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Abstract: The harmonics of photovoltaic power plants are affected by various factors including
temperature, weather, and light amplitude. Traditional power harmonic prediction methods have
weak non-linear mapping and poor generalization capability to unknown time series data. In this
paper, a Kernel Extreme Learning Machine (KELM) model power harmonic prediction method based
on Gray Relational Analysis (GRA) with Variational Mode Decomposition (VMD) coupled with
Harris Hawk Optimization (HHO) is proposed. First, the GRA method is used to construct the
similar day set in one screening, followed by further using K-means clustering to construct the final
similar day set. Then, the VMD method is adopted to decompose the harmonic data of the similar
day set, and each decomposition subsequence is input to the HHO-optimized KELM neural network
for prediction, respectively. Finally, the prediction results of each subseries are superimposed and
numerical evaluation indexes are introduced, and the proposed method is validated by applying
the above method in simulation. The results show that the error of the prediction model is reduced
by at least 39% compared with the conventional prediction method, so it can satisfy the function of
harmonic content prediction of a photovoltaic power plant.

Keywords: gray relational analysis; Harris hawk optimization; K-means clustering; kernel extreme
learning machine; variational mode decomposition

1. Introduction

Harmonic prediction in PV power plants is the key to supporting the safe operation of
power systems and the development of dispatching strategies [1]. Since voltage harmonics
are susceptible to the disturbance of many factors, they are non-linear and non-stationary
while maintaining periodicity. This brings a greater challenge for harmonic prediction and
detection. Predicting power harmonics based on the construction of similar daily sets can
provide the basis for the basic real-time data required for regional smart grid regulation
and control technology [2].

The current forecasting methods are mainly divided into conventional statistical
methods and machine learning techniques. The traditional statistical techniques are the
time series method [3,4], Kalman filter [5], etc. Machine learning methods include artificial
neural networks [6], Long Short-Term Memory (LSTM) neural networks [7,8], Least Squares
Support Vector Machines (LSSVM) [9], etc. Reference [10] proposed a short-term load
prediction method based on a Kalman filter, but the algorithm is not applicable to non-
linear non-stationary time series data processing and the prediction accuracy is poor.
Reference [11] adopted the Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) to extract the time-frequency domain feature information
of wind speed sequences, used an echo state network to train the input information,
and finally adopted LSSVM to correct the error and improve the prediction accuracy.
Reference [12] adopted an improved Particle Swarm Optimization (PSO) algorithm to
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optimize the parameters of the Multi-Kernel Extreme Learning Machine (MKELM) for
prediction, but the global search capability and convergence speed of the PSO were limited,
and the prediction effect was not satisfactory. In summary, the traditional methods based on
statistics have poor mapping ability for non-linear and non-smooth data, and the processing
effect is not satisfactory. The machine-learning-based methods have good generalization
ability for unknown non-linear time series data, but the hyper-parameter search is difficult.

Many scholars have proposed a combined prediction model that uses signal de-
composition methods to mine time series data features deeply and have adopted swarm
intelligence optimization algorithms to optimize the parameters of the machine learn-
ing model to address the problem of the difficulty of a hyper-parameter search for the
optimization of single machine learning [13–15]. In reference [16], the wind speed data
were decomposed by Wavelet Transform (WT) and fed into the LSTM network to obtain
the time-series characteristics of wind speed data. In reference [17], the time series were
decomposed into several subseries by Variational Mode Decomposition (VMD), and the
new subseries were input to the Gated Recurrent Units (GRU) network by using sample
entropy to filter and reconstruct each series, and this achieved better prediction results.

The historical data need to be pre-processed for standardization before input. Reference [18]
only screened the input data for external factors, and did not construct similar day sets for histor-
ical data, resulting in the presence of data with little correlation with the day to be predicted in
the input data, interfering with the prediction results. In reference [19], only time series factors
were considered when constructing similar day sets considering holiday forecasts, and key
factors such as weather conditions and temperature were not taken into account. Reference [20]
used the improved Grey Relational Analysis (GRA) to construct a similar day set, but did
not consider the clustering selection of secondary similar days, so the final similar day set
obtained was not accurate enough. This resulted in insufficient data cleaning and anomalous
data removal from the input data, which led to a decrease in prediction accuracy.

In summary, traditional prediction methods cannot take into account the influence
of multiple external factors on harmonic prediction, while the Kernel Extreme Learning
Machine (KELM) can train the relationship between harmonic data and external data and
deal with nonlinear and non-smooth problems better. GRA can filter historical data from
geometric aspect similarity, and the K-means clustering method can select historical data
from data aspect similarity. The advantages of Harris Hawk Optimization (HHO) are quick
convergence and great global search reliability. Therefore, the method of photovoltaic
power plant harmonic prediction based on GRA with the VMD-HHO-KELM model is
proposed. First, the significant impacting elements are chosen using the Pearson correlation
coefficient approach, and then the GRA approach and K-means clustering are used to create
the final collection of comparable days. Then, the VMD approach is adopted to decompose
the harmonic data of the collection of comparable days, and each decomposed subsequence
is input to the constructed HHO-KELM neural network for prediction, respectively. Finally,
all subseries prediction results are superimposed, numerical evaluation indicators are
introduced, and the proposed approach is validated by applying the above method in
simulation and comparing with LSTM, GRU, and other multi-models.

The main contributions of this study are summarized as follows:

(1) The HHO algorithm has good convergence speed and search efficiency. The HHO
algorithm is applied to the KELM neural network, which overcomes the difficulty
of selecting parameters, and establishes a good prediction model for the harmonic
content of infrastructure construction.

