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Abstract: Medical image analysis is crucial for the efficient diagnosis of many diseases. Typically,
hospitals maintain vast repositories of images, which can be leveraged for various purposes, including
research. However, access to such image collections is largely restricted to safeguard the privacy of the
individuals whose images are being stored, as data protection concerns come into play. Recently, the
development of solutions for Automated Medical Image Analysis has gained significant attention, with
Deep Learning being one solution that has achieved remarkable results in this area. One promising
approach for medical image analysis is Federated Learning (FL), which enables the use of a set of
physically distributed data repositories, usually known as nodes, satisfying the restriction that the
data do not leave the repository. Under these conditions, FL can build high-quality, accurate deep-
learning models using a lot of available data wherever it is. Therefore, FL can help researchers and
clinicians diagnose diseases and support medical decisions more efficiently and robustly. This article
provides a systematic survey of FL in medical image analysis, specifically based on Magnetic Resonance
Imaging, Computed Tomography, X-radiography, and histology images. Hence, it discusses applications,
contributions, limitations, and challenges and is, therefore, suitable for those who want to understand
how FL can contribute to the medical imaging domain.

Keywords: image processing; artificial intelligence; machine learning; federated learning; medical
image analysis

1. Introduction

Presently, produced data, both in industry and public research centers, is huge and
growing daily. Some data may be of a sensitive or personal nature and must be, therefore,
protected from public access. This scenario is no different in the medical environment,
where Health Information Systems and Electronic Health Records can collect and store
patient data on a large scale.

Analyzing medical images is a daunting task for healthcare professionals due to the
heavy workload, the need to analyze many images, the intricate nature of cases, and the
resemblance to other diseases, which often require additional studies within a constrained
time frame. Despite the extensive training that healthcare experts undergo, they are prone
to commit errors given the absence of information or insufficient time to analyze the images
under study, which may impact the identification of the right treatment to prevent the
growth and spread of the disease under analysis.

Different types of image modalities, such as Magnetic Resonance Imaging (MRI),
Computed Tomography (CT), X-ray, or histology images are required to establish a correct
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diagnosis. Therefore, a comprehensive study of the use of those modalities across several
image repositories is crucial to developing accurate image analysis software.

Artificial Intelligence (AI) is in a development stage that can use medical images
to successfully detect and diagnose pathological conditions successfully [1]. In this way,
hospitals use technology by building models to discover new patterns of diseases and
treatments from a given image dataset, mainly through data mining. However, institutions
should be careful about the data privacy of their patients since health data are sensitive
and legally protected; therefore, personal data cannot be exposed outside them [2].

Building very high-quality AI-based models, mainly deep machine-based models,
for image analysis requires diversity and many images, i.e., examples used for training
them, especially for complex problems. One way to access such a large number of medical
images is to directly access or obtain the images in a set of hospital image repositories.
However, transferring large amounts of data between the client and the central server
can bring high communication costs, and the data can leak and be an attractive target for
cyberattacks. In addition, centralized models may exhibit biases and generalization issues
when the training dataset lacks diversity. Nevertheless, several problems may then occur.
For example, acquiring the necessary permissions to access the images may entail lengthy
bureaucratic procedures. Moreover, the images must be duly anonymized, and restrictions
may prohibit removal from the original hospital repository.

Centralized data storage can pose difficulties in meeting legal and regulatory stan-
dards, particularly in regions with stringent privacy laws. Privacy concerns become
pronounced in a centralized repository, as it becomes susceptible to vulnerabilities and
unauthorized access, such as the lack of user control over personal information where indi-
viduals may use data without owners’ consent or even expose them without permission.
Consequently, the integrity of data security may be compromised.

To prioritize the privacy of patients’ data and legal issues related to ethics, an approach
called Federated learning (FL), which enables building better machine-learning models
focusing on privacy-preserving [3–5], has emerged.

This innovative approach harnesses the potential of artificial intelligence and machine
learning for analyzing medical images, aiming to amplify healthcare systems’ diagnostic
and predictive capabilities, all while safeguarding patient privacy and ensuring data security.
Besides privacy preservation, FL also addresses collaboration in environments where data
sensitivity and compliance are critical concerns, as demonstrated in the contributions outlined
in [6] where the presented FL approach achieved privacy-protected tumor classification with
high accuracy. In FL, the data remains at its source and does not need to be transferred
to a central server, which mitigates the likelihood of data breaches. Additionally, FL
facilitates real-time model updates, allowing models to constantly learn and adjust to
changing data, rendering it well-suited for dynamic environments. Training models that
can tackle data heterogeneity are essential to obtain a model in an FL environment that
exhibits high performance across all devices, as is outlined in [7], where a method to
overcome performance drop due to data heterogeneity and achieve high accuracy in
federated learning is proposed.

Therefore, FL has been helping healthcare professionals extract meaningful informa-
tion from images by applying machine-learning models, such as detecting a disease based
on medical imaging analysis, resulting in a quicker time for disease identification and
maintaining a knowledge base to be applied in other new cases. Moreover, healthcare
delivery can be improved by automating imaging-based procedures in hospitals where
access to related experts is limited.

The main purpose of this article is to present the current state-of-the-art related to
medical image analysis with a special focus on Federated Learning as an adequate approach
for building privacy-preserving competent machine-based models. This article is divided
into the following sections: Section 2 presents an overview of FL; the adopted articles
searching method is described in Section 3; frameworks that use FL in collaborative research
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are discussed in Section 4; and to finalize, Section 5 presents the discussion and the main
conclusions of this survey.

