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Abstract: Field Programmable Gate Arrays (FPGAs), renowned for their reconfigurable nature, offer
unmatched flexibility and cost-effectiveness in engineering experimentation. They stand as the
quintessential platform for hardware acceleration and prototype validation. With the increasing
ubiquity of FPGA chips and the escalating scale of system designs, the significance of their accompa-
nying Electronic Design Automation (EDA) tools has never been more pronounced. The placement
process, serving as the linchpin in FPGA EDA, directly influences FPGA development and operational
efficiency. This paper introduces an FPGA placement methodology hinging on the Verilog-to-Routing
(VTR) framework. We introduce a novel packing approach grounded in the weighted Edmonds’
Blossom algorithm, ensuring that the CLB generation strategy aligns more closely with load-balanced
distribution. Furthermore, we enhanced the electric field-driven resolver placement process for
CLB locations and leverage GPU-accelerated design. Experimental results demonstrate substantial
improvements over the traditional VTR algorithm, with an average optimization of 28.42% in the
packing process runtime, an average acceleration ratio of 2.85 times in the placement phase, and a
39.97% reduction in total packing and placement runtime consumption.

Keywords: FPGA; EDA; packing; placement; GPU acceleration; methodology

1. Introduction

In recent years, the rapid growth of emerging applications, including the Internet
of Things, intelligent computing, and medical electronics, has driven increased market
demand for application-specific integrated circuits (ASICs) [1–3]. Field Programmable
Gate Arrays (FPGAs), known for their reconfigurable nature, offer flexible configuration
and cost-effective engineering experimentation. They stand as an ideal development plat-
form for hardware acceleration applications and prototype validation [4,5]. The numerous
advantages mentioned above have led to their widespread adoption. The design of FP-
GAs heavily relies on computer-aided tools (EDA). Within the entire FPGA EDA process,
placement represents a pivotal and computationally intensive phase. This step determines
the physical placement of various instance units in the design, directly impacting FPGA
development and utilization efficiency.

FPGA placement is an NP (nondeterministic polynomial time)-complete combinatorial
optimization problem. Early research in FPGA placement in both industry and academia
often relied on heuristic algorithms based on simulated annealing [6,7], with a notable
example being the Versatile Place and Route (VPR) tool [6,8]. These approaches generated
initial solutions in a random manner and perturbed the current solution through global or
local exchanges, substitutions, movements, duplications, and other operations to generate
new solutions, while these methods can yield relatively desirable placement results, they
are associated with longer execution times when dealing with large-scale circuit placement
problems [9]. In the subsequent development, both industry and academia transitioned
towards minimum-cut algorithms for placement research, with a prominent example being
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PPFF [10]. These methods employ a recursive netlist partitioning approach, subject to
specific constraints, iteratively breaking down the larger placement problem into smaller
sub-placement problems. This step-wise process reduces the computational complexity of
circuit design but may introduce delays in critical paths. By incorporating graph algorithms
and hypergraph partitioning concepts [11,12], minimum-cut algorithms can handle designs
comprising thousands of gate units. However, as the gate counts of FPGAs have grown to
several million, analytical methods have consistently outperformed the minimum-cut tech-
niques in terms of runtime efficiency and the quality of physical designs. In contrast to the
methods mentioned above, analytical techniques describe the placement problem as a more
intricate optimization challenge and leverage a diverse set of gradient descent methods for
solving it. Analytical methods can be further categorized into quadratic methods [13,14]
and non-linear methods [15–17]. Quadratic solving entails objective functions composed
of quadratic polynomials. Optimal placement results are obtained by solving equations
where the first-order derivatives equal zero. Non-linear methods, conversely, use objective
functions based on higher-order non-linear equations. Prominent examples of analytical
methods include QPF [18], CAPRI [19], StarPlace [20], UTplaceF [14], elfPlace [16], and
commercial FPGA placement solvers. Presently, commercial FPGA placement solutions
predominantly rely on analytical methods and are recognized for their superior overall
performance. In recent years, within the realm of large-scale digital integrated circuit
placement research, placement tools based on machine learning methods have begun
to emerge [21,22]. These include Google’s EDA achievements based on reinforcement
learning [23], the RLPlace placement tool based on reinforcement learning [24], and the
DREAMPlace and DREAMPlaceFPGA frameworks with GPU acceleration [25,26]. How-
ever, at this stage, addressing the entire process from the circuit netlist to placement remains
a challenging endeavor, and the exploration of FPGA placement using artificial intelligence
methods is still in its nascent stages [21,27].

