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Abstract: Renewable energy sources play a pivotal role in the pursuit of sustainable and eco-friendly
power solutions. While offering environmental benefits, they present inherent challenges. Photo-
voltaic systems rely on surrounding conditions, wind systems contend with variable wind speeds,
and fuel cells are both costly and inefficient. Furthermore, the energy injected by renewable energy
sources (RES) exhibits unpredictable behavior. To tackle these problems, researchers employ diverse
power electronic devices and converters like inverters, power quality filters, and DC–DC choppers.
Among these, DC–DC converters stand out for effectively regulating DC voltage and enhancing
the efficiency of RESs. The meticulous selection of a suitable DC–DC converter, coupled with the
integration of an efficient control technique, significantly influences overall power system perfor-
mance. This paper introduces a novel approach to the design of switching controllers for DC–DC
converters, specifically tailored for application in renewable energy systems. The proposed controller
leverages the power of composite switched Lyapunov functions (CSLF) to enhance the efficiency and
performance of DC–DC converters, addressing the unique challenges posed by renewable energy
sources. Through comprehensive analysis and simulation, this study demonstrates the efficacy of
the controller in optimizing power transfer, improving stability, and ensuring reliable operation in
diverse renewable energy environments. Moreover, the small-scale DC–DC converter experiment’s
findings are presented to confirm and validate the proposed scheme’s practical applicability.

Keywords: switched systems; DC–DC converters; renewable energy sources; composite Lyapunov
functions; guaranteed cost control

1. Introduction

In recent decades, there has been a notable surge of interest in step-up DC–DC con-
verters across diverse applications, particularly in renewable energy sources such as photo-
voltaic (PV) and fuel cell (FC). These interface circuits convert low-input voltage (below
50 V) into a controlled and elevated output voltage [1]. The innovation of pulse-width
modulated (PWM) boost converters has led to the evolution of switched-mode step-up
DC–DC converters. These configurations elevate output voltage by temporarily storing
and releasing energy from the input, utilizing magnetic field storage components (e.g.,
inductors) or electric field storage components (e.g., capacitors) with active or passive
switching elements [2].

DC–DC converters are playing a pivotal role in enhancing the efficiency and viability
of smart grids and microgrids, especially in the context of integrating renewable energy
sources. Meanwhile, in the electric transportation sector, the application of DC–DC convert-
ers is instrumental in addressing the diverse voltage requirements of components within
electric vehicles (EVs) [3] or their integration with electric railway systems [4]. Various
sources, such as batteries and supercapacitors, often produce output voltages that may fall
below the levels needed for efficient power conversion. Elevating these voltages becomes
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crucial to meet the demands of electric propulsion systems and other vehicle subsystems.
High step-up DC/DC converters are essential in this context, serving as key components to
ensure optimal energy conversion, distribution, and utilization in EVs. Overcoming the
limitations associated with conventional converters is vital for enhancing overall efficiency,
extending the range of electric vehicles, and promoting the broader adoption of sustainable
transportation solutions. In Figure 1, an illustration of an integrated hybrid renewable
energy grid-connected system linked with a sustainable transportation system [5] is de-
picted, where various sources, such as photovoltaic arrays, fuel stacks, supercapacitors,
or batteries as energy storage systems (ESS), generated relatively low-output voltages,
often below 48 V. To seamlessly integrate these sources into an AC grid-connected power
system, or even a DC charging station, a crucial step involved boosting the generated
low voltages to higher levels, like 380–760 V for a full-bridge and a half-bridge inverter.
Furthermore, integrating two DC hub-like local DC bus and metro or tramway DC lines,
as shown in Figure 1, can be realized by such DC–DC converters [6]. Accordingly, the
realization of step-up DC/DC converters with superior performance has stood out as a
fundamental challenge in the domain of renewable energy applications. The conventional
boost converters face limitations in achieving the necessary high step-up conversion for
renewable energy systems.
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Figure 1. Schematic of a smart grid and microgrid with integrated DC–DC converters. 