2. Federated Learning

Federated learning is a designation commonly used for collaborative machine learning
without centralized training data, introduced in a study published by Google in 2017 [8].
Thus, data are distributed in different sites, locations, and devices. Therefore, in an FL
framework, the process of training data happens locally, where the data are located, which
is called decentralized learning. Hence, a device, i.e., an edge device, trains its model and
stores its data locally. Then, the server aggregates the result of updated models from each
device and updates the centralized, i.e., global, model. Multiple trained models enrich the
global model once each local device, based on its individually trained model, provides
feedback to the server, which maintains a global shared model and disseminates it to
all institutions.

The data exchanged is encrypted to ensure that no other devices access private in-
formation. With that, personal information is never sent to a central server, and just the
weights, biases, and other parameters are learned by the local model trained in each de-
vice. When new hospitals enter this distributed learning environment, they bring more
data and computational resources to the consortium. Nonetheless, some hospitals may
generate more images than others and, in some cases, with minimal image heterogeneity.
Consequently, the consortium may possess a substantial dataset in terms of capacity; still,
the models will not acquire fresh features because of deficient image variety, which causes
models to produce inaccurate data. On the other hand, hospitals that possess a substantial
quantity and diversity of images will contribute positively to developing better learning
models and consequently producing more dependable results.

Figures 1 and 2 depict how federated learning works.

Figure 1. Example of a Federated learning approach.
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Figure 2. Steps of a common Federated learning approach.

Figure 2 shows that, in the first step, the server model selects the data sources and
the machine-learning model to be used. The diverse data are stored locally on each client
and are collected from those different sources. The second step involves sending an initial
version of the machine-learning model to each data source, i.e., to the edge devices or
clients, so the server and edge device models are synchronized. In the third step of the
approach, the edge devices use their respective datasets to train the model locally. The
locally trained models have similar parameters (represented by ellipses in Figure 2) but
differ in their weights (represented by dots in Figure 2) due to their locally collected dataset.
In step four, each edge device sends the updated weights of its model back to the central
server. The central server aggregates the received information by averaging the updated
model weights from each data source to build a new version of its model. In the fifth
step, the updated server model is synchronized with the edge devices without accessing
any data; then, an individual model is updated and ready to be evaluated on new and
unseen data.

In FL, hospitals collaborate to train a shared machine-learning model, which is dis-
tributed to each hospital, where it learns from the local data while preserving data se-
curity. As a result, hospitals can achieve significant savings in resources and costs asso-
ciated with data transfer and centralized storage, ultimately enhancing the efficiency of
healthcare operations.

As aforementioned, federated learning is valuable when the data are sensitive or
difficult to share due to regulatory or privacy concerns. Therefore, FL is being applied
in diverse industries, especially in the health field, where the collaborative analysis of
sensitive data are highly demanded.

3. Searching Method

This systematic literature review was carried out in the SCOPUS database. To find ar-
ticles, the following queries were combined using the AND logical operator: (a) “federated
learning” OR “federated machine learning”; (b) “medical image” OR “medical imaging”.
Table 1 presents the used query and the total number of gathered articles.

Table 1. Total number of articles retrieved from the used electronic repository.

Repository Query Performed No. of Gathered Articles

Scopus

TITLE-ABS-KEY ((federated learning)
OR (federated machine learning)
AND (medical image) OR (medical imaging))
AND (LIMIT-TO ( DOCTYPE, “ar”))

84

The current research topic is relatively new, and even though the conducted search
was relative to the last 10 years, no articles published before 2019 were found. However,
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from the gathered articles, the growing number of studies being conducted on the topic in
recent years is noticeable; see Figure 3.

Figure 3. Articles published in the last ten years that were retrieved from the SCOPUS database using the
keywords “federated learning”, “federated machine learning”, “medical image”, and “medical imaging”.

Based on an analysis of the titles and abstracts of the gathered articles, a total of
84 articles were initially selected. Then, 42 articles were discarded for not meeting the
criteria: medical images acquired by MRI, CT imaging, X-ray imaging, or histology imaging,
bringing the total to 42 articles. Then, 20 articles were excluded once they were focused on
topics unrelated to this study. In the end, 22 original articles were selected for the review.
The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
diagram [9] shown in Figure 4 represents the performed systematic search. Using the same
criteria, a second search was performed in the PubMed database, but no additional articles
were retrieved.

Figure 4. PRISMA diagram of the performed systematic literature review.
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Figure 5 indicates the types of medical images studied in the selected articles per
year, which allows the identification of the imaging modalities that FL frameworks have
addressed. In 2022, for example, MRI led the number of works in this field, with nine
articles, followed by X-ray, with four articles, one article involving histology images, and,
lastly, CT, with one article.

Figure 5. Types of imaging modality addressed by the selected articles per year.

A summary of the selected and studied articles, as to the used models, datasets, archi-
tectures, input dimension and imaging modality, research goal, main purpose, contributions
and benefits, limitations, and reported accuracy, is presented in Tables 2–13 according to
the used imaging modality(ies): Tables 2–5 are related to Magnetic Resonance (MR) images
and include ten articles. Tables 6 and 7 detail three articles related to CT images. Table 8 is
related to CT and MR images with one article. Table 9 includes one article addressing CT
and X-ray images. Tables 10–12 present six articles related to X-ray images. Lastly, Table 13
presents one article related to histology images.
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Table 2. Summary of the studied articles related to MR images (1 of 4). Ref means Reference, IDM means Input Dimension and Imaging Modalities, Arch means
Model Architecture(s), and RG means Research Goals.

