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Abstract: With the advances in deep learning technology, Red Green Blue-Depth (RGB-D) Salient
Object Detection (SOD) based on convolutional neural networks (CNNs) is gaining more and more
attention. However, the accuracy of current models is challenging. It has been found that the quality
of the depth features profoundly affects the accuracy. Several current RGB-D SOD techniques do
not consider the quality of the depth features and directly fuse the original depth features and Red
Green Blue (RGB) features for training, resulting in enhanced precision of the model. To address this
issue, we propose a depth-quality purification feature processing network for RGB-D SOD, named
DQPFPNet. First, we design a depth-quality purification feature processing (DQPFP) module to filter
the depth features in a multi-scale manner and fuse them with RGB features in a multi-scale manner.
This module can control and enhance the depth features explicitly in the process of cross-modal
fusion, avoiding injecting noise or misleading depth features. Second, to prevent overfitting and
avoid neuron inactivation, we utilize the RReLU activation function in the training process. In
addition, we introduce the pixel position adaptive importance (PPAI) loss, which integrates local
structure information to assign different weights to each pixel, thus better guiding the network’s
learning process and producing clearer details. Finally, a dual-stage decoder is designed to utilize
contextual information to improve the modeling ability of the model and enhance the efficiency of
the network. Extensive experiments on six RGB-D datasets demonstrate that DQPFPNet outperforms
recent efficient models and delivers cutting-edge accuracy.

Keywords: red green blue-depth salient object detection; convolutional neural network; cross-modal
fusion; dual-stage decoder

1. Introduction

Visual saliency refers to a human visual simulation system that uses algorithms to
simulate human visual features and locate prominent areas in an image. Salient Object
Detection (SOD) is designed to find the most appealing features of an image. It has rapidly
developed and is widely used in many fields, including object tracking [1], object detec-
tion [2,3], object segmentation [4,5], and other computer vision tasks for pre-processing [6].
Deep learning has advanced considerably over the past few years, and many SOD methods
have been proposed. However, the majority of current models for SOD can only handle
RGB images.

Park et al. proposed a unique surface-defect detection method [7] that utilizes a deep
nested convolutional neural network (NC-NET) with attention and guiding modules to seg-
ment defect regions from complicated backgrounds precisely and adaptively refine features.
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To overcome the inherent limitations of convolution, SwinE-Net [8] effectively combines
EfficientNet, driven by a CNN, and the Vision Transformer (VIT)-based Swin Transformer
for segmentation. This combination preserves global semantics while maintaining low-level
characteristics, demonstrating specific generalization and scalability. CoEg-Net [9] employs
a shared attention projection technique to facilitate fast learning from public information,
utilizing vast SOD datasets to significantly enhance the model’s scalability and stability.
DRFI [10] autonomously integrates regional saliency features of high dimensionality and
selects the most discriminative cues. This inevitably creates challenges for SOD in intricate
scenes, for example, backdrops with cluttered or low-contrast areas where color provides
few clues.

To address the aforementioned problem, combining RGB and depth features for RGB-
D SOD has received increasing attention. To learn the transferable representation of RGB-D
partition tasks, Bowen et al. [11] proposed an RGB-D framework, DFormer. DFormer
encodes RGB and depth information through a series of RGB-D blocks. The model is
pre-trained on ImageNet-1K, so DFormer has the ability to encode RGB-D representa-
tions. To build a better global long-range dependence model with self-modality and
cross-modality, Cong et al. [12] introduced the transformer architecture to create a new
RGB-D SOD network called point-aware interaction and CNN-induced refinement (PICR-
Net). The network explores the interaction of characteristics under different modules,
alleviates the block effects, and details the destruction problems caused by the transformers.
Wu et al. [13] designed HiDAnet, which includes a granularity-based attention strategy to
enhance the fusion of RGB and depth features. Note that the accuracy depends greatly on
the quality of the depth of information, as suggested by the previous work. Cong et al. [14]
suggested a method for assessing the dependability of depth maps and utilizing it to mini-
mize the impact of inferior depth maps on salient detection. DPA-Net [15] can recognize
the potential value of depth information through a learning-based approach, preventing
contamination by accounting for depth potentiality. Although BBS-Net [16] employs a
module with improved depth to selectively extract informative regions of depth cues from
both channel and spatial viewpoints, the quality of the depth features is still not great,
resulting in the prediction accuracy not achieving adequate results. Although the above
models consider the quality of depth features, they only perform single-scale filtering and
fuse RGB and depth features at the coarsest filtering level without considering the mode of
multi-scale filtering and fusion. This may lead to the roughness of features and the lack of
feature utilization and fusion. In addition, Cong et al. [14] adapted a top-down UNet [17]
architecture, which performs well in extracting and integrating local information, but it
cannot effectively capture global information and has some limitations.

The above facts indicate that multi-scale filtering of depth features and multi-scale fu-
sion with RGB features can improve feature utilization and fusion rates, thereby enhancing
a model’s accuracy. In addition, a decoder that can capture both global and local informa-
tion has a significant impact on the performance of a model. Based on this, we propose a
depth-quality purification feature processing (DQPFP) network for RGB-D SOD in this pa-
per. Figure 1 shows the overall network architecture. The DQPFP module consists of three
key sub-modules, namely a depth denoising module (DDM), depth-quality purification
weighting (DQPW) module, and depth purification-enhanced attention (DPEA) module.
The DDM filters multi-scale depth features through a channel attention mechanism and
a spatial attention mechanism to achieve the initial filtering of the depth features. The
DQPW module supplements the color features with purified depth features in a residual-
connected manner to enhance feature characterization and then learns the weight factor α
from the depth features and RGB features; By assigning smaller weights to poor-quality
depth features, we obtain different weight factors on different scales. The DPEA module
learns the global attention maps β from the purified depth features, which enhances the
quality of the depth features from a spatial dimension. Then, α and β are integrated to
obtain the final high-quality depth features. Then, the high-quality depth features and RGB
features are fused in a multi-scale manner, and the final saliency map is generated through
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a two-stage decoder. In addition, after experimental analysis, we utilize the Randomized
Leaky Rectified Linear Unit (RReLU) activation function to prevent overfitting and avoid
neuron inactivation, which introduces randomness into the neural network training pro-
cess. Furthermore, we introduce the pixel position adaptive importance (PPAI) loss, which
integrates local structure information to assign different weights to each pixel, thus better
guiding the network’s learning process and resulting in clearer details.

Figure 1. The overall structure of the proposed DQPFPNet.

