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Abstract: As one of the essential components in power systems, transformers play a pivotal role in
the transmission and distribution of renewable energy generation. Accurate diagnosis of transformer
fault types is crucial for maintaining the safety of power systems. The current focus in research
lies in transformer fault diagnosis methods based on Dissolved Gas Analysis (DGA). Traditional
diagnostic methods directly utilize the five fault gases from DGA data as model input features, but
this approach does not comprehensively reflect all potential fault types in transformers. In this paper,
a non-coding ratio method was employed to generate 35 fault gas ratios based on the five fault
gases, subsequently refined through correlation analysis to eliminate redundant feature variables,
resulting in 15 significantly representative fault gas ratios. To further streamline the feature variables
and remove non-contributing elements to fault diagnosis, an improved Neighborhood Rough Set
(INRS) algorithm was introduced, leveraging symmetrical uncertainty measurement. By resorting to
the proposed INRS, eight most representative fault gas ratios were selected as input variables for
constructing a Deep Belief Network (DBN) diagnostic model. Experimental results on Dissolved Gas
Analysis (DGA) data confirmed the effectiveness and accuracy of the proposed method.

Keywords: dissolved gas analysis; fault detection; power transformer

1. Introduction

Oil-immersed transformers are essential components of power systems and play a crit-
ical role in the transmission and distribution of electrical energy [1,2]. However, prolonged
operation and high-load conditions can lead to a deterioration in equipment performance,
and even severe damage, posing a threat to the stability and reliability of power sys-
tems [3,4]. Traditional transformer maintenance and inspection primarily rely on periodic
inspections and tests, but this approach may not detect internal potential faults in a timely
manner, leading to overlooked or delayed maintenance and increased risk and maintenance
costs. To take effective maintenance and preventive measures in a timely manner, accurate
prediction of fault types becomes increasingly important [5,6].

Dissolved Gas Analysis (DGA) is one of the most commonly used methods for diagnos-
ing faults in oil-immersed transformers [7]. During the operation of transformers, chemical
reactions occur in the oil–paper composite insulation materials, releasing low-molecular-
weight gases such as hydrogen, hydrocarbons, and carbon-containing gas compounds,
which dissolve in the insulating oil [8,9]. Different types of faults or abnormal conditions
result in the production of different gases, with the most significant ones being hydrogen
(H2), methane (CH4), ethane (C2H6), ethylene (C2H4), and acetylene (C2H2). Based on the
type and quantity of fault gases, it is possible to determine the presence of specific fault types
in the transformer [10]. Traditional diagnostic methods, such as the IEC three-ratio method,
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Doernenberg ratio method, and Rogers ratio method, encode faults based on the ratios of
fault gases and associate them with fault types to diagnose transformer fault types [11–13].
However, in practice, it is possible to encounter fault combinations that fall outside the cod-
ing range, making traditional diagnostic methods unable to accurately diagnose transformer
fault types.

Learning from data is a core research area in modern artificial intelligence [14]. Machine
learning-based fault diagnosis techniques have been successfully applied to predict fault
types in oil-immersed transformers. Typical intelligent diagnostic approaches encompass
the BP neural network [15], Support Vector Machine (SVM) model [16], and other methods.
An approach that integrates neural networks with the three-ratio method was introduced
in [17], which is designed to transform samples with diagnostic errors from neural networks
to the three-ratio method for diagnosis. Nevertheless, the accuracy of neural network
judgments relies on the choice of weights and thresholds, demanding substantial training
data, which complicates the operation and compromises stability. The study in [18] presented
an intelligent diagnosis approach for transformer faults, which combines empirical wavelet
transform and an enhanced convolutional neural network. The findings indicate that this
diagnostic model can proficiently recognize the fault states of transformers. In [19], a novel
multiclass probabilistic diagnosis framework for dissolved gas analysis, based on Bayesian
networks and hypothesis testing, was proposed. This framework learns patterns from data
and infers the uncertainty associated with diagnostic outcomes. In [20], SVM was employed
to establish a classification system for power transformer faults and to select the most
suitable gas signature between traditional DGA methods and a novel extension method.
This approach led to significant improvements in the accuracy of power transformer fault
classification. It is worth noting that both [19] and [20] used the traditional set of five
fault gases (H2, CH4, C2H6, C2H4, and C2H2) as input variables for the diagnostic models.
However, these five feature variables contain incomplete fault information, resulting in
lower diagnostic accuracy. In order to fully leverage the fault information embedded in
the fault gases, Dai et al. employed a non-coding ratio method to derive nine fault feature
gas ratios. These nine features were then used as input variables for a deep belief network,
resulting in a notable enhancement in diagnostic accuracy [21]. Currently, fault diagnosis
techniques based on machine learning and deep learning are still evolving. Continual
learning methods are discussed in reference [22]. Integrated approaches are highlighted in
reference [23] and have demonstrated promising results in fault diagnosis.