A comprehensive investigation into a family of two-level, isolated, bidirectional sys-
tems involving the use of DC–DC converters with pulse-width modulation and phase-
shift (PPS) modulation has been documented [7]. Additionally, novel DC–DC converter 
topologies, including Cuk, SEPIC, and Zeta converters, based on critical conduction 
mode-operating capacitive link DC–DC converters, have been proposed [8]. These con-
verters build upon quasi-square-wave zero-current converters, incorporating an auxiliary 
circuit for zero-current and zero-voltage switching, eliminating voltage ringing across the 
output switch [8]. 

A new control strategy for DC/DC buck converters is presented using artificial neural 
networks (ANNs) in [9]. The ANN, trained with approximation dynamic programming 
(ADP), enables proportional-integral (PI) control with error signals and their integrals. 
The DC/DC converter’s voltage feedback to the ANN creates an equivalent system to a 
recurrent neural network, offering superior predictive control. Offline training is em-
ployed to prevent instability from weight changes in an online method. 

In [10], minimal distortion point tracking (MDPT) is introduced for parallel-con-
nected DC–DC converters, optimizing with phase-shifting switching waveforms. The con-
trol design enhances power quality, suggesting reduced reliance on passive filters. 

For voltage step-down DC–DC converters with non-ideal components [11], an opti-
mal transition approach is investigated, exhibiting robust performance even in the 
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A comprehensive investigation into a family of two-level, isolated, bidirectional sys-
tems involving the use of DC–DC converters with pulse-width modulation and phase-
shift (PPS) modulation has been documented [7]. Additionally, novel DC–DC converter
topologies, including Cuk, SEPIC, and Zeta converters, based on critical conduction mode-
operating capacitive link DC–DC converters, have been proposed [8]. These converters
build upon quasi-square-wave zero-current converters, incorporating an auxiliary circuit
for zero-current and zero-voltage switching, eliminating voltage ringing across the output
switch [8].

A new control strategy for DC/DC buck converters is presented using artificial neural
networks (ANNs) in [9]. The ANN, trained with approximation dynamic programming
(ADP), enables proportional-integral (PI) control with error signals and their integrals.
The DC/DC converter’s voltage feedback to the ANN creates an equivalent system to a
recurrent neural network, offering superior predictive control. Offline training is employed
to prevent instability from weight changes in an online method.

In [10], minimal distortion point tracking (MDPT) is introduced for parallel-connected
DC–DC converters, optimizing with phase-shifting switching waveforms. The control
design enhances power quality, suggesting reduced reliance on passive filters.

For voltage step-down DC–DC converters with non-ideal components [11], an optimal
transition approach is investigated, exhibiting robust performance even in the presence of
parameter uncertainty. Ref. [12] demonstrates a non-isolated quadratic extended-duty-ratio
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(EDR) boost converter, combining EDR and quadratic boost converters for high gain. The
recommended Quadratic EDR (QEDR) boost converter achieves exceptional gain at low
voltage and current stress, operating across diverse devices with moderate duty levels.

In [13], the authors explores PID controller design for buck converters, optimizing
parameters using a particle swarm optimization (PSO) framework. An anti-windup control
strategy is proposed, achieving effective voltage control despite input and load fluctuations.
In [14], a time-based control DC/DC converter-specific integrated loop-gain-measuring
circuit is proposed, minimizing its impact on regulator performance. Ref. [15] addresses
balanced current sharing and voltage control in parallel-connected DC–DC converters,
introducing a distributed dynamic control strategy resilient to variations.

Finally, [16–19] collectively present a design process utilizing a single quadratic Lya-
punov function, Lyapunov–Metzler inequalities, and state feedback variable structure
controllers for expedited convergence of DC–DC converters within a class of switched lin-
ear systems, as applied in [19] for the development of a sliding-mode controller according
to the switched sliding.