(2) In response to the problems of unclear spatiotemporal trend flow and difficulty in
tracing the source of harmonics in PV power plants, as well as the existing traditional
prediction models with delay lag and poor prediction accuracy, this paper constructs
a GRA-VMD-HHO-KELM harmonic prediction model, which can eliminate the harm
caused by the pollution of each harmonic component and realize the function of
accurate prediction of different sub-harmonics and harmonic content.
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The structure of the paper is as follows. In Section 2, the problem of harmonic
prediction for photovoltaic power plants is described. In Section 3, the theoretical basis is
introduced, including the KELM model, the harmonic detection method based on VMD,
and the design of the HHO algorithm. The strategy structure of voltage harmonic signal
prediction is proposed, and the above methods are combined in Section 4. The experimental
analysis is carried out, and the superiority of the proposed method is verified by comparing
the prediction results of different methods in Section 5. Conclusions are drawn in Section 6.

2. Problem Description of Harmonic Prediction for Photovoltaic Power Plants

Photovoltaic power plant harmonic prediction should not only consider the fluctua-
tion of harmonics with the change in time series factors. It also needs to consider the effects
of weather, light amplitude, wind direction, wind power, and temperature on voltage har-
monics interference. However, the number of external factors considered is not positively
correlated with the prediction accuracy, so it is necessary to screen and identify the external
factors with greater harmonic influence [21]. At the same time, since harmonic prediction
requires a large amount of data support, there is a high probability that there are historical
data with low or no correlation with the date to be predicted, and if these data are directly
input into the prediction model, the prediction accuracy will be reduced, so it is necessary
to search for historical data with a high correlation with the date to be predicted and train
them. Most of the existing reactive power compensation devices are statically installed,
and the compensation devices cannot achieve the estimation of harmonic upper limit to
complete one installation and commissioning, which brings great challenges to the predic-
tion of harmonic pollution sources, spatial and temporal trend flow analysis, and safety
hazard analysis, and the real-time accurate prediction of each harmonic component in PV
power plants is of great significance for harmonic pollution management and the dynamic
commissioning and tracking management of harmonic suppression devices. The current
common harmonic prediction models based on statistical methods still have problems,
such as poor prediction accuracy and delay lag. They cannot provide a reasonable basis for
the number or capacity of harmonic suppression equipment to be put into operation in the
future, so a suitable machine learning model for power harmonic signal prediction needs
to be constructed. The power harmonic prediction problem is shown in Figure 1 [22].
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Figure 1. Power harmonic prediction problem description.

3. Theoretical Basis
3.1. Kernel Extreme Learning Machine

In this kernel function form of the ELM algorithm, the appropriate kernel function
K(u,v) must be provided and the buried layer feature mapping h(x) does not need to be
known [23]. It is also not necessary to specify the count of nodes of the buried layer L. The
problem of the unsatisfactory generalization ability and stability caused by the randomly
given parameters of the buried layer of ELM is effectively improved, and the computational
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complexity is largely reduced to avoid the optimization of the total amount of nodes of L.
Since the implicit layer mapping relation function h(x) is unknown, Huang et al. established
a kernel matrix instead of HHT by studying the kernel function based on ELM, relying on
the Mercer condition [24].

Ωi,j = h(xi) · h
(
xj
)
= K

(
xi, xj

)
(1)

ΩELM = HHT =

K(x1, x1) L K(x1, xN)
M 0 M

K(xN , x1) L K(xN , xN)

 (2)

h(x)HT =

K(x, x1)
M

K(x, xN)

T

(3)

where ΩELM is the kernel matrix, Ωi,j is the elements in matrix.
In the KELM algorithm, the mapping function h(x) does not need to be known, and

there is no requirement to provide the total amount of nodes in L; only the corresponding
kernel function K(u,v) is given. The KELM algorithm flows as follows [24].

Input: training samples x =
{
(xi, ti) | xi ∈ Rd, ti ∈ Rm, i = 1, . . . , N

}
, kernel function

K(u,v). Output:

f (x) =

K(x, x1)
M

K(x, xN)

T(
I
λ
+ ΩELM

)−1
T (4)

where K(x, xN) is the kernel function, and T and I are the target vector matrix and diagonal
matrix, respectively; λ is the regularization coefficient, and the smaller the λ the stronger
the model generalization ability; the larger the λ the higher the model prediction accuracy.
The selection of appropriate λ is crucial to the model. The HHO algorithm benefits from
having few adjustable parameters, strong full-optimal search capability, and a strong search
efficiency, so the algorithm is introduced to optimize the KELM regularization factor λ and
the kernel function parameters σ.

3.2. Harmonic/Inter-Harmonic Detection Method Based on VMD

VMD is a complete fully non-recursive signal processing method proposed for pro-
cessing non-smooth and non-linear signals [25]. Since the harmonic voltage signal of PV
power plants has a certain periodicity and volatility, it was decided to first apply K-means
clustering to select the group of comparable days, and then to adopt the VMD method
to decompose the historical harmonic voltage signal curve into multiple subseries with
different frequencies and relative smoothness. Thus, the complexity of the harmonic curve
and the non-smoothness and non-linearity of the time series were effectively reduced. The
implementation steps are as follows.