This paper constructed 35 fault feature gas ratios based on five fault gases and elimi-
nated redundant features through correlation analysis. To further reduce the number of
features contributing insignificantly to transformer faults and consequently simplify the
model, an improved neighborhood rough set (INRS) algorithm was proposed. Compared to
the traditional approach of directly using the five fault gases as feature variables, the feature
reduction method introduced in this study can effectively harness the fault information
inherent in these five fault gases. The eight features extracted through the INRS algorithm
contribute more significantly and representatively to the types of transformer faults. Using
the obtained ratios of eight characteristic gases as input variables, a deep belief network
(DBN) diagnostic model was constructed. The average accuracy of 10 experiments on the
DGA test set reached 90.2%.

2. Transformer Fault Characteristics Analysis

Currently, traditional power distribution systems extensively utilize oil-immersed
electrical transformers, which are commonly classified into three main fault types: mechan-
ical, thermal, and electrical. As mechanical faults might appear as thermal or electrical
faults, our focus is solely on non-mechanical fault categories. The specific fault categories
pertaining to oil-immersed transformers are described in Table 1.

Thermal faults or electrical faults in transformers are primarily reflected in the changes
in the concentration of various gases dissolved in the oil. The most significant of these gases
include hydrogen (H2), methane (CH4), ethane (C2H6), ethylene (C2H4), and acetylene
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(C2H2). The distinctive gas concentration features for different fault types are outlined in
Table 2.

Table 1. Types of faults in oil-immersed transformers.

Faults Specific Fault Types

Thermal Faults MLTO (Medium-low-Temperature Overheating)
HTO (High-Temperature Overheating)

Electrical Faults
PD (Partial Discharge)

LED (Low-Energy Discharge)
HED (High-Energy Discharge)

Mechanical Faults Manifests as Thermal Faults or Electrical Faults

Table 2. Gas content of different fault types in oil-immersed transformers.

Fault Type Gas Content

MLTO Total hydrocarbon content CH4 is high, with C2H4 and C2H2 making up about 2%.

HTO High total hydrocarbon content, with C2H4 accounting for less than 5.5% of the
total, and H2 representing roughly 27% of the total hydrocarbon content.

PD Elevated levels of H2, CH4, and C2H6.

LED
Elevated levels of C2H4, C2H2, and H2. The total hydrocarbon content is not high,
with C2H2 representing more than 25% of the total hydrocarbon content, while H2

exceeds 90% of the total hydrogen content.

HED
High C2H2 and elevated H2 levels. Extremely high total hydrocarbon content, with

C2H2 comprising 18% to 65%, being the predominant component of the total
hydrocarbon content.

From Table 2, it is apparent that different fault types often lead to the release of
specific gases. Analyzing the gases dissolved in the oil both qualitatively and quantitatively
enables insights into the operational status and potential fault types present within the
transformer. Consequently, Dissolved Gas Analysis (DGA) serves as a valuable method
for diagnosing fault types in transformers within power distribution systems. Typically,
datasets containing concentrations of the five fault gases along with their associated fault
types are referred to as DGA data. These data facilitate the identification and assessment of
transformer conditions, aiding in predictive maintenance and timely fault detection.