Addressing the formidable challenge in stabilizing unstable systems through the def-
inition of suitable switching rules is a focal point in the theory of switched systems. In
efforts to mitigate the conservatism associated with stabilization methods for switched
linear systems, [20–24] introduced efficient approaches. Ref. [20] specifically employed
composite quadratic functions to stabilize autonomous linear-switched systems devoid of
external input. By combining multiple quadratic functions to construct a Lyapunov func-
tion, this technique yielded sufficient conditions for formulating stabilizing switching laws
in terms of bilinear matrix inequalities. Notably, superior outcomes were demonstrated
when the number of quadratic functions surpassed the number of subsystems.

In response to the mentioned challenges, this paper introduces a rule for making
switches in a way that ensures stability for linear-switched systems with constant external
input. At the same time, it aims to minimize a guaranteed quadratic cost. A significant
advancement here is the application of findings from [20] to switched affine systems
with constant external input, specifically tailored to address the dynamic models of DC–
DC converters. Unlike the other methods, the proposed control method in this paper is
designed to minimize a certain cost. In contrast to the methods in [16,17], the proposed
scheme introduces the idea of a composite switched Lyapunov function to create a control
strategy for DC–DC converters. This new approach offers more flexibility in the design
conditions, allowing for the selection of the number of quadratic terms in the Lyapunov
function candidate.

Simulation results in Section 4 compare the performance of the proposed method
against outcomes from [16], employing Buck and Buck–Boost circuits to illustrate the
superior efficacy of the proposed method. Section 5 presents the experimental validation of
the derived control scheme on the Buck converter, confirming its practical applicability. It
is emphasized that the developed switching method can be extended to control various
types of converters.

The paper is structured as follows. Section 2. delineates a switched system model for
DC–DC converters and formulates the switching design problem. Section 3 introduces
the necessary conditions for designing a switching strategy for the affine switched system.
Comparative simulation results are presented in Section 4 to underscore the superiority of
the proposed approach. Section 5 details the experimental results, showcasing the practical
implementation of the designed switching method. The paper concludes in Section 6.

2. Methodology and Problem Statement

A DC–DC converter is defined as a switched system comprising multiple linear
subsystems characterized by constant external inputs and sharing common state variables.
Within this structure, the active subsystem, denoted as the one dictating the state evolution
at any specific moment, stands out. The control parameters, determined by the switching
rule, influence the activation of a particular subsystem. The dynamics of this converter can
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be articulated through a state-space realization, encapsulating its behavior and interactions
in a mathematical framework as

.
x(t) = Aσx(t) + Bσu (1)

In this context, the state vector, denoted as x(t) ∈ Rn, and the external input, rep-
resented as u, are assumed to be constant for all instances. The more explanation about
the symbols can be found in Appendix A. The switching function, σ(t) : t > 0 → K ⊂ ℵ ,
operates at each moment in time t, selecting a specific known subsystem from the available
options. The primary goal is to formulate an optimal switching strategy, denoted as σ(x(t)),
with the aim of minimizing the defined following performance index:

Jc =
∫ ∞

0
(x(t)− xe)

TQ(x(t)− xe)dt (2)

In this formulation, xe ∈ Xe represents an attainable equilibrium point, and the
matrices of each subsystem Qi have compatible dimensions. Additionally, the set of
all equilibrium points Xe is determined through the proposed switching strategy. The
performance index Jc in Equation (2) penalizes the weighted deviation of each state variable
from the desired equilibrium point. The inherent challenge in solving this control problem
arises from the discontinuous nature of the switching function σ(x(t)). Consequently,
instead of directly addressing this complexity, the focus is on minimizing the upper bound
of the performance index Jc, characterized on the right-hand side of Equation (3):∫ ∞

0
(x(t)− xe)

TQ(x(t)− xe)dt < (x0 − xe)
T P(x0 − xe) (3)

wherein symmetric positive definite matrix P ∈ Rn×n and x0 denotes the initial state. It
is worth noting that the right-hand side of (3) refers to the weighted Euclidean distance
existing between the starting and final points.

In essence, the task in the control problem is to determine the switching function σ(x(t)).
This function ensures the asymptotic stability of the equilibrium point xe while satisfying
the specified cost guarantee in Equation (3).

