
Citation: Wang, J.; Zhai, G.; Gao, H.;

Xu, L.; Li, X.; Li, Z.; Huang, Z.; Xie, C.

A Hardware Trojan Detection and

Diagnosis Method for Gate-Level

Netlists Based on Machine Learning

and Graph Theory. Electronics 2024, 13,

59. https://doi.org/10.3390/

electronics13010059

Academic Editors: Wei Hu, Jiaji He

and Haoqi Shan

Received: 5 November 2023

Revised: 12 December 2023

Accepted: 19 December 2023

Published: 21 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Hardware Trojan Detection and Diagnosis Method for
Gate-Level Netlists Based on Machine Learning and
Graph Theory
Junjie Wang 1, Guangxi Zhai 2, Hongxu Gao 2, Lihui Xu 1, Xiang Li 3, Zeyu Li 4 , Zhao Huang 2,*
and Changjian Xie 5

1 CNNC Xi’an Nuclear Instrument Co., Ltd., Xi’an 710061, China; junjiewang@stu.xidian.edu.cn (J.W.);
xulh@xnic262.com (L.X.)

2 School of Computer Science and Technology, Xidian University, Xi’an 710071, China;
gxzhai@stu.xidian.edu.cn (G.Z.); hx_gao@stu.xidian.edu.cn (H.G.)

3 School of Decision Sciences, The Hang Seng University of Hong Kong, Hong Kong 999077, China;
p233343@hsu.edu.hk

4 School of Computer Science and Technology, North University of China, Taiyuan 030051, China;
20230101@nuc.edu.cn

5 Zhejiang Raina Tech. Inc., Yiwu 322000, China; xiechangjian@raina.tech
* Correspondence: z_huang@xidian.edu.cn; Tel.: +86-1879-261-0378

Abstract: The integrated circuit (IC) supply chain has become globalized, thereby inevitably introducing
hardware Trojan (HT) threats during the design stage. To safeguard the integrity and security of ICs,
many machine learning (ML)-based solutions have been proposed. However, most existing methods
lack consideration of the integrity of HTs, thereby resulting in lower true negative rates (TNR) and true
positive rate (TPRs). Therefore, to solve these problems, this paper presents a HT detection and diagnosis
method for gate-level netlists (GLNs) based on ML and graph theory (GT). In this method, to address
the issue of nonuniqueness in submodule partition schemes, the concept of “Maximum Single-Output
Submodule (MSOS)” and a partition algorithm are introduced. In addition, to enhance the accuracy
of HT diagnosis, we design an implant node search method named breadth-first comparison (BFC).
With the support of the aforementioned techniques, we have completed experiments on HT detection
and diagnosis. The HT implantation examples selected in this article are sourced from Trust-Hub. The
experimental results demostrate the following: (1) The detection method proposed in this article, when
detecting gate-level hardware trojans (GLHTs), achieves a TPR exceeding 95%, a TNR exceeding 37%,
and F1 values exceeding 97%. Compared to existing methods, this method has improved the TNR for
GLHTs by at least 25%. (2) The TPR for diagnosing GLHTs is consistently above 93%, and the TNR is
100%. Compared to existing methods, this method has achieved approximately a 4% improvement in
the TPR and a 15% improvement in the TNR for GLHT diagnosis.

Keywords: gate-level hardware trojan; machine learning; graph theory; detection and diagnosis

1. Introduction

Nowadays, the globalization of the integrated circuit (IC) industry chain has led to
increased convenience, but it has also introduced vulnerabilities. These vulnerabilities can
be exploited by attackers to implant a malicious module known as a hardware Trojan (HT)
into an IC module [1,2]. Security attacks on the IC industry pose serious threats to people’s
privacy and national security. Therefore, it is crucial to address this issue to ensure the
continued reliability, security, and privacy protection of ICs.

The concept of HTs was first introduced in 2007 by Agrawal et al. [3]. In 2009,
Jin et al. [4] specified the definition and composition of HTs. Subsequently, a series of HT
detection methods have been presented one after another, such as side-channel analysis
(SCA) [3,5–7], logic testing (LT) [8–11], formal verification (FV) [12–14], and gate-level

Electronics 2024, 13, 59. https://doi.org/10.3390/electronics13010059 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13010059
https://doi.org/10.3390/electronics13010059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9214-7135
https://orcid.org/0000-0001-7385-032X
https://doi.org/10.3390/electronics13010059
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13010059?type=check_update&version=4


Electronics 2024, 13, 59 2 of 20

feature extraction (GLFE) [15–27]. However, existing methods have several limitations.
(1) GLFE needs golden GLN designs as reference. (2) SCA fails to detect small HTs because
they are vulnerable to process variations and environmental noise. (3) LT requires a
significant amount of time for design or enumeration. (4) For complex circuits, building
an FV model is very challenging. Taking everything into account, we choose GLFE as the
detection method and gate-level hardware trojan (GLHT) as the test HT. Firstly, GLFE tends
to incorporate machine learning (ML) and has achieved good results. Secondly, GLHTs
can be diagnosed through changes in the structure of the circuit diagram. However, most
of the existing GLFE methods detect each node in the netlist directly, which can directly
complete the diagnosis, but lack consideration for the integrity of the HTs, thus leading to
the following problems: (1) Easily misjudging non-HT nodes with features similar to HT
nodes, thereby resulting in low true negative rates (TNRs). (2) Easily missing HTs that only
show relevant features on the whole, thereby resulting in low true positive rates (TPRs).
(3) Some methods may partition submodules differently, thereby resulting in a decrease in
the detection accuracy of the entire netlist.

Based on the issues summarized above, this paper presents an HT detection and
diagnosis method for gate-level netlists (GLNs) based on ML and graph theory (GT). The
main process is as shown in Figure 1. Firstly, we partition the circuit diagram of a netlist into
several maximum single-output submodules (MSOSs) and extract 24 HT-related features.
Then, the chi-square tests and variance filtering methods are utilized to filter the features of
each MSOS and adjust the hyperparameters until achieving the best balanced accuracy. We
repeat this process for the sample to construct a specific supervised learning model. After
that, we can use this learning model to make label predictions and obtain a detection report.
Subsequently, by comparing the circuit diagram structures of the target netlist and the GLN,
the additional nodes implanted in the target netlist can be accurately identified. Finally, we
take the intersection of the nodes detected using ML and the additional implanted nodes
found in the previous step to obtain the diagnosis report.

Figure 1. Flow of the proposed HT detection and diagnosis method.

The contributions of this paper are summarized as follows:

(1) An HT detection and diagnosis method for GLN based on ML and GT is proposed.
(2) This paper, for the first time, proposes the concept and partition algorithm of MSOS to

address the issue of nonunique submodule partition.



Electronics 2024, 13, 59 3 of 20

(3) A total of 24 HT-related features are selected and extracted, including circuit diagram
structure and static circuit attribute features.

(4) We present a GT-based GLHT diagnosis method, which takes into account the com-
prehensiveness of HTs to fine-grain discover their locations.