3. Fault Diagnosis of Oil-Immersed Transformers Based on INRS and DBN

Based on the analysis in the previous section, the fault types of oil-immersed trans-
formers can be summarized as six categories: LED, HED, PD, HTO, MLTO, and Normal.
Consequently, the fault diagnosis problem for oil-immersed transformers can be treated as
a six-class classification task. To accomplish this classification task, we have constructed a
DBN diagnostic model based on the proposed INRS algorithm. The overall framework is
illustrated in Figure 1. DGA data contain historical data on the content of five fault gases in
oil-immersed transformers under different fault types, which can be used for model train-
ing in transformer fault diagnosis. The DGA data used in this paper can be obtained from
https://github.com/Cliango/DGA.git (accessed on 20 July 2023). The dataset contains a
total of 617 samples, including 102 LEDs, 168 HEDs, 47 PDs, 133 HTOs, 77 MLTOs, and
90 Normal samples. The specific distribution of data samples can be found in Table 3. Each
sample consists of gas content of five fault gases: H2, CH4, C2H6, C2H4, and C2H2.

Table 3. Distribution of DGA data samples.

Fault Types LED HED PD HTO MLTO Normal Total

Number of Samples 102 168 47 133 77 90 617

https://github.com/Cliango/DGA.git
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Figure 1. The diagnostic process for an oil-immersed transformer based on NRS and DBN.

3.1. Non-Coding Ratio Processing

Conventional methods for diagnosing transformer faults using fault gases from DGA
data (such as the IEC three-ratio method, Doernenberg ratio method, and Rogers ratio
method) have demonstrated the utility of gas ratios in fault diagnosis for oil-immersed trans-
formers. Additionally, there is a close connection between the changes in the proportion of
fault gases and the fault types. Hence, gas ratios among the five fault gases can be utilized as
features to analyze and determine the internal operational status of the transformer. The five
basic fault gases alone cannot fully reflect the fault information of the transformer. To further
explore the fault information, a total of 35 gas ratios have been constructed using a non-
coding ratio method, as outlined in Table 4. Here, C1 represents first-order hydrocarbons (i.e.,
CH4), and C2 represents the sum of second-order hydrocarbons (i.e., C2H6 + C2H4 + C2H2).

Table 4. Ratios of feature gas concentrations.

Number Ratios Number Ratios Number Ratios Number Ratios

1 C2H2/H2 10 C2H2/C2H4 19 C2H2/C 28 C2H4/HC1
2 C2H6/H2 11 H2/C2 20 C2H4/C 29 C2H6/HC1
3 C2H4/H2 12 CH4/C2 21 C2H2/HCC 30 C2H2/HC1
4 C2H2/H2 13 C2H6/C2 22 C2H4/HCC 31 C2H2/HC2
5 C2H6/CH4 14 C2H4/C2 23 C2H6/HCC 32 C2H4/HC2
6 C2H4/CH4 15 C2H2/C2 24 CH4/HCC 33 C2H6/HC2
7 C2H2/CH4 16 H2/C 25 H2/HCC 34 CH4/HC2
8 C2H4/C2H6 17 CH4/C 26 CH4/HC1 35 H2/HC2
9 C2H2/C2H6 18 C2H6/C 27 H2/HC1

C = C1 + C2, HC1 = H2 + C1, HC2 = H2 + C2, HCC = H2 + C1 + C2.
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Although we conducted non-coding ratio processing on five types of fault gases,
resulting in 35 ratios indicative of these faults and allowing for a more comprehensive
reflection of transformer fault types, it is important to note that these features may exhibit
linear relationships among themselves. To avoid introducing redundant feature variables,
we performed a correlation analysis among the 35 features, further eliminating highly
correlated feature variables to streamline the input features of the model.

Let D = {xi, yi}617
i=1 represent the dataset obtained after non-coding ratio processing

of the DGA data, where xi = [xi1, xi2, · · · , xi35] is the i-th sample, xij represents the j-th
feature within the sample xi, and yi ∈ {Normal, MLTO, HTO, PD, LED, HED}. Using all
35 feature gas ratios as input features may result in high dimensionality, increasing the
complexity of the diagnostic model. Moreover, an excessive number of input features
can introduce interference from features with low correlation, potentially affecting the
diagnostic accuracy. Therefore, before establishing the diagnostic model, feature selection
and dimensionality reduction are essential to ensure the model’s efficiency and accuracy
while avoiding unnecessary interference. To achieve this, a Pearson correlation analysis is
first applied to the data D, eliminating features that exhibit linear relationships, thereby
preventing the introduction of redundant information or multicollinearity. Let data matrix
X = [xT

