
Citation: Yang, J.; Zhang, W.; Guo, Z.;

Gao, Z. TrustDFL: A Blockchain-

Based Verifiable and Trusty

Decentralized Federated Learning

Framework. Electronics 2024, 13, 86.

https://doi.org/10.3390/

electronics13010086

Academic Editor: Mehdi Sookhak

Received: 27 November 2023

Revised: 19 December 2023

Accepted: 22 December 2023

Published: 24 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

TrustDFL: A Blockchain-Based Verifiable and Trusty
Decentralized Federated Learning Framework
Jinsheng Yang 1, Wenfeng Zhang 1, Zhaohui Guo 1 and Zhen Gao 2,*

1 School of Microelectronics, Tianjin University, Tianjin 300072, China; jsyang@tju.edu.cn (J.Y.);
2020232164@tju.edu.cn (W.Z.); 2017232048@tju.edu.cn (Z.G.)

2 School of Electrical Automation and Information Engineering, Tianjin University, Tianjin 300072, China
* Correspondence: zgao@tju.edu.cn

Abstract: Federated learning is a privacy-preserving machine learning framework where multiple
data owners collaborate to train a global model under the orchestra of a central server. The local
training results from trainers should be submitted to the central server for model aggregation and
update. Busy central server and malicious trainers can introduce the issues of a single point of failure
and model poisoning attacks. To address the above issues, the trusty decentralized federated learn-
ing(called TrustDFL) framework has been proposed in this paper based on the zero-knowledge proof
scheme, blockchain, and smart contracts, which provides enhanced security and higher efficiency for
model aggregation. Specifically, Groth 16 is applied to generate the proof for the local model training,
including the forward and backward propagation processes. The proofs are attached as the payloads
to the transactions, which are broadcast into the blockchain network and executed by the miners.
With the support of smart contracts, the contributions of the trainers could be verified automatically
under the economic incentive, where the blockchain records all exchanged data as the trust anchor in
multi-party scenarios. In addition, IPFS (InterPlanetary File System) is introduced to alleviate the
storage and communication overhead brought by local and global models. The theoretical analysis
and estimation results show that the TrustDFL efficiently avoids model poisoning attacks without
leaking the local secrets, ensuring the global model’s accuracy to be trained.

Keywords: decentralized federated learning; blockchain; verifiability; zero-knowledge proof (ZKP);
zk-SNARK

1. Introduction

As a branch of artificial intelligence, machine learning (ML) is a statistical model driven
by big data to tackle complex problems, and has been used widely in various fields, such as
image recognition, image segmentation, and natural language processing [1–3]. With the
development of the deep neural network (DNN), training a larger model requires more data
and computing power, which usually is delegated to the centralized data center or cloud
providers [4]. For example, the machine learning as a service (MLaaS) framework provides
prediction results based on the trained models maintained on the centralized server, which
needs to collect the training data set from the edge devices in advance and causes the risk
of privacy leakage [5]. Federated learning (FL) is proposed for multiple participants to
train a global model corroboratively without exposure of the local data [6,7]. As shown
in Figure 1, the FL framework is formed by edge devices acting as trainers and the server
acting as the aggregator. The global model training in FL runs multiple rounds. For each
round, there are four steps, as follows [8]: (1) global model distribution: the aggregator
distributes the global model to the selected trainer; (2) local training: relying on the local
training data set, the selected trainers update the parameters based on the published global
model; (3) update upload: the selected trainers upload the trained results (the updated
weights or gradients), instated of the raw training data, to the server, which avoids privacy

Electronics 2024, 13, 86. https://doi.org/10.3390/electronics13010086 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13010086
https://doi.org/10.3390/electronics13010086
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9887-1418
https://doi.org/10.3390/electronics13010086
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13010086?type=check_update&version=2

Electronics 2024, 13, 86 2 of 21

leakage; (4) model aggregation: the server aggregates the updates and generates the new
global model for the next round. The target global model to be trained in FL could have
any architectures, such as multi-layer perceptron (MLP) and convolutional neural networks
(CNN). The standard implementation of FL is FederatedAveraging (FedAvg), where the
updates for the global model could be aggregated through a weighted average [9].

Global ModelAggregator

Local Model

Local Data

Trainer

Local Model

Local Data

Trainer

Local Model

Local Data

Trainer

Global model distribution

 Local training

Local model upload

Model aggregation

Figure 1. FL framework and global model training process.

However, there are two major issues in the FL framework. First, it is hard for the
aggregators to check the validity of the updates uploaded by the trainers, which brings the
risk of model poisoning attacks and reduces model availability [10–12]. The malicious trainers
could launch model poisoning attacks by uploading invalid updates (for example, random
float numbers generated randomly), which could interfere with the aggregation or convergence
process, and reduce the global model accuracy. Since the raw training data on each trainer
cannot be revealed to the aggregator for privacy-preserving reasons, there is no efficient method
to check the contributions of the trainers. There are some robustness aggregation methods,
such as Krum and Trim-means, which remove the updates dissimilar from others based on
the statistical analysis before the aggregation process [13,14]. On one hand, these statistical
methods are imprecise because trainers have different data distributions. On the other hand,
by the robustness aggregation, all workloads for verification are on the aggregator sides, which
causes a computation bottleneck.

Second, in the traditional FL framework (known as centralized FL, CFL), global model
training is orchestrated by the centralized server, which faces a single point of failure
problem and cannot meet the requirement for decentralization in the cross-silo scenarios.
The CFL could be transformed into a decentralized FL (DFL) by replacing the designated
server with a cluster of aggregators from different organizations [15,16]. There are two
issues in the current DFL framework, as follows: (1) like the trainers, the contributions
of the aggregators should also be verified efficiently. (2) All contributions should be
recorded honestly to construct trust, and the incentive mechanism is needed to encourage
all participants to adhere to the protocol honestly.

Various schemes were proposed to address the issues above, and most introduce
blockchain for decentralized FL. Under the framework of establishing decentralized fed-
erated learning, the authors in [17] proposed a new committee consensus mechanism to
complete the tasks of gradient selection and block generation. The elected committee
serves as the miner’s responsibility and uses K-fold cross-validation to verify and score
the trainer’s updates. The authors in [18] elected a committee to judge the reliability of
the model parameters by verifying whether the trainer’s training time is proportional to

Electronics 2024, 13, 86 3 of 21

the data size. There are also some solutions that integrate blockchain, smart contracts, and
the zero-knowledge proof (ZKP) system. The blockchain is adopted as the trust anchor,
the ZKP is used for verifying contributions, and the smart contracts are used for the auto-
matic execution of contribution verification and reward distribution. Different from the
robustness aggregation and cross-validation, the verification methods based on the ZKP
enable the trainers to convince the aggregators that the updates are valid by providing proof
indicating the correct execution of the defined computation. For example, [19–21] adopted
the zero-knowledge succinct non-interactive argument of knowledge (zk-SNARK) to prove
the correctness of the prediction results without revealing the model parameters in the
MlaaS scenarios, where only the forward prorogation (FP) process and two-party scenarios
are considered. As proposed in [22,23], the schemes integrate the ZKPs and blockchain
to construct the verifiable DFL framework, where the verification for updates is viewed
as part of the consensus process, and miners are responsible for the verification before
recording the updates into the blocks. In [24], ZKP-based verification is executed by smart
contracts. However, these schemes use the blockchain as the black box or the third-party
platform. The global model training of the FL is not integrated into the transaction lifecycle
of the blockchain.

This paper proposes a trustworthy and verifiable decentralized federated learning
framework (TrustDFL) based on blockchain and ZKP. The issues of a single point of failure
problem and model poisoning attacks could be addressed efficiently by the proposed
TrustDFL framework with limited computational overhead for on-chain verification. More-
over, the storage burden of the blockchain could be alleviated by dumping global and local
models into the IPFS. The contributions of this paper are as follows:

1. We propose the TrustDFL framework, which integrates the global model training in
the FL into the consensus process in the blockchain. The framework adopts zero-
knowledge proof to establish the proof of the computation correctness of the local
training process and the model aggregation process, which are implemented by smart
contracts. Only the successfully verified models will be recorded on the blockchain.

2. We specifically use zk-SNARK to construct the proof system, which has the advantages
of succinctness (small proof size) and efficiency (fast proof verification). We provide
the construction detail of the proof for the correctness of local training (including
the forward and back propagation processes). The proof for the aggregation process
could be generated similarly based on the defined aggregation algorithm.

3. Considering the blockchain storage pressure, we introduce an IPFS to store the hash
related to the model on the blockchain instead of the raw model parameters, which
effectively avoids storage scalability issues for the blockchain.