This paper presents a novel framework-integrated placement methodology for com-
mercial FPGA processor chip platforms. Firstly, the proposed placement method covered all
instance types, and the CLB generation process was constructed using a weighted Edmonds’
Blossom algorithm. Secondly, GPU-based global placement was achieved for industrial-
grade netlist circuits, and the entire packing and placement process was completed. Finally,
placement experiments were conducted on general netlist circuits, validating the engineer-
ing application value of the proposed EDA methodology. Experimental results reveal an
average 28.42% optimization in the packing process time, an average acceleration ratio of
2.85 times in the placement phase, and a 39.97% reduction in total packing and placement
time compared with traditional VTR.

The rest of this paper is organized as follows. Section 2 introduces the preliminaries of
this work. Section 3 presents details of our methodology and algorithm details. Section 4
demonstrates the experimental results. Finally, Section 5 concludes the paper.

2. Related Work

FPGAs are programmable logic chips with a dynamically configurable logic circuit
structure that offers increased flexibility and customizability for diverse applications. De-
spite being manufactured by different vendors, FPGA chips share a similar architecture,
differing only in minor local hardware configurations. Figure 1 provides a consolidated
overview of the FPGA placement and routing architecture, including the configurable logic
block (CLB), digital signal processor (DSP), block random access memory (BRAM), buffer
(BUF), and I/O (IO) components. The right side of the figure also depicts the internal
structure of the CLB, which consists of several basic logic elements (BLEs), where BLEs are
composed of look-up tables (LUTs) and flip-flops (FFs).
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Figure 1. A representative FPGA placement architecture schematic.

VTR (Verilog to Routing) encompasses a suite of computer-aided design (CAD) tools
adaptable to diverse FPGA architectures. Figure 2 outlines the tool process from netlist-level
circuits to bitstream generation. Given that the quality of wiring results is predominantly in-
fluenced by the placement positions of all instances, the placement phase becomes a pivotal
process impacting the entire FPGA EDA tool. Previous research efforts have typically ad-
dressed specific issues within the placement process for optimization. It receives the netlist
file produced by the synthesis tool, carrying out packing, placement, and performance
analysis operations. Eventually, it maps the bitstream file onto the FPGA. The placement
process depends on the strategy outcomes of the packing phase. The FPGA packing phase
needs to address the allocation of resources to be placed, including the usage of CLB re-
sources and the allocation of resources within the CLB. Subsequently, a predefined number
of BLEs are placed within a specific CLB, adhering to predetermined value constraints
and optimization conditions. The internal configuration of the CLB remains generally un-
changed throughout this process. In the VTR flow, the packaging process logically assigns
the circuit netlist to the available resource blocks of the FPGA device, and the resulting
information is saved to a .net file. This .net file comprehensively describes the CLB and
its associated logic, incorporating details like interconnections, inputs, outputs, and clock
signals. Upon completing the packing phase, a placement operation is executed on the
circuit. The placement process allocates the resource blocks generated during packing to
valid grid locations, optimizing paths and timings. This results in the output of a .place
format description file, which details the physical location of all CLB instances. Despite
the widely employed simulated annealing algorithm in the placement phase of VTR as
a heuristic method, its essence lies in the iterative placement optimization of macrocell
modules, resulting in a low granularity of the placement solution. Furthermore, the random
placement algorithm for initialized placement struggles to guarantee the placement quality
for large-scale circuits, with challenging control over the algorithm’s convergence time.
Confronting the characteristics and limitations of the VTR framework, this study embarked
on the optimization of the packaged placement algorithm and methodology.
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Figure 2. The traditional methodology of FPGA EDA. Among other aspects, the EDA database covers
the FPGA architecture, constraint information, and graph database. Plug-in class tools include the
parser and static timing analysis (STA) tool.

