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Abstract: Functional Movement Screening (FMS) is a test used to evaluate fundamental movement
patterns in the human body and identify functional limitations. However, the challenge of carrying
out an automated assessment of FMS is that complex human movements are difficult to model
accurately and efficiently. To address this challenge, this paper proposes an automatic evaluation
method for FMS based on a multi-scale lightweight 3D convolution encoder–decoder (ML3D-ED)
architecture. This method adopts a self-built multi-scale lightweight 3D convolution architecture to
extract features from videos. The extracted features are then processed using an encoder–decoder
architecture and probabilistic integration technique to effectively predict the final score distribution.
This architecture, compared with the traditional Two-Stream Inflated 3D ConvNet (I3D) network,
offers a better performance and accuracy in capturing advanced human movement features in
temporal and spatial dimensions. Specifically, the ML3D-ED backbone network reduces the number
of parameters by 59.5% and the computational cost by 77.7% when compared to I3D. Experiments
have shown that ML3D-ED achieves an accuracy of 93.33% on public datasets, demonstrating an
improvement of approximately 9% over the best existing method. This outcome demonstrates the
effectiveness of and advancements made by the ML3D-ED architecture and probabilistic integration
technique in extracting advanced human movement features and evaluating functional movements.

Keywords: functional movement screening; human movement feature; 3D convolution;
encoder–decoder; automatic evaluation method

1. Introduction

Functional Movement Screening (FMS) assesses an individual’s movement abilities
and identifies potential risks for the occurrence of sports injuries. It analyzes the body’s
flexibility and stability by assessing basic movement patterns. FMS includes seven test
actions and three exclusion actions. The seven test actions are Deep Squat, Active Straight
Leg Raise, Trunk Stability-Push Up, Hurdle Step, Shoulder Mobility, In-Line Lunge, and
Rotary Stability-Quadruped. The three exclusionary actions are the Prone Press-up Test,
Impingement Test, and Kneelinglumbar Test. Although many individuals demonstrate
excellent athletic ability, some cannot perform specific movements effectively on the FMS
assessment, resulting in lower scores. These people tend to use compensatory movements to
complete specific movements. If this compensation continues for a long time, it may cause
the body to become accustomed to non-standard movement patterns, thereby affecting the
balanced development of the body and increasing the risk of injury. The FMS is used to
score each of the subject’s movements to discover the areas with the most severe movement
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defects, which can improve functional movements, improve sports performance, and
reduce the risk of sports injuries in a targeted manner. The main evaluation method usually
used in FMS is expert on-site evaluation, which involves experts observing each subject’s
sports performance. However, this method has some drawbacks, including being time-
consuming and labor-intensive and susceptible to experts’ subjective opinions, which may
reduce the accuracy of the assessment’s results.

With the development of deep learning, Convolutional Neural Networks (CNNs) have
been widely applied to understanding actions and have made significant advancements
compared to traditional methods [1]. Each step of a CNN involves three fundamental
operations: convolution, the nonlinear activation of neurons, and feature pooling [2]. In
the work by Baccouche et al. [3], a 3D CNN treats the input as a spatiotemporal volume.
Subsequently, the features extracted by the 3D CNN are trained within a Long Short-
Term Memory (LSTM) network. Zhou et al. [4] coupled 3D input feature maps with 2D
convolutional blocks in a block-serial manner. They also added connections that incorporate
cross-domain residual methods along the temporal dimension to better extract temporal
information and reduce complexity.

The rapid development of deep learning for action recognition and quality assessment
has promoted the progress of FMS. Leveraging these advancements, Andreas et al. [5]
proposed a Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model
for classifying functional movements. Similarly, Duan et al. [6] utilized a CNN model to
classify electromyography (EMG) signals associated with functional movements, achieving
impressive accuracies for movements such as squat, step, and straight squat. Deep learning
algorithms excel in automatically extracting movement features, thereby enhancing the
accuracy of movement recognition. However, their efficacy is contingent upon the availabil-
ity of a vast amount of training data, which can be prohibitively time-consuming to acquire.
Additionally, many traditional deep learning methods rely on feature extraction by models
like I3D [7–10]. I3D employs three-dimensional convolutional kernels, which implies that
each kernel provides both spatial and temporal information. Consequently, the number
of parameters for each convolutional kernel is a multiple of those in a two-dimensional
kernel, leading to a substantial increase in the parameter count of the I3D model.

