Compared to Snarl, HYDREN consistently shows lower processing times for all file sizes,
verifying its effectiveness. For a 1 MB file, HYDREN takes only 0.001854 s to encode,
compared with Snarl’s 0.0038 s. This tendency continues as file size increases. HYDREN
takes only 0.017804 s to encode a 10 MB file, while Snarl encodes it in 0.037 s. The difference
in encoding time reaches its peak for the 1000 MB file, where HYDREN encodes it in 1.719 s,
better than Snarl’s 3.600 s. Moreover, the benefit of HYDREN is considerable for larger data
(Figure 11), where the encoding time for HYDREN does not grow larger proportionally
with the size of the data, as opposed to Snarl.

Figure 10. Encoding time of HYDREN for varying d and p using a 10 MB file.

Figure 11. Encoding time comparison.

Electronics 2024, 13, 1861 21 of 27

Table 2. Processing times comparison between Snarl and HYDREN.

File Size (MB) HYDREN Time (s) Snarl Time (s)

1 0.001854 0.0038

10 0.017804 0.037

100 0.176377 0.360

1000 1.719 3.600

The efficiency of HYDREN to maintain data availability can be seen in Figure 9. Its
performance can be recognized by its robust encoding method, strategical replication
approach, and effective node selection method, which incorporates regional and global
optimization. This guarantees that even with a large-scale peer failure, there is adequate
redundancy and mechanisms to recover the original data. This robustness shows HYDREN
as a reliable distributed storage system appropriate for circumstances where data availabil-
ity is important and peer failure can happen frequently or unpredictably. HYDREN also
shows excellent scalability, which is a fundamental feature of distributed storage systems
for handling ever-larger datasets. Thus, HYDREN is a robust and effective solution for
improving data availability in distributed storage systems.

4.4. Evaluation of Dsws Performance

Figure 12 illustrates the performance of the DSWS distributed swarm workflow sched-
uler. The plot demonstrates the execution time of DSWS for varying numbers of service
providers and workflows. It can be noted that the execution time increases linearly for both
axes with the increase in the number of nodes and workflows, which was expected, since
with the increase in workflows, more computational tasks are introduced and the search
space for optimization algorithms grows larger.

Figure 12. DSWS processing time.

Figure 13 compares the performance of DSWS with a genetic algorithm (GA) solu-
tion [35], particle swarm optimization (PSO) [36], and ant colony optimization (ACO) [37]
for 30 workflows. The results indicate that DSWS continually outperforms the traditional
algorithms, sustaining lower processing times for different sets of nodes. This suggests that

Electronics 2024, 13, 1861 22 of 27

DSWS is efficient not only for distributing workflows but also for executing them more
quickly than traditional methods.

Figure 13. Processing time comparison for 30 workflows.

Figure 14 provides a convergence analogy, indicating how promptly each method
proceeds toward an optimum solution. Compared with the PSO, GA, and ACO methods,
the proposed DSWS algorithm converges faster and reaches the lowest cost function value
in the least elapsed time, which is an illustration of a more effective optimization approach,
arriving at an optimal or near-optimal solution in less time. Regardless of the size of the
solution space, the proposed DSWS system not only improves processing times but also
converges quickly to an optimal solution. This confirms DSWS as a significant improvement
in distributed scheduling approaches.

Figure 14. Convergence time comparison.

4.5. Evaluation of Robust-Dsn Execution Time

To validate the capabilities of the proposed system, we did undertook a performance
assessment by benchmarking against the baseline IPFS network. In this experiment, we
built a distributed storage network using IPFS, deploying 20 independent Docker containers
on a virtual machine with specifications of 16 GB RAM, 256 GB of storage, and a five-core
CPU. All the nodes in the network were configured with distinct resources to mimic a
network of heterogeneous service providers that use content-based addressing. Users could
interact with the storage network through an API advertised by the network and deliver
their data along with corresponding performance requirements to call on-demand and
reliable storage services. This assessment was carried out for two operations: file uploading

Electronics 2024, 13, 1861 23 of 27

and downloading. The performance indicator was the average time for uploading and
downloading files of sizes varying from 10 MB to 1000 MB. In the case of IPFS, the file
was uploaded with no replication. In comparison, the proposed system employed the
HYDREN approach with the following parameters: (d = 15, p = 4). Each experiment was
executed 15 times, and the average for both the uploading and downloading processes
was determined.