Ref Datasets Arch. IDM RG Propose Contributions Limitations Accuracy

[10] BT-small-2c and
BT-large-3c CNN End-to-end 2D, MRI

Binary classification to
diagnose a brain tumor
in a federated
environment.

Designing the CNN
model for each client
and exchanging the
training parameters
between clients and
server.

FL framework to detect
brain cancers using 3
(2 public) datasets.

Proposed model is
limited to 4 different
strategies.

Higher accuracy on the
larger dataset
(BT-large-3c), 96%,
than to the smallest
one (BT-small-2c), 82%.

[11] M&M and ACDC 2018 3D-CNN 3D, MRI

Diagnosis of
hypertrophic
cardiomyopathy,
which is a
cardiovascular disease.

Test CNN models on
partitions of the
centers seen during the
training and also on
unseen centers.

First simulated
federated learning
study on the modality
of cardiovascular MRI.

Small dataset (M&M),
several data
augmentation
techniques were
needed to increase the
size of the training set
artificially.

-

[12]

SpineSagT2-
Wdataset3, which
comes from the
Chinese Society of
Biomedical
Engineering

DAGs-U-Net MRI Segmentation of
Vertebral Body images.

Create a Federated
Learning-based
Vertebral Body
Segment Framework
(FLVBSF) with a novel
local Dual Attention
Gates (DAGs)-based
attention mechanism.

FLVBSF can strongly
classify each vertebral
body pixel from the
background.

Several approaches
applied on the U-Net.
When the number of
iterations or
institutions is set to
smaller or larger, the
performance of the
federated model
varies.

The U-Net with DAGs
achieved a Pixel-level
Accuracy (PA) of
98.29%.
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Table 3. Summary of the studied articles related to MR images (2 of 4). Ref means Reference, IDM means Input Dimension and Imaging Modalities, Arch means
Model Architecture(s), and RG means Research Goals.

Ref Datasets Arch. IDM RG Propose Contributions Limitations Accuracy

[7] ACDC MICCAI 2017 Momentum Contrast
(MoCo) 3D, MRI

Segmentation and
generalization
performance on a
cardiac MRI dataset.

Two federated
self-supervised
learning frameworks
for volumetric
medical image
segmentation with
limited annotations.

The first framework
has high accuracy and
fits high-performance
servers with
high-speed
connections. The
second framework
addresses lower
communication costs,
applicable to mobile
devices.

The proposed
optimized method
(FCLOpt) does not
rely on negative
samples, which
reduces the
communication cost
of contrastive
learning.

First framework, FCL,
has high accuracy
(82.4 ± 2.5%) with
feature sharing; the
second framework,
FCLOpt, has an
accuracy of
82.1 ± 2%.

[13] BraTS 2017, Retina
and BoneAge

ResNet34 pre-trained
on ImageNet as the
base network for all
methods on Retina
and BoneAge datasets.
Used pre-trained
U-Net for the BraTS
dataset.

MRI

Implement SplitAVG
method to drop the
performance from
3 heterogeneous
datasets.

Method SplitAVG
applied on a CNN to
overcome the
performance drop
from data
heterogeneity in
federated learning.

Used heterogeneous
data in real-world
federated learning
settings. The SpliAVG
method does not need
any complex
hyper-parameter
tuning, training
heuristics, or
additional
training/fine-tuning.

Data privacy concerns
reconstructing raw
images from shared
feature maps of the
cut layer.

Achieved 96.2% of
accuracy.

[14] MSLUB, MISBI,
MSKRI, GBKRI, BraTS

Convolutional
auto-encoders MRI

Segmentation of an
unsupervised brain
pathology.

Train an unsupervised
CNN using Federated
Disentangled
representation
learning, called
FedDis.

Apply healthy
reconstructions by
increasing the
anomaly scores,
leveraging the global
anatomical structure,
and detaching the
parameters while
mitigating domain
shifts.

Trains the model
locally it is
aggregated only the
updated models of the
local institutions.

The anomaly
segmentation has the
results improved by
99.74% for multiple
sclerosis and 40.45%
for tumors over
locally trained
models.
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Table 4. Summary of the studied articles related to MR images (3 of 4). Ref means Reference, IDM means Input Dimension and Imaging Modalities, Arch means
Model Architecture(s), and RG means Research Goals.

Ref Datasets Arch. IDM RG Propose Contributions Limitations Accuracy

[6] ABIDE, ADHD-200
and COBRE

STM, SBM, and
MMoE MRI

Identify multiple
related mental
disorders.

Compare different
architectures to help
medical
professionals set up
early detection and
personalized
treatment in FL.

The FL framework
has effective learning
for those
participating
institutions with
relatively small
datasets.

Regardless of the
increasing available
datasets, most client
models fail to
converge during the
training process,
which leads to
significant
performance
degradation.

Accuracy of
69.48 ± 1.6% in
autism spectrum
disorder,
71.44 ± 3.2% in
attention
deficit/hyperactivity
disorder, and
83.29 ± 3.2% in
schizophrenia.