(5) In the implanted node search experiment, we propose the breadth-first comparison
(BFC) algorithm, thereby increasing the diagnosis success rate.

The structure of this article is arranged as follows: Section 2 discusses the related work
on GLFE. Section 3 elaborates on the research of GLHT detection methods based on
ML. Section 4 presents the GT-based diagnosis method for GLHT. Section 5 presents the
experimental process and analyzes the results. Section 6 makes a conclusion of this paper.

2. Related Work

GLFE is a type of method to complete nondestructive HT detection. Early GLFE
methods directly compared the features with HT-related feature thresholds to complete
HT detection. Waksman et al. [15] proposed a method for the functional analysis of HT
structures by quantifying and evaluating the impact of inputs on outputs. Building on the
study of Waksman et al., Fyrbiak et al. [16] proposed a reverse engineering (RE)-based
method by introducing Boolean functions and graph structure neighborhood analysis. This
approach reduced the detection error rate, but could only handle some less-frequent types
of time-based HTs. Oya et al. [17] proposed a method to distinguish HTs by comparing
scores calculated from HT templates and circuit simulation. This method could identify
combinational or time-based HTs with relatively high accuracy. However, it was time-
consuming due to the need for circuit simulation.

In recent years, there has been a trend to incorporate GLFE-based methods with ML
to achieve better detection effects [22]. Hasegawa et al. [18–20] have successively em-
ployed supervised learning models such as the support vector machine (SVM) and random
forest (RF) for GLHT detection. They have attempted various approaches to optimize
supervised learning models with multiple HT features, thereby achieving high detection
accuracy. However, the applicable GLHT types are too limited. Salmani et al. [21] applied
unsupervised learning models within GLHT detection and proposed controllability and
observability for hardware Trojan detection (COTD) method. This method, in conjunction
with K-means and density-based spatial clustering of applications with noise (DBSCAN)
algorithms, can effectively reconstruct and eliminate the entire HT module. Yan et al. [24]
proposed a feature expansion algorithm based on the nearest neighbor unbalanced data
classification algorithm, which improved the detection accuracy by increasing the sample
feature set. Zhang et al. [25] proposed a mixed mode GLHT detection method based on the
XGBoost algorithm. For the first time, the static and dynamic features were combined for
multilevel HT detection, which effectively improved the detection accuracy. Li et al. [26]
proposed an idea of using natural language processing to solve the problem of complex
netlist structures that are difficult to analyze. They combined the netlist analysis methods
of XGBoost, then converted the netlist into a sequence of logical structures and classified
each logical structure according to its vector form, thus simplifying the detection process of
GLHTs. Shi et al. [27] proposed a GLHT detection method based on a graph neural network.
They used the graph sampling aggregation algorithm to learn the high-dimensional graph
features and corresponding node features in the netlist, and they realized GLHT detection
without using the golden netlist as a reference.

The combination of ML and GLFE can improve the accuracy and efficiency of HT
detection, but it cannot diagnose HTs directly. At present, the diagnosis of HTs has gradually
become the mainstream trend. Based on the study of Hasegawa et al., Du et al. [23]
proposed an HT detection and diagnosis method based on “cone partition”, K-nearest
neighbor (KNN), naive Bayes, and other supervised learning models. By changing the
classification object from node to cone, the differences in the structures of centralized and
distributed GLHTs were additionally considered. They partitioned the circuit into multiple
cones and extracted the HT feature values of that method, and they then diagnosed the



Electronics 2024, 13, 59 4 of 20

location of the HT circuits. Huang et al. [28] presented an HT detection and diagnosis
method for GLNs based on different ML models. They classified all the circuit cones of the
target GLN using different ML models; they then determined whether each circuit cone
was HT-implanted through the label. This method had a good detection effect, but it could
only roughly diagnose the location of the HT implantation.

With regard to detecting GLHTs, compared to earlier methods, current methods
have achieved higher accuracy and broader applicability in both detection and diagnosis.
However, most existing methods directly detect each node in the netlist. While this allows
for direct diagnosis, it lacks a holistic consideration of HTs, thereby resulting in lower
TPRs and TNRs. Additionally, certain methods may face the issue of nonuniqueness in the
partition of the submodule, thereby affecting the overall detection accuracy of the entire
netlist. The method we propose addresses these two issues, thereby leading to improved
effectiveness in GLHT detection and diagnosis.

3. HT Detection Method for GLN Based on ML

Aiming at the problem that the submodule partition scheme of the netlist is not unique,
this paper proposes the concept and partition algorithm of the MSOS. A total of 24 HT-
related features were chosen and extracted, including a circuit diagram structure and static
circuit attribute features. On this basis, this paper studied an HT detection for GLNs based
on ML models, and the main steps are shown in Figure 2:

Figure 2. ML-based GLHT detection method.

(1) MSOS partition: We partitioned the circuit diagram of the gate-level netlist into several
MSOSs.

(2) Feature extraction of MSOSs: We calculated and collected node information, and we
then extracted HT-related features from the MSOSs.

(3) Feature filter: We used chi-square tests and variance filtering methods to filter features
of the MSOSs.

(4) Model training: We trained a specific supervised learning model with optimized
hyperparameters.

(5) MSOS label prediction: We input the filtered features extracted from the MSOS into a
specific supervised learning model for prediction.

(6) Detection report: We reported whether the gate-level netlist contains an HT based on
the labels.

3.1. MSOS Partition

In essence, the MSOS is a subcircuit diagram composed of several nodes and their
corresponding units in the netlist. Specifically, considering the situation when the netlist
contains or does not contain a ring structure, the MSOS is composed of several strongly
connected components (SCCs) of nodes and their corresponding units.



Electronics 2024, 13, 59 5 of 20

Algorithm 1 is designed for the partition of each MSOS of the gate-level netlist. The
search rule in step 10 can ensure that the MSOS has convergence, as well as a single-output
and maximization at the same time. A simple example of MSOS partition is shown in
Figure 3, in which the content in each rectangle box (because there is no ring structure, and
one node corresponds to one SCC) is an MSOS.

Algorithm 1: MSOS partition.
Input: netlist M
Output: set of MSOS O

1 Decompose M into the set S of SCC;
2 forall s ∈ S do
3 if s did not output SCC then
4 Integrate s into the set T, which includes the convergence of SCC;
5 end
6 end
7 while T has been incorporated into the new merged SCC do
8 forall t ∈ T do
9 Construct an incomplete MSOS U using t;

10 Perform Depth-First Search (DFS) starting from t: find the first input SCC
of t that does not belong to U, denoted as i. If all output SCC of i belong to
U, incorporate i into U and recursively search. Otherwise, add i to the
collection of candidate SCC, C;

11 forall c ∈ C do
12 if c /∈ U then
13 Incorporate c into T;
14 end
15 end
16 Incorporate U into O;
17 end
18 end

Figure 3. Example of MSOS partition.