Alternatively, machine learning approaches have demonstrated promise, particularly
in movement quality evaluation. For instance, an automatic AdaBoost-based FMS evalua-
tion method introduced by Wu et al. [11] utilizes multiple weak classifiers to construct a
robust classifier. Similarly, Bochniewicz et al. [12] employed a random forest model to eval-
uate arm movements in stroke patients, employing a minority–majority voting mechanism
for classification label prediction. These methods require less data and offer interpretability
through manual feature extraction. Moreover, Hong et al. [13] demonstrated the feasibility
of using depth cameras in FMS assessment by collecting a dataset using Azure Kinect depth
sensors. They improved the accuracy of FMS assessment by forming a robust classifier that
combines three Gaussian mixture models, each trained on datasets with different scores.

Given the above shortcomings, this paper proposes an automatic evaluation method
for FMS based on multi-scale lightweight 3D convolution and an encoder–decoder(ML3D-
ED). This method employs ML3D to extract features from videos. It combines the ED
structure to learn the score distribution features of individual movements, thus improving
the accuracy and reliability of the evaluation. The main contributions of this paper are
as follows:

1. In this paper, an ML3D module is designed as an alternative to the I3D feature
extraction module. Compared with the I3D model, the parameters and computation
(floating point operations per second, FLOPs) of the ML3D-ED model were reduced
by 59.55% and 77.67%, respectively.

2. This paper proposes an ED structure network to process features extracted by the
ML3D module, learn subtle movement changes in advanced movement quality evalu-
ation, apply it to functional movement screening, and improve the accuracy of the
evaluation results.
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3. The paper employs a score prediction approach to transform label data processed by
the ED into a distribution of scores. Utilizing a Gaussian distribution, it compares
losses between true and predicted values for samples. Compared to the current most
popular approach, the accuracy of this this method has been improved by nearly 9%.

2. Relevant Theories
2.1. Functional Movement Screening

FMS is a tool used to assess an individual’s movement abilities and potential risks
in their movements. It involves observing whether a subject is stable in executing these
movements and whether there are any abnormalities in their execution of movements.
The core concept of FMS is to reveal potential problems and imbalances in an individual’s
movement by evaluating a series of basic, functionally significant movements. Through
FMS, we are able to identify potential factors that may contribute to sports injuries, such as
muscle imbalance, joint instability, or movement skill deficits. This systematic evaluation
helps an individual develop a personalized training plan that emphasizes the improvement
of individual weaknesses, and provides specific recommendations for exercises that can be
used to maximize functional gains.

The FMS process includes a series of rigorous movement tests, such as deep squat,
walk, and rotate. It involves observing a subject’s performance in executing these move-
ments to evaluate their flexibility, stability, and coordination. This comprehensive evalua-
tion allows sports professionals to deeply understand an individual’s physical function
and provides important information for developing a targeted rehabilitation plan or train-
ing program.

2.2. Video-Based Action Quality Evaluation

The purpose of video-based action quality assessment (AQA) is to detect and assess
the completion of actions in a video. In quality score-based evaluation methods, videos
to be evaluated are usually segmented into appropriate clip-level or frame-level data.
Next, these data are processed through the feature extraction module to extract feature
vectors related to action features. The feature vectors will serve as inputs for regression or
classification functions, yielding quality assessment scores accordingly.