The noise is dealt with according to the experimental requirements and the actual
situation of the power station in this paper. Since it is not the focus of this paper, the
conventional filtering method was applied before the process of decomposing harmonics by
VMD method, and higher harmonics exceeding 750 Hz were eliminated. After elimination,
the measured harmonics were decomposed into corresponding modes.
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For ensuring that each modal function is a component of finite bandwidth with center
frequency such that the decomposed modes is minimized, the constrained variational
problem is [25]:

min{uk},{ωk}

{
∑
k
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖

2

2

}
s.t.

K
∑

k=1
uk = f (t)

(5)

where {uk} = {u1, u2, . . ., uk} is the K modal components obtained from the decomposition;
{ωk} = {ω1, ω2 . . . ωk} is the frequency center of each component; δ(t) is the impulse function;
and f (t) is the original signal. The main iterative VMD solving process is as follows:

Step 1. Initialize {û(1)
k }, λ̂(1), {ω̂(1)

k } and the maximum number of iterations n;
Step 2. Update uk, ωk, and λk.

Step 3. Convergence criterion ε > 0. If the iteration stopping condition ∑
k
‖ûn+1

k − ûn
k ‖

2
2/

‖ûn
k ‖

2
2 < ε is not satisfied, then return to step (2); otherwise, terminate the iteration and

output the result to obtain each modal component uk.
VMD parameter setting: the number of VMD components K is very important to the

decomposition effect. Usually, K is chosen from 3 to 8 as the number of VMD components;
in this paper K = 6. The VMD penalty factor, initial center frequency, and convergence
criterion are set to α = 2000, init = 1, and ε = 10−7, respectively.

3.3. Design of the Harris Hawk Optimization Algorithm

The algorithm was proposed for multi-dimensional complex problem solving. The
algorithm is significantly improved in stability, convergence accuracy and speed, in com-
parison to certain conventional swarm intelligence optimization methods, and has excellent
performance, especially in high-dimensional multi-polarity solution problems [26].

(1) Global search phase:

The Harris hawk’s roundup behavior will be transformed into different behaviors
depending on the prey escape energy E. E is shown in the following equation:

E = 2E0

(
1− t

T

)
(6)

where t is the current number of iterations, E0 is a random number in the interval (−1, 1),
and E represents the current prey’s escape energy.

If the |E| of the prey is greater than 1, the Harris hawk flock will disperse to fly in
a larger range to find the prey, and a random number q will be randomly generated for
the different cases of the Harris hawks finding the prey and not finding prey to obtain the
search phase equation:

X(t + 1) =
{

Xrand (t)− r1|Xrand (t)− 2r2X(t)| q ≥ 0.5
(Xrabbit (t)− Xm(t))− r3(LB + r4(UB− LB)) q < 0.5

(7)

where X(t + 1) represents the position vector of the Harris hawk at the next iteration, X(t)
is the current position vector of this hawk, Xrabbit(t) is the prey position vector, Xrand(t)
represents the position of random individuals in the hawk population, the upper and lower
boundaries of this dimensional variable are represented by UB and LB, and r1, r2, r3, r4,
and q are random numbers between (0, 1). The mean position of the eagle Xm(t) can be
calculated by the following equation:

Xm(t) =
1
N

N

∑
i=1

Xi(t) (8)
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where N represents the number of individuals in the eagle population and Xi(t) denotes
the position of each eagle in iteration t.

When q≥ 0.5, the prey is not detected by any of the hawks, and therefore will randomly
select individuals in the population to approach the prey location and update their own
position. If q < 0.5, the prey is detected and the Harris hawk targets the prey, circles around
it, and updates its position.

(2) Local exploitation phase:

According to the escape behavior of the prey and the Harris hawk’s pursuit strategy,
the assumption is the chance of the prey escaping before the raid with a successful escape
(r < 0.5) or unsuccessful escape (r > 0.5). When the prey’s escape energy |E| < 1, the prey
is physically weak and the hawks will enter the siege phase, in which the hawks have four
types of siege depending on whether the escape energy E is greater than 0.5 and whether
the prey escapes the siege [27].

Circling roundup: when |E| ≥ 0.5 and r ≥ 0.5, the prey still has enough energy to
escape but cannot escape from the encirclement. Harris hawks will circle around the prey
and continue to consume the prey’s energy:

X(t + 1) = ∆X(t)− E|JXrabbit (t)− X(t)| (9)

∆X(t) = Xrabbit (t)− X(t) (10)

where X(t + 1) represents the position of the Harris hawk at the next iteration stage, ∆X(t)
represents the difference between the prey and the Harris hawk position when the current
number of delivery is t, and J denotes the random jump strength of the prey.

Strong raid: when |E| < 0.5 and r ≥ 0.5, at this point the Harris hawks consider the
prey to be physically exhausted and will make a final raid on the prey at:

X(t + 1) = Xrabbit (t)− E|∆X(t)| (11)

Hovering roundup and progressive dive attack: when |E| ≥ 0.5 and r < 0.5, the prey
is energetic and still has a chance to escape, and the HHO algorithm introduces the concept
of Levy flight (LF) to model the disorienting behavior of the prey with variable routes
during the escape phase. The hawks will evaluate their next behavior according to the
following equation:

Y = Xrabbit (t)− E|JXrabbit − X(t)| (12)

The obtained Y is then compared with the current position fitness to detect whether
the hunt is successful. Assuming that the hunt is unsuccessful, the hawk flock will start to
make irregular swoops and perform raids. The flock takes a raid and updates its position
based on LF, as follows:

Z = Y + S× LF(D) (13)

where S is a D-dimensional random vector. D is the problem dimension, and the final
Harris hawk location update final decision for this phase is