According to Figure 3 and Algorithm 1, it is not difficult to deduce that the partitioning
of the MSOSs is similar to performing a DFS on all the SCCs. The only difference lies in
step 10, where a single-output property check is required to add the input SCC (which
can be achieved with the help of an SCC marking array). Therefore, the time complexity
to partition MSOSs is proportional to the sum of the total number of SCCs, which is the
total fan-in of the SCCs and the total fan-out of the SCCs. This is similar to O(V + E) in GT.
Since the partitioning mainly involves creating independent marking arrays for each SCC,



Electronics 2024, 13, 59 6 of 20

its space complexity is proportional to the square of the total number of SCCs, which is
similar to O(V2) in GT.

The GLHT detection method based on ML studied in this paper needs to solve the
problem that the submodule partition scheme is not unique. At the same time, the MSOS
partition is exactly unique, because there is only one scheme for any netlist to partition the
MSOS. This is equivalent to there being no common SCC between any two different MSOSs.
The partition of the MSOS is unique, which can be avoided when both submodules contain
HT nodes. However, the influence of the HT nodes on the features is different, thereby
resulting in a submodule being judged as “with” or “without” HTs. In addition, the feature
extraction process of each MSOS will not affect each other, and this can be executed in
parallel to improve efficiency.

3.2. Feature Extraction of MSOS

According to the analysis of other GLHT detection methods based on ML, the selection
of HT-related features directly affects the detection accuracy. The relevant features of HTs
selected by existing methods can be mainly partitioned into the following categories: circuit
diagram structure, static circuit attributes, and dynamic circuit attributes.

For the MSOS, this paper selected 24 HT-related features of the circuit diagram struc-
ture and the static circuit attribute at the same time, and these features were mostly the
maximum, minimum, average, and other statistical indicators. On the one hand, the
changes in circuit structure features can show that additional modules are implanted in the
MSOS, and the static circuit attribute features can further confirm whether the additional
module contains HT nodes. On the other hand, the circuit structure- and static circuit
attribute-related features can be obtained only using static analysis of the netlist, which
takes less time. However, dynamic feature extraction requires providing specific test vec-
tors, which is time-consuming and only effective for explicit HTs. Moreover, of all the
circuit structure-related features, the 24 ones we selected have significant impacts on the
feature values when an HT is implanted. Even with a slight modification to the MSOS, the
values of the 24 HT-related feature will vary greatly in comparison to other features. Thus,
we chose the 24 HT-related features from the circuit diagram structure and static circuit
attributes, as shown in Table 1.

Table 1. The 24 HT-related features.

Features

Circuit structure features

Maximum node fan-in Minimum node fan-in Average node fan-in

Maximum node fan-out Minimum node fan-out Average node fan-out

Largest SCC size Smallest SCC size Average SCC size

Module fan-in Module fan-out Total number of nodes

Static circuit attribute features

Maximum CC0 Minimum CC0 Average CC0

Maximum CC1 Minimum CC1 Average CC1

Maximum CC Minimum CC Average CC

Maximum CO Minimum CO Average CO

3.2.1. Structure Class Features of Circuit Diagram

For each MSOS, the structure features of the 12 specific circuit diagrams selected in
this paper are as follows:

• Node fan-in indicator: the maximum, minimum, and average value of the number of
nodes entered by a node.

• Node fan-out indicator: the maximum, minimum, and average value of the number
of nodes output by a node.

• SCC size indicator: the maximum, minimum, and average value of the number of
nodes contained in the SCC to which the node belongs.



Electronics 2024, 13, 59 7 of 20

• Module fan-in: the number of input nodes when the entire MSOS is regarded as a
single node.

• Module fan-out: the number of output nodes when the entire MSOS is regarded as a
single node.

• Total number of nodes: the number of nodes contained in the MSOS.

Figure 4 is an example of the MSOS without an HT implanted.

Figure 4. An example of the MSOS without HT implanted.

Figure 5 is an example of the entire HT implanted in an MSOS. The red portion is
where the HT is implanted. The circuit diagram structure features underwent significant
changes, such as average node fan-in and maximum node fan-out.

Figure 5. An example of an HT with the complete implantation of an MSOS.

Because the circuit diagram structure features of Figure 4 were determined after
parsing the netlist into the circuit diagram, it was only necessary to traverse all the nodes
in the MSOS and produce statistics according to the corresponding conditions during
extraction. The SCC size index needed to decompose the netlist circuit diagram first, and
all the nodes in the same SCC needed to have the same SCC size; the module fan-in and
module fan-out counted the number of input and output nodes, not the number of MSOSs
of the input and output.

3.2.2. Attribute Class Features of Static Circuit

For each MSOS, the features of the 12 specific static circuit attributes selected in this
paper are as follows:

• Combinational 0-controllability (CC0) index: the maximum, minimum, and average
value of node CC0.

• Combinational 1-controllability (CC1) index of node combination 1: the maximum
value, minimum value, and average value of node CC1.

• Combinational controllability (CC) index: the maximum, minimum, and average
value of node CC.

• Combinational observability (CO) index of the nodes: the maximum, minimum, and
average of node CO.

Compared with the circuit diagram structure feature, the static circuit attribute feature
itself is more closely related to the HT, and it can be directly used to determine the existence



Electronics 2024, 13, 59 8 of 20

of the HT. To extract the above static circuit attribute features, it is necessary to calculate
the CC0, CC1, CC, and CO of all the nodes in the netlist in advance, and then count the
CC0, CC1, CC, and CO of all the nodes in the MSOS.

3.3. Model Training and Label Prediction

After MSOS partitioning and feature extraction, variance filtering and chi-square tests
were performed on the data set of the netlist to complete the feature selection. Then, the
data texts of all the gate-level netlists were merged into the final data set. After that, we
divided the final data set into a training data set and a testing data set. Hyperparameter
tuning of the model was also performed using a crossvalidated grid parameter search
method on the training data set. Finally, the ML models (i.e., KNN, RF, and the SVM) were
obtained on the training data set using the selected hyperparameters.

The hyperparameter tuning results for the KNN, RF, and the SVM models are pre-
sented in Table 2, Table 3, and Table 4, respectively. The balanced accuracy (i.e., the
arithmetic means of the TPRs and TNRs) serves as the metric for evaluating the predictive
performance during crossvalidation. From these results, it can be observed that, with
the optimal hyperparameters selected, the KNN, RF, and SVM models achieved balanced
accuracies exceeding 80% on the training dataset.

Table 2. The hyperparameter tuning results for the KNN model.

Weighting Strategy K-Value Minkowski Distance Exponent

Optional values Uniform weighting/distance weighting 1/2/3/4/5 1/2/3

Selected values Uniform weighting 1 2

Optimal balanced accuracy 81.2%

Table 3. The hyperparameter tuning results for the RF model.

Number of Decision Trees Maximum Depth of Decision Trees

Optional values 10/20/30 1 to 10

Selected values 20 7

Optimal balanced accuracy 95.5%

Table 4. The hyperparameter tuning results for the SVM model.

C Gamma

Optional values 1/10/100 0.01/0.1/1

Selected values 100 1

Optimal balanced accuracy 84.2%

After completing the training of the ML models, we used the testing data set to verify
the trained KNN, RF, and SVM models to predict the label of each data set (corresponding
to an MSOS).