3. Approach
3.1. Proposed Methodology

The proposed methodology is illustrated in Figure 3. Specifically, a dedicated parser
device is crafted for handling input data in eblif format netlists. Leveraging the VTR netlist
read function, this parser extracts essential graph information from the netlist, subsequently
integrating it into the optimized DREAMPlaceFPGA framework based on the bookshelf
format data. To achieve compatibility with the standard netlist data format, we introduced
example additions and modified data interfaces during parsing. The overall workflow in-
volves executing a global placement task using GPU acceleration and seamlessly importing
the results into the VTR database. A pivotal aspect of our approach is the introduction of a
CLB packing process, grounded in Edmond’s matching algorithm. This process was fol-
lowed by the development of a CLB legalization process, informed by the outcomes of the
packing strategy and global placement data. The results obtained from this comprehensive
process serve as the initial state for our parsing method. Building upon this foundation, we
employed a sophisticated parsing technique that not only reuses the placement results but
also iteratively enhances them to yield refined CLB placement results. These results were
then fed into the VTR router, completing the entire process. The proposed methodology
integrates seamlessly into the design flow, optimizing the placement of CLBs within the
FPGA architecture for enhanced performance and efficiency.

Figure 3. The proposed methodology of FPGA packing and placement.

3.2. Parser Design

A key element of the methodology integration process is the parser, and different
database types are used between the VTR and GPU acceleration frameworks. Thus, the
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custom database was designed to bridge the following gaps. GPU acceleration makes
use of the bookshelf file interface format, which consists of the following files: .lib for
instance unit properties (pin definitions and directions), .node for units to be placed and
their types, .net for logical wire and unit graph relationships, .scl for logical resource
distribution in the FPGA chip, and .pl for IO instance position information. The third-
party parsing libraries Flex and Bison are used by the GPU acceleration framework to
automatically generate grammar programs. The sections on declarations, rules, and C code
comprise the core programs. The Flex and Bison libraries’ source code was changed to
adapt the lexicon rules for the synthesized netlist text [28]. For example, there is an instance
called $techmap1163296$abc$1140382$lut$aiger1140381$99963 in the circuit netlist file. The
Bookshel f Scanner.ll file’s rule definition for STRING must be changed to [$A-Za-z][\ \ \
][A-Za-z0-9_\ / \ [\]\-\$\.\:]* in order to parse it as bookshelf data.

3.3. CLB Packing Design

The VTR tool offers a comprehensive packing function based on a greedy algorithm
and seed strategy, featuring intricate constraints to address considerations, making it
well-suited for small-scale engineering scenarios. However, the current VTR packing and
placement exhibit relative independence, particularly with the packing phase being time-
consuming. This presents a significant opportunity for runtime optimization. To address
this, our study focuses on refining the CLB merger generation strategy. We propose a CLB
generation strategy based on Edmond matching, aiming to enhance the efficiency of the
packing phase. The key adjustment involves conducting CLB clustering generation in strict
accordance with logical relationships. By increasing the number of CLB clustering instances,
we aim to not only improve packing time but also significantly increase the volume of
placement tasks. The motivation behind this approach is to exploit GPU acceleration
technology more effectively. This involves leveraging the parallel processing capabilities of
GPUs to handle a larger number of placement tasks concurrently. Our strategy is illustrated
in detail in Figures 4–6. The LUT and FF graphs are established using information from
the static timing analysis report (Figure 4 illustrates the initial state relationship of the
node graph, encompassing nodes 1–24, utilizing a directed graph to represent time paths
between cells with node weights calibrated by static timing results). Subsequently, the
hypergraph of the register group is derived through the HCS (Highly Connected Subgraph)
algorithm [29], as depicted in Figure 5, forming clustering points H1(2,3), H2(13,14), and
H3(18,19). This newly formed hypergraph enables the calculation of the evaluation function
and constraint function. The evaluation function, in this study, is expressed as the sum
of weights, while the constraint function considers the number of cells accommodated
within the CLB and the total number of CLBs. Employing the Edmond maximum weight
matching algorithm [30], clustering results were obtained to ensure relative balance within
each CLB block. Figure 6 illustrates the formation of division regions, with each region
capable of independently performing CLB generation.

Figure 4. Several LUT and FF relationship graphs.
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Figure 5. After HCS merging, several LUTs and FFs are hypergraphically interconnected.

Figure 6. Schematic diagram illustrating the formation of CLB division regions.

We constructed an undirected weighted graph Node = (V; E). The pseudo-code of the
weighted Edmonds’ Blossom algorithm for CLB packing is summarized in Algorithm 1.
Each connected subgraph is constructed by the HCS merging process. Nodes and edges
are added into the subgraph in a breadth-first search manner. When the subgraph stops
growing, the max-weighted matching is run on the constructed subgraph, and mergings
corresponding to matched edges are committed to the graph. The loop of constructing
subgraphs, solving max-weighted matching, and committing matched mergings is iterative
and stops when no more merging can be performed.