1 , xT
2 , · · · , xT

617], where the i-th row of X (i.e., Xi) represents the i-th feature of the
samples. The correlation coefficient between any two features can be calculated by

R(Xi, Xj) =
∑n

k=1(Xik − µXi )(Xjk − µXj)

nSXi SXj

, (1)

where µXi and SXi represent the mean and variance of Xi, respectively. The correlation
coefficient R has a range between −1 and 1. When R is close to 1 (−1), it indicates a
stronger positive (negative) correlation between features Xi and Xj. When R is close to 0,
it signifies no linear correlation between the two features. In this paper, we remove the
gas ratio features in the data where |R| ≥ 0.7. The reason for removing feature gas ratios
with correlation coefficients greater than 0.7 is that during the feature selection process,
we noticed that coefficients exceeding 0.7 may indicate strong linear relationships among
features, thereby introducing multicollinearity, which can affect the model’s robustness
and interpretability. However, through a series of experiments, we found that setting the
correlation coefficient threshold to 0.7 effectively streamlined the model, maintaining a high
diagnostic accuracy while efficiently reducing model complexity by avoiding excessive
redundant information. This strategy not only enhanced the model’s interpretive capacity
but also improved the overall experimental outcomes and diagnostic precision.

The results indicate that there are 20 gas ratio features with correlation coefficient
|R| ≥ 0.7, specifically, features numbered 2, 3, 6, 9, 16, 19, 21–23, and 25–35 in Table 4. These
features exhibit strong linear correlations with each other. To avoid introducing redundant
information, these features are removed from the dataset D, resulting in the dataset D̄,
containing 15 gas ratio features. After removing linearly correlated feature gas ratios, there
are a total of 15 remaining, as detailed in Table 5.

Table 5. Gas ratio features after reduction through correlation analysis.

Number Ratios Number Ratios

1 C2H2/H2 10 C2H2/C2H4
4 C2H2/H2 14 C2H4/C2
5 C2H6/CH4 15 C2H2/C2
7 C2H2/CH4 17 CH4/C
8 C2H4/C2H6 18 C2H6/C
10 C2H2/C2H4 20 C2H4/C
11 H2/C2 24 CH4/HCC
12 CH4/C2 25 H2/HCC
13 C2H6/C2

C = C1 + C2, HC1 = H2 + C1, HC2 = H2 + C2, HCC = H2 + C1 + C2.
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3.2. Feature Selection Based on the Improved NRS

Correlation analysis can eliminate redundant information between features, but to
comprehensively assess the importance of features, it is essential to examine the relationship
between features and the target variable, i.e., the correlation between features and the target
variable. In general, features that exhibit a higher correlation with the target variable are
more likely to contribute to the predictive capability of the model. The neighborhood rough
sets (NRS) algorithm is a data mining algorithm based on rough set theory, used for feature
selection and data reduction. It evaluates each attribute by calculating attribute importance,
thereby eliminating redundant information and unimportant attributes from the dataset
while retaining the most valuable attributes.

For a decision system DS = (U, C ∪ E, V, f ), where U is the universe of discourse,
C represents conditional attributes, E ̸= ∅ is the set of decision attributes, and C ∪ E ̸= ∅,
V = {Va|a ∈ C ∪ E} denotes the collection of attributes’ values. The information function
f : U × (C ∪ E) → V represents the mapping relationship between samples, attributes,
and attribute values. In this paper, the set composed of feature gases represents the set of
conditional attributes, denoted as C, while the set consisting of the five fault types serves
as the set of decision attributes. Let B be a subset of conditional attributes, specifically,
a subset of all feature gases. For any B ⊆ C, the dependency of decision attributes E on
conditional attributes B is defined as

γB(E) =
|PosB(E)|

|U| , (2)

where PosB(E) represents the lower approximation of the attribute subset. The formula for
calculating the importance of a certain conditional attribute to the decision attribute is

sig(a) = γB(E)− γB−{a}(E). (3)