TrustDFL can be applied to many scenarios. For example, in the current model of
cloud computing, MLaaS, it is necessary to ensure the availability of the global model.
In this case, the operator provides predictable service for pay using the trained global
model, which is obtained by the DFL with data collected from sensors owned by users
with different interests. TrustDFL can also be applied to the healthcare industry, where
smart health applications utilize global models jointly trained by users with data to provide
health monitoring services. Since incorrect predictions of health status can bring serious
consequences, and personal health data is highly confidential, TrustDFL can ensure the
reliability of the global model without leaking secrets, which is very suitable for this
scenario [25].

The rest of this paper is organized as follows. Section 2 describes the basic technique.
Section 3 introduces the detailed design of the TrustDFL. Theoretical analysis and simula-
tion results for the TrustDFL are given in Sections 4 and 5, respectively. The paper discusses
and concludes in Sections 6 and 7.

Electronics 2024, 13, 86 4 of 21

2. Background

This section introduces the basic techniques for constructing the TrustDFL, including
the architecture of the multilayer perceptron (MLP), blockchain, and zero-knowledge proof
(ZKP) system, in Sections 2.1–2.3, respectively.

2.1. Multi-Layer Perceptron (MLP)

In this paper, a multi-layer perceptron (MLP) is used as a case study to demonstrate
the principle of TrustDFL. A multi-layer perceptron (MLP) is a fully connected feedforward
neural network, typically including an input layer, a hidden layer, and an output layer,
where all layers are formed by multiple neurons with weights and a bias vector to be
trained [26]. Unlike the linear perceptron, the hidden and output layers are followed by the
activation function f . In the MLP, there are two most commonly used activation functions:
ReLU and sigmoid, shown as Equation (1) and Equation (2), respectively.

f (x) = max(0, x) (1)

f (x) =
1

1 − e−x (2)

The MLP can provide the prediction results based on the inputs known as forward
propagation (FP) [27,28]. The weights and bias vectors could be trained by the backpropa-
gation (BP). Typically, the training process in MLP includes serval epochs. For each epoch,
the weights and biases are updated using the gradient descent algorithm. During the FP,
the calculation of the i-th layer could be described as follows:

Yi = f (Xi • Wi + bi), (3)

where Xi, Yi, Wi, and bi are the input matrix, output matrix, weight matrix, and bias vector
of the i-th layer. The output of the i-th layer is the input of the i + 1-th layer. f(x) is the
activation function.

In the output layer, a loss function L is used to estimate the gaps between the prediction
results and the labels. Typically, for multi-category classification tasks, the cross-entropy is
used as the loss function:

L = − 1
n∑

j

M

∑
c=1

yjc • log
(

pjc
)

(4)

where n and M are the numbers of the samples and classes, respectively. The yjc is the sign
function, which is 1 when the j-th sample belongs to the c-th class (yjc = 0, otherwise). pjc
is the probability that the j-th sample belongs to the c-th class. The target of the training
process is minimizing the loss function by updating the weight matrices and bias vectors of
all layers in the next epoch, which is realized by the gradient descent algorithm as follows:{

W ′
i = Wi − η∇Wi

b′
i = bi − η∇bi

(5)

where η is the learning rate. The ∇Wi and ∇bi are the gradients of the loss function
regarding the weights and bias, which could be calculated based on the chain rules as:{

∇Wi =
∂L

∂Wi
= ∂L

∂Yi

∂Yi
∂Fi

∂Fi
∂Wi

∇bi =
∂L
∂bi

= ∂L
∂Yi

∂Yi
∂Fi

∂Fi
∂bi

(6)

where Fi = Xi • Wi + bi. The process of updating weights and biases according to their
gradients is known as backpropagation, which will be repeated for multiple epochs until
the model coverages.

Electronics 2024, 13, 86 5 of 21

MLP is an early and widely used machine learning model. It is often used for text
classification, audio processing, image recognition, and some traditional machine learning
tasks, such as classification, regression, clustering, etc. For large-scale data sets and image
processing tasks, CNN is more suitable.

2.2. Blockchain and IPFS

Blockchain is the emerging distributed database system and computation paradigm
underlying cryptocurrencies, such as BTC and ETH [29,30]. As the world computer and the
finite state machine, the transaction is the basic process unit to drive the state translation.
All transactions are maintained by the ledger formed by the blocks chained in chronological
order, where the integrity of the records is guaranteed by the cryptographic techniques
(such as hash and digital signature algorithms) and the consensus processes (such as proof-
of-work and proof-of-stake). With the support of peer-to-peer, all blockchain nodes share
the same data access rights, and only the data passing the public verification could be
appended [31].

The smart contract is the key technology for the blockchain to develop decentral-
ization applications (Dapp), build autonomous communities, and even construct smart
cities [32,33]. Taking Ethereum as an example, the smart contract is the protocol that all
participants should adhere to, which is implemented as the bytecodes running in the
specific virtual machine, such as the Ethereum virtual machine (EVM). The smart contract
could be triggered by the preset conditions and executed automatically, which excludes the
reliance on the trusted third party and the human factor. Thus, the smart contract enables
behavior customization for all nodes and public verification for all data, which empowers
the blockchain to act as the trust anchor in multi-party cooperative scenarios. Most existing
blockchains implement smart contracts and the corresponding Turing-complete program-
ming language, such as the smart contract written by Solidity in Ethereum and the chain
code written by Golang in the Hyperledger Fabric [34,35].

In Ethereum, there are two types of transactions: the ones for token transfer and
the ones for contract deployment and calling [33,34]. For the former, the field of data is
defaulted to empty. For the latter, the field of data is the contract bytecodes (for deployment)
or the parameters (for the calling). All transactions follow the same lifecycle from issuance
to confirmation as follows: (1) the node issues a new transaction and broadcasts it to the
network; (2) the nodes receiving the new transaction check its validity and cache the valid
transition into the local pool; (3) the nodes pack the transaction into a new block and
compete for the authority block proposal through the consensus process; (4) the nodes
receiving the new block validate the consensus result and the validity of all transaction,
then append the block passing all the checks into the tip of the local chain.

Currently, the blockchain faces scalability issues, especially in terms of storage scala-
bility. Since all nodes should maintain the ledger, there will be a huge storage burden for
the resource-limited nodes with increasing block height. The storage scalability issue of
the blockchain could be alleviated by dumping the ledger into the off-chain, such as the
interplanetary file system (IPFS). The IPFS is the file system based on the distributed hash
table, where the files are indexed by their unique IPFS hash values instead of the URLs
(known as content-based addressing) [36]. As proposed in the paper by [37], by integrating
the IPFS with the blockchain, the original ledger could be dumped into the IPFS, with only
the IPFS hash values maintained on-chain, which reduces the storage burden greatly.

2.3. Zero-Knowledge Proof (ZKP) System

The ZKP system was first proposed by Goldwasser et al. in 1985. It is an initially
interactive protocol between the prover (P) and the verifier (V). With the support of the ZKP
system, P could convince V that the statement is true by providing the corresponding proof
without revealing the secret (also known as witness) [38,39]. Typically, the ZKP system has
properties of completeness, soundness, and zero-knowledgeness [40,41]. The completeness
guarantees that any correct statement can always pass the checks of the verifier following

Electronics 2024, 13, 86 6 of 21

the protocol. The soundness guarantees that any fraud statement cannot cheat the verifier
even though P has enough computing power. The zero-knowledgeness guarantees that V
cannot learn any more information except for the correctness of the statement [42]. The typ-
ical implementation of the ZKP system is the zero-knowledge succinct non-interactive
argument of knowledge (zk-SNARK), which is the integration of the multiple cryptographic
primitives, such as polynomial commitment and the knowledge of exponent assumption
(KEA). Compared with the early implementations of the ZKP system, zk-SNARK has
the advantages of succinctness, non-interactiveness, and efficiency, which are realized by
relying on the linear probabilistic checkable proof (LPCP) and the common reference string
(CRS) model [43,44].

Any NP relation R could be represented as the arithmetic circuit C with the depth
|C|, which is formed by multiple addition and multiplication gates. The core idea of
the zk-SNARK is transforming the circuit satisfaction to the polynomials divisibility by
reducing the constraints between gates into a set of polynomials known as the quadratic
arithmetic program (QAP). The proof size and the time for proof generation are determined
by the circuit depth |C| [42,44]. The construction of the zk-SNARK is depicted in Figure 2,
which includes four steps as follows:

Generate

CRS set

Generate

Proof

Reduce

PK

VK

Prover

Input

Verifier

Circuit

R1CS

(constraint)

public

witness

Figure 2. The construction process of the zk-SNARK.

1. Initialization. Converting the NP relation R into the arithmetic circuit C and generating
the CRS. Each gate in C is formed by two input wires and one output wire. Different
gates could share the same input wires, and the upper gates’ output wires can be
the lower gates’ input wires. The CRS is a set of elements from the finite cyclic
groups in the elliptic curves, which are the homophonic hidings of a random secret
s. The security of the zk-SNARK is determined by s, which should be discarded
completely as “toxic waste” after the CRS generation. The CRS could be accessed by
P and V, where the elements for provers and verifiers are known as prover keys (PK)
and verifier keys (VK), respectively . It should be noted that the elliptic curves should
be pairing-friendly because the proof is validated based on the pairing operations [45].