Our contributions can be summarized as follows:

• We propose a DQPFP module, consisting of three sub-modules: DDM, DQPW, and DPEA.
This module filters the depth features in a multi-scale manner and fuses them with RGB
features in a multi-scale manner. It can also control and enhance the depth features
explicitly in the process of cross-modal fusion, avoiding injecting noise or misleading
depth features, which improves the feature utilization, fusion, and accuracy rates of
the model.

• We design a dual-stage decoder as one of DQPFPNet’s essential elements, which can
fully utilize contextual information to improve the modeling ability of the model and
enhance the efficiency of the network.

• We introduce the RReLU activation function to prevent overfitting and avoid neuron
inactivation, thereby introducing randomness into the training process. Furthermore,
the pixel position adaptive importance (PPAI) loss is utilized to integrate local structure
information to assign different weights to each pixel, thus better guiding the network’s
learning process and resulting in clearer details.

• Extensive experiments on six RGB-D datasets demonstrate that DQPFPNet outper-
forms recent efficient models.
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The remainder of this paper is structured as follows. The related research on general
RGB-D SOD, effective RGB-D SOD, and depth-quality analysis in RGB-D SOD is covered
in Section 2. Section 3 describes the proposed DQPFPNet in detail. Section 4 presents
the experimental results, performance evaluation, and ablation analysis. Finally, some
conclusions are provided in Section 5.

2. Related Works

For many years, researchers have been investigating the use of RGB-D data for SOD.
Considering the objective of this paper, this section reviews common techniques for RGB-D
SOD and the previous works on valid methods and depth-quality analysis.

2.1. Common RGB-D SOD Techniques

The effectiveness of traditional methods [18,19] mostly relies on how well made
the hand-crafted features are. The first traditional RGB-D SOD method was proposed
in 2012. Recently, deep learning-based techniques [20–24] have made great progress,
gradually becoming mainstream, with the first deep learning-based RGB-D SOD starting
in 2017. To investigate whether and how visual saliency is influenced by depth features,
Lang et al. [18] presented the first RGB-D SOD work in 2012, where seven experimenters
performed eye-movement experiments on 500 images, recording observation points. A
Gauss mixed model was used to simulate the distribution of depth-induced saliency and
observe the relationship between 2D saliency and 3D saliency. To investigate the efficacy
of global priors for RGB-D data, Peng et al. [19] developed a multi-background contrast
model, including local, global, and background contrast, to detect salient targets using
depth maps. In addition, the first substantial RGB-D dataset for SOD was provided by
this work. In order to accelerate inference speed and improve model training efficiency,
GSCINet [21] was proposed with a series of carefully designed convolutions of different
scales and attention-to-weight matrices, introducing a cyclic cooperation technique to
reduce computing costs while optimizing compressed features, thereby achieving rapid
and precise inference for Salient Object Detection. To explore how to combine low-level
salient cues to generate master salience maps, DF [20] was created with a new convolutional
neural network (CNN) that aggregates many low-level saliency indicators into hierarchical
features to effectively find saliency regions in RGB-D images. Published in 2017, it was the
first model to incorporate the deep learning technique into RGB-D SOD tasks. In order
to make better use of complementary information in multi-modal data and reduce the
negative effect of ambiguity between different modes, A2TPNet [24] was proposed to fuse
cross-modal features, employing a cooperative technique that combines channel attention
and spatial attention mechanisms to lessen the interference of irrelevant information and
unimportant aspects in the interaction process. To apply uncertainty to RGB-D Salient
Object Detection, UCNet [22], a probability-based RGB-D SOD network that simulates the
uncertainty of human annotations through conditional variational automatic encoders, was
proposed. In order to fully mine the information of cross-modal complementarity and cross-
level continuity, ICNet [23] was proposed, offering a transformation of the information
module for interactive high-level feature transformation.

As this research direction has flourished, other encouraging skills have recently been
used in RGB-D SOD tasks, for instance, the use of RGB images, bottom-up and top-down
depth maps of the multi-modal integration framework [25], co-attention mechanisms [26,27],
model compression [28,29], shared networks [30], weak semi-supervised learning [31,32],
and self-mutual attention modules [33]. A relatively comprehensive RGB-D SOD survey
report can be found in [34].

Although the above-mentioned RGB-D SOD methods can improve detection accuracy,
most of the models do not consider the impact of multi-scale depth quality on model accuracy.
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2.2. RGB-D SOD Depth-Quality Assessments

As depth quality often affects the performance of a model, some researchers have
considered using the RGB-D SOD depth mass to lessen the impact of depth at low mass.
To forecast a hint map, in EF-Net [35], a module of a color hint map using RGB pictures
was initially employed. The issue of poor-quality depth maps was then resolved, and the
saliency detection process was improved thanks to the use of a depth-enhanced module.
After removing the depth stream’s feature encoder and creating a lightweight model, the
authors of SSN [36] employed the depth map directly to guide the pre-fusion of RGB and
depth features. The authors of A2dele [37] used network prediction and attention methods
as conduits for transferring depth data from the depth stream to the RGB stream. In JL-
DCF [30], depth adjustment and fusion mechanisms were used to explicitly solve depth
quality issues. Based on this, the adjusted depth map was able to estimate the original
depth map. Using hyperpixels of components created by SPSN [38], component prototypes
were created from the input RGB picture and depth map. In addition, a reliability selection
module was proposed to detect the quality of RGB feature maps and depth feature maps
and weigh them adaptively according to the quality of the feature maps.

3. Proposed Method
3.1. Overview

Figure 1 presents the proposed DQPFPNet structure, consisting of the encoder, de-
coder, and supervision module. Our encoder adopts the architecture in [16], where the
RGB module is in charge of both cross-module fusion between RGB and depth features
and feature extraction for RGB to achieve great performance. To create the final saliency
map, the decoder performs a dual-stage fusion, namely the first fusion and second fusion.
The encoder itself is made up of an RGB-related module, whose backbone network is
MobileNet-v2 [2]; a depth-related module, which is an efficient backbone; and the proposed
DQPFP. The depth module and RGB module comprise five feature hierarchies, each with an
output stride of 2, with the last one having an output stride of 1. The depth features are ex-
tracted within the given hierarchy, passed through the DQPFP threshold, added to the RGB
module through simple element additions, and then sent to the next hierarchy. Moreover,
a PPM (pyramid pooling module [39]) is introduced toward the end of the RGB module to
acquire multi-scale semantic data. In practical coding, the DQPFP threshold consists of two
operations: depth-quality purification weighting (DQPW) and depth purification-enhanced
attention (DPEA). In order to facilitate a better understanding of the overall workflow of
the network, Figure 2 shows the pipeline of the entire network.

Figure 2. The pipeline of the network architecture.