The NRS have certain limitations and drawbacks in feature selection. When the number
of samples varies significantly across different classes within the dataset, the NRS might
exhibit bias towards classes with larger sample sizes, impacting the feature selection process.
Moreover, these methods heavily rely on dataset partitioning, leading to potentially differ-
ent outcomes based on various data splits, thus affecting the consistency and stability of
feature selection. Symmetrical Uncertainty (SU) is a measure based on information theory,
designed to quantify the association between features and target variables. As a metric for
feature selection, SU aids in assessing the correlation between features and target variables,
enabling the identification of influential features impacting the target. By eliminating highly
correlated features, it mitigates multicollinearity, reducing the risk of model overfitting and
enhancing model generalization. The application of SU facilitates the reduction of feature
dimensions while retaining critical features, thus streamlining the model and improving
its efficiency. The introduction of SU as an alternative method helps overcome some of the
limitations associated with domain rough set methods.

Let D̄ = [D̄1, · · · , D̄i, · · · , D̄15] ∈ R617×15 be the data matrix after the correlation
analysis in Section 3.1, where D̄i ∈ R617 for i ∈ {1, 2, · · · , 15} represents the i-th feature
after reduction. The SU value between the 15 gas ratio features and the label vector can be
calculated using the following formula:

SU(D̄i, Y) = 2 · IG(D̄i, Y)
H(D̄i) + H(Y)

, (4)

where Y is the vector of the class label for sample, IG(D̄i, Y) = H(D̄i)− H(D̄i|Y) represents
information gain, and H(D̄i) represents information entropy. By incorporating the measure
of uncertainty (4) into the attribute importance (3), we have developed a rough set-based
attribute reduction method based on SU
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SUSIG(D̄i, Y) =
1
2
(sig(D̄i) + SU(D̄i, Y)). (5)

By incorporating SU into the attribute importance assessment within the NRS algo-
rithm, we have developed an improved neighborhood rough set algorithm used to evaluate
the correlation between feature variables and the target variable (i.e., label vector).

The main steps of this algorithm are as follows:
Step 1: Data normalization.
Step 2: Calculate the attribute importance SUSIG for 15 attributes according to (5), and

sort the attributes in descending order based on SUSIG, red = ϕ0, and the sorted attributes
are denoted as C = {a1, · · · , a15}.

Step 3: Taking the attribute a1 ∈ C with the highest attribute importance as the initial
reduction, denoted as red1 = red0 ∩ {a1}, calculate POS according to (2), and set red = red1.

Step 4: Neighborhood construction. Calculate the standard deviation Std(ai) for
each attribute ai, and construct the neighborhood radius δ = (Std(ai))/τ, where τ is a
predetermined parameter used to adjust the neighborhood size, typically ranging from 2
to 4. Based on the importance of attributes, select a set of the most important attributes to
form the neighborhood, creating a neighborhood rough set.

Step 5: Set i = i + 1 and redi = redi−1 ∩ {ai}. Calculate γB(E) according to (2) and set
B = redi. If γBi−1(E) < |γBi (E)|, then red = redi and proceed to the next step; otherwise,
stop.

Step 6: Data reduction. Utilize the neighborhood rough set for data reduction, elimi-
nating redundant information and unimportant attributes from the dataset while retaining
the most valuable attributes.

In order to minimize the reduced features, we set the parameter τ = 2. Subsequently,
the algorithm steps described above are applied to the dataset D̄, leading to the removal of
low-importance gas ratio features. The result is a set of 8 gas ratio features that exhibit high
correlation with the fault labels, as detailed in Table 6.

Table 6. Gas ratio features after reduction through INRS.

Number Ratios Number Ratios

7 C2H2/CH4 17 CH4/C
11 H2/C2 18 C2H6/C
13 C2H6/C2 24 CH4/HCC
15 C2H2/C2 25 H2/HCC

C = C1 + C2, HC1 = H2 + C1, HC2 = H2 + C2, HCC = H2 + C1 + C2.

3.3. Transformer Diagnostic Model Based on DBN

DBN is a deep learning model constructed by stacking multiple Restricted Boltzmann
Machines (RBM). The network structure is illustrated in Figure 2.

Each RBM consists of two layers of neurons, with the visible layer receiving input data
and the hidden layer used to capture abstract features of the data. The training process of a
DBN comprises two phases: unsupervised pre-training and fine-tuning.