Figures 15 and 16 indicate that for each of the experiments, the proposed Robust-DSN
outperformed the IPFS in terms of file uploading and downloading times. The processing
duration for both uploading and downloading files was also influenced by the parameters
of encoding d and p. As Figure 10 shows, for a fixed number of parity chunks, the encoding
time reduced with an increase in the number of data chunks. However, we employed the
following parameters: (d = 15, p = 4).

Figure 15. Uploading time comparison.

Figure 16. Downloading time comparison.

The results in Figure 15 show that both systems demonstrate that as the file size
increases, there is also an increase in uploading time. However, the proposed system
consistently maintains a lower uploading time compared to IPFS. This is because of the
effectiveness of the chunk distribution approach enabled by a lightweight multithreading
strategy that accelerates task completion and scales well even as the size of the file ap-
proaches 1000 MB. Conversely, the IPFS network executes this process with a single stream.

The file downloading time comparison can be seen in Figure 16, which shows the
improved performance of Robust-DSN compared to IPFS for all file sizes. The IPFS system

Electronics 2024, 13, 1861 24 of 27

retrieves the file via a single stream, whereas the proposed system fetches the file chunks
asynchronously, employing lightweight multithreading. Moreover, the proposed system
does not need a comprehensive set of uploaded chunks. Instead, it relies on an adequate
subset of valid chunks (d number of chunks). The system waits only for d valid chunks
and then terminates the remaining threads, thereby reducing both downloading and
processing times.

Furthermore, our system provides an advanced mechanism for file distribution, while
IPFS uploads files to its local daemon and propagates only the CID (content identifier) of
the file using the DHT (distributed hash table) instead of transferring the actual file to other
nodes for storage. In the Robust-DSN case, the file is split into data chunks and encoded
to calculate parity chunks, suitable nodes are identified, and these chunks are actively
distributed and replicated across nodes in different regions, which realizes the true sense
of a distributed system. In IPFS, a single node hosts and advertises a complete file on the
network. The intensity of the file distribution depends on the popularity of the CID in the
network. A file can only be served by additional nodes if it has been accessed by these
nodes via CID, and each node retains a full copy. Therefore, if a file is hosted by a single
node and is unpopular, it would be inaccessible if the node failed.

5. Evaluation of System Constraints and Security Risks

For the architecture of the proposed DSN, we made some critical assumptions about
the network contributors. we assume that all the nodes in the network are trustworthy and
consistently reveal correct information about their available resources. Additionally, it is
assumed that each of the service providers in the network holds equal privilege and can
join either as a service provider or a user. This approach ensures a consistent policy for
joining the network and improving the system’s autonomous and decentralized nature.
These assumptions are crucial to our system’s operation, as accurate information on avail-
able resources is processed for data distribution and allocation. Though we employed an
integrity-inspection process, where the hashes of all chunks are calculated before distribu-
tion and then afterward, at the downloading of the chunks, are recalculated and compared
with the associated hash to validate the integrity of all the chunks, there is a lack of compre-
hensive security features. Although data are split into chunks and distributed to distinct
nodes, the security data may be compromised if malicious nodes join the system. This
is because we store the chunks in plaintext, exposing them to possible security breaches.
Moreover, another security concern may appear specifically from the centralized manage-
ment of metadata produced by the encoding scheme used in the system. It might turn into
a single point of failure and become a potential target for attackers, compromising data
availability. To alleviate this issue, there is a need for a robust authentication mechanism
for participants and advanced encryption for the security of data chunks.

6. Conclusions

We presented a comprehensive solution for distributed storage systems to mitigate
the issues of data availability, integrity, and task management. The overall Robust-DSN
system incorporates HYDREN, a system developed for improving file availability through
fast and reliable distributed replication and encoding, and DSWS, an advanced swarm
intelligence-based workflow scheduler, as the main components, resulting in a robust DSN
framework for distributed storage platforms.