The features extracted from the five depths/RGB hierarchies are represented as f i
n(n ∈

{rgb, dep}, i = 1, . . . , 5), the fusion features are represented as f i
u(i = 1, . . . , 5), and the

features from the PPM are represented as f 6
u . This multi-modal feature fusion can be

written as:

f i
u = f i

rgb + (αi ⊗ βi ⊗ f i
dep) (1)

where αi and βi are calculated by DQPW and DPEA, respectively, to control the fusion
of the depth features f i

dep. ⊗ indicates element-by-element multiplication. After the

encoding process shown in Figure 1, f i
u(i = 1, . . . , 5) and f 6

u are transferred to the next
decoder module.
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3.2. Depth-Quality Purification Feature Processing (DQPFP)

DQPFP includes two crucial modules: DQPW (depth-quality purification weighting)
and DPEA (depth purification-enhanced attention). These two modules calculate αi and
βi in Equation (1), respectively. αi ∈ Ri is a scalar that determines “how many” depth
features are used, whereas βi ∈ Rs×s (s is the feature size for level i) is a spatial attention
map, determining "which regions" to focus on within the depth characteristics. The internal
structures of the DQPW and DPEA modules are described below.

3.2.1. Depth-Quality Purification Weighting (DQPW)

The paired color features and depth features in the RGB-D features are two different
forms of the same object. Color images provide visual cues, and depth images provide
3D information. Considering the inadequate quality of depth maps, this paper proposes a
depth de-noising module (DDM). The DDM first purifies the depth features using the atten-
tion mechanism, then complements the color features through a residual connection [40],
and uses the shortcut connection section to retain more of the original color cues.

In the DDM, as shown in Figure 3, the RGB features are merged with the depth features
and transmitted to the channel attention module to obtain the attention channel mask,
which is employed to purify the depth features. Subsequently, the purified depth features
are input into the spatial attention module to produce the attention space mask, purifying
the depth features on a spatial level. This process can be represented as:

Fr
i = f d

i × SA( f d
i × CA(Cat( f d

d , f r
i ))) + f r

i (2)

where f r
i and f d

i , respectively, represent the low-level color and depth features; Cat(·)
represents the concatenation and subsequent convolution operations; CA(·) and SA(·) are
channel and spatial attention operations proposed by CBAM [41], respectively; “×” de-
notes the element-wise multiplication operation; and “+” denotes the element-by-element
addition operation. This process purifies poor-quality depth features and then merges
them into RGB features to produce a more accurate representation Fr

i .
In Figure 4, the low-level features f 1

rgb and f 1
dep first obtain f 1

rgb_en through the DDM,

and DQPW adaptively learns the weighting term αi from the features f 1
rgb_en and f 1

dep. We

apply convolution to f 1
rgb_en/ f 1

dep to obtain the transformed features frt′/ fdt′ , which are
anticipated to obtain more activators associated with the edge:

frt′ = BRRConv1×1( f 1
rgb_en), fdt′ = BRRConv1×1( f 1

dep) (3)

where BRRConv1×1(·) represents a 1 × 1 convolution with BatchNorm layers and the
RReLU activation. To be able to assess the alignment of low-level features, the alignment
feature vector VBA, encoding the alignment between frt′ and fdt′ , is computed as follows,
given the edge activations frt′ and fdt′ :

VBA =
GAP( frt′ ⊗ fdt′)

GAP( frt′ + fdt′)
(4)

where GAP(·) means the global average pooling operation aggregating element-level
details and ⊗ represents the element-level multiplication.

Additionally, to make VBA robust to minor edge movements, this paper calculates VBA
on multiple scales and concatenates the results to produce the strengthened vector. Figure 4
shows that this multi-level computation is realized by downsampling the original features
frt′/ fdt′ by max-pooling with a stride of 2, and then V1

BA and V2
BA are calculated in the

same way as in Equation (4). Assuming that VBA, V1
BA, and V2

BA are aligned eigenvectors
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calculated from the three scales shown in Figure 4, the strengthened vector Vms
BA is calculated

as follows:

Vms
BA = [VBA, V1

BA, V2
BA] (5)

where [· ] represents a channel cascade. Then, two completely linked layers are used to
calculate α ∈ R5 from Vms

BA in the manner shown below:

α = MLP(Vms
BA) (6)

where MLP(·) represents a two-level perception with the Sigmoid function at the end.
Then, αi ∈ (0, 1)(i = 1, 2 . . . , 5) is one of the elements of the vector α that is obtained. Note
that this paper uses different weighting factors for different levels, and the effectiveness of
this multivariable approach is verified in Section 4.4.

Figure 3. The structure of the DDM.

Figure 4. The organization of the DQPW module. The red arrows show the Equation (4) calculation
process. The dashed lines indicate max-pooling with a stride of 2.

3.2.2. Depth Purification-Enhanced Attention (DPEA)

The DPEA enhances the depth features in the spatial dimension by deriving a global
attention map βi from the depth channel. As shown in Figure 5, the purified features
f 5
dep_en are first obtained from f 1

rgb and f 5
dep through the DDM to locate the coarse-grained

salient areas (with supervision cues shown in Figure 1). In order to simplify the next
pixel-by-pixel processes, f 5

dep_en is compressed and then sampled up into fdht in the same

dimension as f 1
rgb/ f 1

dep, as shown in the following formula:

fdht = F8
UP(BRRConv1×1( f 5

dep)) (7)
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where F8
UP(·) represents 8 × bilinear upsampling. fdht is then re-calibrated with the

primary RGB and depth features. Like the calculation in DQPW, this paper first transfers
f 1
rgb/ f 1

dep to frt′′/ fdt′′ . The result is that element-level multiplication generates the features
fec, which somewhat emphasizes the general activation properties linked to the edge.
The max-pooling operation and dilated convolution operation are used to rapidly expand
the receptive field to simulate better long-term relationships between low- and high-level
information (i.e., fec and fdht) while preserving the effectiveness of the DPEA. This re-
calibration process is represented as:

Frec( fdht) = F2
UP

(
DConv3×3

(
F2

DN( fdht + fec)
))

(8)

where Frec(·) is the input of the re-calibration process; DConv3×3(·) represents the 3× 3 di-
lated convolution with a stride of 1 and a dilation rate of 2, followed by BatchNorm layers and
the RReLU activation; and F2

UP(·)/F2
DN(·) indicates the bi-linear upsampling/downsampling

operation to 2/( 1
2 ) times the initial dimensions. To achieve a balance between functionality

and effectiveness, the following two re-calibrations are performed:

f ′dht = Frec( fdht), f ′′dht = Frec( f ′dht), (9)

where f ′dht and f ′′dht are the features re-calibrated once and twice, respectively. Finally, f ′′dht
is combined with fec to obtain global attention maps:

β = BRRConv3×3( fec + f ′′dht). (10)

Be aware that the RReLU activation in BRRConv3×3 is replaced with the Sigmoid
activation to achieve the attention features of β. Eventually, By downsampling β, five depth
global attention maps β1, β2, . . . , β5 are obtained, using spatial enhancement factors for the
depth levels. Generally, background clutters that are unrelated to the depth features can be
prevented by multiplying them with attention maps β1 ∼ β5.