2. Rank-1 constraints system (R1CS). The R1CS acts as the compiler to help construct
the QAP from the arithmetic circuit C. Essentially, the R1CS is a set of n polynomials
to represent the relationship among the inputs, outputs, and intermediated values.
The construction of the R1CS follows the rule of “one operation and one line”. Typ-
ically, one operation includes one multiplication gate and serval addition gates (in
Groth 16 [46,47]). When the circuit satisfaction holds, the evaluation of the polynomial
in each line is zero.

3. Quadratic artchimetic program (QAP). The QAP includes three polynomials, L(x),
R(x), and Q(x), to represent the left input wires, right input wires, and output wires
of all multiplication gates. Three polynomials satisfy that Q(x) • v = (L(x) • v)×
(R(x) • v) and v = [1, xT , wT]T , where x and w are the public input vector and
the witness, respectively. L(x), R(x), and Q(x) represent the constraint of circuit
C, which has no relationship with the v and could be obtained by P and V. Let
Q(x) = Q(x) • v, L(x) = L(x) • v, and R(x) = R(x) • v. When all constraints hold,
P could generate a polynomial P(x) = L(x) • R(x)− Q(x), and the evaluations for
all lines are zeroes, which means that there is a quotient polynomial H(x) stratifying

Electronics 2024, 13, 86 7 of 21

that H(x) = P(x)/Z(x). Z(x) = ∏n
i=1 (x − i) is known as the target polynomial and

could be obtained by both sides.
4. Proof generation. The QAP converts the circuit stratification into the polynomial

disviability, which could be verified efficiently based on the Schwartz–Zippel lemma
and the polynomial commitment schemes (such as KZG and IPA [48]). The proof is
the homomorphic hiding of the H(s), which is also an element of the finite cyclic group
and can be obtained by the linear combination of PK. Correspondingly, the proof
could be checked through the pairing operations using VK.

It should be noted that more cryptographic primitives, such as KEA, are introduced to
force the provers only to use PK and the same w to generate the proof as described in [44].
After construction, the main functions of the zk-SNARK could be described as follows:

1. Setup(C, 1λ) → pp, setting the public parameters pp. λ is the security parameter.
pp = (p, e, G1, G2, GT , g1, g2, gT), where G1, G2, and GT are the finite cyclic groups
with the generators of g1, g2, and gT in the elliptic curves EC1, EC2, and ECT satisfying
the bilinear mapping e : G1

(
Fp
)
× G2

(
Fk

p

)
→ GT

(
Fk

p

)
. Fp is the finite field of prime

p and Fk
p is the extension field of Fp.

2. GenKey(pp, C) → (PK, VK), generating the CRS corresponding to the circuit C, where
PK and VK are elements for proof generation (in P side) and proof verification (in
V side).

3. GenProo f (PK, x, w) → π , generating the ZKP proof in P side. The algorithm inputs
the PK, the public input mathb f x, and witness mathb f w.

4. VerProo f (VK, x, π) → (0, 1), verifying the proof. When C(x, w) = 0 holds, the algo-
rithm outputs 1, meaning the statement is correct. Otherwise, the algorithm outputs
0, meaning the statement is a fraud.

zk-SNARK is mainly used in the proving statement on private data, anonymous
authorization, anonymous payments, outsourcing calculations, etc.

3. Design of the TrsutDFL Framework

This section describes the design of the TrustDFL framework in detail. The overview
of the TrustDFL framework is given in Section 3.1, where the components and node roles
are introduced. The workflow of the TrustDFL framework is given in Section 3.2. The proof
generation for model training and aggregation are introduced in Sections 3.3 and 3.4,
respectively. For clarity, symbols used in the paper and their meanings are listed in Table 1.

Table 1. Main parameters and meaning of TrustDFL.

Symbol Meaning Symbol Meaning

TXU transaction about local training TXA
transaction about

model aggregation
PKT prover key of local training PKA prover key of model aggregation
VKT verifier key of local training VKA verifier key of model aggregation
πT ZKP proof of local training πA ZKP proof of model aggregation

M0 original global model HM
0

IPFS hash of the original
global model

∇wjk
i

weight gradient of the k-th node in
i − 1-th layer connecting the j-th

node in i-th layer
∇bj

i
bias gradient of the j-th node in

i-th layer

tj the label ω a vector set
α a vector of intermediate variables β a vector of intermediate variables
o a vector of output variables v1 a vector to constrain outputs
v2 a vector to constrain left inputs v3 a vector to constrain right inputs

Mr−1
global model of r-th round to

be trained Qk
r

the k-th updated local model of r-th
round model training

Electronics 2024, 13, 86 8 of 21

3.1. System Scenario

The TrustDFL is a ZKP-based decentralized federated learning framework assisted
by the blockchain and smart contracts, where the ZKP provides zero-knowledge proofs
for the validity of model training and aggregation with acceptable computational and
communication overhead. The blockchain acts as the trust anchor of the multi-party
cooperation scenario by recording all data from the participants distributedly in the form
of transactions, and the smart contracts are applied for ZKP proof verification. As shown in
Figure 3, the TrustDFL framework is an overlay network composed of the blockchain, DFL,
and IPFS. The DFL is based on the blockchain, which means the blockchain is formed by
the DFL’s participants (trainers and aggregators) instead of the third-party infrastructure.
The data exchanges in the DFL are in the form of transactions and are involved in the
consensus process. Moreover, as an off-chain storage protocol, the IPFS is introduced to
alleviate the storage burden brought by the global and local models. All data exchanged in
the DFL could be dumped into the IPFS with the IPFS hashes maintained on-chain as the
commitments and indices.

In TrustDFL, the trainers and aggregators are almost the same as in the original DFL.
The only difference is that the trainers and aggregators in TrustDFL have to attach the
trained or aggregated results with the corresponding ZKP proofs. The TrustDFL workers
act as the blockchain miners, responsible for the consensus process and the block proposal.
In each round of training, each trainer will initiate a transaction including the proof of this
round of local training and the hash value of the training results, which is broadcasted
and verified by all workers and recorded in the blockchain. After the number of local
training transactions on the blockchain reaches a threshold, the trainer collects relevant
transactions and extracts IPFS hashes, then retrieves the updated local models from IPFS
and aggregates them using the aggregation algorithm. The aggregator initiates a transaction
containing the ZKP proof of the aggregation process and the IPFS hash of the updated
global model. The global model contained in the first valid aggregated transaction recorded
on the blockchain will be used for the next round of training.

Blockchain

Workers

Trainers
Aggregators

IPFS

1

2

4

3

5

126

7 10

9

8

11

: Download model : Upload model & Get IPFS hash4 101 7

2 8

3 9 5 11

126

: Local training : Model aggregation

: Generate ZKP proof : Issue a transaction

: Block proposal

Figure 3. The roles and components of the ZKP-based TrustDFL framework assisted by blockchain.

Electronics 2024, 13, 86 9 of 21

3.2. System Workflow

Before the training rounds, the system should be initiated by defining the public pa-
rameters, including the pairing-friendly elliptic curves (EC1, EC2, and ECT), their generator
(g1, g2, and gT), the ZKP implementations (such as Groth 16, Plonk, or STARKs), and the al-
gorithms for the model aggregation (such as FedAvg). For the construction of the ZKP, two
CRS sets (CRST and CRSA) should be generated in advance, where CRST = [PKT , VKT] is
for the model training, and CRSA = [PKA, VKA] is for the model aggregation. Typically,
the CRS generation and maintenance are delegated to the third party, which could also be
realized by federated computation with the support of the smart contracts in TrustDFL.
Depending on the selected ZKP implementation, the CRST and CRSA could be the same.
For example, since the ZKP implementations, such as Plonk, Sonic, and SuperSonice, could
provide the universal and updatable structure reference strings (SRS) composed by the
group elements independent of the specific circuits, only one CRS set with enough elements
is necessary [49,50]. Moreover, since the neural network consists of multiple layers related
to different operations, one CRS should be generated when Groth 16 is used as the ZKP
scheme for one operation [46]. However, the CRS generation and maintenance are out of
the scope of this paper. For simplicity and without the loss of generality, we assume that all
necessary CRS sets are ready before the training rounds begin.