4. HT Diagnosis Method for GLN Based on GT

The existing GLHT diagnosis methods are relatively small in number, and the diagno-
sis was generally completed by detecting the HT nodes in the netlist. The main drawback
was still a lack of consideration for the overall HTs, thereby resulting in a low diagnosis
accuracy problem. On this basis, this article studied a GLHT diagnosis method based on
GT. As shown in Figure 6, the main steps are summarized as follows:



Electronics 2024, 13, 59 9 of 20

Figure 6. GLHT diagnosis method based on GT.

(1) GLHT detection: We used the GLHT detection method based on the ML models
studied in this article.

(2) Implanted node search: By comparing the circuit diagram structure of the target netlist
and the GLN, we identified additional implanted nodes in the target netlist relative to
the GLN.

(3) Intersection of suspicious nodes (i.e., HT node localization): We intersected the nodes
contained in the MSOS of the “HT” detected in step (1) and the nodes obtained from
the implanted node search.

(4) Diagnosis report: We reported the obtained node intersection as an HT node set.

Essentially, the netlist is a circuit diagram consisting of nodes and their corresponding
cells. A netlist diagram can be further abstracted as a weighted directed graph: nodes are
vertices, cells are edges, and the type of cells is the weight of the edge.

After abstracting the netlist circuit diagram into a weighted directed graph, the diag-
nosis of HTs at the gate-level can be transformed into a vertex search problem: finding the
vertices in the graph that satisfy the features of the HTs. Compared with existing methods
based on HT libraries and subgraph isomorphism, the GLHT diagnosis method studied in
this paper avoids the need for further HT verification by intersecting the implanted node
with an MSOS that has been detected as an “HT”.

4.1. Implanted Node Search Based on BFC

Firstly, we designed an algorithm that is independent of the specific circuit and com-
pares the size relationship between any two nodes. Then, the node comparison algorithm
was applied to sort and subtract the nodes in the target netlist and GLN to obtain candi-
date implantation nodes. Finally, we filtered out nonimplanted nodes from the candidate
implanted nodes. Based on the above ideas, we designed an input-side BFC method and
implemented an implanted node search algorithm based on the BFC method. As shown in
Figure 7, the steps are summarized as follows:

Figure 7. Implanted node search method based on BFC method.

(1) Input nodes reordering: We determined the size relationships between nodes using an
input-side BFC algorithm, and we then sorted the input nodes of all the nodes in the
target netlist and GLN.

(2) Internal netlist nodes sorting: We sorted the nodes of the target netlist and GLN.
(3) Subtracting nodes between netlists: Sequentially, we compared the nodes in the target

netlist and GLN to identify all the differing nodes, which were considered as candidate
implanted points.

(4) Nonimplanted nodes filtering: We filtered the nonimplanted nodes among the can-
didate implanted nodes based on the structure features and implantation ways of
the GLHTs.



Electronics 2024, 13, 59 10 of 20

4.1.1. Input-Side BFC Algorithm

In a netlist, two nodes may be identical (requiring the same type of corresponding unit,
number of input nodes, and number of output nodes), but the sequence of input-side BFC
nodes and output-side BFC nodes of two nodes cannot be completely identical (requiring
the nodes in both sequences to be exactly the same in dictionary order). Therefore, this
article determined the size relationship of the nodes by comparing their input-side BFC
node sequences, as shown in Algorithm 2.

This algorithm performs a BFC on the nodes. The number of iterations in the loop
depends on the size of the queue and the comparisons between nodes. The overall time
complexity reaches O(N2) in the worst case, where N is the total number of input nodes.
The overall space complexity of the algorithm is O(N) in the worst case, where N is the
total number of input nodes.

Figure 8 compares the nodes corresponding to the G1 and G6 units according to
Algorithm 2. The nodes that have been compared in this figure are colored: green represents
the same, while red or blue represents those that are different. It can be seen that, according
to the breadth-first rule, when comparing the nodes corresponding to the G5 and G9 units,
the nodes corresponding to the G1 unit were smaller because the former had a smaller
number of input nodes.

Figure 8. An example of BFC on the input side.

4.1.2. Nonimplanted Node Filtering Algorithm

After using the input-side BFC algorithm for node sorting and subtraction, there were
still some nonimplanted nodes among the candidate implanted nodes obtained. In order to
filter out these nonimplanted nodes, this article mainly utilized the feature wherein the HTs
only had a single load node (which was common in the HT implantation samples selected
in this article, while the HTs in other samples could be split into sub-HTs of multiple single
load nodes), as shown in Algorithm 3. This algorithm has a loop that runs for (D −△)
iterations in the worst case. Each topological sorting iteration takes O(V + E) time, so the
overall time complexity is O((D −△) ∗ (V + E)). The space complexity is O(D + V + E).

4.1.3. Input Node Reordering Algorithm

When comparing nodes, there may be an issue of input node disorder; in order to
prevent the disorder of input nodes from interfering with node comparison, it is necessary
to reorder the input nodes of all the nodes in the target netlist and GLN, as shown in
Algorithm 4. In this algorithm, the time complexity of topological sorting is O(V + E). The
‘for’ loop runs V times, and the time complexity of Algorithm 2 is O(N2). Therefore, the
overall time complexity of the Algorithm 4 is O(V + E + V ∗ N2). The space complexity is
O(V + E). However, topological sorting is only applicable to a directed acyclic graph, and
there may be cyclic structures in the netlist circuit diagrams. Therefore, this article designed
another input node reordering algorithm for the netlist containing circular structures, as
shown in Algorithm 5. After analysis, the time complexity was determined to be O((V +



Electronics 2024, 13, 59 11 of 20

E) + K ∗ N2), where V is the number of nodes in the netlist, E is the number of edges, and
K is the number of SCCs. The space complexity is O((V + E) + N).

Algorithm 2: Input-side BFC algorithm.
Input: node n1,node n2
Output: Integer r, where -1 represents n1 < n2, 0 represents n1 = n2, and 1

represents n1 > n2
1 Initialize r to 0;
2 if n1 and n2 correspond to cells of different types then
3 Update r to -1 or 1 based on the relative sizes of the corresponding cell types,

and end the algorithm;
4 end
5 if n1 and n2 have different numbers of input nodes then
6 Update r to -1 or 1 based on the relative sizes of the number of input nodes,

and end the algorithm;
7 end
8 Mark n1 and n2 as compared;
9 Initialize node queues Q1 and Q2 with the input nodes of n1 and n2 respectively;

10 while Q1 is not empty do
11 Dequeue the head nodes q1 and q2 from Q1 and Q2 respectively;
12 forall node i1 ∈ the input nodes of q1, and i2 ∈ the input nodes of q2 do
13 if i1 and i2 have been compared then
14 continue comparing without i1 and i2;
15 end
16 if i1 and i2 correspond to cells of different types then
17 Update r to -1 or 1 based on the relative sizes of the corresponding cell

types, and end the algorithm;
18 end
19 if i1 and i2 have different numbers of input nodes then
20 Update r to -1 or 1 based on the relative sizes of the number of input

nodes, and end the algorithm;
21 end
22 Mark i1 and i2 as compared;
23 Enqueue i1 and i2 into Q1 and Q2 respectively;
24 end
25 end