Figure 5. The structure of the DPEA (depth purification-enhanced attention) module.

3.3. Dual-Stage Decoder

This work suggests a simpler two-phase decoder that comprises first fusion and
second fusion stages to further increase efficiency, in contrast to the well-known UNet [17],
which uses a hierarchical top-down decoding technique. Hierarchical grouping is used,
denoted in Figure 1 as “G”. The first fusion aims to cut down on the feature channels and
hierarchies. Based on the outputs of the first fusion stage, the low-level and high-level
hierarchical structures are further aggregated to generate the final salient map. Note that in
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our decoder, instead of ordinary convolutions, separable depth-wise convolutional filters
are mainly used with many input channels.

3.3.1. First Fusion Stage

This paper first uses a 3 × 3 depth-by-depth separable convolution [42] with Batch-
Norm layers and the RReLU activation, represented as DSConv3×3(·), to reduce the en-
coder’s features during compression ( f i

u, i = 1, 2 . . . 6) into an integrated channel of size 16.
Then, the popular channel attention operator [43] FCA(·) is used to improve the characteris-
tics through channel weighting. The procedure described above can be expressed as:

c f i
u = FCA(DSConv3×3( f i

u)), (11)

where c f i
u represents the features from the compression and enhancement processes. This

work, which is motivated by [16], splits the six feature hierarchies into both high-level and
low-level hierarchies, as follows:

c f low
u =

3

∑
i=1

F2i−1

UP (c f i
u), c f high

u =
6

∑
i=4

c f i
u, (12)

where Fi
UP is i times the original size of the bilinear upsampling.

3.3.2. Second Fusion Stage

Since the number of channels and hierarchies have been reduced in the first fusion
phase, the high-level and low-level hierarchies are directly concatenated in the second
fusion phase and then provided to a prediction head to acquire the ultimate full-resolution
prediction map, which is expressed as follows:

Sc = Fc
p

(
[c f low

u , F8
UP(c f high

u )]

)
, (13)

where Sc represents the final salient features, and Fc
p(·) represents the prediction head

consisting of two 3 × 3 separable depth-by-depth convolutions (followed by BatchNorm
layers and the RReLU activation function): a 3 × 3 convolution with Sigmoid activation
and a 2× bilinear upsampling to restore the original input dimension.

3.4. RReLU Activation Function

The activation function plays an important role in computer vision tasks such as object
segmentation, object tracking, and object detection. An important aspect of neural network
design is the selection of the activation functions to be used in the different layers of the
network. The activation function is used to introduce nonlinearity into the neural network
calculation, and the correct selection of the activation function is very important for the
effective performance of the network.

Common activation functions, such as Sigmoid, Tanh, and so on, have good properties,
but with the advent of deep neural architectures, it is difficult for researchers to train very
deep neural networks because they are saturated with activation functions. To solve this
problem, the ReLU activation function was utilized, as shown in Figure 6. Although ReLU
is not differentiable at zero, it is unsaturated, and it can keep the gradient constant in the
positive interval. This method effectively alleviates the problem of gradient disappearance
in the neural network, thereby speeding up the training of the neural model. However,
when the input is negative, ReLU will have dead neurons, resulting in the corresponding
weights not being updated, which may result in the loss of model information.
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Figure 6. The ReLU activation function.

To address the problems with the ReLU activation function, in Section 4.4, we conduct
a number of experiments to determine the optimal activation function to use in this model:
RReLU. As shown in Figure 7, RReLU is a variant of ReLU that prevents overfitting
by introducing randomness during model training while helping to resolve the issue of
neuronal inactivation. When the input is positive, the gradient is a positive value, and when
the input is negative, the gradient is a negative value. However, the slope of the negative
value is randomly obtained during training and fixed in subsequent tests.

Figure 7. The RReLU activation function.

The beauty of RReLU is that during the training process, aji is randomly drawn from
a uniform distribution of U(l, u), which helps increase the robustness of the model and
reduce the dependence on specific input patterns, thereby mitigating the risk of overfitting.
By introducing randomness, RReLU allows the activation values of neurons to vary within
a range, even with negative inputs, thus avoiding complete neuronal inactivation.

3.5. Pixel Position Adaptive Importance (PPAI) Loss

Despite having three flaws, binary cross-entropy (BCE) is the most popular loss
function for RGB and RGB-D SOD. First, it disregards the image’s overall structure and
calculates each pixel’s loss separately. Second, the loss of foreground pixels will be less
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noticeable in photographs where the backdrop predominates. Third, it gives each pixel the
same treatment. In actuality, pixels in cluttered or constrained locations (e.g., the pole and
horn) are more likely to result in incorrect predictions and require additional effort, whereas
pixels located in places like roadways and trees require less focus. So, this paper introduces
the pixel position adaptive importance (PPAI) loss, which consists of two components,
namely the weighted binary cross-entropy (wBCE) loss and the weighted IoU (wIoU) loss.
The wBCE loss is shown in Equation (11)

Ls
wbce = −

∑H
i=1 ∑W

j=1
(
1 + γαij

)
∑1

l=0 1
(

gs
ij = l

)
log Pr

(
ps

ij = l | Ψ
)

∑H
i=1 ∑W

j=1 γαij

(14)

where 1(·) is the indicator function and γ is a hyperparameter. The symbol l ∈ {0, 1}
denotes two types of labels. ps

ij and gs
ij are the prediction and the ground truth of the pixel

at location (i, j) in an image. Ψ shows all the parameters of the model, and Pr(ps
i,j = l | Ψ)

represents the predicted probability.
In Ls

wbce, each pixel is given a weight α. A hard pixel corresponds to a larger α, whereas
a simple pixel is assigned a smaller weight. α, which is determined based on the disparity
between the central pixel and its surrounds, can be used as a measure of pixel significance,
as shown in Equation (15).