[15] UK Data Service
dataset CNN Ensemble

Axial T2 and
Coronal slices
of MR images.

Brain tumor
identification.

Used 6 pre-trained
models, combined
3 best models based
on the accuracy on
an average CNN
(InceptionV3,
VGG16, DenseNet)
for Voting Ensemble,
to compare the
performance to
select the global
model in FL.

FL approach
achieved
privacy-protected
tumor classification
with high accuracy.

Small dataset, which
degrades the global
performance if many
clients have really
small datasets and
may heavily overfit.
Within the clients, no
measure was taken
to address class
distribution
imbalance.

FL with an accuracy
of 91.05% compared
to 96.68% obtained
by the base ensemble
model.

[16]

ABIDE: Autism
brain imaging data
exchange ADNI:
Alzheimer’s disease
neuroimaging
initiative

GCNs MRI

Predict neural
diseases such as
Autism and
Alzheimer’s.

Train a global Graph
Convolutional
Neural Networks
(GCNs) node
classifier in many
institutions using a
federated graph
learning platform
called FedNI.

Designed a federated
network where a
missing node
generator grants
each institution the
ability to generate
missing nodes and
edges and federated
network inpainting.
FedAvg was used as
an aggregation
strategy.

Training an effective
GCN model for node
classification
requires a bigger
dataset.

Accuracy of 66.7%
(±0.6%) on the
ABIDE dataset, and
75.8% (±0.7%) on
the ADNI dataset.
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Table 5. Summary of the studied articles related to MR images (4 of 4). Ref means Reference, IDM means Input Dimension and Imaging Modalities, Arch means
Model Architecture(s) and RG means Research Goals.

Ref Datasets Arch. IDM RG Propose Contributions Limitations Accuracy

[17] ABIDE

Multi-layer perceptron
(MLP) 6105-16-2:6105
nodes for the input (first)
layer, 16 nodes for the
hidden layer, and 2
nodes for the output
layer)

MRI
Identify autism spectrum
disorders (ASD) or
healthy control (HC).

Applied two methods:
Mixture of Experts
(MoE), adaptation near
the output layer, and
Adversarial domain
alignment, adaptation on
the data knowledge
representation level.

Overcome the domain
shift issue; the federated
learning model has
revealed possible brain
biomarkers for
identifying ASD.
Fed-MoE outperformed
Fed on NYU, UM, and
UCLA sites, and
Fed-Align outperformed
Fed on NYU, UM, and
UCLA sites in terms of
mean accuracy. All Fed
and Fed+Domain
Adaptation strategies
significantly improved
compared to Cross,
Single, and Ensemble
strategies.

Implications into other
disease areas,
particularly rare diseases
with few patients.

Results of using different
training strategies, but
the best accuracy was
78.9% (±15.3%) when
the Fed framework was
used on ASD.
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Table 6. Summary of the studied articles related to CT images (1 of 2). Ref means Reference, IDM means Input Dimension and Imaging Modalities, Arch means
Model Architecture(s), and RG means Research Goals.

Ref Datasets Arch. IDM RG Propose Contributions Limitations Accuracy

[18]

Private large dataset with
unsegmented 2230 axial
chest CT images from
various institutions,
divided into (a)
COVID-19 (1016 images),
(b) lung cancer, and
non-COVID-19 lung
infections (610 images),
and (c) normal lung
aspect (604 images)

CNN CT lung
images.

Multiclass classification
of COVID-19, cancer, and
non-COVID-19 lung
infections or normal lung.

Used VGG-16 pre-trained
on the ImageNet dataset
with transfer learning
and the FedAvg method.
Three individual clients
were deployed
independently instead of
training the model on the
entire dataset in a
centralized way.

The proposed AI-assisted
software can identify a
healthy lung without
COVID-19 to disregard
lung cancer or a
non-COVID-9 lung
infection.

High computation cost,
being possible to train
and validate only 2
clients from three rounds
of the total of ten chosen
for training.

The proposed
method—FL VGG-16 had
an accuracy of 83.82% on
images during training,
and 79.32% during
validation.

[19]

3 private datasets from
local hospitals from
Germany, China, and one
publicly available dataset

2D CNN based
on an improved
version of
RetinaNet18

CT
Detecting lung
abnormalities in
COVID-19 patients.

Used DeepLesion CT
lesion dataset as a
pre-trained model,
applying three
independent networks:
(1) Learning with limited
annotations, (2) Learning
to segment COVID-19 CT
scans from
non-COVID-19 CT scans,
and (3) Learning with
both COVID-19 and
non-COVID-19 CT scans.
Then, a model ensemble
of these 3 individual
models will be used, and
lastly, a baseline of
training a single joint
model with all data
centralized.

To support clinical
disease management,
using diverse and large
datasets led to a good
impact of AI providing
low-cost and scalable
tools for lesion burden
estimation.

Limitation of concept
shift, where the manual
annotations in the cohort
were not directly
compatible with training
data.

-
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Table 7. Summary of the studied articles related to CT images (2 of 2). Ref means Reference, IDM means Input Dimension and Imaging Modalities, Arch means
Model Architecture(s), and RG means Research Goals.

Ref Datasets Arch. IDM RG Propose Contributions Limitations Accuracy

[20]
Private datasets from
hospitals in China, Italy, and
Japan

CNN CT Detect COVID-19 infections.