Algorithm 1 Weighted Edmonds’ Blossom Algorithm for CLB Packing

Require: CLB division regions are planned.
Ensure: LUTs and FFs relation graph built.

1: while ture do
2: Initialize data structure.
3: num_matching←− 0
4: for v ∈ V do
5: HCS merging process.
6: Edmonds’ blossom matching process.
7: end for
8: if num_matching meet constraints then
9: return

10: end if
11: end while

In summary, our study introduces a novel CLB generation strategy based on Edmond
matching, emphasizing the logical relationships between CLBs. This strategic adjustment
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is anticipated to optimize the packing phase of VTR, leading to reduced runtime and
improved efficiency. The proposed approach holds potential for unlocking the benefits of
GPU acceleration technology, enabling more scalable and efficient placement in VTR for a
wider range of engineering scenarios.

3.4. Improvements to the GPU Acceleration Framework

The DREAMPlaceFPGA framework is currently in its early stages, offering a significant
advantage by presenting a generalized solution for GPU-based EDA problems, albeit
primarily focused on global placement challenges [26]. The framework encompasses
various operators within its op layer, including adjust_node_area, clustering_compatibility,
dct, demandMap, density_map, pin_pos, pin_utilization, place_io, precondWL, rmst_wl,
rudy, utility, and weighted_average_wirelength. To enhance its practical applicability,
particularly for netlist circuits adapted to general-purpose use (refer to the parser section for
specifics), additional considerations should be made to meet the resource requirements of
the target FPGA chip. Specific instances on the DREAMPlaceFPGA side, such as the adder
unit (CARRY) and data selector (MUX) for the developed FPGA chip, need supplementation
in line with the resource demands of the adapted FPGA. The original framework leads
to unclear goals of optimization because it considers too trivial instance placement. To
optimize DREAMPlaceFPGA placement outcomes, a direct CLB placement method based
on IO port anchors was designed. Given DREAMPlaceFPGA’s flexibility regarding the
number of instances for placement processing, a global placement approach is adopted
for all instances, while other tasks are executed within the VTR framework. In the current
phase, the DREAMPlaceFPGA framework functions as a subprocess in the methodology,
playing a role akin to that of a chip coprocessor.

In our project, the global placement algorithm of the GPU acceleration framework is
extracted as a sub-process within the fusion framework. The global placement method,
as illustrated in Figure 7, initiates with a CLB initialized placement phase, distributing
cells within the placement area’s center and arranging them randomly. Subsequently,
the core computation of global placement is seamlessly integrated into the deep learning
framework. Equation (1) characterizes the classical optimization objective function for
global placement, where D(x, y) denotes the density statistics of instance objects at the
position (x, y) and We(x, y) represents the HPWL statistics of net e in the set of nets E.
The unit density control factor is indicated by λ. A more sophisticated nonlinear global
placement algorithm is presented in elfPlace [16]. The Weighted Average (WA) model
can be introduced based on the definition of electrostatic placement. Equation (2) ex-
presses the HPWL (Half-Perimeter Wirelength) statistics of net e, Equation (3) expresses
the WA statistics in the x direction, and Equation (4) describes the overall WA wirelength
statistics. The solution objective of the nonlinear placement problem is corrected based
on the Augmented Lagrange Method (ALM) [31] by comparing the potential density of
the electrostatic system and the WA wirelength model, as shown in Equation (5). Here,
the device set s ∈ S = {CLB, IO, DSP, RAM}, and λs and ϕs indicate the density control
factor and the expression for electrical energy, respectively. The expression for the electrical
energy calculation can be based on the Poisson distribution for column writing, where
cs stands for the quadratic control factor. The α and β then denote the tuning factors to
obtain more optimized results. The discrete trigonometric function transformation method
is used to solve the electrostatic Poisson equation. The neural network training problem in
Equation (1) is converted into a GPU-accelerated framework for FPGA placement. In order
to create deep learning solution mapping, coordinate data y are used as the label quantity
when coordinate data x are input into the neural network. Different device units can be
regarded as distinct objects for placement calculations in the FPGA placement process. The
overall score of the current distribution is derived from a combination of HPWL and timing
estimation results. The iterative process is controlled by evaluating the incremental percent-
age, as illustrated in Figure 7. Upon successful DSP/RAM legalization verification, the CLB
undergoes adjustment for legalized placement and subsequent incremental optimization.
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Figure 7. The GPU acceleration framework for CLB global placement based on DREAMPlaceFPGA.