αs
ij =

∣∣∣∣∣∑m,n∈Aij
gts

mn

∑m,n∈Aij
1

− gts
ij

∣∣∣∣∣ (15)

where Aij denotes the area around the pixel (i, j). For all pixels, αs
ij ∈ [0, 1]. If αs

ij is big,
the pixel at (i, j) is significant (e.g., an edge or hole) and stands out significantly from its
surroundings. Therefore, it warrants extra attention. In contrast, if αs

ij is small, the pixel is
just an ordinary pixel and not worth attention.

Ls
wbce increases the emphasis on hard pixels compared to BCE. Meanwhile, the local

structural information is encoded into Ls
wbce such that a greater receptive field rather than a

single pixel is the model’s primary focus. To further make the network focus on the overall
structure, the weighted IoU (wIoU) loss is introduced, as shown in Equation (16).

Ls
wiou = 1 −

∑H
i=1 ∑W

j=1

(
gts

ij ∗ ps
ij

)
∗
(

1 + γαs
ij

)
∑H

i=1 ∑W
j=1

(
gts

ij + ps
ij − gts

ij ∗ ps
ij

)
∗
(

1 + γαs
ij

) (16)

In the segmentation of images, the IoU loss is frequently employed. It is not affected
by the uneven distribution of pixels, and the optimization of the global structure is the goal,
which overcomes the limitation of a single pixel. In recent years, it has been included in
SOD in order to address BCE’s deficiencies. However, it still treats each pixel equally and
ignores the differences between pixels. In contrast to the IoU loss, our WIoU loss gives
harder pixels a higher weight to indicate their significance.

The pixel position adaptive importance (PPAI) loss is shown in Equation (14). It
combines the information on local structures to assign different weights to each pixel
and provide pixel restriction (Ls

wbce) and global restriction Ls
wiou, thus better guiding the

network learning process and resulting in clearer details.

Ls
ppai = Ls

wbce + Ls
wiou (17)

Eventually, the ultimate loss Ls
c−ppai and deep supervision for the loss of the depth

branch Ld make up the total loss L, which is formulated as follows:

L = Ls
c−ppai(Sc, G) + Ld(Sd, G), (18)
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where G represents the ground truth (GT) and Ls
c−ppai and Ld denote the PPAI loss and the

standard BCE loss, respectively.

4. Experiments and Results

This section introduces the datasets and metrics, the details of the implementation,
and comparisons to SOTAs. The experiments include both quantitative and qualitative
experiments. Ablation experiments are also conducted to demonstrate the effectiveness of
our proposed module.

4.1. Datasets and Metrics

Experiments were performed on six public datasets, including LFSD [44] (100 sam-
ples), NJU2K [45] (1996 samples), NLPR [46] (1023 samples), RGBD135 [47] (142 samples),
SIP [48] (910 samples), and STERE [49] (1000 samples).

Meanwhile, for evaluation, four widely used metrics were employed, including the
S-measure (Sα) [50], maximum F-measure (Fm

β ) [51], maximum E-measure (Em
ε ) [52,53],

and mean absolute error (MAE, M) [48]. A higher Sα, Fm
β , and Em

ε and a lower M mean
better performance.

4.2. Details of the Implementation

The experiments were carried out on a personal computer equipped with an Intel
(R) Xeon (R) Gold 6248 CPU and an NVIDIA Tesla V100-SXM2 32GB GPU. DQPFPNet
was implemented in Pytorch [54], and the RGB and depth features were both scaled to
256 × 256 as input. To extend the network to the limited training examples, following [16],
this paper adopted a variety of data enhancement techniques, such as horizontal flipping,
random cropping, color enhancement, etc. DQPFPNet was trained on a single Tesla v100
GPU for 300 epochs. The Adam optimizer’s [55] initial learning rate was set to 1 × 10−4

with a batch size of 10. A multiple learning rate strategy was used, with the power set
to 0.9.

4.3. Comparison to SOTAs

A total of 1700 samples from NJU2K and 800 samples from NLPR were used for
training, and tests were performed on STERE, SIP, NLPR, LFSD, NJU2K, and RGBD135.
The results of DQPFPNet were compared to those of 16 state-of-the-art (SOTA) mod-
els, including C2DF [56], S2MA [33], JL-DCF [30], CoNet [57], UCNet [22], CIRNet [58],
SSLSOD [59], cmMS [60], DANet [36], DCF [61], ATSA [62], DSA2F [63], PGAR [64],
A2dele [37], MSal [65], and DFMNet [66], as shown in Table 1. The salient maps for the
other models were derived from their released predictions, if available, or produced from
their public code.

As shown in Table 1, DQPFPNet outperformed some existing efficient models in
terms of detection accuracy, e.g., MSal [65], A2dele [37], and PGAR [64]. Additionally,
it is evident that DQPFPNet achieved SOTA performance, indicating that the method of
filtering the depth features in a multi-scale manner, fusing the filtered depth features with
RGB features in a multi-scale manner, and finally, obtaining the salient graph through
a two-stage decoder is of practical significance, thereby proving the effectiveness of our
model. Validation of the functionality of each module is performed in Section 4.4. Figure 8
presents a visual comparison of the results of our proposed method and those of the SOTA
methods, and our results are closer to the GT.
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Figure 8. Qualitative comparison of DQPFPNet with SOTA RGB-D SOD methods.

4.4. Ablation Experiments

Thorough ablation experiments were performed on six classical datasets, including
STERE, SIP, RGBD135, NLPR, LFSD, and NJU2K, by changing or deleting parts of the
DQPFPNet implementation.

4.4.1. Effectiveness of DQPFP

DQPFP is made up of two essential components: DQPW and DPEA. Table 2 displays
several configurations with DQPW/DPEA disabled. Specifically, configuration #1 repre-
sents the baseline model with DQPW and DPEA removed from DQPFPNet. Configurations
#2 and #3 each introduce one of the components, whereas configuration #4 represents the
complete model of DQPFPNet. It can be seen from Table 2 that merging DQPW and DPEA
into the baseline model resulted in consistent improvements on almost all datasets. Mean-
while, when comparing configurations #2/#3 to #4, it can be seen that using DQPW and
DPEA together further improved the results, demonstrating a synergistic effect between
DQPW and DPEA. The possible reason is that although DPEA can enhance potential salient
areas in the deep dimension, it is inevitable that certain errors (for example, emphasizing
the wrong areas) will occur, especially in the case of poor depth quality. Fortunately, DQPW
mitigates some of these mistakes because it allocates lower global weights to the depth
features in this case. Hence, the two elements can cooperate to increase network resiliency,
as mentioned in Section 3.2.