Semi-supervised FL learning
for segmentation of
abnormal regions related to
COVID-19 using 3D U-shape
FCN as a baseline model.

Semi-supervision potentially
reduces the annotation
burden under a distributed
setting. The proposed
approach performed better
in real-world datasets
compared to the default
setting of federated learning.

Conventional data sharing
instead of model weight
sharing. The model is not
trained to discriminate
against other types of
abnormalities, e.g.,
pneumonia or cancer.
Semi-supervised framework
complexity is higher
compared to regular FL.

-

Table 8. Summary of studied article related to CT and MR images. Ref means Reference, IDM means Input Dimension and Imaging Modalities, Arch means Model
Architecture(s), and RG means Research Goals.

Ref Datasets Arch. IDM RG Propose Contributions Limitations Accuracy

[21]

Two private datasets
from Medical
Segmentation
Decathlon (MSD):
pancreas and brain
tumor segmentation.

CNN (MoNet, a
shallow U-Netlike
architecture)

CT and MRI

Pancreatic
segmentation in CT
and brain tumor
segmentation in MRI.

Proposed the MoNet
architecture for
federated learning
applications to
segment pancreatic in
CT and brain tumors
in MRI.

MoNet has a small
number of
parameters and less
computational cost
compared to
U-Net-16, and
extracts more robust
features that
generalize better to
out-of-sample data.

Not considered the
use of larger,
multi-institutional
training and
validation sets, nor
considered the use of
other larger models
as well.

-
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Table 9. Summary of studied article related to CT and X-ray images. Ref means Reference, IDM means Input Dimension and Imaging Modalities, Arch means Model
Architecture(s), and RG means Research Goals.

Ref Datasets Arch. IDM RG Propose Contributions Limitations Accuracy

[22]

LIDC dataset and
2 other datasets from
the National Institutes
of Health

CNNs (GhostNet,
ResNet50, and
ResNet101)

CT and X-ray
COVID region
segmentation in chest
CT images.

Proposed an
architecture for a
dynamic fusion-based
learning approach for
semi-supervised
medical image analysis
to detect COVID-19
infections to improve
communication
efficiency and model
performance.

Conducted 18 groups of
experiments using three
different models:
GhostNet, ResNet50,
and ResNet101. Used
aggregated global
model. The
fusion-based federated
performs better in
real-world data sets
than the default setting
of federated learning,
which learning can
ensure fault tolerance
and robustness.

The study does not
consider the
communication
efficiency and model
accuracy issues of
federated learning.

-

Table 10. Summary of studied articles related to X-ray images (1 of 3). Ref means Reference, IDM means Input Dimension and Imaging Modalities, Arch means
Model Architecture(s), and RG means Research Goals.

Ref Datasets Arch. IDM RG Propose Contributions Limitations Accuracy

[23] COVIDX-8A,
COVIDX-8B

CNNs
(ResNet18 and
ResNet34)

Chest
X-ray

Classification of
COVID on chest
X-ray images to
ensure additional
security and privacy
features.

Propose MediSecFed: a secure
framework for federated learning in a
difficult environment applied on chest
X-ray datasets. Developed Knowledge
Distillation (KD), a new technique for
compacting and accelerating neural
networks, to maintain comparable
performance while keeping the
constraints in mind.

To generate the synthetic data used
for KD, a publicly available frozen
DenseNet-121 model trained on
CheXpert for chest X-ray image
generation was used. The method
does not allow the server to perform
model inversion attacks since the
model parameters are never shared.

The method
outperforms
FedAvg by
15% on both
datasets in a
difficult
environment.

-
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Table 10. Cont.

Ref Datasets Arch. IDM RG Propose Contributions Limitations Accuracy

[24] CheXpert and
Mendeley

CNNs (Dense-
Net121 and
ResNet50)

Chest
X-ray

Federated learning
for chest X-ray
pneumonia
classification to
prevent data privacy
attacks.

Propose an FL as a solution for
privacy-preserving distributed learning
by integrating Rényi differential privacy
with a Gaussian noise mechanism into
the federated learning process.

Used 2 architectures pre-trained on
ImageNet data, showing that the
classification produced better results
on Mendeley than on CheXpert
data. Images reconstruction from
shared model updates within the FL
setting from networks using the
DLG attack. Used FedAvg
aggregation strategy to send local
models back to the server.

The
effectiveness
of model
aggregation is
limited by
data
heterogeneity
and
imbalance.

-

Table 11. Summary of studied articles related to X-ray images (2 of 3). Ref means Reference, IDM means Input Dimension and Imaging Modalities, Arch means
Model Architecture(s), and RG means Research Goals.

Ref Datasets Arch. IDM RG Propose Contributions Limitations Accuracy

[25] DarkCOVID,
ChestCOVID

GAN,
CNNs

COVID-19
X-ray

FL scheme (FedGAN) to
generate realistic
COVID-19 images, in
order to facilitate
privacy-enhanced
COVID-19 detection
with GANs in edge
cloud computing.

COVID-19 multiclass
classification with a
blockchain-based FedGAN
framework for security.

Enhances COVID-19 data privacy and
detection performance with a
blockchain-based FedGAN framework
for secure COVID-19 data analytics.
Compared to the state-of-the-art
schemes, the proposal has a high
detection accuracy rate and a low
running time. Achieves significant
accuracy by combining FL and GAN,
composing the FedGAN.