min
x,y

f (x, y) = lim(∑e∈EWe(x, y) + λD(x, y)) (1)

W(x, y) = ∑
e∈E

(max
i,j∈E

∣∣xi − xj
∣∣+ max

i,j∈E

∣∣yi − yj
∣∣) (2)

W̃ex =
∑i∈e xiexp( xi

γ )

∑i∈e exp( xi
γ )
−

∑i∈e xiexp(−xi
γ )

∑i∈e exp(−xi
γ )

(3)

W̃(x, y) = ∑
e∈E

(W̃ex + W̃ey) (4)

min
x,y

f (x, y) = α · W̃(x, y) + β ·∑
s∈S

λs(ϕs(x, y) +
cs

2
ϕs(x, y)2) (5)

3.5. Incremental Optimization

CLB legalization is required based on the GPU-accelerated global placement results
and the CLB clustering generation strategy. The goal is to give each CLB instance a rea-
sonable location that is closest to the results of the GPU-accelerated global placement.
Algorithm 2 presents the comprehensive algorithm design for the placement of CLB le-
galization. The main concept of discrete search in the surrounding area is incorporated
into the overall algorithm. The discretized vector data type bin_source, which completely
encapsulates the FPGA’s physical resource information, is used to represent the layoutable
resources in the GPU-accelerated global placement results. The legalized locations of CLB
instances, indicated by the variable clb_legal_location, are the output data. In Step 1, in-
stance unit weights are sorted by criticality based on CLB cluster/class score statistics and
physical constraints; the array of CLBs pending legalization is denoted by sort_clb. The
storage identifier in each CLB database is represented in Step 2 by blk_id. The horizontal
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and vertical coordinates are calculated using the nearest neighbor algorithm, and the associ-
ated solving function is designated as nearest_location(blk_id). As explained in Algorithm
Step 3, the computation results are kept in the clb_location structure database. Step 4
verifies the legality of bin_source and clb_location based on placement rules, in accordance
with the patterns of physical resource allocation in domestic FPGAs. This is achieved by
verifying whether the location is occupied by other instances, whether resource conflicts
exist, and whether it corresponds with the physical characteristics of the corresponding
instances. If the constraints are satisfied, the legal placement information can be output.
Otherwise, incremental adjustments to the location coordinates in the neighboring region
are made to achieve legal placement for CLBs.

Algorithm 2 CLB Legalization

Input: global_location, FPGA source, bin_source.
Output: CLB Legalization Location: clb_legal_location.
1: Instance unit weights sorted to form initial to-be-legalized array sort_clb.
2: for (autoblk_id : sort_CLB) do
3: clb_location nearest_location(blk_id)
4: if bin_source, clb_lacation, Legalization rule determination then
5: push_back(clb_location)
6: else
7: Incremental adjustment of the calculated value of the coordinates.
8: end if
9: end for

Based on the VTR API, an incremental placement is achieved by reducing the process
iteration to optimize the placement quality. The specific algorithm design is illustrated in
Algorithm 3, where the input is the legal CLB placement, clb_legal_location, and the output
is the optimized CLB placement, denoted as clb_optimized_location. The VTR parsing API
function AP_run( ) is utilized for calculations, considering constraints. The iteration count
N is adjusted to control the runtime overhead of detailed placement, where HPWL needs
to adhere to local optimal constraints, and timing results should meet design requirements.

Algorithm 3 CLB Incremental Placement
Input: CLB Optimized Location.
Output: CLB Legalization Location: clb_legal_location.

while Number of iterations N && HPWL local optimal solution && Timing result satisfied do
2: AP_run( )

Collect statistical HPWL and timing results.
4: N- -

end while

4. Experimental Results

All experiments presented in this paper were conducted using the FPGA general-
purpose interface development board. The FPGA chip model employed is part of the Zynq
UltraScale+ series developed by Xilinx Corporation [32]. Figure 8 illustrates a schematic
diagram of the development board along with the corresponding FPGA chip sample. The
XCZU7EV-FFVC1156AAZ is fabricated using the 16 nm FinFET process node and boasts
specifications including 504K logic cells, 230.4K LUTs, 1728 DSPs, and 11Mb BRAM. It
adopts a stacked modularized placement, reinforcing the hierarchical characteristics of the
overall architectural design.
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Figure 8. The schematic diagram of the development board and corresponding XCZU7EV-
FFVC1156AAZ chip.