Unsupervised Pre-Training: Starting from the bottom, each RBM is trained layer by
layer. The hidden layer’s output of each RBM is used as the visible layer input for the next
RBM. Through parameter updates, it reconstructs the distribution of the input data. During
this process, network connection weights between neurons with the smallest reconstruction
error are chosen, resulting in a new hidden layer for RBM1. This new hidden layer is then
employed as the visible layer for training RBM2. This process continues, stacking multiple
layers of RBMs to extract data features. The goal is to make the final feature representation
as close as possible to the distribution of the original input data. Throughout the pre-training
process, no labels of the data are used, making this phase an unsupervised learning process.
The pseudocode in Algorithm 1 describes the training process of the DBN model.
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Figure 2. DBN network structure.

Algorithm 1 Deep Belief Network (DBN)

1: DBN Initialize:
2: Initialize weights and biases for each layer
3: Set learning rate and other hyperparameters
4: Train RBM Layer:
5: for each RBM layer do
6: Train RBM with input data
7: Update weights and biases
8: end for
9: Build DBN:

10: for each layer in DBN do
11: Train RBM layer with input data
12: end for
13: Fine-Tune DBN:
14: Fine-tune the entire DBN using backpropagation or other optimization algorithms
15: Update all weights and biases

Fine-Tuning: While the DBN model can establish initial deep features through layer-
wise pre-training, it cannot guarantee the attainment of globally optimal deep feature
representations since each RBM is trained independently to minimize the reconstruction
error. To further optimize the entire DBN model and ensure the acquisition of superior
deep feature representations, it is common to add a back-propagation network connected
to a classifier at the end of the DBN. This is conducted for fine-tuning. The fine-tuning
process employs supervised learning, using labeled data to adjust the parameters of the
entire DBN, including the weights and biases, in order to minimize the classifier’s loss
function. This way, the entire DBN model can better adapt to a specific classification task
and obtain improved feature representations.

We use a DBN to perform the classification task of oil-immersed transformer fault
types. The six fault types, namely, LED, HED, PD, HTO, MLTO, and Normal, are encoded
as (1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), and (0,
0, 0, 0, 0, 1), respectively. The nine gas ratio features, which have been reduced through
correlation analysis and the INRS algorithm as discussed in Section 3.2, are used as the
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input layer for the DBN, while the five fault type encodings serve as the output layer. The
complete steps for oil-immersed transformer fault diagnosis are as follows:

Step 1: Collect the dissolved gas analysis data of various fault gases during the
operation of oil-immersed transformers.

Step 2: Conduct non-coding ratio processing for the fault gases in the data to obtain
35 gas ratio features.

Step 3: Remove redundant features through correlation analysis and normalize the
data. Utilize the Neighborhood Rough Sets algorithm for feature selection to eliminate
features that have minimal contributions to fault types, optimizing the feature set.

Step 4: Split the processed data into training and testing sets in a certain proportion to
ensure the independence of model training and evaluation.

Step 5: Use the selected gas ratio features and binary-encoded fault types as the input
and output layers of the DBN, respectively. Determine the DBN network parameters,
including the number of network layers, learning rate, and the number of neurons in the
hidden layers.

Step 6: Pre-train and fine-tune the DBN network until reaching the specified number
of training iterations or the desired error threshold to complete the DBN fault diagnosis
model. Input the test data into the model to obtain the output results.

When training a DBN, it is necessary to set and select network parameters such as the
number of network layers, learning rate, and the number of neurons in the hidden layers,
as mentioned in Step 5. Properly configuring these network parameters can optimize the
DBN model and improve its performance and effectiveness. Since there are no fixed rules or
criteria to determine the best parameters, experimentation and practical trials are required
to continuously try and optimize to find the most suitable parameter configuration.