X(t + 1) =

{
Y i f F(Y) < F(X(t))
Z i f F(Z) < F(X(t))

(14)

Strong raid with progressive dive attack: when |E| < 0.5 and r < 0.5. The prey is
low on energy but has a chance to escape. The movement of the hawks is similar to a
progressive dive attack in a circling roundup, but the difference is that the hawks will try
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to reduce the average distance to the prey. The following rules are therefore implemented
under strong siege conditions:

X(t + 1) =

{
Y i f F(Y) < F(X(t))
Z i f F(Z) < F(X(t))

(15)

Y = Xrabbit (t)− E|JXrabbit − X(t)| (16)

Z = Y + S× LF(D) (17)

4. Strategy Structure for Voltage Harmonic Signal Prediction
4.1. HHO-KELM Power Harmonic Prediction Model
4.1.1. HHO Algorithm Mathematical Model for KELM Parameter Optimization

The Mean Square Error (MSE) between the expected and observed values of KELM is
minimized as the objective function.

minMSE =
1
N

N

∑
i=1

(
f − yi

)2
(18)

where N is the sampling point, f is the predicted value of the ith sampling point, and yi is
the actual value of the ith sampling point.

To increase the precision of the algorithm and identify the best parameters of ELM
and KELM and to reduce the algorithm’s search time, upper and lower bound constraints
need to be set on the parameters to be optimized. The RBF kernel function is selected as
the KELM kernel function: {

λ ∈ [0.01, 50]
σ ∈ [0.01, 50]

(19)

{
ωi ∈ [−1, 1]

bi ∈ [0, 1]
(20)

K(x, z) = exp
(
−
‖ xi − xj ‖

2σ2

)
(21)

where λ is the regularization coefficient of the KELM, σ is the parameter of the RBF kernel
function in the KELM, ωi is the weight in the ELM, and bi is the bias in the ELM. In the
HHO algorithm, the relationship between the hunting behavior of Harris hawks and the
optimization problem is shown in Table 1, and the process of finding the optimal parameters
of ELM and KELM is as follows.

Table 1. Correspondence between hunting behavior and parametric optimization problems.

Hawk Hunting Behavior Specific Optimization Issues

Prey populations Two-dimensional vector consisting of ELM
parameters ωi, bi and KELM parameters λ, σ

Search and hunt for prey process ELM, KELM prediction process
Current optimal individual position Adaptation values in the problem

Final optimal individual position The optimal parameters ωi, bi and λ, σ for
ELM, KELM

The position vector of each eagle in the HHO algorithm corresponds to the total
number of hyper-parameters ωi, bi, λ, σ in the ELM and KELM of this problem; the
total number of eagles in the HHO algorithm corresponds to the total number of hyper-
parameters optimized in this problem.
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In this paper, the predicted MSE is used as the fitness function, and the maximum
number of iterations is set to T. The value of the fitness function will correspond to the
feasible solution as the ELM, KELM hyper-parameters ωi, bi, λ, σ, and the historical data in
the set of similar days after VMD decomposition are input and trained to obtain the MSE
between the expected and observed values of the day to be predicted.

According to the new position of the adjusted population, the fitness value of each
individual is traversed in turn to find the best fitness value and compare it with the fitness
value of the prey. When it is better than the fitness value of the prey, it is recorded as
the MSE between the latest expected and observed value, and the corresponding ELM
and KELM hyper-parameters ωi, bi, λ, σ are updated and stored to obtain the optimal
hyper-parameters corresponding to each implicit layer neuron of the ELM, as shown
in Table 2.

Table 2. Optimal parameters corresponding to each hidden layer neuron (excerpt of 5 partial neurons).

Number of Neurons
in the Hidden Layer

Implicit Layer
Bias Value bi

Input Layer Weights ωi

1 0.0356
0.1578 −0.1621 0.2194
0.1600 −0.0451 0.1466
−0.1910 −0.0565 0.0392

2 0.0241
0.0041 −0.0989 −0.0846
−0.1218 −0.0181 −0.0818
−0.0857 −0.0211 −0.2255

3 0.0108
0.0117 0.2694 −0.3432
−0.2681 0.1456 0.0033
0.0754 −0.1140 −0.0785

4 0.0318
−0.0326 0.2581 0.0737
−0.2329 −0.2367 0.1381
0.2356 −0.1474 −0.0550

5 0.0184
0.0825 0.2727 0.1794
−0.0774 0.1574 0.0228
−0.0396 0.1301 0.2202

4.1.2. HHO-ELM/KELM Harmonic Prediction Model for PV Plants

This paper set the number of ELM hidden layer neuron nodes to 20, the number of
hidden layers to 15, the range of weights ωi to [−1, 1], the range of bias bi to [0, 1], the
range of KELM regularization coefficients λ kernel function parameters σ to [0.01, 50], the
number of populations of HHO algorithm to 25, and the maximum number of iterations to
100, and the basic steps of HHO-ELM/KELM modeling are as follows:

(1) Import the PV plant voltage data samples N = {(xi, ti) | xi ∈ Rn, ti ∈ Rm,
i = 1, 2, · · · , N}; the excitation function is g(x), the number of implied layer nodes is
L, and the samples are divided into training samples and test samples according to
the predefined ratio.

(2) Initialize the number of neurons in the hidden layer of the network L, the maximum
number of iterations T, the number of populations N, and the ELM and KELM hyper-
parameters ωi, bi, λ, σ. The MSE of the ELM and KELM training models are used as
the HHO fitness function and a new set of initial populations θ is randomly generated.