The benchmark circuit test set was selected from open-source test benchmarks in VTR
and OpenCores [33,34]. The baseline program for comparative experiments utilizes the VTR
source code. Our methodology, which combines the proposed algorithm and GPU accelera-
tion with the VTR framework, focuses on comparing the time required for the packing and
placement processes. The GPU acceleration methodology extends the PyTorch and DREAM-
Place frameworks [25,26,35]. The included operator (op) layers consist of adjust_node_area,
clustering_compatibility, dct, demand_map, density_map, pin_pos, pin_utilization, place_io,
precondWL, rmst_wl, rudy, utility, and weighted_average_wirelength. The algorithm pro-
totypes are fitted with a flexible combination of op and GPU adaptation. The hardware
platform for the entire experiment consists of an Intel Core i5-10500 CPU, 36GB of RAM,
and an NVIDIA A10 GPU running Linux Ubuntu 18.04.

Figures 9 and 10 illustrate the runtime statistics for selected test cases under vari-
ous platform conditions using GPU acceleration, comparing the time between CPU- and
GPU-accelerated implementations. On average, the packing process time is reduced by
28.42% due to the decreased computational complexity of the optimization algorithm. The
experimental results demonstrate that the utilization of GPUs accelerates the placement
program. The runtime for the CPU group ranges from 3.32 s to 171.78 s, while the GPU
group’s runtime varies from 1.32 s to 61.50 s. The speedup ratio ranges from 1.10 times
to 5.55 times, with an average of 2.85 times. Regarding the initial CLB half perimeter
wire length (HPWL), the original VTR process shows a minimum HPWL of 22,139 and
a maximum of 27,125,48. In our proposed methodology, the minimum HPWL is 21,304,
and the maximum is 26,856,911. As the number of HPWL is associated with the scale
and characteristics of the benchmark circuits, Figure 11 visually depicts the percentage
reduction in the initial HPWL compared to the original VTR process. The minimum reduc-
tion percentage is 0.19%, and the maximum is 11.50%, with an average HPWL reduction
of 3.73%.
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Figure 9. The comparison of packing time between VTR and the proposed methodology.

Figure 10. The comparison of CLB HPWL between VTR and the proposed methodology.

Figure 11. The comparison of placement time between VTR and the proposed methodology.

Table 1 offers a comprehensive statistical comparison between the original VTR and
our proposed methodology concerning the packing time, placement time, CLB HPWL,
and the total runtime of the packing and placement process. The experimental results
demonstrate that, in comparison to the traditional algorithms used by VTR, the total
packing and placement time is optimized by an average of 39.97%. The adjustment of the
CLB merge generation strategy, conducting CLB clustering based on logical relationships,
and appropriately increasing the number of generated CLBs effectively reduce the packing
time overhead. Furthermore, GPU acceleration can significantly enhance the efficiency
of distributed computing in the placement phase. Moreover, leveraging the weighted
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Edmonds’ Blossom algorithm, we attain an improved combination of CLB logic. This not
only results in a higher HPWL gain but also optimizes timing outcomes, leading to an
average maximum frequency increase of 5.08 MHz. The detailed data can be referenced in
Freq. (frequency) columns of Table 1. Notably, all experiments were conducted using the
open-source synthesizer Yosys tool, with a synthesis phase maximum frequency set to 300
MHz. In addition, the CLB resource utilization of the hardware remains at the same level,
with an average percentage reduction of 2.09% compared to the VTR, as depicted in the
CLB Util. (utilization) columns of Table 1.

Table 1. Comparisons between the VTR flow and our proposed methodology.

Benchmarks 1
VTR Proposed Methodology

Packing
Time (s)

Placement
Time (s)

Total
Time (s)

CLB
HPWL

Freq.
(MHz)

CLB
Util.