Bai et al. [14] proposed a temporal decoder method for video-based action quality
assessment, but the lack of labels may affect its performance. Gordon [15] explored a body
center-of-mass trajectory-based scoring method in small-scale applications, but it needs
to be validated in wider applications. The key segment extraction system proposed by
Li et al. [16] only extracts part of the scores, which is inconsistent with the diving rules. The
hidden Markov model-based hierarchical classification method proposed by Tao et al. [17]
uses small datasets and has a limited generalization ability.

Parmar et al. [18] used methods such as the support vector machine, neural network,
and enhanced decision tree to classify physiotherapeutic rehabilitation data, but the data
samples were too abundant. The multi-scale convolutional LSTM network proposed
by Xu et al. [19] is suitable for figure skating, but its complex background may lead to
significant prediction errors.

2.3. I3D Architecture

The continuous improvement and application of I3D-LSTM architecture in the field of
video analysis have shown its excellent performance in capturing important quality-related
information. Carreira et al. [20] proposed this architecture in their original research and
continued to improve it in subsequent studies. Through empirical validation using the
Kinetics dataset, researchers successfully demonstrated the high performance of I3D-LSTM
in a wide range of action classes [21,22]. Hara et al. [23] explored the development of
3D CNNs in the field of videos in depth, focusing on its relationship with 2D CNNs
and ImageNet. These studies have provided a broader context for understanding the
motivations and development behind I3D-LSTM. Wang et al. [24] proposed the I3D-LSTM
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network architecture, which cleverly combines the I3D architecture and the long short-term
memory (LSTM) network. This integration was designed to improve the recognition of
human movements in videos. Through a comprehensive utilization of spatiotemporal
information, the I3D-LSTM architecture significantly improves the accuracy of action
recognition tasks, bringing new prospects to the fields of video analysis and human–
computer interaction.

We have replaced the widely used I3D module with an indigenously designed
lightweight module. This improvement allows the system to significantly reduce the
model’s complexity and the computation costs while maintaining its performance. Our
new module combines advanced deep learning techniques with a carefully designed archi-
tecture to offer greater efficiency and flexibility to the system.

3. The Protocol Proposed in This Paper

The comprehensive network model proposed in this study, consisting of a multi-scale
lightweight 3D convolutional network (ML3D) and an encoder–decoder (ED), is used
to evaluate FMS. As shown in Figure 1, the ML3D network takes a sequence of video
frames as an input and considers video features in both temporal and spatial dimensions
through lightweight 3D convolutional operations. By extracting features at different scales
and levels, the ML3D network is able to capture the spatiotemporal dependencies and
feature expression capabilities of videos. Subsequently, the features extracted by ML3D are
passed to the ED. The input data are non-linearly represented via multiple 1D convolutions.
Finally, the predicted distribution is obtained by performing a probabilistic integration on
the features of different scales output by the ED. This predicted distribution represents
the analysis and learning of input videos by the model for prediction of the confidence of
each class.

ML3D

Video

...

...
...

Encoder Decoder

C
o

n
ca

t

So
ft

m
ax Predicted

DistributionClip N

...

Figure 1. ML3D-ED network architecture.

3.1. Data Preprocessing

There are few video frames in the FMS data, which means that the criteria required
by the model for the number of frames cannot be met, leading to a failure to obtain
effective features. To cope with this situation, a linear interpolation-based video frame
interpolation method is used in this protocol to interpolate between adjacent frames to
generate additional interpolated frames.

First, two adjacent frames are selected as reference frames before and after the missing
frame in the video sequence. These two frames contain most of the visual information
required for the missing frame. This process involves using linear interpolation techniques
to take the weighted sum of two adjacent image frames and then generate a series of evenly
spaced interpolation frames between the two adjacent frames. Ultimately, the process
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involves calculating the linear relationship between pixels to derive the pixel value of the
interpolated frames.