The proposed architecture is established based on a layered approach, where the
individual layer is responsible for a particular functionality. The data storage layer is based
on the IPFS network. At the layer for handling data availability and integrity, HYDREN
provides encoding and replicating of the data across home and neighboring regions for
distributing the failure cause, certifying that data are not only protected but also readily
accessible when required. This is specifically critical where data loss or unavailability can
have significant repercussions. In addition to this, the DSWS layer provides a workflow
scheduling approach, which helps to optimize the allocation of workflows across the

Electronics 2024, 13, 1861 25 of 27

regional distribution of service providers. The experimental results provide evidence of
DSWS’s effectiveness since it outperformed traditional approaches like PSO, GA, and ACO
in processing time and convergence rate. This is specifically significant in environments
with a larger number of workflows, where DSWS sustains lower processing times across
different sets of nodes. Moreover, the convergence plot confirms a faster convergence rate
to optimal or near-optimal solutions. This is crucial for real-time applications where instant
decision making is critical.

To conclude, Robust-DSN presents the following advancements in the design of
distributed storage systems:

• Our system ensures data availability, even in case of network issues, hardware failures,
or other disruptions. This is achieved by applying the HYDREN technique, where
data are distributed in regional best nodes and replicated across global best nodes.
This resiliency against large-scale failures leads to its robustness.

• The proposed system ensures the integrity of stored data by hashing each of the
chunks and verifying them while downloading. This process prevents data corruption
and ensures that data are not tampered with.

• The system can manage resources, schedule storage requests, and maintain perfor-
mance under varying load conditions. This involves intelligent load balancing across
regions and proactive workflow scheduling.

• The system can execute storage and retrieval requests instantly, reducing latency and
processing times. This is due to an efficient data placement approach (lightweight
multithreading) that concurrently performs the tasks.

The results show that compared with a state-of-the-art system, the proposed system
offers 15% more file recovery likelihood, even for a peer failure rate of 50%. Moreover,
with the configuration of replication factor 4 and the same failure resilience as IPFS, it
saves 50% storage and offers 8% more file recovery likelihood. The cooperation between
DSWS and HYDREN produces a balanced methodology for robustness, concentrating
on both the static and dynamic characteristics of distributed storage systems. Future
research directions include some important extensions and improvements to our present
system. Firstly, our goal is to integrate blockchain technology into our existing framework
to explore its ability for decentralized metadata management. Secondly, we would like
to explore and implement encryption schemes for security and access management, thus
ensuring a more robust and secure distributed storage system. Thirdly, we intend to
incorporate an incentivization mechanism to motivate contributors in the storage network
ecosystem. Moreover, this study is set to expand by acting as a storage platform for
emerging technologies such as edge computing and the Internet of Things (IoT). The
integration of these advanced technologies is likely to substantially improve the system’s
capabilities, thus expanding the proposed system’s abilities in a wide range of applications.

Author Contributions: Z.H. devised the study idea and research questions, designed the methodol-
ogy and experimental framework, collected and analyzed data and drafted the initial manuscript.
H.R.B. assisted in analysis, assisted in developing the experimental framework, provided feedback
during manuscript drafting, reviewed and edited the manuscript. N.E.I. helped to formulate and
conceptualize the study, provided expertise in theoretical frameworks, assisted in results validation,
participated in revision. C.P. supervised the overall research, provided support in designing method-
ology, provided valued input during discussions and improvements. All authors have read and
agreed to the published version of the manuscript.

Funding: This research work is a part of the Ph.D. program at the Free University of Bolzano.
There was no external funding received for this research or preparing this article. This research
was conducted with the facilities and resources afforded by the Free University of Bolzano, with no
individual grants from funding organizations or commercial or nonprofit sectors.

Electronics 2024, 13, 1861 26 of 27

Data Availability Statement: The results and assessments presented in this article are based exclu-
sively on the data produced during the research and do not use externally accessible datasets. The
source code of the developed system in this research work can be provided upon request by the
corresponding author.

Conflicts of Interest: The authors state that there are no competing interests or associations that
could influence the work presented in this article. This research was conducted as a part of the Ph.D.
program at the Free University of Bolzano without any financial relationships that could be a possible
conflict of interest.

References
1. Zeng, W.; Zhao, Y.; Ou, K.; Song, W. Research on cloud storage architecture and key technologies. In Proceedings of the

2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, Seoul, Republic of Korea,
24–26 November 2009; pp. 1044–1048.