4.2. Intersection of Suspicious Nodes

After the implant node search, we obtained the suspicious nodes (possibly HT nodes).
Then, the intersection between the suspicious node and all the nodes of the MSOS detected
in step (1) of Figure 6 was computed. At this point, we obtained the HT node set. It
is necessary to know that if the target netlist is detected to contain HTs, then the nodes
additionally implanted relative to the golden netlist must inherently contain nodes of the
HTs. Therefore, the method described in this article searched for the nodes implanted in
the target netlist relative to the golden netlist, and it then intersected them with the nodes
in the MSOS. This process can avoid the requirement for further HT validation. Figure 9
presents an example of a netlist circuit diagram with a GLHT implanted. In particular, the
red color represents the HT nodes obtained after the intersection.



Electronics 2024, 13, 59 12 of 20

Figure 9. Netlist circuit diagram with a GLHT implanted example.

Algorithm 3: Filtering of nonimplant nodes.
Input: The set of candidate implant nodes D
Output: The set of actual implant nodes D′

1 while The size of D is greater than the difference in the number of nodes between target
netlist and GLN(i.e., △) do

2 forall node n ∈ D do
3 if There exists an output node n that is not a member of D then
4 Add n into the non-implant node set U;
5 end
6 end
7 if U is an empty set then
8 Break the loop;
9 end

10 else
11 Perform topological sort on the nodes in D so that all input-side nodes

precede the output-side nodes, and select the first △ nodes in D to form
D′;

12 end
13 end

Algorithm 4: Filtering of nonimplant nodes.
Input: netlist M
Output: none

1 Perform a topological sort on the nodes in M to obtain the sequence S (with input
nodes appearing earlier in the sequence);

2 forall node n ∈ S do
3 if The input nodes of n are unordered and the number is not less than 2 then
4 Following Algorithm 2, use the QuickSort algorithm to sort the input nodes

of n in ascending order;
5 end
6 end



Electronics 2024, 13, 59 13 of 20

Algorithm 5: Filtering of nonimplant nodes.
Input: netlist M
Output: none

1 Partition all the nodes in M into multiple SCC, and perform a topological sort on
these SCC with input-side SCC appearing before the output-side SCC in the
sequence. The resulting sequence is S;

2 forall s ∈ S do
3 if The size of s is 1 then
4 if the only node n in s has input nodes that are unordered and not less than 2 in

number then
5 following Algorithm 2, use the QuickSort algorithm to sort n’s input

nodes in ascending order;
6 end
7 end
8 else
9 while there exists unstable nodes in s do

10 forall node n ∈ s do
11 if The input nodes of n are unordered and not less than 2 in number then
12 using the QuickSort algorithm according to Algorithm 2 to sort

n’s input nodes in ascending order;
13 if the order of n’s input nodes has changed then
14 mark n as an unstable node;
15 end
16 else
17 mark n as a stable node;
18 end
19 end
20 else
21 mark n as a stable node;
22 end
23 end
24 end
25 end
26 end

5. Experiments and Results

This section describes the experimental procedure, results, and comparative analysis
of our presented method.

5.1. Evaluation Measures

GLHT detection was used to determine whether there were HTs in the netlist. GLHT
diagnosis was used to identify the HT nodes in the netlist. Therefore, the essence of GLHT
detection and diagnosis is a binary classification problem, and they can be evaluated using
relevant assessment metrics. The evaluation metrics for binary classification problems can
be computed using the confusion matrix shown in Table 5. Several commonly used metrics
are presented in Table 6.

Table 5. Confusion matrix for binary classification.

Predicted Positive Result Predicted Negative Result

Positive Result True Positive (TP) False Negative (FN)

Negative Result False Positive (FP) True Negative (TN)



Electronics 2024, 13, 59 14 of 20

Table 6. Common binary classification evaluation metrics.

Metric Calculation Formula

Accurracy TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

Recall (TPR) TP
TP+FN

TNR TN
TN+FP

F1 Score 2×Precision×Recall
Precision+Recall

Balanced Accuracy TPR+TNR
2

5.2. HT in GLN Detection Experiment

The CPU used in this experiment is the AMD Ryzen 5 3600, and the main frequency
is 3.6 GHz. The memory is 16G DDR4, and the frequency is 3.2 GHz. In this paper,
modern C++ was employed to construct and analyze the circuit netlist structure through
independently designed graph structures and algorithms. To enhance the research effi-
ciency, Python 3 was utilized, coupled with the open-source ML library “scikit-learn”, to
implement the training and application of the supervised learning models.

The GLHT implantation example selected in this paper is from Trust-Hub and was
generated using automated methods by the authors’ team mentioned in [29]. By varying
the number of HTs, their functionalities, etc., a total of 914 GLHTs implantation instances
were generated. According to whether the HT is a sequential circuit or a combinational
circuit, these examples can be partitioned into two series: trit_tc series and trit_ts series.
In this study, all the netlists were initially grouped based on their original design names
and the number of HT instances. Then, within each group, the netlists were randomly
split in a 7:3 ratio for training and testing purposes. Firstly, each netlist was partitioned
into several MSOSs, and then 24 HT-related features corresponding to the MSOSs were
extracted. Subsequently, these features were input into the ML models for label prediction.
Here, we only selectively display the labels (as shown in Table 7), circuit structure-related
features (as shown in Table 8), and static circuit attribute-related features (as shown in
Table 9) of all the MSOSs in the s1423 and s1423_T002 netlists. The part marked in red
means that the HT has been implanted.

Table 7. Labels of all the MSOSs in the netlist of s1423 and s1423_T002.

Netlist

Label Number
1 2 3 4 5 6 7 8 9

s1423 0 0 0 0 0 0 0 0 0

s1423_T002 0 0 0 0 1 0 0 0 0

The “number” refers to a specific MSOS. Based on the tables above, it can be concluded
that, compared to the s1423 netlist, the fifth MSOS of the s1423_T002 netlist experienced
changes in some features because it contained the entire HT implant. On the other hand,
the other MSOSs, which were not implanted with any HT nodes, had all of their features
remain unchanged. This proves the effectiveness of our method.

For all the testing data set, the detection results of the HTs in the MSOSs are shown in
Table 10. According to the analysis of these results, the detection effects of the KNN, RF,
and SVM models were good enough, the RF model was the best, and the KNN model was
the second best. In terms of HT detection in the netlist, all the models had TPRs over 95%,
TNRs over 37%, and F1 scores over 97%.



Electronics 2024, 13, 59 15 of 20

Table 8. Circuit structure features of all MSOSs in the s1423 and s1423_T002 netlists.

