
Citation: Wang, J.; Bourennane, E.-B.;

Madani, M.; Wang, J.; Li, C.; Tai, Y.;

Wang, L.; Yang, F.; Wang, H.

High-Throughput MPSoC

Implementation of Sparse Bayesian

Learning Algorithm. Electronics 2024,

13, 234. https://doi.org/

10.3390/electronics13010234

Academic Editor: Juan M. Corchado

Received: 22 November 2023

Revised: 30 December 2023

Accepted: 3 January 2024

Published: 4 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

High-Throughput MPSoC Implementation of Sparse Bayesian
Learning Algorithm
Jinyang Wang 1,2,3 , El-Bay Bourennane 3, Mahdi Madani 3, Jun Wang 1,2, Chao Li 1,2, Yupeng Tai 1,2,
Longxu Wang 1,2, Fan Yang 4 and Haibin Wang 1,2,*

1 State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
wangj@mail.ioa.ac.cn (J.W.); wanglongxu@mail.ioa.ac.cn (L.W.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Laboratory ImViA, Université Bourgogne Franche-Comté, 21078 Dijon, France;

mahdi.madani@u-bourgogne.fr (M.M.)
4 Laboratory for Research on Learning and Developement—UMR CNRS 5022, University of Burgundy,

21000 Dijon, France; fanyang@u-bourgogne.fr
* Correspondence: whb@mail.ioa.ac.cn

Abstract: In the field of sparse signal reconstruction, sparse Bayesian learning (SBL) has excellent
performance, which is accompanied by extremely high computational complexity. This paper
presents an efficient SBL hardware and software (HW&SW) co-implementation method using the
ZYNQ series MPSoC (multiprocessor system-on-chip). Firstly, considering the inherent challenges
in parallelizing iterative algorithms like SBL, we propose an architecture based on the iterative
calculations implemented on the PL side (FPGA) and the iteration control and input management
handled by the PS side (ARM). By adopting this structure, we can take advantage of task-level
pipelines on the FPGA side, effectively utilizing time and space resources. Secondly, we utilize LDL
decomposition to perform the inversion of the Hermitian matrix, which not only exhibits the lowest
computational complexity and requires fewer computational resources but also achieves a higher
level in the parallel pipeline mechanism compared with other alternative methods. Furthermore,
the algorithm conducts iterations sequentially, utilizing the parameters derived from the previous
dataset as prior information for initializing the subsequent dataset’s initial values. This approach
helps to reduce the number of iterations required. Finally, with the help of Vitis HLS 2022.2 and
Vivado tools, we successfully accomplished the development of a hardware design language and its
implementation on the ZYNQ UltraScale+ MPSoC ZCU102 platform. Meanwhile, we have solved
a direction of arrival (DOA) estimation problem using horizontal line arrays to verify the practical
feasibility of the method.

Keywords: sparse Bayesian learning; ZYNQ; FPGA; task-level pipeline; LDL matrix inversion

1. Introduction

In the context of compressive sensing [1], sparse Bayesian learning (SBL) [2,3] is one
implementation approach that offers several advantages over algorithms like Orthogonal
Matching Pursuit (OMP) [4] and LASSO [5]. It exhibits superior stability, requiring no
parameter tuning, and provideing lower sidelobes and higher resolution. These advantages
make it a high potential for applications such as medical signal recovery, array signal
processing, radar and sonar localization, etc. However, its main drawback lies in its higher
algorithmic complexity. Applications such as direction of arrival (DOA) estimation in
radar and sonar, channel estimation, and target tracking all have a significant demand for
real-time performance. High complexity makes SBL challenging to be widely employed in
practical applications.

In the normal process of SBL, parameter estimation is typically achieved using the
Expectation-Maximization (EM) algorithm or direct derivation methods [6]. Parameters
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are iteratively updated until convergence, and during each iteration, the inversion of an
M-dimensional matrix is required, resulting in a complexity of O(M3), where M represents
the number of sensors. Additionally, the matrix multiplication can lead to a maximum
complexity of O(M2N), where N represents the number of basis functions, and often
N >> M. Consequently, the overall complexity of the algorithm per iteration is O(M2N),
but the difficulty and complexity of matrix inversion cannot be overlooked. Moreover, the
limitation of SBL’s practical application is further compounded by the necessity of multiple
iterations to obtain results.

To improve computational efficiency, many efforts have been focused on reducing
the complexity of SBL from the algorithmic perspective, leading to the emergence of
various low-complexity fast SBL methods in recent years [7,8]. For instance, Tipping
proposed a greedy method in [7], which starts from an empty set and continuously adds or
removes basis functions to reduce computation time. Building on this approach, Babacan [9]
developed a fast Bayesian algorithm based on the Laplace prior model, which is specifically
used for recovering and reconstructing sparse images. In [10], Shutin proposed a fast
SBL algorithm based on variational Bayesian inference by analyzing stationary points of
the variational update expressions, which improved convergence speed. Additionally,
there has been a gradual exploration of approximation-based methods. In [11,12], they
replaced the E-step of the EM update formula in SBL with a low-complexity approach.
In [11,13], the Bayesian model was transformed into a factor graph, and belief propagation
was employed to calculate mean and variance. However, its application is limited by the
strong assumption of sparsity in the basis matrix. To avoid matrix inversion, [12] used the
generalized approximate message passing (GAMP) method as a replacement for the E-step.
Although this avoids matrix inversion, it introduces another iterative method, leading to
nested iterations in large-scale applications with inherent limitations. In [8], a Gaussian
scale mixture prior model was used, and a block coordinate descent was employed to solve
the resulting non-convex optimization problem, effectively reducing complexity through
approximate Gaussian likelihood.