2. Mogarala, A.G.; Mohan, K. Security and privacy designs based data encryption in cloud storage and challenges: A review.
In Proceedings of the 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Bengaluru, India, 10–12 July 2018; pp. 1–7.

3. Charanya, R.; Aramudhan, M. Survey on access control issues in cloud computing. In Proceedings of the 2016 Intl Conference on
Emerging Trends in Engineering, Technology and Science (ICETETS), Pudukkottai, India, 24–26 February 2016; pp. 1–4.

4. Wilkinson, S.; Boshevski, T.; Brandoff, J.; Buterin, V. Storj, a Peer-to-Peer Cloud Storage Network. 2014. Available online:
https://www.researchgate.net/publication/374024792_Storj_A_Peer-to-Peer_Cloud_Storage_Network (accessed on 2 January 2024).

5. Le, V.T.; Ioini, N.E.; Barzegar, H.R.; Pahl, C. Trust management for service migration in Multi-access Edge Computing environ-
ments. Comput. Commun. 2022, 194, 167–179. [CrossRef]

6. Battah, A.A.; Madine, M.M.; Alzaabi, H.; Yaqoob, I.; Salah, K.; Jayaraman, R. Blockchain-based multi-party authorization for
accessing IPFS encrypted data. IEEE Access 2020, 8, 196813–196825. [CrossRef]

7. Benet, J. Ipfs-content addressed, versioned, p2p file system. arXiv 2014, arXiv:1407.3561.
8. Moritz, P.; Nishihara, R.; Wang, S.; Tumanov, A.; Liaw, R.; Liang, E.; Elibol, M.; Yang, Z.; Paul, W.; Jordan, M.I.; et al. Ray: A

distributed framework for emerging {AI} applications. In Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), Carlsbad, CA, USA, 8–10 October 2018; pp. 561–577.

9. Alzahrani, A.; Alyas, T.; Alissa, K.; Abbas, Q.; Alsaawy, Y.; Tabassum, N. Hybrid approach for improving the performance of data
reliability in cloud storage management. Sensors 2022, 22, 5966. [CrossRef] [PubMed]

10. Yu, M.; Sahraei, S.; Li, S.; Avestimehr, S.; Kannan, S.; Viswanath, P. Coded merkle tree: Solving data availability attacks in
blockchains. In Proceedings of the International Conference on Financial Cryptography and Data Security, Kota Kinabalu,
Malaysia, 10–14 February 2020; pp. 114–134.

11. Balaji, S.; Krishnan, M.N.; Vajha, M.; Ramkumar, V.; Sasidharan, B.; Kumar, P.V. Erasure coding for distributed storage: An
overview. Sci. China Inf. Sci. 2018, 61, 1–45. [CrossRef]

12. Chiniah, A.; Mungur, A. On the Adoption of Erasure Code for Cloud Storage by Major Distributed Storage Systems. EAI Endorsed
Trans. Cloud Syst. 2022, 7, e1. [CrossRef]

13. Thantharate, P.; Anurag, T. CYBRIA-Pioneering Federated Learning for Privacy-Aware Cybersecurity with Brilliance. In Proceed-
ings of the 2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life Using AI, Robotics and
IoT (HONET), Boca Raton, FL, USA, 4–6 December 2023; pp. 56–61.

14. Talukder, M.A.; Islam, M.M.; Uddin, M.A.; Hasan, K.F.; Sharmin, S.; Alyami, S.A.; Moni, M.A. Machine learning-based network
intrusion detection for big and imbalanced data using oversampling, stacking feature embedding and feature extraction. J. Big
Data 2024, 11, 33. [CrossRef]

15. Sabaghian, K.; Khamforoosh, K.; Ghaderzadeh, A. Data Replication and Placement Strategies in Distributed Systems: A State of
the Art Survey. Wirel. Pers. Commun. 2023, 129, 2419–2453. [CrossRef]

16. Zhou, T.; Tian, C. Fast erasure coding for data storage: A comprehensive study of the acceleration techniques. ACM Trans. Storage
(TOS) 2020, 16, 1–24. [CrossRef]

17. Trón, V.; Fischer, A.; Nagy, D.A.; Felföldi, Z.; Johnson, N. Swap, Swear and Swindle: Incentive system for Swarm. May
2016. Available online: https://ethersphere.github.io/swarm-home/ethersphere/orange-papers/1/sw%5E3.pdf (accessed on
3 October 2023).