The workflow in TrustDFL could be described as follows:

1. Model publication. In TrustDFL, any node could publish the training task. The original
global model M0 is defined by the architecture of the model to be training (the number
of layers, the activation functions, the size of the inputs, etc.), the initialized weights,
and some super parameters (epoch, learning rate, etc.). The node first submits all the
data to the IPFS and issues a special transaction TXP with the received IPFS hash HM

0 .
The TXP has the same fields as the normal transactions, but the payload is filled with
the IPFS hash. After the TXP is confirmed in the blockchain, all trainers can learn the
training task, extract the IPFS hash, and retrieve the model parameters from the IPFS.

2. Model training. Using the local dataset, all trainers update the model weights based on
the retrieved M0, where the BP process will be repeated according to the defined epoch
(step 2). After all iterations are complete, the trainer generates the corresponding ZKP
proof πT based on the PKT for the validity of the trained results (step 3), where the
original weights act as the public inputs, and the local training dataset acts as the
witness. In this way, the validity of the local training could be proved without any
leakage of the local sensitive information. Then, the trainer submits all data (trained
results) into the IPFS and issues a transaction TXU with the returned IPFS hash
and ZKP proof filled in the payload field (steps 4 and 5). Like normal transactions,
the TXU is broadcasted and verified by all workers, which means the contributions of
all trainers are recorded in the blockchain.

3. Block proposal. Any workers receiving the TXU should check its validity. In addition
to the signature check, the worker should check the validity of the attached proof
πT by calling the smart contract SC1 (step 6). The SC1 implements the verification
function VerProo f () described in Section 2.3, which should contain the VKT from
the CRST and be deployed in advance. Only the TXU attached with the valid proof
could be persisted in the blockchain, which is ready for the model aggregation by
the aggregators.

4. Model aggregation. All trained results are accessible for the aggregators when all
TXU are confirmed in the blockchain. The aggregator could collect all the related
TXU by traversing the blockchain, then extract the IPFS hashes and retrieve the
updated parameters from the IPFS (step 7). Based on the collected data, the aggregator
performs the defined aggregation algorithm and generates the updated global model
parameters for the training in the next rounds (step 8). Then, the aggregator generates
the corresponding ZKP proof πA based on the PKA from the CRSA, and submits all
data into the IPFS (step 9). Finally, the aggregator issues the transaction TXA with the
payload field filled by the returned IPFS hash and ZKP proof (steps 10 and 11).

Electronics 2024, 13, 86 10 of 21

5. Block proposal. After receiving the TXAs, the worker checks their validity by checking
the attached ZKP proof and queues them in an orderly manner. It should be noted that
though all valid aggregated results are recorded on-chain, only the results included
in the first valid TXA will be used as the global parameters for the training in the
next round.

3.3. ZKP Proof Generation for the Local Training Process

For simplicity and without the loss of generality, we use the MLP as the model to
be trained, composed of an input layer, an output layer, and a hidden layer. The activa-
tion functions used in hidden and output layers are determined as ReLU and sigmoid,
respectively. Without consideration of the activation functions, all operations of each layer
are the linear combinations between the inputs and weights, which could be efficiently
converted into the arithmetic circuit composed of only addition and multiplication gates.
The float point numbers and the nonlinear operations introduced by the activation func-
tions could be expressed as fractions and exponents, which could be mapped to their bit
representations and converted to the arithmetic circuits [42]. In this section, we generate
the ZKP proof for each layer and finally aggregate them with the support of the Lego
SNARK [51]. The ZKP proof aggregation process for each round of local training is shown
in Figure 4. Among them, the ZKP proofs at the s-th epoch can be aggregated into cs, in-
cluding the proofs of calculation at each layer of forward propagation

(
bs1, bs2, . . . , bsp

)
and

proofs of calculation between each layer of backpropagation
(
bs1, bs2, . . . , bsp

)
. ZKP proofs

(c1, c2, . . . , cs) from multiple epochs can also be aggregated into the final ZKP proof π.

b11 b12 b1p b1(p+2) b1(2p) c1

c2b21 b22 b2p b2(p+1) b2(p+2) b2(2p)

csbs1 bs2 bsp bs(p+1) bs(p+2) bs(2p)

epoch 1 b1(p+1)

epoch 2

epoch s

Forward propagation Backpropagation

Figure 4. The aggregation process of ZKP proofs for each round of local training.

The FP process can be proved via Groth 16 as described in [19,20,24], which is not
the concern of this paper. To prove the validity of the training result, the BP process must
be proposed, which is the process of chain rules as shown in Section 2.1. We can get the
gradient calculation formula as follows:{

∇wjk
i (s) = δ

j
i (s)y

k
i−1(s)

∇bj
i(s) = δ

j
i (s)

(7)

Electronics 2024, 13, 86 11 of 21

δ
j
i (s) =

f ′
(

uj
i

)
· ∑

h∈Ii+1

δh
i+1whj

i+1 , hidden layer

f ′
(

uj
i

)
·
(

1
n

n
∑

j=1

(
yj

i − tj
)

yk
i−1

)
, output layer

(8)

where n and s are the numbers of the samples and epochs, respectively; wjk
i represents the

weight of the k-th node in i − 1-th layer connecting the j-th node in i-th layer; bj
i refers to

the bias of the j-th node in i-th layer; tj is the label; and uj
i = ∑

p
k=1 wjk

i yk
i−1 + bj

i (when i = 2,
yk

i−1 is the k-th node in the input layer).
From Equations (7) and (8), we can know that the calculation of gradient involves

linear operations and nonlinear operations. Nonlinear operations are mainly the calculation
of activation functions and their derivatives. It can be seen from Groth 16 that nonlinear
operations need to be converted into linear operations to generate zero-knowledge proofs.
We first describe the processing of nonlinear operations and then express the operation
process of generating zero-knowledge proofs from linear operations.

3.3.1. Processing Of Nonlinear Operations

The activation functions mainly considered in this article are ReLU and Sigmoid func-
tions, which are expressed as Equation (1) and Equation (2), respectively. For Equation (1),
we use the polynomial proposed in the paper by [52] for approximation. In the interval
I = (−a, a), our polynomial activation function is given by

fReLU(x) = x2 + ax (9)

For Equation (2), it is often used in the output layer to complete the classification task.
We use the following Taylor series to express.

fsig(x) =
1
2
+

1
4

x − 1
48

x3 +
1

480
x5 − 17

80640
x7 + O

(
x8
)

(10)

The derivative of the Sigmoid function is shown in Equation (11), and the derivative
of the ReLU function is shown in Equation (12).

f ′sig(x) = fsig(x)
(
1 − fsig(x)

)
(11)

f ′ReLU(x) =

{
1 , x > 0
0 , x < 0

(12)

For Equation (11), there is only one nonlinear function, the Sigmoid function. There-
fore, the polynomial approximation of Equation (11) can be realized with the help of
Equation (10) and expressed as

f ′sig(x) =
1
4
+

1
4

x − 1
16

x2 − 1
48

x3 +
1

480
x5 +

1
2304

x6 − 17
80640

x7 + O
(

x8
)

. (13)

It can be seen from Equation (12) that the derivative of ReLU is not a smooth function,
so we first use Equation (14) to perform a smooth approximation.

f ′ReLU(x) = lim
k→∞

1
2
(1 + tanh(kx)) (14)

Then, we use Taylor series Equation (15) to perform polynomial approximation of the
nonlinear function.

f ′ReLU(x) = lim
k→∞

1
2

(
1 + kx − 1

3
(kx)3 +

1
5
(kx)5 − 1

7
(kx)7 + O

(
(kx)8

)
(15)

Electronics 2024, 13, 86 12 of 21

3.3.2. The Operation Process of Linear Calculation to Generate ZKP Proof

When i is the output layer, from Equation (7) and Equation (8) we can see that the

gradient calculation formula is ∇wjk
i = f

′
(

uj
i

)
·
(

1
n

n
∑

j=1

(
yj

i − tj
)

yk
i−1

)
· yk

i−1 and establish

R1CS for it as follows:
⟨v1, ω⟩ = ⟨v2, ω⟩ • ⟨v3, ω⟩. (16)

Among them, 〈 · , · 〉 represents the dot product of vectors. ω is the vector set of the
input variable vector, output variable vector of the equation, and intermediate variable
vector (ω =

[
1, t, y, α, γ, β, f, o]T). t, y, γ, and f are all vectors of input variables of the

equation (t = [t1, t2, t3, ..], y = [y1, y2, y3, . . .], γ = [γ1, γ2, γ3, . . .], f = [f1, f2, f3, . . .]). α
and β are vectors of intermediate variables, and o is a vector of output variables. v1, v2,
and v3 are vectors, usually composed of 0 and 1, used to constrain the outputs, left inputs,
and right inputs, respectively.