GAN models have a high
computational cost.
Limitations on Edge nodes on
its resources to train image
datasets, which are needed for
an FL-GAN process to have a
better result.

Accuracy of
99.2% and
98.5% on the
DarkCOVID
and
ChestCOVID
datasets,
respectively.

[26]

COVIDX8,
composed of
sub-datasets
from
open-source
chest
radiography
datasets

CNN
(ResNet18)

Chest
X-ray

COVID-19 detection.
Dynamic fusion FL framework
to detect COVID-19, called
FedFocus.

Applied a blockchain-based solution to
decentralize the aggregation process.
Highly restores the imbalance of the real
dataset by simulating the division of the
training set based on the population and
the infected cases of 3 real cities.
Compared to FedAvg, FedFocus had
significantly better stability.

Imbalance of samples in each
training set of
non-independent and
identically distributed
(Non-IDD) data, resulting in
different training losses. The
aggregation method and the
optimal setting have the same
effect on the optimal dynamic
and resilience factors.

FedFocus has
achieved sim-
ilar accuracy
to FedAvg,
both higher
than 92%.
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Table 12. Summary of studied articles related to X-ray images (3 of 3). Ref means Reference, IDM means Input Dimension and Imaging Modalities, Arch means
Model Architecture(s), and RG means Research Goals.

Ref Datasets Arch. IDM RG Propose Contributions Limitations Accuracy

[27]
A public pediatric
pneumonia dataset
called MedNIST

CNN
(ResNet18)

Chest
X-ray

Classifies pediatric
chest X-ray images
into one of three
categories: normal
(no signs of infection),
viral pneumonia or
bacterial pneumonia,
using large and
multi-national
datasets.

Proposed an FL-based
solution, created to be an
open-source software
framework called
Privacy-preserving Medical
Image Analysis (PriMIA).

Compatible with a wide range
of medical imaging data formats,
user-configurable, which
introduces functional
improvements to FL training.

High computational
cost on an imbalanced
dataset. High data
quality on nodes is
needed to succeed in
FL models.

The best
accuracy was
91% on
training and
92% on
validation,
which
occurred in
the centrally
trained
experiment.

[28]

A public chest X-ray
dataset acquired from
the Department of
Health and Human
Services,
Montgomery County,
Maryland, USA, and
Shenzhen No. 3
People’s Hospital in
China.

CNNs
(VGG-16
and
ResNet50)

Chest
X-ray

Chest X-ray images
classification to
identify COVID-19
from non-COVID-19
cases.

Proposed 2 FL architectures
based on non-independent
and identically distributed
(Non-IID) data, using
unbalanced data.

The first study addressing the
problem of federated learning
on X-ray images for COVID-19
detection. CNNs applied
pre-trained weights on
ImageNet. The FL framework
led to a comparable performance
with a centralized learning
process and remained robust.

Needed to apply data
augmentation on the
experiments once a
small dataset was
used.

Accuracy of
94.40% on
FL-VGG16
with data
augmentation,
and 97.0% on
FL-ResNet50
with data aug-
mentation.
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Table 13. Summary of studied article related to histology images. Ref means Reference, IDM means Input Dimension and Imaging Modalities, Arch means Model
Architecture(s), and RG means Research Goals.

Ref Datasets Arch. IDM RG Propose Contributions Limitations Accuracy

[29] Private datasets from
multiple institutions ResNet50

Histology whole-slide
imaging (WSI) with only
slide-level labels.

FL for digitized gigapixel
whole-slide images for
binary and muti-class
classification on breast
cancer and renal cell
cancer.

Proposed an FL-based
solution focusing on
weakly supervised
deep-learning models to
demonstrate the
feasibility and
effectiveness of
privacy-preserving using
only slide-level labels for
supervision on survival
prediction.

Software package
available for usage on
the GitHub website,
enabling multiple
institutions to integrate
their WSI datasets and
train their models. The
developed FL framework
has the clear potential to
be utilized in numerous
crucial computational
pathology assignments
beyond those
demonstrated in this
study.

Limited to weakly
supervised federated
multiple-instance
learning.

Best-balanced accuracy
of 0.900 ± 0.020 on Renal
Cell Carcinoma (RCC) on
sub-typing test reported
as a five-fold mean. The
best-balanced accuracy
of 0.756 ± 0.026 on
Breast Invasive
Carcinoma (BRCA) as to
the sub-typing test was
reported as a five-fold
mean, both in a
federated environment
where α = 0.1.
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3.1. Magnetic Resonance Imaging

Among the ten selected articles related to MRI, half (5) proposed Convolutional Neural
Networks (CNNs) containing several deep layers to extract features from the input images.
Of those five articles, two used pre-trained models: one used ResNet34 and U-Net [7], and
the other article used six pre-trained models [6] and applied a CNN ensemble combining the
three best models based on the average accuracy (InceptionV3, VGG16, DenseNet) for the
Voting Ensemble model. From the group of CNNs, only 1 (one) article used convolutional
auto-encoders [13], and two articles developed end-to-end CNNs [13,30]. The remaining
articles did not make use of CNNs and applied different architectures, including one article
that used Single Task Model (STM), Shared-bottom Model (SBM), and Multi-gate Mixture
of Experts (MMoE) [14], another Graph Convolutional Neural Networks (GCNs) [15], other
Multi-layer perceptron (MLP) [31], another DAG’s [11] and a last one MoCo [12].