18. Xu, J.; Xue, K.; Li, S.; Tian, H.; Hong, J.; Hong, P.; Yu, N. Healthchain: A blockchain-based privacy preserving scheme for
large-scale health data. IEEE Internet Things J. 2019, 6, 8770–8781. [CrossRef]

19. Khatal, S.; Rane, J.; Patel, D.; Patel, P.; Busnel, Y. Fileshare: A blockchain and ipfs framework for secure file sharing and
data provenance. In Advances in Machine Learning and Computational Intelligence; Algorithms for Intelligent Systems; Springer:
Singapore, 2021; pp. 825–833.

20. Trautwein, D.; Raman, A.; Tyson, G.; Castro, I.; Scott, W.; Schubotz, M.; Gipp, B.; Psaras, Y. Design and evaluation of IPFS: A
storage layer for the decentralized web. In Proceedings of the ACM SIGCOMM 2022 Conference, Amsterdam, The Netherlands,
22–26 August 2022; pp. 739–752.

https://www.researchgate.net/publication/374024792_Storj_A_Peer-to-Peer_Cloud_Storage_Network
http://doi.org/10.1016/j.comcom.2022.07.039
http://dx.doi.org/10.1109/ACCESS.2020.3034260
http://dx.doi.org/10.3390/s22165966
http://www.ncbi.nlm.nih.gov/pubmed/36015727
http://dx.doi.org/10.1007/s11432-018-9482-6
http://dx.doi.org/10.4108/eai.14-9-2021.170955
http://dx.doi.org/10.1186/s40537-024-00886-w
http://dx.doi.org/10.1007/s11277-023-10240-7
http://dx.doi.org/10.1145/3375554
https://ethersphere.github.io/swarm-home/ethersphere/orange-papers/1/sw%5E3.pdf
http://dx.doi.org/10.1109/JIOT.2019.2923525

Electronics 2024, 13, 1861 27 of 27

21. Muralidharan, S.; Ko, H. An InterPlanetary file system (IPFS) based IoT framework. In Proceedings of the 2019 IEEE International
Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11–13 January 2019; pp. 1–2.

22. Abuomar, O.S.; Gross, R.Y. Using Blockchain, RAID, & BitTorrent Technologies to Secure Digital Evidence from Ransomware.
In Proceedings of the 2023 IEEE International Conference on Electro Information Technology (eIT), Romeoville, IL, USA,
18–20 May 2023; pp. 001–006.

23. Mallick, S.R.; Lenka, R.K.; Tripathy, P.K.; Rao, D.C.; Sharma, S.; Ray, N.K. A Lightweight, Secure, and Scalable Blockchain-Fog-
IoMT Healthcare Framework with IPFS Data Storage for Healthcare 4.0. SN Comput. Sci. 2024, 5, 198. [CrossRef]

24. Guidi, B.; Michienzi, A.; Ricci, L. Evaluating the decentralisation of filecoin. In Proceedings of the 3rd International Workshop on
Distributed Infrastructure for the Common Good, Quebec, QC, Canada, 7 November 2022; pp. 13–18.

25. Williams, S.; Kedia, A.; Berman, L.; Campos-Groth, S. Arweave: The Permanent Information Storage Protocol. 2023. Available
online: https://arweave.org/files/arweave-lightpaper.pdf (accessed on 4 January 2024).

26. Sheikh, S.; Gilliland, A.J.; Kothe, P.; Lowry, J. Distributed records in the Rohingya refugee diaspora: Arweave and the R-Archive.
J. Doc. 2023, 79, 813–829. [CrossRef]

27. Williams, S.; Diordiiev, V.; Berman, L.; Uemlianin, I. Arweave: A Protocol for Economically Sustainable Information Permanence.
Arweave Yellow Paper 2019. Available online: https://arweave.org/yellow-paper.pdf (accessed on 5 August 2023).