When i is the output layer, the gradient calculation of the weights involved usually
contains multiple calculation equations (multiple inputs and outputs), so they can be
generalized by Equation (16) and establish R1CS as follows:

V1 · ω = (V2 · ω) ◦ (V3 · ω) (17)

where ◦ denotes the Hadamard product and V1, V2, and V3 are matrices. For R1CS as
shown in Equation (17), we can use Lagrangian interpolation method to convert it into
QAP as follows:

(A(x) · ω) ◦ (B(x) · ω)− C(x) · ω = 0 (18)

where A(x), B(x), and C(x) are matrices expressed as A(x) = [A1(x), A2(x), A3(x), . . .],
B(x) = [B1(x), B2(x), B3(x), . . .], and C(x) = [C1(x), C2(x), C3(x), . . .], respectively.

In the same way, when i is the hidden layer, R1CS and QAP can be constructed. It
should be noted that the proofs for each layer are independent from each other, which
could furthermore be merged to a single one by Lego SNARK. Recursively, the proofs for
all epochs can also be merged by Lego SNARK. Finally, the training result could be prosed
by the merged single proof, which could be checked by validators calling the function
VerProo f ().

3.4. ZKP Proof Generation for the Model Aggregation Process

During the r-th round of model training, the global model to be trained is Mr−1 and
multiple trainers engage in local training. The Federated Averaging (FedAvg) algorithm
is used to aggregate the local models and obtain an updated global model denoted as Mr.
The aggregators obtain K updated local model IPFS hashes from the blockchain and then
access IPFS to obtain K updated local models. The k-th updated local model is Qk

r , and the
updated global model representation is shown in Equation (19).

Mr =
K

∑
k=1

nk
n

Qk
r (19)

Based on Equation (19), it is clear that the computations involved in the aggregation
algorithm are linear. Based on Equation (16), the R1CS could be constructed to obtain the
QAP by homomorphism between the vector and polynomial rings.

4. System Analysis

This section provides an analysis of the TrustDFL system. The security objectives of
the TrustDFL framework are given in Section 4.1. We prove that TrustDFL achieves all
design goals, namely trustworthiness, resistance to attacks, data privacy, scalability, and
decentralization in Sections 4.2–4.6, respectively.

Electronics 2024, 13, 86 13 of 21

4.1. Security Objectives

The specific goals of proposed system design are as follows.

• Trustworthiness: The trustworthiness guarantees the correctness of local model and
updated global model, which mainly depends on the correct execution of local training
and aggregation process. If the node does not perform the above process as intended,
it will fail validation and be discarded. In addition, any node cannot tamper with the
model written to the blockchain through effective means.

• Resistance to attacks: TrustDFL can resist to model poisoning attacks and collusion
attacks, i.e., compromised nodes cannot upload invalid updates (local model or global
model) to hinder the convergence of the model and cannot cooperate to manipulate
verification results to attack the model.

• Data privacy: The trainer can prove to others that he has conducted the local training
process honestly without leaking local data.

• Scalability: TrustDFL uses IPFS to reduce the pressure of on-chain storage and uses
zk-SNARK with very small proof size and on-chain verification complexity.

• Decentralization: TrustDFL can avoid single point of failure and the communication
traffic congestion caused by the central server. The overall DFL task is accomplished
by nodes without any centralized server and the trusted third party.

4.2. Trustworthiness

TrustDFL uses zk-SNARK to ensure the trustworthiness of the local model and the
updated global model. zk-SNARK has perfect completeness and can verify the integrity
of the calculation process. This ensures reliable execution of the local training process
and model aggregation process. Honest provers extract relevant matrix information that
is accurate (with valid witness) and generate proofs π using the proof circuit C(x, w)
and the prover key PK. When verifying the local training process, the relevant matrix
information includes the initial weight values, inputs, and updated local models, etc. When
verifying the model aggregation process, the relevant matrix information encompasses K
local models and the updated global model, etc. Honest verifiers utilize the verifier key
VK, proof π, and public input x to obtain a verification result of 1. For any (x, w) satisfying
C(x, w) = 0l , we have:

Pr
(

Verproo f (VK, x, π) = 1
∣∣∣∣Setup

(
1λ, C

)
→ (EK, VK)

Genproo f (PK, x, w) → π

)
= 1. (20)

In addition, our solution chooses to the transaction with the payload field filled by
the returned IPFS hash and ZKP proof to establish trust relationships between distributed
nodes. Once transaction are verified and written into the blockchain by reaching a consen-
sus, no one can modify or deny the data. Moreover, it is impossible to forge transactions
verified by miners, and it is impossible to forge the change record of the entire transaction.

4.3. Resistance to Attacks

The TrustDFL can effectively resist model poisoning attacks. The soundness of zk-
SNARK means that the probability of success for any PPT (Probabilistic Polynomial Time)
malicious attacker algorithm is negligible. For every probabilistic polynomial-time adver-
sary A, there exists a probabilistic polynomial-time witness extractor E such that:

Pr

 C(x, w) ̸= 0l

Verproo f (VK, x, π) = 1

∣∣∣∣∣∣
Setup

(
1λ, C

)
→ (PK, VK)

A(PK, VK) → (x, π)
E(PK, VK) → w

 ≤ negl(λ). (21)

The soundness of zk-SNARK ensures that the local model and the updated global
model are not forged. If the verification equation of the local proof (aggregation proof)
holds, it indicates that the node correctly performed the local training task (the task of
model aggregation). Therefore, it can effectively resist model attacks.

Electronics 2024, 13, 86 14 of 21

Furthermore, our scheme can effectively resist collusion attacks. zk-SNARK is non-
interactive, so the proof can be attached to the blockchain transaction, and the smart contract
implements on-chain verification. This effectively prevents malicious provers and malicious
verifiers from colluding to forge wrong proof and verification results to attack the model.
Hence, only when the number of malicious nodes exceeds 50% of the total system nodes,
the probability of a successful attack becomes great. Malicious nodes would require 51% of the
computational resources to attack the system, which incurs costs far exceeding the benefits.

4.4. Data Privacy

The zero-knowledge property of zk-SNARK means that for any probabilistic polynomial-
time adversaries A and every input x of a given circuit C, there exists a simulator S such
that the following two probabilities are approximately equal:

Pr
(
A(PK, VK, π) = 1

∣∣∣∣Setup
(
1λ, C

)
→ (PK, VK)

Genproo f (EK, x, w) → π

)
, (22)

Pr
(
A
(

P̂K, V̂K, π
)
= 1

∣∣∣∣S(C) → (
P̂K, V̂K, trap

)
S
(

P̂K, x, trap
)
→ π

)
. (23)

Therefore, the verifier can complete the verification of the training process without
knowing the original data, ensuring the security of local data.

4.5. Scalability

TrustDFL introduces zero-knowledge proof and IPFS. While ensuring the safety and
reliability of the model, the model is stored on IPFS and the hash is written into the
blockchain, which reduces the storage pressure on the chain. Although the Groth 16
solution needs to generate different CRS for different operations, compared with Plonk,
Sonic, etc., it maintains optimal performance in terms of verification workload and proof
size. Its verification calculation complexity is low and has nothing to do with the circuit
complexity. It only needs to verify a paring product equation. There are only three pairing
calculations in this equation. The proof size is small and basically constant, and only
contains three group elements. Our solution, based on Groth 16’s zk-SNARK, performs
a computationally intensive and complex circuit and proof generation process off-chain,
while performing a simple and fast proof verification process on-chain. Compared with the
solution that uses the blockchain consensus mechanism to implement model verification,
e.g., [17,18], our solution has higher scalability.

4.6. Decentralization

The decentralization is achieved without any central server. In TrustDFL, the aggrega-
tion work calculated by the central server is distributed to multiple nodes. All nodes are
equal and contribute to the overall functionality, thereby mitigating the risks associated
with single points of failure.

5. Implementation and Evaluation

This section realizes the Proof-of-Concept implementation of the proposed TrustDFL
architecture, where its performance is estimated in terms of global model accuracy and
overheads introduced by the ZKP schemes in Section 5.1 and Section 5.2, respectively. All
estimations run in a Linux laptop with Ubuntu 18.04 LTS operation system, RAM of 16 GB,
and CPU of Intel(R) Core(TM) i7-8665@2.11 GHz. The implementation overview of the
TrustDFL is as follows:

1. The decentralized federated learning architecture is deployed based on PyTorch
(Version 1.6.0), where the global model to be trained is determined as MLP, and the
classic datasets of MNIST, Fashion-MNIST, CIFAR10, and CIFAR100 are determined
as the training sets. The stochastic gradient descent algorithm is used for local
model training.

Electronics 2024, 13, 86 15 of 21

2. The specific private blockchain is implemented following the basic design of Ethereum.
Only the core functions, such as consensus algorithm data persistence, are realized
for simplicity. The consensus algorithm is determined as PoW, and the difficulty is
set to 0 × 1 for efficiency. The smart contracts are simulated by C++ scripts. All
participants of DFL and blockchain are simulated by the multiple processes, and the
IPFS is accessed via the web entrance provided by the Protocol Lab.