Packing
Time (s)

Placement
Time (s)

Total
Time (s)

CLB
HPWL

Freq.
(MHz)

CLB
Util.

blob_merge 35.19 16.65 51.84 7706102 282.62 13.10% 23.91 4.06 27.97 6819560 286.40 10.35%
bmg 94.55 69.73 164.28 16182815 271.43 28.37% 67.17 37.67 104.84 15711471 277.75 25.48%
sha 10.77 3.63 14.40 2568701 286.15 4.21% 6.52 1.32 7.84 2378427 297.58 2.17%

stereo 127.15 15.81 142.96 24659527 265.89 35.82% 100.64 6.07 106.71 23485264 266.74 33.24%
ucsb 260.39 27.50 287.89 27125480 261.83 43.16% 226.45 12.38 238.83 26856911 262.19 40.99%
fpu 135.54 33.20 168.74 12329764 268.97 27.53% 95.28 12.70 107.98 12088004 269.60 24.84%
ecg 83.64 22.50 106.14 9484434 273.78 26.21% 58.64 20.40 79.04 8701315 275.89 23.21%

double_fpu 10.54 8.21 18.75 4123667 285.63 7.12% 7.40 1.89 9.29 4115436 296.52 4.97%
aes-encryption 24.64 16.32 40.96 5773133 278.36 11.86% 17.46 5.76 23.22 5699046 284.69 9.17%

aes-128 148.54 30.43 178.97 10391640 269.27 27.93% 99.23 8.53 107.76 9991962 278.05 26.07%
apbi2c 63.28 66.50 129.78 6927760 282.38 14.78% 45.12 15.05 60.17 6725981 286.02 13.48%

boundaries 289.47 100.45 389.92 8313312 263.45 42.32% 201.75 18.10 219.85 8039954 263.72 40.83%
brsfmnce 16.91 14.50 31.41 1187616 287.86 10.51% 11.68 3.90 15.58 1100830 297.12 8.03%
ca_prng 57.82 49.78 107.60 1900186 283.21 13.75% 40.22 16.95 57.17 1881187 286.19 10.79%

cde 42.99 18.43 61.42 1187616 280.43 11.40% 29.95 7.29 37.24 1096672 283.68 9.28%
crcahb 78.13 34.54 112.67 2018947 271.39 18.65% 54.06 12.66 66.72 1927769 273.10 17.31%
cr_div 11.26 32.08 43.34 747758 287.44 8.34% 7.83 1.83 9.66 681233 297.36 6.01%

dmx512 47.53 28.81 76.34 1345965 279.62 12.54% 33.02 7.67 40.69 1238855 282.89 11.05%
dpll-isdn 17.42 13.42 30.84 611802 286.87 9.16% 12.14 2.93 15.07 565370 295.25 6.63%

fast_antilog 6.88 3.32 10.20 197356 281.92 3.25% 4.79 1.98 6.77 184318 299.75 1.78%
fast_log 31.77 20.70 52.47 276298 280.45 12.93% 22.07 9.10 31.17 276256 283.94 11.64%

fht 75.22 34.70 109.92 663115 278.93 14.87% 51.96 12.36 64.32 620420 280.50 13.32%
freq_div 162.33 100.11 262.44 1724098 267.39 28.36% 112.98 25.90 138.88 1698974 268.25 27.19%

i2c 97.09 89.03 186.12 1014175 277.34 25.32% 67.39 25.05 92.44 977281 279.11 22.33%
i650 51.08 26.91 77.99 533776 278.53 13.83% 35.52 14.63 50.15 504092 282.07 10.93%

mcs-4 28.75 15.63 44.38 242626 283.89 8.56% 20.08 4.85 24.93 242039 289.91 7.32%
mesi_isc 7.44 4.20 11.64 56425 285.12 5.75% 5.18 1.90 7.08 53854 297.27 3.87%
mips_16 213.02 171.78 384.80 1884581 257.28 40.43% 148.00 61.50 209.50 1761781 257.91 38.15%
mmu180 18.99 16.36 35.35 31410 283.26 10.77% 13.16 5.57 18.73 29221 290.67 9.40%

mod3_calc 43.21 18.43 61.64 59678 281.51 11.65% 30.11 7.29 37.40 57425 286.88 9.15%
navre 89.07 37.37 126.44 137260 278.67 14.36% 62.02 15.25 77.27 127944 282.03 12.68%

nextz80 12.56 8.46 21.02 22139 288.45 7.67% 8.73 2.15 10.88 21792 297.98 5.22%
nlprg 46.33 28.90 75.23 79700 280.96 12.86% 32.28 7.80 40.08 76753 285.94 11.17%
osdvu 55.78 38.56 94.34 103609 279.16 13.43% 39.00 16.15 55.15 94854 283.83 10.75%
pairing 107.26 43.95 151.21 165775 275.39 26.18% 75.00 20.90 95.90 154530 277.10 24.42%

pit 19.84 13.36 33.20 31278 285.29 9.07% 13.72 5.50 19.22 28968 293.94 7.51%
pwm 67.55 32.31 99.86 106346 277.46 14.21% 46.88 18.45 65.33 97470 281.38 12.01%
sasc 126.34 44.54 170.88 175471 274.23 27.17% 88.68 21.22 109.90 166121 275.66 25.13%