I = (1 − a)× ν1 + a × ν2 (1)

The parameter a serves as the interpolation factor, enabling adjustments to control the
weighted ratio between two given values. Denoted by ν1 and ν2, these values correspond
to the interpolation target and the values of neighboring images. These values encompass
pixel data, color components, or other feature information necessitating frame interpolation,
particularly in video interpolation. At the pixel level, they denote RGB color channel values
per pixel. At the feature level, they may indicate feature points or vectors. A pixel-level
interpolation technique synthesizes new frames in the preprocessing phase by averaging
adjacent pixels. This process ensures seamless transitions between frames and augments
the frame count.

3.2. ML3D

A natural method to encode spatiotemporal information in videos involves extending
the convolution kernels in a CNN from 2D to 3D, enabling the training of a new 3D CNN.
This approach allows the network to learn both the visual appearance within individual
video frames and the temporal evolution across frames. However, despite demonstrating
superior performance in recent studies, training 3D CNNs is computationally demanding
and requires significant computational resources. Taking the widely used 11-layer 3D
CNNs (namely, the C3D [25] network) as an example, the model size reaches 321 MB, even
larger than the 152-layer 2D ResNet (ResNet-152) [26] (235 MB), which makes training a
very deep 3D CNN extremely difficult.

Three-dimensional convolution is equivalent to simultaneously convolving two-
dimensional feature maps from multiple time steps. Therefore, assuming that the size of the
3D convolutional filter is d × k × k, it can be decoupled into a 1 × k × k convolutional filter
equivalent to the 2D convolutional filter in the spatial domain and a d × 1× 1 convolutional
filter customized in the temporal domain, as shown in Figure 2.

k

k

d

1
1

d

k

k 1

k

k

d

3D Conv

2D Conv

1D Conv

Figure 2. Three-dimensional filter equivalently transformed into two-dimensional + one-
dimensional filters.

This decoupling can significantly reduce the number of model parameters, and sub-
sequent experiments have proven that this decoupling can effectively extract feature in-
formation from videos. In this paper, multiple 2D convolution kernels of different sizes
are used to extract information at different scales, and then 1 × 3 × 3 convolutional filters
and 3 × 1 × 1 convolutional filters are used in the spatial domain and temporal dimension,
respectively, for equivalent lightweight 3D convolution (L3D). The overall framework
adopts a residual learning approach, in which the raw input is downsampled through
the downsample module and aligned with the feature dimensions output by the L3D
convolution, as shown in Figure 3.
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Figure 3. ML3D architecture.

3.3. Encoder–Decoder

In this paper, an ED architecture is built to learn the features extracted by ML3D
to obtain the final score prediction, as shown in Figure 4. Its basic structure consists of
two parts: an encoder and a decoder. The encoder adopts a stepwise downsampling
convolution architecture to map the input sequence into a latent space, and the decoder
generates a target sequence in this space. The ED model can encode variable-length
sequences into fixed-length state vectors in the encoding stage and then decode the state
vectors and generate variable-length prediction sequences in the decoding stage. The
decoder and encoder skip connections to achieve multi-scale feature fusion, effectively
solving the error accumulation problem.

...

...
...

Encoder Decoder

C
o
n
ca
t

So
ft
m
ax Predicted

Distribution

Figure 4. Encoder–decoder.

The outputs of multiple decoders with different resolutions are concatenated and then
the final score distribution prediction is output through the Softmax function.

3.4. Score Prediction

Given the difference between video-based action quality assessments and image
recognition, there are similar image features between every two adjacent frames. Therefore,
processing features learned by ML3D and ED models enhance the accuracy and reliability
of ratings. We adopted a method that incorporates considering uncertainty in the scoring
process. This approach enables a more comprehensive capturing of the variations and
fluctuations in movement quality, ensuring that the ratings accurately reflect the actual
quality of the movements and account for any instability.