Feature
Netlist

Value Number
1 2 3 4 5 6 7 8 9

s1423 0 1 0 0 5 5 4 2 0Maximum node
fan-in s1423_T002 0 1 0 0 5 5 4 2 0

s1423 0 1 0 0 0 1 2 2 0Minimum node
fan-in s1423_T002 0 1 0 0 0 1 2 2 0

s1423 0 1 0 0 2.4 2.7 2.7 2 0Average node
fan-in s1423_T002 0 1 0 0 2.4 2.7 2.7 2 0

s1423 20 18 138 138 17 1 1 0 0Maximum node
fan-out s1423_T002 20 18 138 138 17 1 1 0 0

s1423 20 18 138 138 1 0 0 0 0Minimum node
fan-out s1423_T002 20 18 138 138 1 0 0 0 0

s1423 20 18 138 138 1.9 0.8 0.8 0 0Average node
fan-out s1423_T002 20 18 138 138 1.9 0.8 0.8 0 0

s1423 1 1 1 1 523 1 1 1 1Largest SCC
size s1423_T002 1 1 1 1 532 1 1 1 1

s1423 1 1 1 1 1 1 1 1 1Smallest SCC
size s1423_T002 1 1 1 1 1 1 1 1 1

s1423 1 1 1 1 500.1 1 1 1 1Average SCC
size s1423_T002 1 1 1 1 509.1 1 1 1 1

s1423 0 1 0 0 308 11 11 2 0
Module fan-in

s1423_T002 0 1 0 0 308 11 11 2 0

s1423 20 18 138 138 19 0 0 0 0
Module fan-out

s1423_T002 20 18 138 138 19 0 0 0 0

s1423 1 1 1 1 547 6 6 1 1Total number
of nodes s1423_T002 1 1 1 1 556 6 6 1 1

The comparative object selected in this article was the method studied in [23]. Com-
pared with the other GLHT detection-based ML methods, this method not only had better
detection performance, but was also closer to the method studied in this article. The GLHT
detection results of the method in [23] are shown in Table 11.

By analyzing Table 11, we can obtain the comparison results of the GLHT detection
performance outcomes between the method proposed in this paper and the method pro-
posed in [23] when using the KNN, RF, and SVM models. Although the method described
in this paper took more time for detection (on the one hand, the number of MSOSs in the
same netlist was generally much greater than the number of cones; on the other hand, the
feature dimension of the MSOS was three times that of the cone), the overall detection
performance was better, especially with a TNR improvement of at least 25%.

For another comparative experiment, we chose [28], which implemented GLHT de-
tection using ML with different models and achieved good results. Table 12 shows the
comparative detection results; it is evident that, although the TNR in this article was lower
compared to [28], the F1 score generally tended to be higher than that of [28]. The results
suggest that the model has a good trade-off between correctly identifying positive instances
(precision) and capturing all positive instances (recall).



Electronics 2024, 13, 59 16 of 20

Table 9. Static circuit attribute features of all MSOSs in the s1423 and s1423_T002 netlists.

Feature Number\Value\Netlist 1 2 3 4 5 6 7 8 9

s1423 1 2 1 1 372 14 237 12 1
Maximum CC0 s1423_T002 1 2 1 l 372 14 237 12 l

s1423 1 2 1 1 1 3 10 12 1
Minimum CCO s1423_T002 1 2 1 1 1 3 10 12 1

s1423 1 2 1 1 32.2 9.7 88 12 1
Average CC0 s1423_T002 1 2 1 1 31.8 9.7 88 12 1

s1423 1 2 1 1 219 77 258 14 1
Maximum CC1 s1423_T002 1 2 1 l 237 77 258 14 l

s1423 1 2 1 1 1 21 11 14 1
Minimum CC1 s1423_T002 1 2 1 1 1 21 11 14 1

s1423 1 2 1 1 26.9 33.5 61.2 14 1
Average CC1 s1423_T002 1 2 1 1 27.7 33.5 612 14 1

s1423 1.4 2.8 1.4 1.4 372.1 77.1 258.2 18.4 1.4
Maximum CC s1423_T002 1.4 2.8 1.4 1.4 372.1 77.1 258.2 18.4 1.4

s1423 1.4 2.8 1.4 1.4 1.4 22.9 24.2 18.4 1.4
Minimum CC s1423_T002 1.4 2.8 1.4 1.4 1.4 22.9 24.2 18.4 1.4

s1423 1.4 2.8 1.4 1.4 50.9 35.5 138.9 18.4 1.4
Average CC s1423_T002 1.4 2.8 1.4 1.4 51.2 35.5 138.9 18.4 1.4

s1423 28 47 23 16 321 73 45 0 >1000
Maximum CO s1423_T002 28 47 23 16 353 73 45 0 >1000

s1423 28 47 23 16 0 0 0 0 >1000
Minimum CO s1423_T002 28 47 23 16 0 0 0 0 >1000

s1423 28 47 23 16 120.2 27.2 35.2 0 >1000
Average CO s1423_T002 28 47 23 16 122.8 27.2 35.2 0 >1000

Table 10. Detection results of HTs in MSOSs.

ML Mode

Value Evaluation Metrics
TP FP TN FN TPR TNR F1

KNN 287 5 3411 16 94.7% 99.9% 96.5%

RF 296 2 3414 7 97.7% 99.9% 98.5%

SVM 285 20 3396 18 94.1% 99.4% 93.7%

Table 11. Comparison of hardware Trojan detection results.

ML Mode TP FP TN FN TPR TNR F1 Time Consumption (ms)

Our method

KNN 281 4 4 11 96.2% 50.0% 97.4% 21,648

RF 287 4 4 5 98.3% 50.0% 98.4% 21,765

SVM 280 5 3 12 95.9% 37.5% 97.0% 21,832

[23]

KNN 283 6 2 9 96.9% 25.0% 97.4% 3258

RF 286 8 0 6 97.9% 0 97.6% 3034

SVM 275 8 0 17 94.2% 0 95.7% 3197



Electronics 2024, 13, 59 17 of 20

Table 12. The GLHT detection results in this article and [28].

Method

Value Evaluation Metrics
TPR TNR F1

Our RF-based method 98.3% 50.0% 98.4%

Our KNN-based method 96.2% 50.0% 97.4%

Our SVM-based method 95.9% 37.5% 97%

KNN-based method [29] 90.9% 93.1% 79.7%

DT-based method [29] 86.4% 98.6% 83.6%

NB-based method [29] 100% 65.2% 34.7%

5.3. HT in GLN Diagnosis Experiment

The results of the GLHT diagnosis for all test netlists are shown in Table 13. It can be
seen from the analysis of the results that using the KNN, RF, or SVM models, coupled with
the implanted node search method based on BFC, could achieve average TPRs exceeding
93% and average TNRs of 100% in diagnosing HT nodes in the netlists.

Table 13. Results of GLHT diagnosis.