In terms of used datasets, in [14,15,31], the experiments were conducted on the same
dataset, called Autism Brain Imaging Data Exchange (ABIDE). With small datasets, common
techniques were applied in the pre-processing step, mainly of data augmentation [10,14,30].

3.2. Computed Tomography

Among the five reviewed articles related to CT imaging, in all of them, private large
datasets were used, and the research goal was related to COVID-19. They also used
pre-trained models to train their CNN-based models, such as VGG-16 [16], an improved
version of RetinaNet18 [17]. GhostNet, ResNet50, and ResNet101 were used as pre-trained
models using 3D U-shape fully convolution networks (FCN) as the baseline model [18].
Those studies deal with a common topic, and the applied FL framework suffers from high
computational cost and communication efficiency issues.

The authors of [20] proposed an architecture for a Dynamic-Fusion-Based Federated
by conducting experiments in two types of images: CT and X-ray images. They used three
public datasets and applied CNN-based models: pre-trained GhostNet, ResNet50, and
ResNet101 models.

Knolle et al. [19] used CT images for pancreatic segmentation and MR images for
brain tumor segmentation, both on private datasets, and applied a CNN in a pre-trained
model called MoNet, a shallow U-Netlike architecture, giving the possibility to extract
more robust features, which generalize better to out-of-sample data.

3.3. X-ray

Among the seven selected articles about X-ray images, all of them used CNNs, six used
pre-trained models, and almost half of them applied more than one pre-trained model to
compare results [21,22,26]. They used ResNet18 and ResNet34, DenseNet121 and ResNet50,
VGG-16, and ResNet50, respectively, and share some common models.

Nguyen et al. [23] used a generative adversarial network (GAN) that generates realistic
COVID-19 images to facilitate privacy-enhanced COVID-19 detection with GANs in edge
cloud computing and applied them on an FL scheme called FedGAN.

The authors in [24,25] used chest X-ray images for COVID-19 and Pneumonia detec-
tion, respectively, and both applied ResNet-18 as a pre-trained model. In [24], it is proposed
an architecture for a Dynamic Fusion FL Framework and two strategies were compared:
FedAvg and FedFocus, where both achieved similar results. On the other hand, in [25], the
authors proposed an open-source software framework called Privacy-preserving Medical
Image Analysis (PriMIA), but the proposed solution had a high computational cost due to
the imbalanced dataset used.

As shown in Tables 10–12, all the selected articles indicate high accuracy (if reported)
achieved using the proposed FL approach. Feki et al. [26], for example, achieved a high
accuracy after applying data augmentation to the training data.
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3.4. Histology

The single article found in the performed literature search that is related to histol-
ogy images used different private datasets to predict and solve two different diagnostic
problems: classification of breast and renal cell cancers. It used thousands of histology
whole-slide images with only slide-level labels and a pre-trained ResNet50 CNN encoder.

There is a lack of annotations in most real-world whole-slide histopathology datasets,
and as explained in [27], the proposed FL solution can be linked to weakly supervised
multiple-instance learning to solve binary and multiclass classification problems. In addi-
tion, it presented accurate results without direct data exchange and its related intricacies
while likewise maintaining differential privacy through randomized noise generation.

4. Frameworks

FL strategies help AI solutions enrich data on the training dataset, generating more
accurate results by allowing multiple collaborators to build a robust machine-learning
model using a large dataset. This is possible because there is no direct data sharing, as
federated learning prioritizes the privacy of patients’ data. In the health field, for example,
when new hospitals participate in this collaborative environment, they bring more data
and more computational resources. Although individual hospitals that do not have a large
dataset can benefit from the rich datasets without providing much data, it can be, at the
same time, a concern to big hospitals. There can be another challenge of equitable allocation,
where a hospital may produce considerably more images than another, but the diversity of
its images may be low. Differences in images in terms of acquisition protocols and labeling
methodologies, coming from different devices, may contribute poorly or even negatively
to the central model as well.

Some open-source software solutions are available for secure bioscience collaboration
based on FL, as the ones presented in the following sections.

4.1. OBiBa

According to the OBiBa website, OBiBa is an international project that offers open-
source software for epidemiological studies [28] and is suitable for applications built on a
federated database infrastructure. The software includes five main tools, which are:

• Collect with Onyx: web application to collect data in clinics or assessment centers and
manage interviews;

• Store and Document with Opal: central data repository for epidemiological studies;
• Analyze with R and DataSHIELD: uses Rock server application (Rest API) to provide

statistical analysis services without accessing individual-level data;
• Publish with Mica: a web application that can be used to create web data portals for

epidemiological studies [28]. This tool provides accessibility to query datasets stored
in Opal databases, search variable dictionaries, and create study catalogs;

• Manage Users with Agate: central authentication server, which can be used for
email notification services. This might help notify researchers of new data available
for studies.

OBiBa infrastructure enables researchers to access patients’ medical information re-
lated to epidemiology but does not allow access to personal data, such as the address or
phone number of the patients. This infrastructure helps researchers to create studies or
collect more data by respecting data privacy, and the process of enriching data improves
the quality of the study once there is data diversity from which models learn.

4.2. DataSHIELD

DataSHIELD is free and open-source software developed for biomedicine, social
science, and public health, which uses the OBiBa infrastructure. This analytical tool has
been used to develop projects in collaboration with health by impacting social effects,
lifestyle, and healthcare [29].
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A large dataset contains images suitable for analyzing “remotely”, but transferring
them has a high computational cost and a risk of leakage once shared throughout the
network. In addition, as already mentioned, privacy data are crucial in the health sector
because institutions deal with ethical issues when dealing with patients’ data, where
security and data confidentiality are important factors to consider.