According to Figure 2, in the processed data, each class of samples is divided into
a testing set and a training set in a 7:3 ratio, with 70% of the data used for training and
30% for testing the model’s performance. In the model, the learning rate for RBMs is set
to 0.01. This learning rate is used during the pre-training process and controls the rate
at which the RBM network weights are updated to gradually converge to better feature
representations. In the BP fine-tuning algorithm, dynamic learning rates are generally
used, with an initial value set to 0.01. Dynamic learning rates are an adaptive learning rate
strategy that allow for the dynamic adjustment of the learning rate during training based
on the model’s performance. The purpose of this approach is to use a larger learning rate
in the early stages of training to expedite convergence and gradually reduce the learning
rate in the later stages to stabilize the convergence process of the model.

The number of neurons in the hidden layer is equivalent to the number of nodes in
the hidden layer. When the number of hidden layers is determined, the number of neurons
in the hidden layer also becomes a significant factor affecting diagnostic accuracy. If the
number of neurons is much larger than the number of input and output nodes, it may result
in overfitting during the feature extraction process, causing the original data’s features to
overly disperse, thereby failing to capture the essential characteristics. Conversely, if the
number of neurons is too small compared to the number of input and output nodes, it might
lead to insufficient learning of the original signal’s features. Currently, there are four main
approaches for determining the number of neurons: fixed-value combination, concave–
convex combination, decreasing-value combination, and increasing-value combination.
There are empirical formulas for selecting the number of neurons, which are as follows:

p =
√

m + n + d, (6)

where m represents the number of neurons in the input layer, n represents the number of
neurons in the output layer, p denotes the number of neurons in the hidden layer, and d
stands for an additional compensatory value, typically within the range of [0, 10].

To determine the optimal number of hidden layers and hidden layer nodes, nine
different configurations of DBN network models based on (6) were set up: 8-5-6, 8-10-6,
8-15-6, 8-5-5-6, 8-10-10-6, 8-15-15-6, 8-5-5-5-6, 8-10-10-10-6, and 8-15-15-15-6. Each model
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was experimented with 10 times, and the average diagnostic accuracy was calculated. The
specific results are shown in Table 7.

Table 7. Average accuracy for different hidden layers.

Number of Hidden Layers DBN Network Structures Average Accuracy

1
8-5-6 0.857

8-10-6 0.873
8-15-6 0.895

2
8-5-5-6 0.863

8-10-10-6 0.869
8-15-15-6 0.872

3
8-5-5-5-6 0.792

8-10-10-10-6 0.813
8-15-15-15-6 0.807

From Table 7, it can be observed that as the number of neurons in the hidden layers
increases, the diagnostic accuracy of the DBN model gradually improves. This is because
having more neurons allows for better feature extraction, enhancing the model’s fitting
capacity. However, when the number of hidden layers increases to 2 or more, the diagnostic
accuracy of the DBN model starts to decline. The reason for this could be that for a
specific DGA dataset, when the number of hidden layers exceeds 2, the DBN network may
become too complex and may not generalize well to unseen data, resulting in a decrease in
diagnostic accuracy. Based on this analysis, we adopt a 3-layer DBN network structure.

4. Experiment on DGA Dataset

All algorithms and experiments are conducted on the MATLAB R2022a simulation
platform. The computer specifications used are as follows: Processor: Intel(R) Core(TM)
i5-8250U CPU @ 1.60GHz 1.80 GHz; Memory: 8.00GB RAM; Display adapter: Intel(R) UHD
Graphics 620.

4.1. Evaluation Metrics and Diagnostic Results

We adopted the accuracy to measure the effectiveness of the proposed diagnosis method

Accuracy = (TP + TN)/(TP + FP + TN + FN), (7)

where TP, FP, TN, and FN represent True Positive, False Positive, True Negative, and
False Negative, respectively. According to the data partitioning and parameter settings
in Section 3.3, a DBN model with a network structure of 8-15-6 was selected. The DBN
model was trained on the training dataset, and upon completion of the training, it was
used to predict the classification of six fault types on the test dataset. Table 8 provides the
diagnostic accuracy for each fault type. Figure 3 depicts the training error curve on the test
set for a single experiment.

Table 8. Diagnostic accuracy for each fault type in one experiment.

Fault Types Number of Samples Number of
Test Samples

Number of
Correct Diagnoses Accuracy

LED 102 31 28 0.903
HED 168 50 44 0.88
PD 47 14 11 0.786

HTO 133 40 36 0.9
MLTO 77 23 20 0.870

Normal 90 27 27 1

Sum 617 185 166 0.897
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Figure 3. Training error curve of the DBN diagnostic model.