(3) For each population θ, the implied layer output matrix H and the output weights β
are calculated and the MSE is solved.

(4) Calculate the individual fitness of the population in turn, and update and save the
current optimal individual position and fitness.

(5) Update and assess prey escape energy E, escape probability r, and escape jump
strength J; complete the update of all individual locations in the population.

(6) Loop steps (4) and (5) are repeated until the target task is completed, the maxi-
mum number of iterations is reached, and the optimal hyper-parameters ωi, bi, λ, σ
are obtained.
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(7) After finding the optimal θ, the output weight β is calculated by training the mathe-
matical model of the network HT Hβ = HTT.

(8) Import PV plant voltage data test samples and outputting predicted voltage wave-
forms and errors, etc.

The flowchart of the Harris Hawk Optimization Kernel Extreme Learning Machine
algorithm (HHO-KELM) is shown in Figure 2.
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Figure 2. Flow chart of the HHO-KELM algorithm model.

The iteration curves of HHO, grey wolf optimization (GWO), and PSO are shown in
Figure 3. The HHO algorithm converges about 15 times and the fitness function finally
converges to 0. The GWO algorithm converges about 30 times, and the value of the fitness
function finally converges to 15, and the PSO algorithm converges about 50 times and the
value of the fitness function eventually converges to 10. The number of convergences of
the HHO algorithm and the ultimate convergence values of GWO and PSO are better than
those of GWO and PSO.

To further compare the performance of several algorithms, the optimal solutions
of several algorithms after 20 runs were extracted, respectively, and relative percentage
growth rate RPI was introduced to assess the effectiveness of several algorithms, including
the following:

RPI( f ) =
( f − f ∗)

f ∗
× 100% (22)

where f is the smallest MSE for a single run of each method between the expected and
observed values of ELM/KELM, and f ∗ is the smallest MSE among all minimum MSE.
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Figure 3. Comparison of HHO, GWO, and PSO convergence iteration curves.

From Table 3, it can be seen that the optimal parameters obtained by the HHO al-
gorithm seeking are more significant for the improvement of the prediction accuracy of
ELM, KELM compared to the GWO and PSO algorithms. To more intuitively reflect the
performance gap between the algorithms of GWO, PSO, and HHO, a multivariate analysis
of variance (MANOVA) was conducted on the above three, in which the algorithms of
GWO, HHO, and PSO were defined as factors, and the results at the 95% confidence level
are shown in Table 4.

Table 3. RPI values of HHO, GWO, and PSO.

Number of Runs HHO GWO PSO Number of Runs HHO GWO PSO

1 1.762 12.392 25.321 11 0.432 13.569 27.675
2 0.259 9.375 24.287 12 2.187 11.257 21.913
3 3.748 11.382 23.876 13 1.457 9.292 22.481
4 1.321 12.824 27.830 14 1.820 8.295 23.207
5 0.654 10.410 26.495 15 0.351 12.309 28.239
6 4.825 14.732 22.159 16 2.287 13.514 27.865
7 3.335 12.843 22.47 17 0.681 10.543 23.062
8 0.481 12.435 25.481 18 0.731 10.105 23.645
9 1.182 9.365 25.688 19 0.002 12.899 22.733

10 2.231 11.11 24.631 20 1.762 12.562 24.972

Table 4. MANOVA of HHO, GWO, and PSO at the 95% confidence level.

Data Type HHO GWO PSO

Average value 1.575 11.561 24.702
Sample variance 1.612 2.956 4.280

Population variance 1.532 2.809 4.066

4.2. Combined VMD-HHO-KELM/ELM Prediction Model Based on GRA

Since the original PV voltage harmonic signal has strong non-linearity and non-
smoothness, this paper firstly uses GRA and the K-means algorithm to cluster the original
data according to external influencing factors to form a similar day set, and uses the HHO
algorithm to search the weights ωi, bias bi, kernel function parameters λ, and regularization
coefficients σ of ELM/KELM. Then, the PV voltage harmonic curve of each class of data
VMD decomposition is performed, and then the ELM/KELM neural network optimized by
HHO is used for prediction. Finally, in order to assess the effectiveness of the prediction
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model, Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root
Mean Square Error (RMSE) are selected. The prediction process strategy is shown in
Figure 4, and the steps are as follows:

(1) A Pearson correlation coefficient approach is adopted to pinpoint important influ-
encing elements. Secondly, GRA is used to construct a similar day set, and K-means
clustering is used to screen similar days again to form the final similar day set.

(2) The historical PV voltage harmonic signal data in each class of data are decomposed
by VMD.

(3) The HHO algorithm is adopted to search for ωi, bi, λ, σ of the optimized ELM/KELM
neural network.

(4) Each subsequence of the VMD decomposition is used as the input of the HHO-
optimized ELM/KELM neural network for prediction, respectively. The prediction
results of each subsequence are superimposed and the accuracy of the model predic-
tion is verified.
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5. Example Analysis
5.1. Dataset Description, Normalization Process, and Performance Evaluation Index

In order to ensure the experimental effect, the hardware in this paper was configured
with Intel(R) Core(TM) i5-9300F CPU @ 2.40 GHz, 2400 Mhz and NVIDIA GeForce GTX
1660 Ti. The study used a one-year data set of actual PV plant voltage harmonics signals
from Shenyang, China. The data set contains voltage harmonics data, wind direction,
wind, temperature, light amplitude, humidity, weather, and data on whether or not it is
a business day or a holiday. The influencing factor data sample interval is one day, the
multiple sampling intervals of the harmonics data is 10 min, and the single sampling is 30 s.
The sampling frequency is 10 kHz, and each point is sampled 5 times.
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In order to eliminate the problem of errors arising from inconsistencies in the unit
magnitude of the voltage harmonic data and each influence factor, the data are normalized
before the voltage data are input into the prediction model:

X′i =
Xi − Xmin

Xmax − Xmin
(23)

where X′i is the normalized value of historical data; Xi is the historical original data; and
Xmax and Xmin are the maximum and minimum values of voltage harmonics and each
influencing factor in historical original data, respectively.