3.4.1. Gaussian Distribution of the Initial Data

In the final layer of the algorithm architecture shown in Figure 1, there are four output
nodes corresponding to the four different levels of FMS scores. The video features are
transformed into a score distribution during the data processing stage. To process these
score distributions, we apply a Gaussian function to smooth them. Equation (2) describes
the probability density function values of the real scores, which are used to convert the
discrete score data into a continuous probability distribution. This enables the model to
learn and predict more refined rating outcomes.
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g(c) =
1√
2πσ

exp(− (c − s)2

2σ2 ) (2)

s represents the mathematical expectation of the label score, and σ represents the
standard deviation. The scores are discretized at intervals as c = [c1, c2, . . . , cm]. The magni-
tude of each score is described as g(c) = [g(c1), g(c2), . . . , g(cm)], representing probability
density values. Next, we normalize the function to obtain normalized probability values.
This step is taken to facilitate the optimization of image loss from the neural network in
subsequent calculations. We normalize the probability density function values to obtain
normalized probability values.

tmpi =
g(ci)

∑m
j=1 g(cj)

(3)

m is the number of classes and is derived from the normalized probability value, which
helps subsequent neural networks to learn to calculate image loss for optimization.

3.4.2. Kullback–Leibler (KL) Divergence

After inputting the image to the ML3D-ED model and processing it, the model outputs
m categories. The softmax layer converts the output value into a probability distribution
score, pred = [pred1, pred2, . . . , predm]. KL divergence measures the matching degree
between two distributions, tmp and pred. The calculation method for KL divergence is
shown in Formula (4).

KL{tmp ∥ pred} =
n

∑
i=1

tmpi log
tmpi
predi

(4)

Finally, when making predictions, the final predicted class is determined by selecting
the value with the highest probability among the prediction scores.

4. Experiment
4.1. Data and Experimental Environment

This paper uses the dataset created by Xing et al. [27], comprising various movements,
including the deep squat, hurdle, split squat, shoulder mobility, active straight leg, raise
rotary stability-quadruped, and trunk stability push-up. Each movement is performed on
both the left and right sides. The dataset was collected from 45 individuals across different
age groups (18 to 59 years old), with annotations provided by three FMS experts. Scores
assigned to each movement range from 0 to 3.

The experimental environment is as follows: Intel(R) Xeon(R) Silver 4310 CPU @
2.10 GHz processor, 26 G memory. GPU: RTX 4090 (24 GB) × 4, PyTorch v1.13.1, Python
v3.9 (ubuntu22.04). Table 1 describes the dataset composition structure of each movement,
including the training set and test set of the movement, as well as the frequencies of each
movement for 1, 2, and 3 points.

Table 1. Number of single movements with different scores.

Training Set Test Set
ID 1 2 3 1 2 3

M01 13 69 17 4 23 5
M03 28 54 18 9 18 8
M05 8 75 17 2 25 8
M07 18 9 5 6 3 2
M09 9 54 39 3 18 12
M11 7 88 9 3 18 12
M12 3 77 8 2 26 3
M14 6 88 1 2 28 1
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4.2. Evaluation Metrics

The evaluation metrics in this paper include accuracy, macro F1, and Kappa coefficient.

1. Accuracy: This represents the effectiveness of the model’s predictions. It is the ratio
of the sum of the number of samples predicted to be correct to the total number of
samples, as shown in Formula (5).

p0 =
∑C

i=1 Ti

n
(5)

where C is the number of classes, Ti is the number of samples classified correctly in i
th class, and n is the number of overall samples.

2. Macroscopic F1 (macro _F1): This is used to measure the accuracy of multiclass
classification. The prerequisite for calculating macro_F1 is to calculate F1_Score,
which can be derived from Formula (6). It is a measure of classification tasks and is
defined as the harmonic mean of precision and recall. Then, macro_F1 is calculated
based on the value of F1_Score and Formula (7).