3. Specifically, the samples in MNIST and Fashioin-MNIST are grayscale images of
28 × 28, where 60,000 and 10,000 samples are for training and testing, respectively.
The samples in CIFAR10 and CIFAR100 are 32 × 32 colorful images, where 50,000 and
10,000 samples are for training and testing, respectively.

4. The ZKP scheme used in the TrustDFL is determined as Groth 16, which provides a
smaller witness size and faster proof generation/validation. The Groth 16 is imple-
mented based on the C++ library (libSNARK).

5. Limited to the experiment environment, the DFL and blockchain system are formed by
ten nodes, where two nodes are chosen randomly as the malicious nodes to launch the
model poisoning attacks by publishing the randomly generated float-point numbers
as the local training results.

5.1. Accuracy of the Global Model to Be Trained

The target of the DFL is obtaining a converged global model to provide prediction
service for external users. Thus, the accuracy of the global model is the major indicator
to measure the model’s effectiveness. In this section, the estimation process includes
two phases based on the ten participants. In phase one, eight honest nodes execute the
stochastic gradient descent based on the local datasets and publish the trained result,
where the two malicious nodes only publish randomly generated float-point numbers.
The designated aggregators aggregate the received trained results based on the FedAvg
algorithm and update the global model for the next round of training. In phase two, all
participants should publish the local training results tighter with the corresponding ZKP
proofs, and all participants act as the aggregators by validating the correctness of the ZKP
proofs via the smart contracts. The two phases will run based on the datasets of MINST,
Fashion-MNIST, CIFAR10, and CIFAR100 in subsequence. For each phase, 10% of samples
in the training sets are dispatched randomly to each node. For simplicity, the training set
on each node is mutually exclusive. Two phases share the same learning ratios, batch size,
and epochs.

For each phase, the training process is repeated ten times. Then, based on the testing
sets, all prediction results are records, where the proportion of the results matching the
preset labels to the data size is defined as the accuracy of the global model. Based on the
different datasets, the accuracy of the global models obtained in two phases is depicted
in Figure 5. As shown in Figure 5, the accuracy of the global model from phase two
(with the TrustDFL applied) is higher than the phase one (with FedAvg algorithm for
model aggregation). Therefore, the proposed TrustDFL can effectively remove the risk of
poisoning attacks caused by malicious nodes and guarantee the accuracy and usability
of the model. Moreover, the accuracies for datasets of CIFAR10 and CIFAR100 are lower
than the accuracies for the datasets of MNIST and Fashion-MNIST. That is because, in this
estimation, the MLP is determined as the global model to be trained, which is unsuitable
for handling images with multiple channels. For different datasets, it could be seen that
the accuracy of the global model from phase one shows volatility. That is because the
aggregator cannot distinguish between the random numbers and honest training results
effectively. The randomness from the malicious nodes causes accuracy volatility.

Electronics 2024, 13, 86 16 of 21

Phase one Phase two

Round

0 2 4 6 8 10

Model Accuracy(%)

0

20

40

60

80

100

(a) MNIST

Phase one Phase two

Round

0 2 4 6 8 10

Model Accuracy(%)

0

20

40

60

80

(b) CIFAR10

Phase one Phase two

Round

0 2 4 6 8 10

Model Accuracy(%)

0

20

40

60

80

(d) CIFAR100

Phase one Phase two

Round

0 2 4 6 8 10

Model Accuracy(%)

0

20

40

60

80

100

(c) Fashion-MNIST

Figure 5. Comparison of the accuracy of models of different schemes on different datasets. (a) Com-
parison of model accuracy of different schemes on the MNIST dataset. (b) Comparison of model
accuracy of different schemes on the CIFAR10 dataset. (c) Comparison of model accuracy of different
schemes on Fashion-MNIST dataset. (d) Comparison of model accuracy of different schemes on the
CIFAR100 dataset.

5.2. Overhead

In this section, we evaluate the storage and time consumption caused by building a
zero-knowledge proof; the storage consumption is mainly the proof key size, the verification
key size and the proof size; the time consumption is mainly setup time, proving time and
verifying time. We build ZKP proofs for different epochs of local training based on the MLP
model and adopt the Groth16 scheme in the libSNARK. At the same time, we discussed the
experimental results.

As can be seen from Figure 6, the largest storage occupied by ZKP for different
numbers of epoch in local training is the prover key, and it is constant, about 150.6 MB.
The second one that occupies a larger amount of memory is the verifier key. As shown in
Figure 6, it is also constant in different numbers of epoch, about 18.7 MB. The proof size is
the smallest and much smaller than prover key and verifier key. The average proof size per
epoch is 1.2 KB. For different numbers of epoch, the prover key size and verifier key size are
constant. This is because the task publisher will stipulate the architecture of the model to be
trained (number of layers, activation function, input size, etc.), and the specified calculation
operations performed in each epoch will not change, so the circuit (multiplication gate,
adding gates and wires) of each epoch is based on calculations generated will not change.
According to Lego SNARK, when generating ZKP proofs for multiple epochs of training,
ZKP proofs for each training epoch are constructed and stacked. Therefore, local training

Electronics 2024, 13, 86 17 of 21

for different epochs only requires the same prover key and verifier key. The number of
ZKP proofs will increase linearly with the linear increase in the number of epochs, so the
size of the proof will also increase linearly.

5 10 15 20 25
10-1

100

101

102

103

104

105

106

Si
ze

 (K
B

)

Number of epoch

 Prover Key Size
 Verifier Key Size
 Proof Size

Figure 6. Storage overhead of ZKP for local training with different epoch numbers.

As can be seen from Figure 7, for the time taken to build ZKP for local training with
different numbers of epochs, the setup time is the longest and is constant, about 236.7 s.
Since the model structure trained in each epoch will not change, and the circuit structure
built will not change, the setup time will not change either. In addition, as long as the
structure of the trained model is constant, the setup time only needs to be once. The time
to build and verify the proof grows with the number of epochs of local training. This is
because as the number of epochs increases, the calculations required to prove increase,
the number of proofs constructed increases, and the proofs that need to be verified also
increase. It can also be seen from Figure 7 that it takes a long time to build the proof,
but each node is synchronized off-chain. The time to verify the proof is very short, with an
average of 0.17 s per epoch. Therefore, it is appropriate to choose on-chain verification
proof, and the performance consumption brought to the blockchain is also considerable.

5 10 15 20 25
10-1

100

101

102

103

Ti
m

e (
s)

Number of epoch

 Setup
 Prove
 Verify

Figure 7. The time consumption of ZKP for local training with different epoch numbers.

Electronics 2024, 13, 86 18 of 21

5.3. Scheme Comparison

We conducted a functional comparative analysis between the proposed TrustDFL
and BFLC, VFChain, PTDFL, and PZKP-FL schemes, as shown in Table 2. BFLC and
VFChain use a combination of blockchain consensus mechanism and cross-validation
to verify local training results, but this method cannot be applied to all data sets and
cannot be used to verify the calculation correctness of model aggregation. When the model
and data set are large, the validation time will be long. The verification time of ZKP
is independent of the data set and model size. Both PTDFL and PZKP-FL use ZKP to
verify the local training results, but PTDFL does not take into account the verification of
model aggregation. PTDFL did not choose to store the ZKP proof in the blockchain and
could not prevent malicious nodes from colluding to tamper with the verification results.
Although PZKP-FL takes the above issues into consideration, its framework is CFL and
does not solve the single point of failure problem. TrustDFL not only takes into account the
above issues, but also considers the huge storage overhead problem caused by storing the
model on the blockchain. We choose to store the IPFS hash on the blockchain and store the
model in IPFS, which effectively alleviates the storage pressure on the blockchain.

Table 2. The functionality comparison with the existing schemes.

Schemes BFLC [17] VFChain [18] PTDFL [22] PZKP-FL [23] TrustDFL

FL type DFL DFL DFL CFL DFL

Verification method k-fold cross
validation cross validation ZKP ZKP ZKP

Local training verification ✓ ✓ ✓ ✓ ✓
Model aggregation verification - - - ✓ ✓

Blockchain ✓ ✓ - ✓ ✓
Storage scalability - - - - ✓

6. Discussion

Since this study has certain limitation, we will focus on the following three aspects
in the future: (1) long proof generation time. This can be solved by improving the proof
generation algorithm, specifically by considering converting QAP-based proof generation
into QVP (Quadratic vector program) or QMP (Quadratic matrix program) [21]. In addition,
from a hardware perspective, the proof generation time can be reduced by using hardware
acceleration MSM (Matrix scalar Multiplucation)/NTT (Number Theory Transformation)
components [53]. (2) Circuit-specific trusted setup. This can be solved by considering
universal setup process, such as the SRS in Plonk and Sonic, or by splitting the entire
computation into small and reusable steps/templates as Circom does [54]. (3) Extra com-
munication overhead. This can be improved by more efficient proof aggregation algorithm,
such as recursive ZKP, and develop more efficient elliptic curves such as bls12_377 [55].