The study uses R-squared (R2), MAE, MAPE, and RMSE as evaluation indexes of the
prediction model. The specific indexes are as follows:

R2 = 1−
∑
i
(yi − fi)

2

∑
i
(yi − y)2 (24)

MAE =
1
N

N

∑
i=1

∣∣∣ f − yi

∣∣∣ (25)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣∣yi − f
yi

∣∣∣∣∣ (26)

RMSE =

√√√√√ N
∑

i=1

(
f − yi

)2

N
(27)

where f is the mean of the predicted data, yi is each actual value, and N is the number of
predicted samples.

5.2. Identification of Important Influencing Factors

Influencing factors such as wind direction, weather conditions, and holidays are
generally expressed in textual form and cannot be better correlated with voltage harmonics
for analysis. Therefore, they should be quantified into numerical indexes, and Monday to
Friday set as workdays with a value of 1, and Saturday and Sunday as non-workdays with
a value of 0. The influencing factors, such as whether it is a holiday, weather conditions, or
wind direction, can be quantified similarly, and the quantified results are shown in Table 5.

Table 5. Weather conditions, wind direction, date type quantitative code.

Influencing Factors Coding Influencing Factors Coding

Holiday 1 if the day is a holiday
and 0 if otherwise North wind 1.75

Workday 1 Northeast wind 1.875
Weekend 0 Heavy rain or blizzard −4
East wind 1 Heavy rain or snow −3

Southeast wind 1.125 Medium rain or snow −2
South wind 1.25 Light rain or snow −1

Southwest wind 1.375 Cloudy day 0
West wind 1.5 Partly cloudy 1

Northwest wind 1.625 Sunny 2

Set each influencing factor data as matrix X = [X1, X2, X3, X4, X5, X6], where X1, X2,
X3, X4, X5, X6 are wind direction, light amplitude, temperature, whether it is a business
day or a holiday, and weather conditions, respectively. The voltage harmonic data are set
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as Y. The Pearson correlation coefficient analysis is performed on the voltage harmonic
data and each influencing factor to evaluate how closely they are related, and the value
lies within the interval [−1, 1] and is usually denoted by ρ [28]. The standard definition of
correlation by the Pearson correlation coefficient analysis is shown in Table 6. The Pearson
correlation coefficients between the obtained voltage harmonic data and each influencing
factor are shown in Table 7.

Table 6. Correlation degree and correlation coefficient table.

Relevance Correlation Coefficient Interval

Very weak or no correlation 0.0 ≤ |ρ| < 0.2
Weak correlation 0.2 ≤ |ρ| < 0.4

Moderately relevant 0.4 ≤ |ρ| < 0.6
Strong correlation 0.6 ≤ |ρ| < 0.8

Very strong correlation 0.8 ≤ |ρ| < 1.0

Table 7. Pearson correlation coefficient of influencing factors.

Influencing Factors Coefficients Influencing Factors Coefficients

Wind direction 0.125 Whether it is a holiday 0.685
Temperature 0.795 Whether it is a workday −0.634

Light amplitude 0.764 Weather conditions 0.035

As can be seen from Table 7, among the above influencing factors, the Pearson corre-
lation coefficient of temperature has the largest absolute value of 0.795, representing the
largest influence of temperature on harmonic data prediction, and the Pearson correlation
coefficient of the weather condition has the smallest value of 0.035, representing the small-
est influence of weather conditions on harmonic data prediction. Compared with other
influencing factors, wind direction correlation has the least influence, and as shown in the
table, weather condition and wind direction are extremely weak correlation factors and are
not taken into consideration. The four external influencing factors of temperature, light
magnitude, whether the day is a holiday, and whether the day is a workday are used as
important bases for selecting similar days.

5.3. Similar Day Selection

Using 31 August 2021 as the date to be predicted, data on the influencing factors of
historical date and the predicted date were extracted and subjected to gray correlation
analysis [29]. The process of similarity day selection is as shown in Figure 5. From the
above, it is known that the Pearson correlation coefficient values of temperature and
light amplitude are the largest, so the weight taken by the similar days in the selection is
the largest. Reference [30] set the gray correlation threshold to 0.7 and obtained a more
satisfactory prediction effect. Therefore, in this paper, the threshold value is set to 0.7, and
the set of similar days is constructed by screening the historical days greater than 0.7, with
a total of 233 historical days.