Fl−scorei = 2
Recalli × Precisioni
Recalli + Precisioni

(6)

In the above formula, Recalli is the recall of the i th class, and Precisoni is the precision
of the i th class.

macro_F1 =
∑C

i=l Fl_scorei

C
(7)

In the above formula, C is the number of classes.
3. Kappa coefficient: This is used to measure agreement and can also be used as a

measure of precision. For classification tasks, agreement is defined as the degree of
consistency between the model prediction results and the actual classification results.
The calculation of the Kappa coefficient is based on the confusion matrix. It has a
value between −1 and 1, and is usually greater than 0, which is shown in Formula (8):

Kappa =
po − pe

1 − pe
(8)

In Formula (8), po is the accuracy and is consistent with Formula (8). pe represents the
accidental agreement, derived from Formula (9):

pe =
∑c

i=1 ai × bi

n
(9)

In the above formula, ai is the number of actual samples of the th class, and bi is the
number of predicted samples of the i th class. ci is the total number of classes, and n
is the total number of samples.

4.3. Experiment and Result Analysis

The experimental hyperparameters are set as follows: the batch size is 8, the epoch is
150, the initial learning rate is 10−4, and the gradient optimization algorithm is adam. The
dataset is divided into training and testing sets, and the ratio of the training set to the test
set is 3:1.

4.3.1. Comparative Experiment Analysis

The superiority of this method is validated by comparing it with advanced video-based
quality assessment algorithms using five evaluation metrics: accuracy, macro F1 score,
Kappa coefficient, model parameters, and computational complexity. The experimental
comparison data are shown in Table 2.
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Table 2. Comparison of the experimental data.

Model Accuracy/% maF1/% Kappa/%
Improved GMM [13] 80.00 77.00 67.00

C3D-LSTM [28] 74.44 74.35 61.66
I3D-LSTM 71.11 70.90 56.66

I3D-MLP [29] 84.44 84.53 76.66
Ours 93.33 89.82 85.00

Compared to the improved GMM model, the ML3D-ED model improves the mean
accuracy by 13%. The method proposed in this paper shows an 8.89% improvement in
accuracy compared with the best Two-Stream Inflated 3D ConvNet-Multilayer Perceptron
(I3D-MLP) method. The Kappa coefficient is used for agreement testing and can also be
used to measure classification precision. The calculation of the Kappa coefficient is based
on the confusion matrix. The Kappa coefficient represents the proportion of error reduction
produced by a model classification compared to a completely random classification. The
Kappa calculation results fall within the range of [−1, 1] and can be divided into five groups
to represent different levels of agreement, as shown in Table 3.

Table 3. Meaning of Kappa values.

Range of Kappa Values Meaning
0.00~0.20 Very low agreement (slight)
0.21~0.40 General agreement (fair)
0.41~0.60 Intermediate agreement (moderate)
0.61~0.80 High agreement (substantial)
0.81~1.00 Nearly complete agreement (almost perfect)

The Kappa value of the method in this paper is 85, which is within the range of
[0.81, 1.00]. It shows an 8.34% improvement compared with the I3D-MLP method, indicat-
ing that the method proposed in this paper has a higher agreement.

Table 4 shows a comparison of the feature extraction models in this paper for the
number of parameters and computational cost. We utilized the thop (https://github.com/
Lyken17/pytorch-OpCounter, accessed on 13 March 2024) third-party library in PyTorch
to evaluate the parameters and computational complexity of model. To ensure fairness,
we adhered to the same computational resource constraints, training configurations, and
uniform data processing procedures.

Table 4. Comparison of the feature extraction models for the number of parameters and computa-
tional cost.

Model Params FLOPs
I3D 12.287 M 223.013 G

ML3D 4.977 M 49.800 G

FLOPs represents the number of floating point operations per second, which is a
standard for the computational complexity of a model. FLOP represents the number
of floating point operations, and s represents seconds. The unit G represents a billion,
denoting the magnitude of floating-point operations (FLOPs) in billions. Params represents
the total parameters of the model. The unit M stands for a million, indicating the number
of model parameters in millions.