3. Design of Switching Controller

In this part, a method for designing switching signals for switched systems with con-
stant input that is relevant to DC–DC converters is established using the idea of a composite
Lyapunov function. The primary finding of the paper is stated in the subsequent theorem.

3.1. Theorem

Assume that the switched linear system (1) with fixed input u(t) = u ∈ Rm is an exter-
nal input, which is assumed to be constant for all t ≥ 0. Let N ∈ ℵ, Q > 0, and xe ∈ Rn be
given. If there exist λ ∈ Λ real scalars βij > 0 for i ∈ K, j ∈ I[1, N] and equiponderant
positive definite matrices Pj ∈ Rn×n for all j ∈ I[1, N], such that

AT
i Pj + Pj Ai + Q − ∑N

k=1 β jk
(

Pj − Pk
)
< 0 (4)

Aλxe + Bλu = 0 (5)

Then, the switching strategy can be calculated as

σ = arg min
i∈K

ζ′P(Aixe + Biu) (6)

with ζ = x − xe and P ≤ Pj for j ∈ I[1, N], which makes the equilibrium point xe asymptot-
ically stable and makes the guaranteed cost (3) hold.
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3.2. Proof

A combined candidate function for Lyapunov Vmin is constructed from the quadratic
functions Vj(ζ) = ζT Pjζ as follows:

Vmin
{

Vj(ζ) : j ∈ I[1, N]
}

min (7)

in which Pj = PT
j > 0, j ∈ I[1, N]. Without losing the ability to generalize, it can be

assumed that VTrmin, for all r ∈ I[1, N0]. This truth can be expressed as ζT(Pj − Pk
)
ζ ≤ 0,

for all j ∈ I[1, N0] and k ∈ I[1, N]. The following matrix inequality is identical to the
following inequality:

Pj − Pk ≤ 0j ∈ I[1, N0], k ∈ I[1, N] (8)

On the other hand, the rate of change over time for Vmin in (7) along an arbitrary
trajectory of the switched system (1) is calculated and forced to be negative by proper
choice of switching strategy and its parameters. Note that

.
Vmin

{ .
V j(ζ), j ∈ I[1, N0]

}
min

(9)

wherein { .
V j(ζ) =

.
xT Pjζ + ζT Pj

.
x

= 2ζT Pj(Aσx + Bσu)

}
(10)

Substituting x = ζ + xe leads to

.
V j(ζ) = 2ζT Pj(Aσxe + Bσu) + ζT

(
AT

σ Pj + Pj Aσ

)
ζ (11)

Since σ = argmin
i

ζT Pj(Aixe + Biu), the following holds:


.

V j(ζ) = min
i∈K

[
2ζT Pj(Aixe + Biu)

]
+ ζT(AT

σ Pj + Pj Aσ)ζ

≤ min
λ∈Λ

[
2ζT Pj(Aλxe + Bλu)

]
+ ζT(AT

σ Pj + Pj Aσ)ζ

 (12)

Now, let us choose λ such that{
Aλxe + Bλu = 0
AT

i Pj + Pj Ai < −Q

}
(13)

or all i ∈ K; then,
.

V j(ζ) < −ζTQζ, wherein Q is the weight matrix in (2). Regarding (9),
the following is obtained:

.
VTmin (14)

Thus, the asymptotic stability of xe is assured, as discussed in [20].
By S-procedure [25], the following can be the result of combining Inequalities (8)

and (10):
AT

i Pj + Pj Ai + Q − ∑N
k=1 β jk

(
Pj − Pk

)
< 0 (15)

where βij ≥ 0 are real scalars. Furthermore, by integrating both sides of Equation (11)
from t = 0 to t = ∞ while considering P ≤ Pj and regarding Vmin, Relation (3) is obtained.

• Remark 1

The switching function σ in (6) relies on the matrix that is derived from solving the
set of inequalities given by (4) and (5) that include bilinear terms (the product of scalar
variables and matrix variables), as in [20]. In general, the path-following approach first
presented in [26] can be used to efficiently solve the obtained BMIs.
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• Remark 2

Because the modulation function in Equation (6) has a linear nature, it can be imple-
mented in real-world scenarios.