Search Method

TPR, TNR ML Mode
KNN RF SVM

BFC 97.3%, 100% 97.7%, 100% 93.4%, 100%

For comparison with the GLHT diagnosis results, this study selected a method pro-
posed in [30], which uses adversarial learning (called “R-HTDetector”). Compared to the
other methods, this method is not only the latest research achievement of the pioneer-
ing team that applied ML models to GLHT detection and diagnosis, but it also achieves
significant improvements in accuracy and applicability by conducting adversarial learn-
ing on automatically generated GLHT variants. For the testing netlists selected by the
R-HTDetector method, the GLHT diagnosis results using the R-HTDetector method and
the method proposed in this article are shown in Table 14. From the analysis of Table 14, it
can be observed that, compared with the R-HTDetector method, the method proposed in
this paper achieved an improvement of approximately 4% and 15% in the average TPR and
TNR values of the GLHT diagnosis, respectively.

For another comparative experiment, we chose [23,28], as shown in Table 15. In [23], the
authors partitioned the circuit into multiple sectors and extracted the HT feature values of
those sectors to complete the diagnosis. In [28], the authors completed the diagnosis by
obtaining the primary output of the netlist. Although they could complete the diagnosis,
it was not accurate enough. Our method accurately located the location of the HT by
searching each node.

Table 14. GLHT diagnosis results of R-HTDetector and the method described in this article.

Netlist

Value Evaluation Metrics
TPR TNR

R-HTDetector Our Method R-HTDetector Our Method

c2670_T000 100% 100% 85.9% 100%

c2670_T001 100% 100% 84.0% 100%

c2670_T002 75.0% 80.0% 90.9% 99.9%

c3540_T000 100% 100% 93.5% 100%

c3540_T001 100% 100% 64.6% 100%

c3540_T002 100% 100% 68.0% 100%

c5315_T000 87.5% 100% 78.4% 100%



Electronics 2024, 13, 59 18 of 20

Table 14. Cont.

Netlist

Value Evaluation Metrics
TPR TNR

R-HTDetector Our Method R-HTDetector Our Method

c5315_T001 77.8% 100% 86.3% 100%

c5315_T002 100% 100% 71.0% 100%

s1423_T000 100% 100% 90.8% 100%

s1423_T001 83.3% 100% 91.9% 100%

s1423_T002 100% 100% 86.9% 100%

s13207_T000 100% 100% 96.2% 100%

s13207_T001 100% 100% 96.1% 100%

s13207_T002 100% 100% 95.5% 100%

Average 94.9% 98.7% 85.3% 100%

Table 15. Comparison of GLHT diagnostic results.

Diagnosis Method Diagnosis

Our method Search nodes 1

[23] Partition sectors 1

[29] Extract primary output 1

6. Conclusions

This paper focused on an HT detection and diagnosis method for GLN based on ML
and GT. To address the issue of nonunique submodule partition schemes in netlists, we
proposed the concept and partition algorithm of the MSOS, and we extracted 24 HT-related
features based on the circuit structure and static circuit attributes of the MSOS. We con-
ducted data extraction, model training, and GLHT detection experiments on the trit_tc
and trit_ts series of the GLHT implantation examples. Tables 11 and 12 show that our
method has good detection performance in GLHT detection, and this was improved signifi-
cantly compared to the existing methods. In additional, to improve the accuracy of GLHT
diagnosis, we proposed an implant node search method based on BFC. Tables 14 and 15
also show that our proposed approach has good diagnosis performance for GLHTs and
this was improved significantly compared to the existing methods. However, there are
some drawbacks to our method, such as the inability to avoid the reference to golden GLN
designs. We will try to solve this problem in the future work.

Author Contributions: Conceptualization, Z.L., L.X. and Z.H.; methodology, J.W., G.Z., Z.H., C.X.
and X.L.; software, J.W., H.G., G.Z., C.X., Z.H. and X.L.; validation, J.W., Z.H., Z.L., H.G. and X.L.;
writing—original draft preparation, J.W., L.X., G.Z. and Z.H.; writing—review and editing, J.W., Z.H.,
Z.L., X.L. and L.X.; supervision, Z.H., L.X. and H.G.; project administration, Z.H., L.X., X.L. and H.G.;
funding acquisition, Z.H., L.X., X.L. and H.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 61972302, in part by the Guangzhou Municipal Science and Technology Project under
Grant SL2022A04J00404, in part by the Fundamental Research Funds for the Central Universities
under Grant XJS220306, in part by the Natural Science Basic Research Program of Shaanxi under
Grant 2022JQ-680, and in part by the Key Laboratory of Smart Human Computer Interaction and
Wearable Technology of Shaanxi Province. Research project on Integrated Real Security System of
sea, land, air and space: 2022-KY-0031

Data Availability Statement: Data is unavailable due to privacy or ethical restrictions.



Electronics 2024, 13, 59 19 of 20

Acknowledgments: The authors would like to thank the editors and reviewers for their contributions
to our manuscript.

Conflicts of Interest: Author Junjie Wang and Lihui Xu was employed by the company CNNC
Intelligent Security Technology Co., Ltd. Author Changjian Xie was employed by the company
Zhejiang Raina Tech. Inc. The remaining authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a potential conflict
of interest.

References
1. Huang, Z.; Wang, Q.; Chen, Y.; Jiang, X. A survey on machine learning against hardware Trojan attacks: Recent advances and

challenges. IEEE Access 2020, 8, 10796–10826. [CrossRef]
2. Salmani, H.; Tehranipoor, M. Digital Circuit Vulnerabilities to Hardware Trojans. In Hardware IP Security and Trust; Mishra, P.,

Bhunia, S., Tehranipoor, M., Eds.; Springer: Cham, Sitzerland, 2017.
3. Agrawal, D.; Baktir, S.; Karakoyunlu, D.; Rohatgi, P. Trojan detection using IC fingerprinting. In Proceedings of the 2007 IEEE

Symposium on Security and Privacy (SP ’07), Berkeley, CA, USA, 20–23 May 2007; pp. 296–310.
4. Jin, Y.; Kupp, N.; Makris, Y. Experiences in hardware trojan design and implementation. In Proceedings of the 2009 IEEE

International Workshop on Hardware-Oriented Security and Trust, San Francisco, CA, USA, 27–27 July 2009; pp. 50–57.
5. Salmani, H.; Tehranipoor, M.; Plusquellic, J. A novel technique for improving hardware trojan detection and reducing trojan

activation time. IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2012, 20, 112–125. [CrossRef]
6. He, J.; Zhao, Y.; Guo, X.; Jin, Y. Hardware trojan detection through chip-free electromagnetic side-channel statistical analysis.

IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2017, 25, 2939–2948. [CrossRef]
7. Faezi, S.; Yasaei, R.; Barua, A.; Al Faruque, M.A. Brain-inspired golden chip free hardware trojan detection. IEEE Trans. Inf.

Forensics Secur. 2017, 16, 2697–2708. [CrossRef]
8. Dupuis, S.; Flottes, M.-L.; Di Natale, G.; Rouzeyre, B. Protection against hardware trojans with logic testing: Proposed solutions

and challenges ahead. IEEE Des. Test 2018, 35, 73–90. [CrossRef]
9. Wolff, F.; Papachristou, C.; Bhunia, S.; Chakraborty, R.S. Towards trojan-free trusted ICs: Problem analysis and detection scheme.