Figure 9 shows visual examples of configuration #3 (without DQPW) and configuration
#4. Figure 9a,b illustrate that combining DQPW contributes to improved detection accuracy.
In the first example of good quality (row 1, Figure 9a), in the RGB view, it is challenging
to discern between shadows and people’s legs, but this is simple to do in the depth view.
The addition of DQPW enhances the depth feature and makes it easier to distinguish the
full human body from the shadow. In the first example of bad quality (row 1, Figure 9b),
although the boy on the skateboard boy much more blurry in the depth view, the impact of
the incorrect depth is lessened, and precise detection of the entire object is still possible.
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Table 1. Quantitative benchmark results. ↑/↓ for a metric denotes that a larger/smaller value is better. Our results are highlighted in bold. The best scores are
shown in red. The second-best scores are shown in blue.

Metric
C2DF
TMM
2022

JL-DCF
CVPR
2020

UCNet
CVPR
2020

SSLSOD
AAAI
2022

S2MA
CVPR
2020

CoNet
ECCV
2020

cmMS
ECCV
2020

DANet
ECCV
2020

ATSA
ECCV
2020

DCF
CVPR
2022

DSA2F
CVPR
2021

A2dele
CVPR
2020

PGAR
ECCV
2020

MSal
TPAMI

2021

DFMNet
CVPR
2022

CIRNet
TIP
2022

DQPFPNet
Ours

-

SIP
Sα ↑ 0.871 0.879 0.875 0.870 0.878 0.858 0.867 0.878 0.864 0.876 0.862 0.829 0.875 0.873 0.873 0.861 0.885
Fm

β ↑ 0.865 0.885 0.879 0.862 0.884 0.867 0.871 0.884 0.873 0.884 0.875 0.834 0.877 0.883 0.878 0.840 0.896
Em

ε ↑ 0.912 0.923 0.919 0.900 0.920 0.913 0.910 0.920 0.911 0.922 0.912 0.889 0.914 0.920 0.919 0.886 0.943
M ↓ 0.053 0.051 0.051 0.059 0.054 0.063 0.061 0.054 0.058 0.052 0.057 0.070 0.059 0.053 0.055 0.069 0.046

NLPR
Sα ↑ 0.927 0.925 0.920 0.914 0.915 0.908 0.915 0.915 0.907 0.924 0.919 0.890 0.918 0.920 0.923 0.920 0.931
Fm

β ↑ 0.904 0.916 0.903 0.881 0.902 0.887 0.896 0.903 0.876 0.912 0.906 0.875 0.898 0.908 0.907 0.881 0.930
Em

ε ↑ 0.955 0.962 0.956 0.941 0.950 0.945 0.949 0.953 0.945 0.963 0.952 0.937 0.948 0.961 0.956 0.937 0.961
M ↓ 0.021 0.022 0.025 0.027 0.030 0.031 0.027 0.029 0.028 0.022 0.024 0.031 0.028 0.025 0.026 0.028 0.022

NJU2K
Sα ↑ 0.908 0.903 0.897 0.902 0.894 0.895 0.900 0.891 0.901 0.904 0.895 0.868 0.906 0.905 0.904 0.901 0.906
Fm

β ↑ 0.898 0.903 0.895 0.887 0.889 0.892 0.897 0.880 0.893 0.906 0.897 0.872 0.905 0.905 0.905 0.880 0.910
Em

ε ↑ 0.936 0.944 0.936 0.929 0.930 0.937 0.936 0.932 0.921 0.950 0.936 0.914 0.940 0.942 0.945 0.917 0.947
M ↓ 0.038 0.043 0.043 0.043 0.053 0.047 0.044 0.048 0.040 0.040 0.044 0.052 0.045 0.041 0.041 0.047 0.036

RGBD135
Sα ↑ 0.898 0.929 0.934 0.905 0.941 0.910 0.932 0.904 0.907 0.905 0.917 0.884 0.894 0.929 0.932 0.900 0.941
Fm

β ↑ 0.885 0.919 0.930 0.883 0.935 0.896 0.922 0.894 0.885 0.894 0.916 0.873 0.879 0.924 0.924 0.888 0.942
Em

ε ↑ 0.946 0.968 0.976 0.941 0.973 0.945 0.970 0.957 0.952 0.951 0.954 0.920 0.929 0.970 0.969 0.927 0.976
M ↓ 0.031 0.022 0.019 0.025 0.021 0.029 0.020 0.029 0.024 0.024 0.023 0.030 0.032 0.021 0.020 0.051 0.019

LFSD
Sα ↑ 0.863 0.862 0.864 0.859 0.837 0.862 0.849 0.845 0.865 0.842 0.883 0.834 0.833 0.847 0.863 0.822 0.871
Fm

β ↑ 0.859 0.866 0.864 0.867 0.835 0.859 0.869 0.846 0.862 0.842 0.889 0.832 0.831 0.841 0.864 0.803 0.871
Em

ε ↑ 0.897 0.901 0.905 0.900 0.873 0.907 0.896 0.886 0.905 0.883 0.924 0.874 0.893 0.888 0.902 0.834 0.906
M ↓ 0.065 0.071 0.066 0.066 0.094 0.071 0.074 0.083 0.064 0.075 0.055 0.077 0.093 0.078 0.071 0.096 0.065

STERE
Sα ↑ 0.899 0.905 0.903 0.893 0.890 0.908 0.895 0.892 0.897 0.902 0.898 0.885 0.903 0.903 0.898 0.835 0.904
Fm

β ↑ 0.891 0.901 0.899 0.890 0.882 0.904 0.891 0.881 0.884 0.901 0.900 0.885 0.893 0.895 0.891 0.847 0.901
Em

ε ↑ 0.938 0.946 0.944 0.936 0.932 0.948 0.937 0.930 0.921 0.945 0.942 0.935 0.936 0.940 0.942 0.911 0.947
M ↓ 0.046 0.042 0.039 0.044 0.051 0.040 0.042 0.048 0.039 0.039 0.039 0.043 0.044 0.041 0.044 0.066 0.040

Table 2. Ablation analysis of DQPFP to validate the effectiveness of DQPW and DPEA.
√

below the module indicates that the model has used the module. Otherwise,
the model has not used it. The best results are shown in red.