As shown in Figure 3, with an increasing number of iterations, the training error of the
DBN diagnostic model gradually decreases, reaching an error below 0.1 after 700 iterations.

To avoid experimental variability, the DGA dataset was randomly split five times, and
five experiments were conducted using the constructed DBN diagnostic model. Table 9
presents the average number of correctly diagnosed samples and the average accuracy for
each fault type in the ten experiments. Notably, the diagnostic accuracy for the MLTO fault
type is 100%, and the average diagnostic accuracy for LED, HED, PD, HTO, and Normal
exceeds 90%. Figure 4 illustrates the confusion matrix of the average prediction results for
the DBN diagnostic model in the five random data partitioning experiments.

Table 9. Diagnostic accuracy for each fault type in ten experiments.

Fault Types Average Number of
Correct Diagnoses Average Accuracy Var

LED 28.2 0.910 0.016
HED 47.6 0.952 0.014
PD 11.4 0.829 0.003

HTO 37.1 0.928 0.012
MLTO 19.8 0.861 0.018

Normal 25.5 0.941 0.013
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Figure 4. Confusion matrices for the average prediction results of the DBN diagnostic model in
10 random data partition experiments.

From the color distribution in the confusion matrix, it is evident that the colors off the
main diagonal blocks are relatively light, while the colors on the main diagonal blocks are
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much darker. This indicates that the constructed DBN diagnostic model exhibits strong
predictive performance. In summary, the DBN diagnostic model developed in this study
demonstrates accuracy and effectiveness in predicting faults in oil-immersed transformers.

4.2. Ablation Analysis and Comparative Experiment

In order to investigate the impact of correlation analysis and neighborhood rough set
feature reduction on the performance of transformer diagnosis models, we conducted abla-
tion analysis on correlation analysis and rough set feature reduction, respectively. Table 10
detailed the 10 average experimental results obtained after each method was ablated.

Table 10. The 10 average experimental results of the proposed method after ablation analysis.

Correlation Analysis INRS Average Accuracy
√ √

0.902√
× 0.884

×
√

0.875
× × 0.858

√
represents implementation, × represents non-implementation.

From Table 10, it can be seen that feature reduction based on neighborhood rough sets
has a positive impact on the model. Under the same correlation analysis, the diagnostic
accuracy of the model with NRS algorithm feature reduction is higher than that without
INRS algorithm feature reduction. In addition, using all 35 characteristic gas ratios as input
features of the model directly can lead to a decrease in diagnostic accuracy.

To further demonstrate the effectiveness of the proposed method, we compared it with
Support Vector Machine (SVM) and Backpropagation Neural Network (BP), conducting
10 experiments for each method using identical training and testing datasets. Based on
the diagnostic results of different methods on the same dataset, the diagnostic accuracies
achieved by SVM, BP, and the proposed method are 87.8%, 88.4%, and 90.2%, respectively.
Compared to SVM and BP, the proposed method’s diagnostic accuracy is 2.4% and 1.8%
higher, respectively. Therefore, the proposed method in this paper can effectively assess
the transformer’s condition.

5. Conclusions

This paper presents a diagnostic model for fault classification in oil-immersed trans-
formers, leveraging an improved neighborhood rough set combined with Deep Belief
Network. Through correlation analysis and the domain rough set algorithm, nine feature
gas ratios that significantly contribute to fault types were successfully extracted. These fea-
tures have demonstrated enhanced representativeness and information content compared
to traditional methods in identifying transformer fault types.

Utilizing the identified eight feature gas ratios as input variables, a DBN-based diag-
nostic model was constructed. On the DGA test dataset, this model achieved an impressive
average accuracy of 90.2%. This high accuracy signifies the model’s effectiveness in diag-
nosing fault types in oil-immersed transformers.

The practical application of this method holds immense promise for maintenance
and operational purposes. Its ability to promptly identify transformer faults and discern
their respective types empowers maintenance personnel to implement effective repair and
maintenance measures, thereby mitigating potential impacts of faults on the power system.
This approach aids in ensuring the reliability and longevity of transformers within power
distribution systems.
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