Despite the fact that [16,17] offer a linear-switching law, the synthesis situations that
must be managed are substantially more demanding than the design criterion that is
presented in this study. In comparison to these studies, the proposed technique is less
conservative. This claim will is examined using simulation results.

Regarding the potential of LMI-/BMI-based approaches, more practical requirements
can be incorporated into the suggested theorem. For instance, inspired by [3], the extracted
result is extended in the following corollary for the case that there exist bounds on the
output peak.

3.3. Corollary

Contemplate the switched linear system in (1), given an initial condition x(0) and
constrained output ∥y(t)∥ ≤ ymax, for t ≥ 0. Let N ∈ ℵ, Q, xe ∈ Rn, and ymax ∈ R be
given. If there exist λ ∈ Λ real scalars βij> 0 for i ∈ K, j ∈ I[1, N] and symmetric positive
decisive matrices Pj ∈ Rn×n for all j ∈ I[1, N], as:

[
PjCT

Cy2
max

]
[

IζT(0)Pj
Pjζ(0)Pj

]
> 0

AT
i Pj + Pj Ai + Q − ∑N

k=1 β jk
(

Pj − Pk
)
< 0

Aλxe + Bλu = 0


(16)

wherein ζ = x−xe and I is identity matrix, then the switching strategy in (6), with P ≤ Pj for
all j ∈ I[1, N], makes the equilibrium point xe globally asymptotically stable and the
guaranteed cost in (3) holds.

4. Simulations Results and Comparison

To demonstrate the suggested controller’s superior performance versus the competing
one in [16], the Buck and Buck–Boost converters were simulated while applying the design-
switching strategy in the Simulink package in MATLAB®2022a.

In Figure 2, schematic diagrams of the Buck and Buck–Boost converters feeding a
resistive load are recalled from [16], where iL and vc, respectively, stand for the inductor
current and the capacitor voltage. In Figure 2, S1 is the power electronic switch and S2 is
the diode, where C0 is the stabilizing capacitor, which decreases the voltage fluctuation
across the load and lets the ripple current pass through, hence maintaining the constant
current flow across the load.
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The Buck–Boost converter in Figure 2a is modeled as a switched system in the form of
(1) that consists of two affine subsystems with state vector x(t) =

[
iL(t) Vc(t)

]T and the
following matrices: 

A1 =

[
− R

L 0
0 − 1

RoCo

]
, B1 =

[ 1
L
0

]

A2 =

[
−R/L −1/L
1/C0 −1/R0C0

]
, B2 =

[
0
0

]


(17)

The total number of equilibrium points that can exist is determined as

Xe =
{
(ie, ve) : 0 ≤ ve ≤ R0ie, v2

e + (RR0)i2e − (R0u)ie + uve = 0
}

(18)

The achieved voltage range is approximated as 0 ≤ ve ≤
(√

R0
4R

)
u; whenever the

load resistance and source impedance align, R << R0.
The Buck converter in Figure 1b is described in the form of (1) with two subsystems

with the state vector x(t) =
[
iL(t)vc(t)]T and the following matrices:

A1 = A2 =

[
− R

L
−1
L

1
C0

− 1
R0C0

]

B1 =

[ 1
L
0

]
, B2 =

[
0
0

]


(19)

The following formula is used to calculate the set of all possible equilibrium points in
the Buck–Boost circuit:

Xe = {(ie, ve) : ve = R0ie, 0 ≤ ie ≤ u/(R0 + R)} (20)

given that the resistance of the load and the source satisfy R << R0.
The performance index in (2) is rewritten as follows for the considered circuits:

Jc =
∫ ∞

0
R−1

0 [vc(t)− ve]
2 + ρR[iL(t)− ie]

2dt (21)

The values of the elements of circuits are taken from [16] as u = 100 V, R = 2 Ω,
L = 500 µH, C0 = 470 µF, and R0 = 50 Ω. Similar to [16], the weight matrix parameter ρ in
(13) is selected to be zero, which is equivalent to the following cost weight:

Q =

[
00
0 1

R0

]
(22)

The matrix inequalities in the Theorem are solved by YALMIP to obtain the parameters
of the switching strategy in (6), which are applied to each circuit in the simulation scenarios.