7. Conclusions

In this paper, TrustDFL is proposed to solve the single point of failure and model attack
problems in FL. TrustDFL is a trustworthy and verifiable decentralized federated learning
framework based on blockchain and ZKP. It implements computational verification of the
local training process and model aggregation process to resist model poisoning attacks and
ensure the effectiveness of the global model. The ZKP scheme is used to prove the effective-
ness of the local training without leaking sensitive information, and the blockchain acts as
the trust anchor in the multi-party cooperation scenarios to record all activities for punish-
ment and rewards. With the support of smart contracts, the verification for local training
and model aggregation could be executed automatically. Moreover, the IPFS is introduced
to alleviate the storage burden introduced by the models for the blockchain, where only
the IPFS hashes of the models are persisted on the blockchain. According to the theoretical
analysis and PoC implementation, the proposed TrustDFL framework provides enhanced

Electronics 2024, 13, 86 19 of 21

security and privacy protection with limited storage overhead. Compared with the con-
ventional FL framework using the FedAvg algorithm, the proposed TrustDFL framework
distributes the workloads among all participants, providing higher efficiency for model
aggregation and avoiding the single point of failure. Moreover, the TrustDFL can combine
with more privacy-protected schemes, such as differential privacy secret sharing schemes,
and could be applied for more complicated models, such as CNN and transformers.

Author Contributions: Conceptualization, J.Y. and W.Z.; methodology, W.Z. and Z.G. (Zhaohui Guo);
software, J.Y. and W.Z.; validation, J.Y., W.Z. and Z.G. (Zhaohui Guo); formal analysis, J.Y., W.Z.
and Z.G. (Zhen Gao); investigation, J.Y., W.Z. and Z.G. (Zhen Gao); writing—original draft prepa-
ration, W.Z.; writing—review and editing, Z.G. (Zhaohui Guo), W.Z. and Z.G. (Zhen Gao); project
administration, J.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the College Government Procurement Branch of Education
Accounting Society of China, grant number EASCCGPB2022MS24.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the funding restrictions.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ZKP Zero-knowledge Proof
IPFS Interplanetary file system
Dapp Develop decentralization applications
zk-SNARK Zero-knowledge succinct non-interactive argument of knowledge
KEA Knowledge of exponent assumption
R1CS Rank-1 constraints system
QAP Quadratic artchimetic program
CRS Common reference string
LPCP Linear probabilistic checkable proof
MLP Multi-layer perceptron
CNN Convolutional neural networks
FedAvg FederatedAveraging
ML Machine learning
FL Federated learning
DNN Deep neural network
MLaaS Machine learning as a service
CFL Centralized FL
DFL Decentralized FL

References
1. Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [CrossRef]

[PubMed]
2. Javed, A.R.; Ahmed, W.; Pandya, S.; Maddikunta, P.K.R.; Alazab, M.; Gadekallu, T.R. A survey of explainable artificial intelligence

for smart cities. Electronics 2023, 12, 1020. [CrossRef]
3. Shinde, P.P.; Shah, S. A review of machine learning and deep learning applications. In Proceedings of the 2018 Fourth International

Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–6.
4. Devi, I.; Karpagam, G.; Kumar, B.V. A survey of machine learning techniques. Int. J. Comput. Syst. Eng. 2017, 3, 203–212.

[CrossRef]
5. Ribeiro, M.; Grolinger, K.; Capretz, M.A. Mlaas: Machine learning as a service. In Proceedings of the 2015 IEEE 14th International

Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11 December 2015; pp. 896–990.
6. AbdulRahman, S.; Tout, H.; Ould-Slimane, H.; Mourad, A.; Talhi, C.; Guizani, M. A survey on federated learning: The journey

from centralized to distributed on-site learning and beyond. IEEE Internet Things J. 2020, 8, 5476–5497. [CrossRef]
7. Zhang, C.; Xie, Y.; Bai, H.; Yu, B.; Li, W.; Gao, Y. A survey on federated learning. Knowl. Based Syst. 2021, 216, 106775. [CrossRef]
8. Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. TIST

2019, 10, 1–19. [CrossRef]

http://doi.org/10.1126/science.aaa8415
http://www.ncbi.nlm.nih.gov/pubmed/26185243
http://dx.doi.org/10.3390/electronics12041020
http://dx.doi.org/10.1504/IJCSYSE.2017.089191
http://dx.doi.org/10.1109/JIOT.2020.3030072
http://dx.doi.org/10.1016/j.knosys.2021.106775
http://dx.doi.org/10.1145/3298981

Electronics 2024, 13, 86 20 of 21

9. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from
decentralized data. In Proceedings of the Artificial Intelligence and Statistics, PMLR, Ft. Lauderdale, FL, USA, 20–22 April 2017;
pp. 1273–1282.

10. Mothukuri, V.; Parizi, R.M.; Pouriyeh, S.; Huang, Y.; Dehghantanha, A.; Srivastava, G. A survey on security and privacy of
federated learning. Future Gener. Comput. Syst. 2021, 115, 619–640. [CrossRef]

11. Fu, X.; Peng, R.; Yuan, W.; Ding, T.; Zhang, Z.; Yu, P.; Kadoch, M. Federated learning-based resource management with blockchain
trust assurance in smart IoT. Electronics 2023, 12, 1034. [CrossRef]

12. Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Poor, H.V. Federated learning for internet of things: A comprehen-
sive survey. IEEE Commun. Surv. Tutorials 2021, 23, 1622–1658. [CrossRef]

13. Blanchard, P.; El Mhamdi, E.M.; Guerraoui, R.; Stainer, J. Machine learning with adversaries: Byzantine tolerant gradient descent.
Adv. Neural Inf. Process. Syst. 2017, 30, 104.

14. Yin, D.; Chen, Y.; Kannan, R.; Bartlett, P. Byzantine-robust distributed learning: Towards optimal statistical rates. In Proceedings
of the International Conference on Machine Learning. PMLR, Stockholm Sweden, 10–15 July 2018; pp. 5650–5659.

15. Witt, L.; Heyer, M.; Toyoda, K.; Samek, W.; Li, D. Decentral and incentivized federated learning frameworks: A systematic
literature review. IEEE IoT J. 2022, 10, 3642–3663. [CrossRef]

16. Wani, S.; Imthiyas, M.; Almohamedh, H.; Alhamed, K.M.; Almotairi, S.; Gulzar, Y. Distributed denial of service (DDoS) mitigation
using blockchain—A comprehensive insight. Symmetry 2021, 13, 227. [CrossRef]

17. Li, Y.; Chen, C.; Liu, N.; Huang, H.; Zheng, Z.; Yan, Q. A blockchain-based decentralized federated learning framework with
committee consensus. IEEE Netw. 2020, 35, 234–241. [CrossRef]

18. Peng, Z.; Xu, J.; Chu, X.; Gao, S.; Yao, Y.; Gu, R.; Tang, Y. Vfchain: Enabling verifiable and auditable federated learning via
blockchain systems. IEEE Trans. Netw. Sci. Eng. 2021, 9, 173–186. [CrossRef]

19. Fan, Y.; Xu, B.; Zhang, L.; Song, J.; Zomaya, A.; Li, K.C. Validating the integrity of convolutional neural network predictions
based on zero-knowledge proof. Inf. Sci. 2023, 625, 125–140. [CrossRef]

20. Zhao, L.; Wang, Q.; Wang, C.; Li, Q.; Shen, C.; Feng, B. Veriml: Enabling integrity assurances and fair payments for machine
learning as a service. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 2524–2540. [CrossRef]

21. Lee, S.; Ko, H.; Kim, J.; Oh, H. vcnn: Verifiable convolutional neural network based on zk-snarks. Cryptol. ePrint 2020, 584, 1–16.
22. Wang, L.; Zhao, X.; Lu, Z.; Wang, L.; Zhang, S. Enhancing privacy preservation and trustworthiness for decentralized federated

learning. Inf. Sci. 2023, 628, 449–468. [CrossRef]
23. Xing, Z.; Zhang, Z.; Li, M.; Liu, J.; Zhu, L.; Russello, G.; Asghar, M.R. Zero-Knowledge Proof-based Practical Federated Learning

on Blockchain. arXiv 2023, arXiv:2304.05590.
24. Heiss, J.; Grünewald, E.; Tai, S.; Haimerl, N.; Schulte, S. Advancing blockchain-based federated learning through verifiable

off-chain computations. In Proceedings of the 2022 IEEE International Conference on Blockchain (Blockchain), Espoo, Finland,
22–25 August 2022; pp. 194–201.