# DQPW DPEA
SIP NLPR NJU2K RGBD135 LFSD STERE

Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M

1 0.873 0.879 0.919 0.054 0.912 0.899 0.954 0.027 0.898 0.903 0.941 0.042 0.926 0.931 0.971 0.017 0.850 0.853 0.891 0.075 0.885 0.883 0.938 0.047
2

√
0.877 0.885 0.923 0.051 0.916 0.905 0.958 0.025 0.941 0.902 0.898 0.042 0.941 0.941 0.968 0.016 0.853 0.857 0.895 0.074 0.885 0.887 0.940 0.046

3
√

0.876 0.883 0.923 0.051 0.914 0.901 0.954 0.025 0.897 0.903 0.941 0.043 0.934 0.931 0.976 0.018 0.855 0.856 0.895 0.073 0.889 0.886 0.940 0.045
4

√ √
0.885 0.896 0.923 0.046 0.922 0.916 0.961 0.023 0.904 0.910 0.947 0.039 0.930 0.942 0.976 0.019 0.870 0.869 0.906 0.068 0.902 0.898 0.947 0.041
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Figure 9. Visual examples of configuration #3 (without DQPW) and configuration #4 (with DQPW)
for good (a) and bad (b) depth-quality cases.

Table 3 presents the results of the modular ablation experiments, demonstrating the
positive effect of each module on detection accuracy. The baseline is the original model,
with its precision as the benchmark. The modules are presented in order from the second
to the fourth columns, with all other conditions remaining unchanged. In addition, all
the experimental parameter configurations remained the same. Based on the detection
outcomes, it is evident that the combination of the DQPFP module, RReLU activation
function, and PPAI loss can greatly increase the model’s detection accuracy.

Table 3. Quantitative module results. ↑/↓ for a metric denotes that a larger/smaller value is better.
The best scores are shown in red.

Metric Baseline Baseline + DQPFP Baseline + DQPFP + RReLU Baseline + DQPFP + RReLU + PPAI

SIP
Sα ↑ 0.8732 0.8751 0.8796 0.8850
Fm

β ↑ 0.8779 0.8816 0.8874 0.8960
Em

ε ↑ 0.9191 0.9249 0.9372 0.9425
M ↓ 0.0552 0.0515 0.0506 0.0460

NLPR
Sα ↑ 0.9233 0.9265 0.9277 0.9311
Fm

β ↑ 0.9074 0.9078 0.9111 0.9300
Em

ε ↑ 0.9562 0.9577 0.9583 0.9612
M ↓ 0.0258 0.0249 0.0244 0.0221

NJU2K
Sα ↑ 0.9041 0.9042 0.9051 0.9066
Fm

β ↑ 0.9052 0.9061 0.9075 0.9100
Em

ε ↑ 0.9456 0.9458 0.9455 0.9467
M ↓ 0.0418 0.0411 0.0406 0.0364

RGBD135
Sα ↑ 0.9321 0.9325 0.9340 0.9411
Fm

β ↑ 0.9241 0.9262 0.9277 0.9423
Em

ε ↑ 0.9690 0.9715 0.9738 0.9761
M ↓ 0.0207 0.0205 0.0202 0.0190

LFSD
Sα ↑ 0.8639 0.8654 0.8700 0.8710
Fm

β ↑ 0.8645 0.8652 0.8663 0.8710
Em

ε ↑ 0.9026 0.9032 0.9055 0.9063
M ↓ 0.0708 0.0734 0.0684 0.0654

STERE
Sα ↑ 0.8986 0.8994 0.9011 0.9042
Fm

β ↑ 0.8916 0.8922 0.8937 0.9013
Em

ε ↑ 0.9426 0.9425 0.9427 0.9472
M ↓ 0.0439 0.0433 0.0427 0.0403
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4.4.2. DQPFP Threshold Strategy

As described in Section 3.2, a multivariable strategy was used for αi and βi. To verify
this strategy, it was compared to the single-variable strategy that uses the same (only one)
αi and βi. Table 4 shows the results, and it is evident that the multi-factor approach used
in this paper is better because it adds flexibility to the network, enabling it to render at
different levels with different quality heuristic weights and attention maps.

4.4.3. Effectiveness of Loss and Activation

The loss function is one of the core components of deep learning, measuring the
difference between the predicted results of the model and the true labels. By minimizing
the value of the loss function, the model can gradually improve its performance during
the training process. The loss function provides a clear optimization objective for neu-
ral networks and is an important bridge connecting data and model performance. It is
necessary to choose a suitable loss function. Thus, we utilized the DQPFPNet to conduct
comparative experiments on six datasets using the widely used BCE with the Sigmoid loss,
MSE loss, Hinge loss, BCE loss, and PPAI loss to validate the effectiveness of PPAI loss,
and the results are shown in Table 5. All other experimental settings remained the same,
with only the loss function transformed each time. From the experimental results, it can
be seen that the detection accuracy of the model was improved to some extent after using
PPAI loss. This indicates that the PPAI loss can accelerate the convergence of the model
and drive it toward better performance.

The activation function plays an important role in the backpropagation of neural
networks. It introduces nonlinearity into the network, enabling it to learn complex patterns
and make accurate predictions. Some activation functions have the problem of gradient
disappearance during training, which leads to slow convergence and hinders the learning
process. Therefore, the performance and training speed of neural networks can be greatly
affected by choosing the appropriate activation function. We conducted ablation experi-
ments and trained the DQPFPNet model using the ReLU, Sigmoid, Tanh, ELU, and RReLU
activations, and the results are presented in Table 6. All other experimental configura-
tions remained the same, with only the activation function changed for training each time.
The experimental results show that compared with other activations, the RReLU activation
enables the model to achieve higher accuracy. This may be related to the introduction of
randomness in RReLU, which reduces the occurrence of neuronal “death” through a certain
proportion of negative values, improves the stability of the network, and enhances its rich
nonlinear expression ability.

4.4.4. Effectiveness of Dual-Stage Decoder

In Table 7, we present the results of ablation experiments on the decoder, where we
used a single-stage decoder and a dual-stage decoder. All other conditions remained the
same, with only the decoder architecture changing each time. Based on the outcomes of the
experiment, it is evident that the resulting metrics when using the dual-stage decoder are
better compared to the single-stage decoder across all six datasets, proving that the two-
stage decoder is practical and effective. This may be due to the architectural advantages
of the dual-stage decoder itself. The first fusion stage reduces the feature channel and
hierarchical structure, and the second fusion stage further aggregates the low-level structure
and the high-level structure to produce the final salient graph. This two-stage design can
make full use of the context information and improve the modeling ability of the model.
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Table 4. DQPFP threshold strategy: using identical (only one) αi and βi vs. using multiple αi and βi (five different values). The best scores are shown in red.

# Strategy
SIP NLPR NJU2K RGBD135 LFSD STERE

Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M

5 Identical 0.876 0.884 0.923 0.051 0.916 0.905 0.955 0.025 0.900 0.902 0.941 0.041 0.931 0.927 0.968 0.019 0.853 0.852 0.895 0.074 0.890 0.891 0.941 0.044
4 Multiple 0.885 0.896 0.923 0.046 0.922 0.916 0.961 0.023 0.904 0.910 0.947 0.039 0.930 0.942 0.976 0.019 0.870 0.869 0.906 0.068 0.902 0.898 0.947 0.041

Table 5. Ablation analysis of DQPFPNet to validate the effectiveness of the PPAI loss.
√

below the module indicates that the model has used the module. Otherwise,
the model has not used it. The best results are shown in red.