Time responses of the states in the Buck–Boost converter are shown in Figure 3
for ve = 20 V. As seen, the transient behavior of the suggested converter is noticeably
faster than the one developed in [16]. More specifically, settling times of the outputs in the
proposed converter and the rival one in [16] equal, respectively, 8.5 and 9 ms.
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To compare the proposed design method with the one in [16], the performance in-
dex Jc in (13) was extracted. A summary is presented in Table 1 for five distinct desired
working points. The converter results obtained using the suggested control strategy are
improved by up to 30% compared to the results achieved by the scheme in [16], which
confirms the effectiveness of the proposed method.

Table 1. Comparison of the performance index for various equilibrium points in the Buck–Boost converter.

Performance Index Jc
Desired Equilibrium Point

[12] Proposed Method

0.0779 0.0599 ve = 50

0.0457 0.0346 ve = 40

0.0236 0.0173 ve = 30

0.0099 0.0071 ve = 20

0.0023 0.0016 ve = 10

Figure 4 depicts the time response of the states of the Buck converter for ve = 20 V.
As can be seen, the transient response of the suggested converter is faster than the one
proposed in [16].
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The performance index Jc for the Buck circuit is mentioned in Table 2 for five desired
equilibrium points. The result obtained using the specified controller is improved up to
about 20% with respect to the results obtained by the mentioned rival method.

Table 2. Comparison of the performance index for different output voltages in Buck.

Performance Index Jc
Desired Equilibrium Point

[12] Proposed Method

0.0126 0.0111 ve = 40

0.0067 0.0056 ve = 30

0.0028 0.0022 ve = 20

0.00065 0.00051 ve = 10

Moreover, Figures 5 and 6 illustrate the resilience of the Buck circuit’s output voltage
against periodic step changes in the load resistor and source voltage, respectively. In the
first simulation scenario, the load resistor is altered instantly from its nominal value of 2 Ω
to 10 Ω and vice versa periodically. In the next simulation setup, the input voltage was
varied suddenly from its nominal value of 100 V to 70 V and vice versa, intermittently. It
is evident that satisfactory output regulation is achieved by the proposed method in the
presence of load and source disturbances.
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tor current.

Furthermore, to evaluate the performance of the proposed method in the presence of
both load and source interference, changes in both load and source were made (u = 120,
R0 = 20). The output results are shown in Figure 7, and we can confirm that the proposed
method is sufficiently robust to the interferences.
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employed to amplify the control signal for application to the MOSFET gates. The 

Figure 7. The change in output voltage and inductor current of the Buck converter in response
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(b) inductor current.

To confirm the performance of the method in different working situations, the input
voltage was also considered as Ve = 50 and Ve = 10. The results are shown in Figure 8.
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with Ve = 10 V.
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5. Experimental Results

In order to verify the practical applicability of the proposed method, the Buck converter
was realized with the general structure shown in Figure 9a. The converter was composed of
a power MOSFET module that provided the converter leg. A gate driver was employed to
amplify the control signal for application to the MOSFET gates. The converter component
values were the same as the simulation circuit in the preceding section, except u, which was
set to be 35 V to adapt to our laboratory hardware limitations. The experimental prototype
developed in the lab is shown in Figure 9b.
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Figure 9. Schematic diagram of Buck converter (a) and developed experimental prototype of Buck
converter (b).

The proposed control relation in (6), implemented through the use of an 8-bit AVR
microcontroller operating at an external clock frequency of 16 MHz, utilized a shunt
resistance and a differential voltage measurement circuit to gauge the inductor current.
Analog-to-digital conversion was performed with 10-bit resolution to acquire and convert
the output voltage and coil current. The analog-to-digital sampling process took 37 µs.