In Proceedings of the 2008 Design, Automation and Test in Europe, Munich, Germany, 10–14 March 2008; pp. 1362–1365.
10. Saha, S.; Chakraborty, R.S.; Nuthakki, S.S.; Anshul, Mukhopadhyay, D. Improved test pattern generation for hardware trojan

detection using genetic algorithm and boolean satisfiability. In Proceedings of the Cryptographic Hardware and Embedded
Systems–CHES 2015, Saint-Malo, France, 13–16 September 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 577–596.

11. Kampel, L.; Kitsos, P.; Simos, D.E. Locating hardware trojans using combinatorial testing for cryptographic circuits. IEEE Access
2022, 10, 18787–18806. [CrossRef]

12. Zhang, X.; Tehranipoor, M. Case study: Detecting hardware trojans in third-party digital IP cores. In Proceedings of the 2011
IEEE International Symposium on Hardware-Oriented Security and Trust, San Diego, CA, USA, 5–6 June 2011; pp. 67–70.

13. He, J.; Guo, X.; Meade, T.; Dutta, R.G.; Zhao, Y.; Jin, Y. SoC interconnection protection through formal verification. Integration
2019, 64, 143–151. [CrossRef]

14. Qin, M.; Hu, W.; Wang, X.; Mu, D.; Mao, B. Theorem proof based gate-level information flow tracking for hardware security
verification. Comput. Secur. 2019, 85, 225–239. [CrossRef]

15. Waksman, A.; Suozzo, M.; Sethumadhavan, S. FANCI: Identification of stealthy malicious logic using boolean functional analysis.
In Proceedings of the ACM SIGSAC Conference on Computer & Communications Security, Berlin, Germany, 4–8 November 2013.

16. Fyrbiak, M.; Wallat, S.; Swierczynski, P.; Hoffmann, M.; Hoppach, S.; Wilhelm, M.; Weidlich, T.; Tessier, R.; Paar, C. HAL–The
missing piece of the puzzle for hardware reverse engineering, trojan detection and insertion. IEEE Trans. Dependable Secur. Comput.
2019, 16, 498–510. [CrossRef]

17. Oya, M.; Shi, Y.; Yanagisawa, M.; Togawa, N. A score-based classification method for identifying hardware trojans at gate-level
netlists. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13
March 2015; pp. 465–470.

18. Hasegawa, K.; Oya, M.; Yanagisawa, M.; Togawa, N. Hardware trojans classification for gate-level netlists based on machine
learning. In Proceedings of the IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS), Sant
Feliu de Guixols, Spain, 4–6 July 2016; pp. 203–206.

19. Hasegawa, K.; Yanagisawa, M.; Togawa, N. Hardware trojans classification for gate-level netlists using multi-layer neural
networks. In Proceedings of the IEEE 23rd International Symposium on On-Line Testing and Robust System Design (IOLTS),
Thessaloniki, Greece, 3–5 July 2017; pp. 227–232.

20. Hasegawa, K.; Yanagisawa, M.; Togawa, N. Trojan-feature extraction at gate-level netlists and its application to hardware-trojan
detection using random forest classifier. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS),
Baltimore, MD, USA, 28–31 May 2017; pp. 1–4.

21. Salmani, H. Cotd: Reference-free hardware trojan detection and recovery based on controllability and observability in gate-level
netlist. IEEE Trans. Inf. Forensics Secur. 2017, 12, 338–350. [CrossRef]

22. Zhao, J.; Shi, G. Survey on the research progress of hardware trojans. J. Inf. Secur. 2017, 2, 17.

http://doi.org/10.1109/ACCESS.2020.2965016
http://dx.doi.org/10.1109/TVLSI.2010.2093547
http://dx.doi.org/10.1109/TVLSI.2017.2727985
http://dx.doi.org/10.1109/TIFS.2021.3062989
http://dx.doi.org/10.1109/MDAT.2017.2766170
http://dx.doi.org/10.1109/ACCESS.2022.3151378
http://dx.doi.org/10.1016/j.vlsi.2018.09.007
http://dx.doi.org/10.1016/j.cose.2019.05.005
http://dx.doi.org/10.1109/TDSC.2018.2812183
http://dx.doi.org/10.1109/TIFS.2016.2613842


Electronics 2024, 13, 59 20 of 20

23. Du, M. A HT Detection and Diagnosis Method for Gate-level Netlists based on Machine Learning. Ph.D. Dissertation, Xi’an
University of Electronic Science and Technology, Xi’an, China, 2021.

24. Yanjian, Y.; Conghui, Z.; Yanjiang, L. Hardware Trojan Detection Technology Based on Multidimensional Structural Features. J.
Electron. Inf. Technol. 2021, 43, 2128.

25. Ma, S.; Liu, Y.; Wu, Y.; Zhang, S.; Zhang, Y.; Wang, D. Hybrid Mode Gate-Level Hardware Trojan Detection Method Based on
XGBoost. J. Electron. Inf. Technol. 2021, 43, 3050.

26. Xin, L.; Haiming, L.; Jian, M. Hardware Trojan Detection Based on Circuit Structure Analysis Using Integrated Model. Microelectron.
Comput. 2021, 38, 80–86.

27. Shi, J.; Wen, C.;Liu, H.; Wang, Z.; Zhang, S.; Ma, P.; Li, K. Hardware Trojan Detection for Gate-level Netlists Based on Graph
Neural Network. J. Electron. Inf. Technol. 2023, 45, 3253–3262.

28. Huang, Z.; Xie, C.J.; Li, Z.Y.; Du, M.F.; Wang, Q. A hardware trojan detection and diagnosis method for gate-level netlists based
on different machine learning algorithms. J. Circuits Syst. Comput. 2022, 31, 2250135:1–2250135:25. [CrossRef]

29. Cruz, J.; Huang, Y.; Mishra, P.; Bhunia, S. An automated configurable trojan insertion framework for dynamic trust benchmarks.
In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March
2018; pp. 1598–1603.

30. Hasegawa, K.; Hidano, S.; Nozawa, K.; Kiyomoto, S.; Togawa, N. R-htdetector: Robust hardware-trojan detection based on
adversarial training. IEEE Trans. Comput. 2023, 72, 333–345. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1142/S0218126622501353
http://dx.doi.org/10.1109/TC.2022.3222090

	Introduction
	Related Work
	HT Detection Method for GLN Based on ML
	MSOS Partition
	Feature Extraction of MSOS
	Structure Class Features of Circuit Diagram
	Attribute Class Features of Static Circuit

	Model Training and Label Prediction

	HT Diagnosis Method for GLN Based on GT
	Implanted Node Search Based on BFC
	Input-Side BFC Algorithm
	Nonimplanted Node Filtering Algorithm
	Input Node Reordering Algorithm

	Intersection of Suspicious Nodes

	Experiments and Results
	Evaluation Measures
	HT in GLN Detection Experiment
	HT in GLN Diagnosis Experiment

	Conclusions
	References