Mean Value 74.11 35.56 109.67 4002404 277.94 17.56% 53.05 12.49 65.55 3849456 283.02 15.47%
1 blob_merge: image processing; bmg: finance calculation; sha: cryptography; stereo: computer vision; ucsb:
educational CPU module; fpu: floating point unit; ecg: signal processing; double_fpu: double-precision floating
point unit; aes-encryption: cryptography; aes-128: cryptography; apbi2c: bus protocol; boundaries: clock
boundaries; brsfmnce: synchronous FIFO; ca_prng: cellular automata; cde: codec module; crcahb: bus protocol;
cr_div: cached reciprocal divider; dmx512: communication controller; dpll-isdn: digital phase locked loop;
fast_antilog: anti-logarithm calculation; fast_log: logarithm calculation; fht: fast Hartley transform; freq_div:
adjustable frequency divider; i2c: bus protocol; i650: data storage module; mcs-4: data processing module;
mesi_isc: coherency intersection controller; mips_16: educational CPU module; mmu180: memory management
unit; mod3_calc: divider module; navre: multimedia application module; nextz80: combinatorial logic; nlprg:
pseudo-random generator; osdvu: UART component; pairing: pairing algorithm module; pit: programmable
interval timer; pwm: pulse width modulator; sasc: asynchronous serial controller.
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To underscore the versatility of the GPU acceleration framework in handling very
large-scale netlisting circuits, we conducted a methodology validation using a million-gate
scale System-on-Chip (SoC) netlisting, specifically BJUT-RISC [36]. Table 2 details the FPGA
resource overhead statistics, with the utilization rate of LUTs exceeding 90%. Notably, the
benchmarked BJUT-RISC faced challenges completing placement experiments on VTR due
to memory constraints (limited to 36GB RAM on the experimental machine). In contrast,
our proposed methodology not only accomplished the entire placement process but also
capitalized on GPU acceleration, demonstrating its effectiveness in overcoming memory
limitations. Figure 12 illustrates the runtime overhead statistics for benchmarking BJUT-
RISC. The GPU-accelerated step consumes a mere 0.23 h, constituting only 8% of the overall
process. This highlights the optimization impact achieved through GPU acceleration, with
the detailed placement time of CLBs standing at a commendable 0.97 h.

Table 2. FPGA resource overhead statistics for a multi-million gate netlist circuit.

Site Type Available Used Utilization

LUTs 230400 217254 0.94

FFs 460800 165580 0.36

BRAM 11 8 0.73

DSP 1729 1340 0.78

Figure 12. Runtime overhead statistics for benchmarking BJUT-RISC.

The outcomes of the global placement, when processed through the devised legal-
ization algorithm, proficiently detect suboptimal solutions during the placement stage.
Subsequent local optimization through the detailed placement algorithm results in a de-
creased number of iterations, thereby optimizing the placement process time. Hence, the
proposed FPGA placement methodology is well-suited for the Xilinx FPGA processor chip
XCZU7EV-FFVC1156AAZ, efficiently accomplishing the packing and placement tasks.

5. Conclusions

In this paper, we present an enhanced EDA methodology for FPGA packing and place-
ment processes by leveraging the VTR and GPU acceleration frameworks. By optimizing
algorithms and fine-tuning process parameters, we enhance the efficiency of traditional
VTR methodology’s packing and placement algorithms. The practicality of the GPU accel-
eration framework is extended, and a novel approach to FPGA placement is introduced
by integrating different frameworks. Experimental results reveal an average 28.42% op-
timization in the packing process time, an average acceleration ratio of 2.85 times in the
placement phase, and a 39.97% reduction in total packing and placement time compared
to traditional algorithms, demonstrating engineering feasibility. Furthermore, we show-
case the applicability of the proposed methodology to ultra-large-scale industrial-grade
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netlist circuits. In future work, we plan to explore multi-objective placement optimization
problems and streamline the CUDA programming framework to improve the quality of
packing and placement results, along with enhancing the usability and practicality of the
programming interface.
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