Waveforms were captured utilizing a digital oscilloscope. Figure 10 displays the mea-
sured response of the converter capacitor (output) voltage and inductor current waveforms,
along with the corresponding simulation results.

The concordance between the experimental findings and numerical simulations is
evident, as evidenced by the congruent transient and steady-state behaviors observed
in both the simulation and experimental output voltages. Figure 11 displays the Fast
Fourier Transform (FFT) of the output voltage, providing further insights into its frequency
components. In Figure 12, the converter output voltage is depicted alongside the MOS-
FET switching waveform, shedding light on the interplay between these crucial signals.
Zooming in on the steady state of the output voltage waveform and the switching signal,
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Figure 13 provides a detailed examination of their characteristics. Moreover, Figure 14
presents the control signal and its FFT during the steady state, showcasing how the fluc-
tuation of current has been successfully reduced. This comprehensive analysis not only
underscores the agreement between experimental and simulated results, but also highlights
the efficacy of the control strategy in mitigating current fluctuations, as corroborated by the
frequency-domain analysis using FFT.
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6. Conclusions

In conclusion, this paper has successfully expanded upon an efficient technique for
deriving a stabilizing state-feedback switching law, originally designed for autonomous
switched systems, to encompass affine switched systems with constant external input.
The novel switching strategy introduced in this paper not only ensures stability but also
minimizes a quadratic guaranteed cost, demonstrating its versatility and applicability to a
broader class of systems. The efficacy of the proposed design approach was substantiated
through simulations on classical Buck and Buck–Boost converters, illustrating the simplicity
and effectiveness of the strategy.

A crucial aspect of this research involves a comparative analysis with a recent ap-
proach, revealing that the proposed method enhances the design performance criterion
by approximately 30% when compared to the competing strategy. This significant im-
provement underscores the practical viability and superiority of the introduced approach,
making it a compelling choice for control subsystems in advanced converter circuits.

The experimental validation using a Buck circuit further underscores the real-world
applicability of the proposed method, demonstrating its robustness and reliability in
practical settings. Importantly, the proposed Lyapunov-based method stands out for
its remarkable robustness, speed, and accuracy, providing a notable advantage over
alternative approaches.
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Looking ahead, the applications of this method extend beyond theoretical advance-
ments. The proposed approach holds great promise for addressing the challenges posed
by renewable energy sources. By leveraging composite-switched Lyapunov functions, the
method is poised to play a pivotal role in optimizing power transfer, improving stability,
and ensuring reliable operation in diverse RES environments. This is particularly rele-
vant as RES integration becomes increasingly integral to the pursuit of sustainable and
eco-friendly power solutions. The proposed method not only offers a robust solution for
addressing the inherent challenges of renewable energy systems but also paves the way for
enhancing the overall efficiency and performance of RES integration in power systems.

Author Contributions: In the process of preparing this manuscript, T.H. and R.M.E. were responsible
for executing the methodology, managing data curation, conducting software-based simulations,
obtaining experimental results, and drafting the original written content. On the other hand, H.J.K.
undertook the tasks of editing, validation, visualization, handling resources, and funding acquisition,
as well as contributing to editing and supervision. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: We would like to extend our heartfelt gratitude to Hossein Madadi Kojabadi for
his invaluable assistance and insightful discussions. Additionally, we express our appreciation to
Milad Farsi for his valuable support in the design and construction of experimental results at Sahand
University of Technology.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

R represents the set of real numbers, and ℵ represents the set of natural numbers.
I[k1, k2] symbolizes the set containing all integers within the range from k1 to k2. The
notation M > 0 (M ≥ 0) signifies that M is a real-symmetric positively definite (or positive
semi-definite) matrix. The superscript T denotes matrix transposition. Λ denotes the set of
all non-negative vectors. λ =

[
λ1λ2 · · · λN ]

T with the property ∑N
i=1 λi = 1. The convex

combination of matrices {A1, · · · , AN} is defined as Aλ = ∑N
i=1 λi Ai.
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