DataSHIELD is helpful for co-analysis of individual-level data from multiple studies
or sources, but not physically sharing them.

4.3. Virtual Pooling and Analysis of Research Data

Virtual Pooling and Analysis of Research Data (ViPAR) is a software platform that
implements database federation techniques. Researchers can remotely analyze datasets
located in different locations across the globe with a web-based environment. ViPAR is an
open-source, simple, powerful framework for centralized data management and facilitates
the sharing of research data, respecting ethical and privacy issues [32]. The tool facilitates
the standard analyses without accessing individual-level data, which is pre-configured for
R, SAS, and Stata programming languages and can be shared with other researchers.

Regarding comparison, Vipar pools site-specific raw data, while DataShield pools
site-specific statistics. In this way, DataShield can be considered a better tool in terms of
collaborations since no data leaves a particular site on any occasion, while ViPAR analysis
data leave a data-contributing site momentarily [32].

4.4. Data Safe-Havens

According to Burton et al. [33], data safe-havens (DSH) make for a secure database for
sensitive data related to biomedicine, health, and healthcare systems, accessible only by
authorized users with an appropriate informatics system and governance, who are working
on projects and investigations that enhance these fields.

In a secure and reliable environment for performing medical studies, DSH provides
access to medical records, financial data, and other sensitive information. It follows compli-
ance regulations, respects data protection policies, and helps reduce the risk of data breaches
and cyberattacks, facilitating collaboration among researchers by accessing sensitive data
in a secure environment.

However, maintaining DSH can be expensive since it often requires significant financial
and technical resources. DSH can also restrict or limit access to specific data types, resulting
in difficulties for researchers accessing it. Researchers may also face difficulties regarding
inconsistent policies, where each environment may be under data protection policies that
differ from others.

The decentralized nature of federated learning, facilitated by data safe-havens, cham-
pions privacy by design, allowing data to stay within its source and preventing the need for
centralized data repositories. Nevertheless, the effectiveness of data safe-havens depends
on the robust implementation of privacy-preserving techniques, and there remains a risk of
privacy breaches if not executed carefully.

Although data safe-havens promote collaboration and collective model training, a
critical challenge emerges in finding a balance between collaboration and upholding data
privacy. The system must manage potential trade-offs between improving model quality
through diverse datasets and the necessity to safeguard highly sensitive information.
In the context of federated learning, it is essential to guarantee the sustained success of data
safe-havens through continuous evaluation and adaptation to evolving security threats
and regulatory changes.

The concept of DSH in AI is becoming increasingly important as AI systems become
more complex and integrated into everyday life.

5. Discussion and Conclusions

There are several studies proposing different federated learning approaches for disease
identification and classification, going from lower to higher complexity.
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Most of the reviewed articles were published last year, which proves that researchers
are becoming interested in this field, and FL has the potential to inspire and attract them
to advance in the development of more competent AI-based medical imaging solutions.
Moreover, most authors use CNNs to extract features from the input images and use
pre-trained models, which enables neural network models to learn faster.

The authors have used different approaches, datasets, and architectures to build their
FL frameworks, but overall, MR images have led to better accuracy than CT and X-ray
images, and that might be the reason why MR images have gained more attention in
the studied articles, once MR images are a better option than X-ray or CT images when
specialists need to visualize soft tissues. Likewise, there are several publicly available
datasets of MR and X-ray images, but just a few with CT images, and this research difficulty
should be addressed.

Histology images are another important type of medical imaging modality that facili-
tates clinical decision-making, but there is a lack of FL solutions for this type of image, as
demonstrated in the presented literature search. In this way, there are opportunities and
demands for those images to be explored in an FL environment to solve different problems.

The direct quantitative comparisons between models applied on different datasets
are unsuitable because each study has a different context and goal, e.g., detecting lung
abnormalities in COVID-19 patients or binary classification to diagnose a brain tumor.
However, the selected articles show that the FL-based frameworks have yielded interesting
and promising results.

The use of multiple techniques in federated learning is due to the need to address
the diverse and dynamic nature of decentralized data, as well as to optimize commu-
nication efficiency, enhance privacy, and fortify the system’s robustness in the face of
diverse challenges.

More than one dataset was considered in most of the reviewed articles because it
contributes to increased model generalization by providing a more comprehensive under-
standing of data patterns. Additionally, incorporating diverse datasets enhances model
robustness and resilience to variations, addresses biases, promotes fair models, and adapts
to heterogeneous environments.

This article also summarized free open sources for bioscience collaboration, which
aims to improve human health through science. OBiBa, DataSHIELD, and Vipar encourage
collaborative learning using federation principles and facilitating research relationships.
In addition, data safe havens can support researchers in storing, analyzing, and working
on confidential individuals’ data. These environments protect sensitive personal data,
establish strict data protection policies, and are accessible only by authorized personnel.

From the current review, it can be realized that in the near future, researchers, clinicians,
and hospitals might use more frequent applications that utilize FL to predict mortality,
propose treatments to start earlier improvement of patient care and maintain the security
of patient data.

Through its comprehensive review, this survey can be used as a reference for future
explorations in the FL medical domain.
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