28. Hameed, Z.; Barzegar, H.R.; El Ioini, N.; Pahl, C. Robust-DSN-Performance and Fault Tolerance of a Distributed Storage Network.
In Proceedings of the 2023 Eighth International Conference on Fog and Mobile Edge Computing (FMEC), Tartu, Estonia, 18–20
September 2023; pp. 115–122.

29. Gandelman, M.; Cassuto, Y. Treeplication: An erasure code for distributed full recovery under the random multiset channel.
IEEE Trans. Inf. Theory 2020, 67, 3542–3556. [CrossRef]

30. Hu, Y.; Cheng, L.; Yao, Q.; Lee, P.P.; Wang, W.; Chen, W. Exploiting combined locality for {Wide-Stripe} erasure coding in
distributed storage. In Proceedings of the 19th USENIX Conference on File and Storage Technologies (FAST 21), Virtual event,
23–25 February 2021; pp. 233–248.

31. Li, Z.; Xiao, C. ER-Store: A Hybrid Storage Mechanism with Erasure Coding and Replication in Distributed Database Systems.
Sci. Program. 2021, 2021, 1–13. [CrossRef]

32. Busetti, R.; El Ioini, N.; Barzegar, H.R.; Pahl, C. Distributed synchronous particle swarm optimization for edge computing. In
Proceedings of the 2022 9th International Conference on Future Internet of Things and Cloud (FiCloud), Québec, QC, Canada,
6–10 December 2022; pp. 145–152.

33. Nygaard, R.; Estrada-Galiñanes, V.; Meling, H. Snarl: Entangled merkle trees for improved file availability and storage utilization.
In Proceedings of the 22nd International Middleware Conference, Rome, Italy, 22–24 August 2021; pp. 236–247.

34. Trón, V. The Book of Swarm: Storage and Communication Infrastructure for Self-Sovereign Digital Society Back-End Stack for the
Decentralised Web. v1.0 Pre-Release 7. 2020. Available online: https://dl.icdst.org/pdfs/files4/0d73132ea73cc96a7e36d0ae811
ccdbc.pdf (accessed on 5 January 2024).

35. Xu, M.; Feng, G.; Ren, Y.; Zhang, X. On cloud storage optimization of blockchain with a clustering-based genetic algorithm.
IEEE Internet Things J. 2020, 7, 8547–8558. [CrossRef]

36. Busetti, R.; Ioini, N.E.; Barzegar, H.R.; Pahl, C. A Comparison of Synchronous and Asynchronous Distributed Particle Swarm
Optimization for Edge Computing. In Proceedings of the 13th International Conference on Cloud Computing and Services
Science, Prague, Czech Republic, 26–28 April 2033; SciTe Press: Setúbal, Portugal 2023; pp. 194–203.

37. Rajakumari, K.; Kumar, M.V.; Verma, G.; Balu, S.; Sharma, D.K.; Sengan, S. Fuzzy Based Ant Colony Optimization Scheduling in
Cloud Computing. Comput. Syst. Sci. Eng. 2022, 40, 581–592. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s42979-023-02511-8
https://arweave.org/files/arweave-lightpaper.pdf
http://dx.doi.org/10.1108/JD-08-2022-0174
https://arweave.org/yellow-paper.pdf
http://dx.doi.org/10.1109/TIT.2020.3037698
http://dx.doi.org/10.1155/2021/9910942
https://dl.icdst.org/pdfs/files4/0d73132ea73cc96a7e36d0ae811ccdbc.pdf
https://dl.icdst.org/pdfs/files4/0d73132ea73cc96a7e36d0ae811ccdbc.pdf
http://dx.doi.org/10.1109/JIOT.2020.2993030
http://dx.doi.org/10.32604/csse.2022.019175

	Introduction
	Related Work
	Robust-Dsn System Design
	Architecture and Components
	Distributed Replication and Encoding Network
	Distributed Swarm Workflow Scheduler
	Uploading Process
	Downloading Process

	Evaluation
	Evaluation of Probability of Data Loss
	Probability of Data Loss Using Rs-Encoding
	Probability of Data Loss Using Replication
	Probability of Data Loss Using Hydren

	Evaluation of Hydren Data Availability and Encoding Speed
	Data Integrity
	Evaluation of Dsws Performance
	Evaluation of Robust-Dsn Execution Time

	Evaluation of System Constraints and Security Risks
	Conclusions
	References