K-means clustering is utilized to further generate a similar dayset in order to further
decrease the previous data in the set with poor correlation with the forecast day [30]. The
number of categories of clustering centers directly affects the clustering effect, and the
silhouette coefficient (SIL) is an important basis for assessing the number of clustering
centers. The closer the contour coefficient is to 1, the better the clustering effect, and for
the contrary, the worse the effect. The correspondence between SIL and the number of
clustering centers is shown in Figure 6. From Figure 6, it can be seen that the SIL factor is
the highest when the number of cluster centers is 3. Therefore, according to the change
trend in the figure, the number of clustering centers is determined as 3.
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The clustering effect of each historical day within the group of comparable days is
shown in Figure 7, with 233 data points, and some data points are not shown because
of blocking each other. The Euclidean distances between the influences of the day to be
predicted and each clustering center are shown in Table 8. From Table 8, it can be seen
that the Euclidean distance between the to-be-predicted day and the center of the second
category of clusters is smaller, and this category contains 85 historical days’ data. Therefore,
this category of historical days can be used as the final set of similar days.
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Table 8. Euclidean distance between the date to be predicted and the center of the cluster.

Category Category 1 Category 2 Category 3

Euclidean distance 25.053 0.641 12.761

5.4. Correlation Analysis of Each Machine Learning Model

In order to select the best prediction model to compare with the combined VMD-HHO-
KELM model based on GRA proposed above, experiments were designed to compare
and analyze the prediction error distribution generated by each single machine learning
model for harmonic prediction, respectively, taking Pearson correlation coefficient as the
correlation index, and the error correlation analysis of each algorithm is shown in Figure 8.
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From Figure 8, it can be seen that the error correlation of each algorithm is generally
high, which is due to the unavoidable error of the original data itself caused by the model
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training. Among these, the error correlation of BP, ELM, and KELM algorithms is the
highest, which is due to the fact that the three algorithms are generally improved based on
feed forward neural networks trained by gradient descent, although the network structure
and training mechanism are somewhat different. Among LSTM, SVM, and GRU, the
difference between the SVM and LSTM, GRU training mechanism is larger, so the error
correlation is lower. Although GRU is a variant of LSTM, and both belong to the same RNN
improvement, compared with LSTM, GRU combines the forgetting gate and input gate into
a single update gate, and also mixes the cell state and hidden state, which simplifies the
model structure, so the error correlation of both is also lower. Therefore, several algorithms
of BP, ELM, KELM, LSTM, and GRU are selected as the comparison algorithms for the
combined model.

5.5. Analysis of Prediction Results

To evaluate the viability of the models chosen for this paper, the original data of
915 data, with a similar day set to 85 historical day data totaling 1000 data, were decom-
posed by VMD, with the obtained subsequence as the input data. The VMD decomposition
effect is shown in Figure 9. Overall, 80% of the historical day before is selected as the
training set and 20% of the historical day data as the test set, and several methods can be
programmed and analyzed by examples in this paper. (1) Method 1: using the similar day
set as the input data, optimizing the ELM hyper-parameters using the HHO algorithm, and
constructing the optimized ELM model, which will be defined as HHO-ELM. (2) Method 2:
using the similar day set as the input data, optimizing the KELM hyper-parameters using
the HHO algorithm, and constructing the optimized KELM model, which will be defined
as HHO-KELM. (3) Method 3: the subseries of the similar day set after VMD decomposition
is used as the input data, the KELM hyper-parameters are optimized using the HHO
algorithm, and the optimized KELM model is constructed, and the method is defined as
VMD-HHO-KELM. (4) Method in this paper: the similar day set is constructed using the
GRA method, and then the similar days are screened again using K-means clustering to
form final similar day collection. The predicted values of the test set of several methods are
compared with the actual values, as shown in Figure 10. The errors of predicted and actual
values of the test sets of several methods are shown in Figure 11. The numerical evaluation
indexes of each of the several models are shown in Table 8.
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By analyzing Figures 11 and 12, and Table 9, it can be seen that the HHO-KELM
prediction model reduces 2.436 V, 1.9136 V, 0.8446%, and improves 0.11477 in RMSE, MAE,
MAPE, and R2, respectively, compared with the HHO-ELM prediction model, while the
GRA-VMD-HHO-KELM model proposed in this paper does not improve significantly in
terms of RMSE, MAE, MAPE, and R2. The GRA-VMD-HHO-KELM model is not significant
compared with VMD-HHO-KELM, but in terms of RMSE, the value is nearly one-third
of HHO-ELM model, which is an order of magnitude improvement, and nearly twice the
value of HHO-KELM; in terms of MAE, the value is nearly one-fourth of the HHO-ELM
model, which is an order of magnitude improvement compared with the HHO-ELM model.
In terms of MAE, the value is one quarter of that of the HHO-ELM model, which is an
order of magnitude higher and nearly two times smaller than that of the HHO-KELM; in
terms of the R2, the GRA-VMD-HHO-KELM model proposed in this paper is significantly
more accurate than other models in terms of harmonic signal prediction. Compared
with the HHO-ELM model, it improves by 0.234, and compared with the HHO-KELM,
it improves by 0.119; in general, the numerical indexes of the model in this paper are
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improved substantially compared with other indexes and, in the vertical comparison, the
three combined algorithm models are better than the two combined models, which proves
that the GRA-VMD algorithm weakens the non-smoothness of time series and reduces the
complexity of various component complexity.
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Table 9. Comparison table of evaluation indexes of each model.