Compared with the mainstream I3D network, the feature extraction module ML3D
proposed in this paper reduces the number of parameters by 59.5% and the computational
cost by 77.7%, which greatly improves the performance of feature extraction, as shown
in Figure 5.

https://github.com/Lyken17/pytorch-OpCounter
https://github.com/Lyken17/pytorch-OpCounter
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Figure 5. Comparison of the feature extraction models for the number of parameters and computa-
tional cost.

The runtime comparison between the I3D module and the ML3D module is shown in
Figure 6. This paper uses a tensor of size (32, 3, 16, 224, 224) to simulate input data with a
batch size of 32. The model is used to compute the input data N times, where N ranges
from 50 to 1500, with intervals of 50.

Figure 6. Three-dimensional convolution decoupling methods.

For 2750 iterative computations on a tensor with dimensions of (32, 3, 16, 224, 224), the
I3D module takes 358.78 s, and the ML3D module takes 203.54 s. Regarding computational
speed, the ML3D module shows a 43.2% improvement compared to the I3D module.

Although the calculation speed is improved and the number of parameters is reduced,
the ML3D module achieves better results than the I3D module through the multi-scale
feature extraction design, as shown in Table 5. We replaced the feature extraction module
I3D in the most advanced I3D-MLP method with ML3D. As shown in rows 1 and 2 of
Table 5, the ML3D feature extraction method has achieved an accuracy improvement
of 0.83% over I3D, with an increase of 3.4% in maF1 and approximately 1% in Kappa.
Meanwhile, we conducted a replacement experiment on the ED module designed in this
paper. As shown in rows 3 and 4 of Table 5, the ML3D method has led to increases
in accuracy, maF1, and Kappa of approximately 3.5%, 4%, and 6%, respectively. This
demonstrates that the 2 + 1D decoupled architecture effectively aids the model in capturing
the spatiotemporal dynamics of videos. In addition, rows 1 and 3 and rows 2 and 4 of
Table 5 show that our proposed ED module has improved in three evaluation metrics
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compared with MLP, especially in Kappa. The multi-scale fusion method of the ED module
addresses the issue of loss accumulation.

Table 5. Comparison of ML3D and I3D for their performance.

Feature Extraction Model Accuracy maF1 Kappa
I3D MLP 90.00 83.86 77.83

ML3D MLP 90.83 87.16 79.71
I3D ED 90.83 85.85 79.13

ML3D ED 93.33 89.82 85.00

Moreover, the ED module is more lightweight than MLP, as shown in Table 6. The
number of parameters that the ED module has is one order of magnitude less the MLP
module, and the computational cost is two orders of magnitude less than the MLP module.
This proves that the architecture of the ED module not only has higher performance, but it
can also learn video features better.

Table 6. Comparison of ED and MLP modules for the number of parameters and computational cost.

Model Params FLOPs
ED 5.410 M 5.538 k

MLP 55.092 M 689.540 k

4.3.2. Ablation Experiment Analysis

In this section, we conduct ablation experiments to analyze the contribution of the
model’s modules to the model’s performance and the optimal combination of parameters
and structures.

1. Three-dimensional convolution decoupling methods
A 3D convolutional filter can be decoupled into a 2D convolutional filter in the spatial
domain (S) and a 1D convolutional filter in the temporal domain (T). Inspired by [30],
there are three combination patterns based on the interactions between two convo-
lutional filters. The first pattern is a cascade combination of a spatial 2D filter and a
temporal 1D filter. These two filters can directly interact with each other on the same
path, and only the temporal 1D filter directly affects the final output, as shown in
Figure 7 ML3D-a. The second pattern is a parallel combination of two filters, where
each filter indirectly interacts with each other on different paths in the network, as
shown in Figure 7 ML3D-b. The third pattern is a variant of the first pattern, establish-
ing a residual connection between S and T, so that the output of S can also directly
affect the output result, as shown in Figure 7 ML3D-c.

S

T
S T

S

T

ML3D-a ML3D-b ML3D-c

Figure 7. Three-dimensional convolution decoupling methods.
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The effects of different decoupling methods are shown in Table 7. Different decoupling
methods have a significant impact on performance.