# BCE-Logits MSE Hinge BCE PPAI
SIP NLPR NJU2K RGBD135 LFSD STERE

Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M

6
√

0.8730 0.8790 0.9190 0.0540 0.9120 0.8990 0.9540 0.0270 0.8980 0.9030 0.9410 0.0420 0.9260 0.9310 0.9710 0.0170 0.8500 0.8530 0.8910 0.0750 0.8850 0.8830 0.9380 0.0470
7

√
0.5926 0.6462 0.5545 0.3250 0.7325 0.6517 0.6607 0.1140 0.6764 0.6801 0.7251 0.1260 0.7288 0.6603 0.6585 0.1195 0.7362 0.6134 0.7549 0.1225 0.7884 0.7531 0.6949 0.0980

8
√

0.4991 0.6450 0.5250 0.3420 0.6394 0.7517 0.6325 0.1324 0.7826 0.5801 0.6250 0.2684 0.7351 0.6684 0.7250 0.1107 0.6684 0.7134 0.6822 0.2463 0.6948 0.6531 0.7120 0.2310
9

√
0.8685 0.8715 0.9154 0.0578 0.9170 0.8976 0.9562 0.0270 0.8982 0.9011 0.9429 0.0424 0.9213 0.9084 0.9610 0.0248 0.8547 0.8469 0.8908 0.0746 0.8983 0.8919 0.9421 0.0443

10
√

0.8740 0.8810 0.9323 0.0532 0.9211 0.9048 0.9564 0.0254 0.9029 0.9040 0.9456 0.0405 0.9312 0.9411 0.9716 0.0217 0.8520 0.8558 0.8949 0.0721 0.9015 0.8919 0.9442 0.0423

Table 6. Ablation analysis of DQPFPNet to validate the effectiveness of the RReLU activation.
√

below the module indicates that the model has used the module.
Otherwise, the model has not used it. The best results are shown in red.

# ReLU Sigmoid Tanh ELU RReLU
SIP NLPR NJU2K RGBD135 LFSD STERE

Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M

11
√

0.8730 0.8790 0.9190 0.0540 0.9070 0.8990 0.9540 0.0207 0.8693 0.9030 0.9410 0.0420 0.9260 0.9310 0.9710 0.0270 0.8500 0.8530 0.8910 0.0750 0.8850 0.8830 0.9380 0.0470
12

√
0.3921 0.2462 0.2573 0.2052 0.4316 0.2517 0.3655 0.1043 0.4752 0.5631 0.6581 0.0852 0.4279 0.4603 0.5653 0.1008 0.6605 0.6134 0.6569 0.065 0.5387 0.5624 0.6374 0.0837

13
√

0.4825 0.3462 0.4954 0.1196 0.6182 0.4517 0.6599 0.0725 0.6651 0.6801 0.6746 0.0638 0.5119 0.6603 0.6537 0.0730 0.5524 0.6334 0.5789 0.0863 0.6755 0.6531 0.7975 0.0625
14

√
0.8760 0.8830 0.9210 0.0510 0.9020 0.8891 0.9523 0.0360 0.8970 0.9030 0.9410 0.0430 0.9296 0.9320 0.9660 0.0180 0.8550 0.8560 0.8970 0.0739 0.8890 0.8860 0.9400 0.0450

15
√

0.8842 0.8816 0.9249 0.0506 0.9120 0.8992 0.9542 0.1013 0.8980 0.9036 0.9457 0.0411 0.9340 0.9429 0.9738 0.0170 0.8564 0.8621 0.8997 0.0734 0.8817 0.8901 0.9425 0.0413

Table 7. Ablation analysis of DQPFPNet to validate the effectiveness of the dual-stage decoder.
√

below the module indicates that the model has used module,
otherwise the model has not used it. The best results are shown in red.

# Single-Stage Dual-Stage
SIP NLPR NJU2K RGBD135 LFSD STERE

Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M Sα Fm
β Em

ε M

16
√

0.8685 0.8715 0.9154 0.0588 0.9211 0.9088 0.9565 0.0371 0.8979 0.9011 0.9326 0.0424 0.9213 0.9084 0.9610 0.0324 0.8547 0.8469 0.8908 0.0746 0.8983 0.8919 0.9269 0.0542
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5. Conclusions

This paper proposed DQPFPNet, an RGB-D SOD model with high efficiency and
good performance. The method models an efficient RGB-D SOD framework and DQPFP
processing, greatly improving detection accuracy. DQPFP consists of three sub-modules:
DDM, DQPW, and DPEA. The DDM filters multi-scale depth features through a channel
attention mechanism and a spatial attention mechanism to achieve the initial filtering of
the depth features. The DQPW module weights the depth features based on the alignment
between the enhanced RGB features of the DDM module and the depth features, whereas
the DPEA module focuses on the depth features spatially using multiple enhanced attention
maps originating from the DDM-enhanced depth features refined with low-level RGB
features. Additionally, the framework is built on a dual-stage decoder, which helps further
increase efficiency. The pixel position adaptive importance (PPAI) loss is utilized to better
explore the structural information in the features, making the network attach significance to
detailed areas. In addition, the RReLU activation is used to solve the problem of neuronal
”necrosis”. Experiments conducted on six RGB-D datasets demonstrate that DQPFPNet
performs well in terms of both metric values and visualizations. A limitation of the current
model is that in the comparison experiments with existing models, it did not achieve the
best performance across all metrics and datasets, indicating that the network structure
needs to be improved. Furthermore, the behavior of the model in mobile or embedded
devices is unknown. Hence, we will continue to explore new network architectures to
optimize performance on common datasets in the future. In addition, we will attempt to
deploy the DQPFP in embedded/mobile systems that handle RGB-D and video data and
continue to optimize the model based on its performance metrics.
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Depth purification-enhanced attention DPEA
Consumer Electronics CE
Software-Defined Networking SDN
Pyramid pooling module PPM
Depth de-noising module DDM
Channel attention CA
Spatial attention SA
Binary cross-entropy BCE
Intersection over Union IoU
Weighted binary cross-entropy wBCE
Weighted IoU wIoU
Ground truth GT
State of the art SOTA
Mean-square error MSE
Hyperbolic tangent function Tanh
Exponential Linear Unit ELU
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