Predictive Models RMSE/V MAE/V MAPE/% R2

HHO-ELM 13.8179 11.3103 4.9388% 0.73826
HHO-KELM 11.3819 9.3967 4.0942% 0.85303

VMD-HHO-KELM 4.4411 3.7312 1.6284% 0.94124
GRA-VMD-HHO-KELM 4.0149 3.3658 1.4701% 0.97283

Meanwhile, in order to see the degrees of fit of the four methods more directly, the
scatter plot between the expected and observed values of the four models is given, as
shown in Figure 12. The diagonal line of Y = T in the figure indicates that the predicted
value is equal to the actual value, and the closer the predicted value is to the actual value,
the better the prediction effect, and the closer the points in the figure are to the diagonal
line. In order to avoid the limitation of the neural network type for harmonic signal
prediction, the proposed algorithm in this paper is compared with the improved Recurrent
Neural Network (RNN), LSTM, and GRU mentioned in Section 5.4, and several model test
set prediction effect comparison graphs, error value comparison graphs, and numerical
evaluation index comparison tables are shown in Figures 13 and 14, as shown in Table 9.

Referring to Figure 14 and Table 10, the prediction model GRA-VMD-HHO-KELM
proposed in this paper has the lowest values of RMSE, MAE, and MAPE and the highest
value of R2. In terms of RMSE, the prediction model in this paper is reduced by 2.9865 V
compared with LSTM and 9.9781 V compared with GRU. In terms of MAE, the prediction
model in this paper reduces by 2.1851 V compared to LSTM and 8.2852 V compared to
GRU, with the error decreasing nearly twice and the fitting accuracy improving by an
order of magnitude; in terms of MAPE, the model in this paper is only half of LSTM and
decreases nearly four times compared to GRU. In terms of R2, the model in this paper
improves by 0.10603 compared to LSTM and 0.29013 compared to GRU, and the curve
trend is more closely matched to the actual value. The error evaluation index shows that
the GRA-VMD-HHO-KELM prediction model is established to have a good prediction
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ability for the voltage harmonic signal of PV power plants, and the prediction errors are
all relatively small, and can meet the function of the PV power plant harmonic content
prediction. It is further verified that the accuracy of the GRA-VMD-HHO-KELM prediction
model is better than other types of neural network models in harmonic signal prediction.
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6. Conclusions

This paper adopts the GRA and K-means clustering method to screen and reconstruct
the historical day data twice, and after eliminating the historical day data that are not
highly correlated or irrelevant to the day to be predicted, the study constructs the similar
day set, and then adopts VMD decomposition for the similar day set, and uses the obtained
IMF components as input data, and adopts the HHO algorithm to search and solve for
ELM/KELM hyper-parameters. The GRA-VMD-HHO-ELM/KELM power harmonic
prediction model is constructed, and finally the power harmonic test set curve of the
day to be predicted is obtained, and relevant numerical evaluation indexes are introduced
to assess the effectiveness of the method proposed in this paper.

(1) Similar day set construction: the Pearson correlation coefficient is used to solve the
harmonic signal and each external factor Pearson coefficient value is used to screen
the external factors that have greater influence on the harmonic value. The set of
similar days is initially established, and then the K-means clustering method is used
to classify the set of similar days, and the class including the center of the minimum
Euclidean distance from the influencing factor of the day to be predicted is determined
as the final set of similar days.

(2) Improvement of ELM and KELM algorithms: The HHO algorithm is introduced for
simulation comparison with other population intelligence optimization algorithms.
The HHO algorithm converges about 15 times, and the fitness function finally con-
verges to 0. Other algorithms require more than 30 times the convergence, and the
convergence value is higher than 10. The results of the data comparison verify the
excellent convergence speed and search efficiency of the HHO algorithm.

(3) Construction of the GRA-VMD-HHO-KELM harmonic prediction model: In response
to the problems of unclear spatiotemporal trend flow and difficulty in tracing the
sources of harmonics in PV power plants, as well as the existing traditional predic-
tion models with delay lag and poor prediction accuracy, this paper constructs a
GRA-VMD-HHO-KELM harmonic prediction model, which can eliminate the harm
caused by the pollution of each harmonic component and realize the function of the
accurate prediction of different sub-harmonics. This model can eliminate the harm
caused by the pollution of each harmonic component and realize the function of
accurate prediction of different harmonic contents. The results show that the error
of the prediction model is reduced by at least 39% compared with the conventional
prediction method, so it can satisfy the function of harmonic content prediction of
photovoltaic power plants.

Note that the proposed method can provide reliable data support and a theoretical
basis for the subsequent harmonic detection, treatment and dynamic operation and the
switching of reactive power compensation equipment. The application effect will be
verified in future work.
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Nomenclature

ΩELM Kernel matrix.
K (x, xN) Kernel function.
h (x) Implicit layer mapping relation function.
λ Regularization coefficient.
σ Kernel function parameters.
{uk} K modal components obtained from the decomposition.
{ωk} Frequency center of each component.
δ(t) Impulse function.
f (t) Original signal.
t Current number of iterations.
E0 Random number in the interval (−1, 1).
E Escape energy of Current prey.
X(t + 1) Position vector of the Harris hawk at the next iteration.
X(t) Current position vector of this hawk.
Xrabbit(t) Prey position vector.
Xrand(t) Position of random individuals in the hawk population.
r1, r2, r3, r4, q Random numbers between (0, 1).
N Number of individuals in the eagle population.
Xi (t) Position of each eagle in iteration t.
∆X(t) Difference between the prey and the Harris hawk position when the current number

of delivery is t.
J Random jump strength of the prey.
f Predicted value of the i th sampling point.
yi Actual value of the i th sampling point.
ωi Weight in the ELM.
bi Bias in the ELM.
f Minimum MSE for a single run of each method between the expected and observed

values of KELM.
f ∗ Minimum MSE among all minimum MSEs.
X′i Normalized value of historical data.
Xi Historical original data.
Xmax, Xmin Maximum and minimum values of voltage harmonics.
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