25. Reegu, F.A.; Abas, H.; Gulzar, Y.; Xin, Q.; Alwan, A.A.; Jabbari, A.; Sonkamble, R.G.; Dziyauddin, R.A. Blockchain-Based
Framework for Interoperable Electronic Health Records for an Improved Healthcare System. Sustainability 2023, 15, 6337.
[CrossRef]

26. Bounds.; Lloyd.; Mathew.; Waddell. A multilayer perceptron network for the diagnosis of low back pain. In Proceedings of the
IEEE 1988 International Conference on Neural Networks, San Diego, CA, USA, 24–27 July 1988; pp. 481–489.

27. Taud, H.; Mas, J. Multilayer perceptron (MLP). In Geomatic Approaches for Modeling Land Change Scenarios; Springer: Berlin,
Germany, 2018; pp. 451–455.

28. Savalia, S.; Emamian, V. Cardiac arrhythmia classification by multi-layer perceptron and convolution neural networks.
Bioengineering 2018, 5, 35. [CrossRef] [PubMed]

29. Underwood, S. Blockchain beyond bitcoin. Commun. ACM 2016, 59, 15–17. [CrossRef]
30. Zheng, Z.; Xie, S.; Dai, H.; Chen, X.; Wang, H. An overview of blockchain technology: Architecture, consensus, and future trends.

In Proceedings of the 2017 IEEE International Congress on Big Data (BigData Congress), Boston, MA, USA, 11–14 December 2017;
pp. 557–564.

31. Yli-Huumo, J.; Ko, D.; Choi, S.; Park, S.; Smolander, K. Where is current research on blockchain technology?—A systematic
review. PLoS ONE 2016, 11, e0163477. [CrossRef] [PubMed]

32. Zou, W.; Lo, D.; Kochhar, P.S.; Le, X.B.D.; Xia, X.; Feng, Y.; Chen, Z.; Xu, B. Smart contract development: Challenges and
opportunities. IEEE Trans. Softw. Eng. 2019, 47, 2084–2106. [CrossRef]

33. Peters, G.W.; Panayi, E. Understanding Modern Banking Ledgers through Blockchain Technologies: Future of Transaction Processing and
Smart Contracts on the Internet of Money; Springer: Berlin, Germany, 2016.

34. Dannen, C. Introducing Ethereum and Solidity; Springer: Berlin, Germany, 2017; Volume 1.
35. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich,

Y.; et al. Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceedings of the Thirteenth
EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–15.

36. Benet, J. Ipfs-content addressed, versioned, p2p file system. arXiv 2014, arXiv:1407.3561.
37. Zheng, Q.; Li, Y.; Chen, P.; Dong, X. An innovative IPFS-based storage model for blockchain. In Proceedings of the 2018

IEEE/WIC/ACM international conference on web intelligence (WI), Santiago, Chile, 3–6 December 2018; pp. 704–708.

http://dx.doi.org/10.1016/j.future.2020.10.007
http://dx.doi.org/10.3390/electronics12041034
http://dx.doi.org/10.1109/COMST.2021.3075439
http://dx.doi.org/10.1109/JIOT.2022.3231363
http://dx.doi.org/10.3390/sym13020227
http://dx.doi.org/10.1109/MNET.011.2000263
http://dx.doi.org/10.1109/TNSE.2021.3050781
http://dx.doi.org/10.1016/j.ins.2023.01.036
http://dx.doi.org/10.1109/TPDS.2021.3068195
http://dx.doi.org/10.1016/j.ins.2023.01.130
http://dx.doi.org/10.3390/su15086337
http://dx.doi.org/10.3390/bioengineering5020035
http://www.ncbi.nlm.nih.gov/pubmed/29734666
http://dx.doi.org/10.1145/2994581
http://dx.doi.org/10.1371/journal.pone.0163477
http://www.ncbi.nlm.nih.gov/pubmed/27695049
http://dx.doi.org/10.1109/TSE.2019.2942301

Electronics 2024, 13, 86 21 of 21

38. Fiege, U.; Fiat, A.; Shamir, A. Zero knowledge proofs of identity. In Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing, New York, NY, USA, 1987 ; pp. 210–217.

39. Kilian, J. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the Twenty-Fourth Annual ACM
Symposium on Theory of Computing, Victoria, BC, Canada, 4–6 May 1992; pp. 723–732.

40. Cramer, R.; Damgård, I.; MacKenzie, P. Efficient zero-knowledge proofs of knowledge without intractability assumptions. In
Proceedings of the International Workshop on Public Key Cryptography, Melbourne, Australia, 18–20 January 2000; pp. 354–372.

41. Ben-Sasson, E.; Chiesa, A.; Tromer, E.; Virza, M. Succinct {Non-Interactive} zero knowledge for a von neumann architecture. In
Proceedings of the 23rd USENIX Security Symposium (USENIX Security 14), San Diego, CA, USA 20–22 August 2014; pp. 781–796.

42. Parno, B.; Howell, J.; Gentry, C.; Raykova, M. Pinocchio: Nearly practical verifiable computation. Commun. ACM 2016, 59, 103–112.
[CrossRef]

43. Abe, M.; Fehr, S. Perfect NIZK with adaptive soundness. In Proceedings of the Theory of Cryptography Conference, Amsterdam,
The Netherlands, 21–24 February 2007; pp. 118–136.

44. Gennaro, R.; Gentry, C.; Parno, B.; Raykova, M. Quadratic span programs and succinct NIZKs without PCPs. In Proceedings
of the Advances in Cryptology–EUROCRYPT 2013: 32nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Athens, Greece, 26–30 May 2013; pp. 626–645.

45. Bowe, S.; Gabizon, A.; Miers, I. Scalable multi-party computation for zk-SNARK parameters in the random beacon model.
Cryptol. ePrint 2017, 2017, 1–24.

46. Groth, J.; Maller, M. Snarky signatures: Minimal signatures of knowledge from simulation-extractable SNARKs. In Proceedings
of the Annual International Cryptology Conference, Santa Barbara, CA, USA, 20–24 August 2017; pp. 581–612.

47. Groth, J. On the size of pairing-based non-interactive arguments. In Proceedings of the Advances in Cryptology–EUROCRYPT
2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria,
8–12 May 2016; pp. 305–326.

48. Buterin, V. Quadratic Arithmetic Programs: From Zero to Hero. 2016. Available online: https://medium.com/VitalikButerin/
quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649 (accessed on 17 March 2023).

49. Maller, M.; Bowe, S.; Kohlweiss, M.; Meiklejohn, S. Sonic: Zero-knowledge SNARKs from linear-size universal and updatable
structured reference strings. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
London, UK, 11–15 November 2019; pp. 2111–2128.

50. Gabizon, A.; Williamson, Z.J.; Ciobotaru, O. Plonk: Permutations over lagrange-bases for oecumenical noninteractive arguments
of knowledge. Cryptol. ePrint 2019, 953, 1–34.

51. Campanelli, M.; Fiore, D.; Querol, A. Legosnark: Modular design and composition of succinct zero-knowledge proofs. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November
2019; pp. 2075–2092.

52. Ali, R.E.; So, J.; Avestimehr, A.S. On polynomial approximations for privacy-preserving and verifiable relu networks. arXiv 2020,
arXiv:2011.05530.

53. Zhang, Y.; Wang, S.; Zhang, X.; Dong, J.; Mao, X.; Long, F.; Wang, C.; Zhou, D.; Gao, M.; Sun, G. Pipezk: Accelerating zero-
knowledge proof with a pipelined architecture. In Proceedings of the 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA), Valencia, Spain, 14–18 June 2021; pp. 416–428.

54. Bellés-Muñoz, M.; Baylina, J.; Daza, V.; Muñoz-Tapia, J.L. New privacy practices for blockchain software. IEEE Softw. 2021,
39, 43–49. [CrossRef]

55. El Housni, Y.; Guillevic, A. Optimized and secure pairing-friendly elliptic curves suitable for one layer proof composition. In
Proceedings of the International Conference on Cryptology and Network Security, Virtual, 14–16 December 2020; pp. 259–279.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/2856449
https://medium.com/VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
https://medium.com/VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649
http://dx.doi.org/10.1109/MS.2021.3086718

	Introduction
	Background
	Multi-Layer Perceptron (MLP)
	Blockchain and IPFS
	Zero-Knowledge Proof (ZKP) System

	Design of the TrsutDFL Framework
	System Scenario
	System Workflow
	ZKP Proof Generation for the Local Training Process
	Processing Of Nonlinear Operations
	The Operation Process of Linear Calculation to Generate ZKP Proof

	ZKP Proof Generation for the Model Aggregation Process

	System Analysis
	Security Objectives
	Trustworthiness
	Resistance to Attacks
	Data Privacy
	Scalability
	Decentralization

	Implementation and Evaluation
	Accuracy of the Global Model to Be Trained
	Overhead
	Scheme Comparison

	Discussion
	Conclusions
	References