Table 7. Performance of different decoupling methods.

Decoupling Method Accuracy maF1 Kappa
ML3D-a 90.41 85.65 78.93
ML3D-b 92.08 87.76 82.18
ML3D-c 93.33 89.82 85.00

The fact that ML3D-b and ML3D-c perform better than ML3D-a proves that directly
connecting the output of the spatial 2D filters to the final output enhances the model’s
information flow path, enabling spatial features to have a more direct impact on
the final prediction. ML3D-c shows an improvement over ML3D-b with an ap-
proximately 1% improvement in accuracy, 2% in maF1, and 3% in Kappa, which
validates that the direct influence of the two types of filters has a positive effect on the
model’s performance.

2. Downsampling methods
In the ML3D module, downsampling is used to reduce the feature dimensions of
the raw input so that the feature dimensions are the same for residual connection.
The downsampling can be designed as a 3D convolution with learnable parameters
or a parameterless pooling layer for direct dimensionality reduction. Table 8 shows
the number of parameters and the computational cost of different downsampling
methods. Compared with parameterless pooling, 3D convolution will increase the
number of model parameters by 0.005 M and the computational cost by 7.398 G.
Its impact on performance is shown in Table 9. The 3D decoupling methods used
are ML3D-c.

Table 8. Number of parameters and computational cost of different downsampling methods.

Downsample Params FLOPs
3D convolution 4.977 M 49.800 G

pooling 4.972 M 42.402 G

Table 9. Performance of different downsampling methods.

Downsample Accuracy maF1 Kappa
3D convolution 93.33 89.82 85.00

pooling 91.25 85.15 79.69

The performance has been greatly improved for 3D convolution compared to pooling,
particularly the Kappa value, which has been improved by 5.31%. The downsam-
pling method used in this paper is 3D convolution, which has resulted in a trade-off
of a number of parameters of 0.005 M and a computational cost of 7.398 G for a
considerable performance improvement.

3. Multi-scale learning
The convolution size of mainstream I3D feature extractions is fixed, and a large
amount of practice shows that capturing multi-scale information is beneficial for
improving model performance. The ML3D model uses 2D convolutional filters of
four scales for initial feature extraction. Table 10 shows the impact of convolutional
filters of different sizes on performance.
The first row shows the performance of single-scale convolutional filters. The analysis
of rows 2 and 3 of the Table shows that the combination of two small-sized and
two large-sized filters has led to improvements of 1–3% across all metrics, indicating
that moderately increasing filter size can enhance the model’s feature extraction capa-
bilities, thereby improving its overall performance. Compared to row 3, row 4 shows
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a decrease of approximately 3% in Accuracy, 4% in maF1, and 7% in Kappa, indicating
that excessively large convolutional filters have a negative impact on performance.

Table 10. Convolution kernels of different sizes.

Filter Size Accuracy maF1 Kappa
7,7,7,7 90.83 86.09 79.75

3,7,9,11 92.08 88.46 82.42
3,7,13,15 93.33 89.82 85.00
3,7,13,17 90.42 85.22 77.91

5. Conclusions

In this paper, we designed an innovative ML3D, aiming to replace the traditional
I3D feature extraction module. After rigorous comparison and testing, we found that,
compared to the I3D model, the ML3D-ED model not only significantly reduced the number
of parameters by 59.55%, but also significantly optimized the computational cost (FLOPs),
with a decrease of up to 77.67%. This improvement not only significantly improved the
computational efficiency of the model, but it also greatly reduced the consumption of
computing resources, bringing greater convenience to practical applications.

The ML3D-ED’s unique network architecture accurately captures the complex and
subtle movement changes in FMS, thereby improving the accuracy of action quality assess-
ment. Our research findings show that this method performs well in handling FMS video
streams. The application and industrialization of FMS movement assessment is believed to
be an interesting field for future research.
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