It is not difficult to notice that the methods mentioned above for reducing the complex-
ity of SBL are predominantly achieved through approximations, which may lead to some
performance loss. In order to enhance the computational efficiency of the SBL algorithm
without loss in performance, this paper explores the hardware acceleration to achieve both
high performance and high throughput.

Therefore, we analyzed the advantages and drawbacks of the three main families of
embedded systems (FPGA, GPU, and CPU) to choose the hardware platform best suited
to our objective (algorithm hardware acceleration). This analysis shows that the FPGA
(Field-Programmable Gate Array) platforms are more suitable to achieve our objective,
as discussed here. The FPGA offers several advantages over CPU or GPU [14]: flexibility
that can be reconfigured and customized to perform specific tasks; parallel or pipeline
computing; real-time processing; portability and power efficiency, etc. In [15], to accelerate
the compression sensing algorithm, the authors present implementation structures for
Cholesky decomposition on both FPGA and GPU. The results demonstrate a significant
acceleration of 15 times and 38 times, respectively, compared to using LAPACK on CPU
and a hybrid CPU/GPU system with MAGMA. This result is largely attributed to the
limited on-chip hardware resources of FPGAs, making GPUs more suitable for large matrix
operations, while FPGAs are better suited for small matrix computations. In [16], a study
is conducted on three hardware accelerators: ARM57 CPU, Jetson TX2 GPU, and ZYNQ
MPSoC ZCU102 FPGA, focusing on embedded vision applications. The findings reveal
that relative to the CPU, the GPU achieves a 1.1–3.2 times reduction in energy/frame,
while the FPGA’s performance improves as the kernel complexity or pipeline complexity
increases, reaching a substantial energy/frame reduction ratio of 1.2–22.3 times. However,
the existing work [17] indicates that the throughput of the SBL algorithm implemented
solely on FPGA is notably low, falling far short of real-time processing requirements. To
leverage the parallel processing capabilities of the FPGA more effectively, the authors
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propose a software-hardware co-processing system for target detection in [18] with the
computationally intensive layer placed on the FPGA and the non-computational layer
on the ARM. Inspired by this, we intend to explore the application of such a structure to
accelerate the SBL algorithm.

By analyzing the solution process of the SBL algorithm, we can summarize three
reasons that contribute to the high computational complexity and difficulty in accelerating
the implementation of the SBL algorithm:

1. As an iterative solving algorithm, there is a strong data dependency between consecu-
tive iterations, which limits the application of parallel acceleration in computations.

2. Within each iteration, there are operations such as matrix inversion and numerous
matrix multiplications, which are the main sources of algorithmic complexity.

3. A large number of iterations are required to obtain the desired result, typically ranging
from 300 to 500 iterations.

In this work, we explored the powerful properties of FPGA technology to achieve an
efficient implementation method of the SBL algorithm. Therefore, to address the aforemen-
tioned three issues, we proposed the following solutions:

Firstly, by leveraging the capabilities of ZYNQ MPSoC (multiprocessor system-on-
chip) [18], which combines FPGA and ARM processors, we propose a hardware and
software (HW&SW) co-implementation method for SBL algorithm. The main body of the
algorithm is implemented on the FPGA part, while the control of data input and iteration
termination is handled by the ARM processor. The main body of the algorithm on the FPGA
is divided into multiple subtasks based on functionality and computational complexity,
and a task-level pipeline is implemented between these tasks. This processing architecture
effectively utilizes the advantages of parallel computation on the FPGA.

Secondly, the algorithm utilizes LDL decomposition, triangular matrix inversion, and
matrix multiplication in a three-step process to calculate the inverse of the Hermitian
matrix. Compared to traditional methods such as LU decomposition, QR decomposition, or
Cholesky decomposition, LDL decomposition for inversion offers the lowest computational
complexity, minimal resource usage, and the highest numerical stability [19]. Then, we
utilized an optimized complex multiplication structure and combined it with pipelining or
loop-unrolling techniques to implement matrix multiplication efficiently.

Finally, considering that the sparse signal to be estimated in practical applications
often exhibits continuity, a sequential estimation strategy is employed [20]. This strategy in-
corporates the prior information of the previous parameter estimation results into the initial
parameters for the next set of data, thereby reducing the number of iterations required.

By applying these three optimization strategies, an accelerated implementation archi-
tecture is designed for the ZYNQ UltraScale+ MPSoC based on six ARM cores and FPGA
logic, and simulation experiments are conducted using DOA estimation as an example.

The remainder of the paper is organized as follows. Section 2 provides the principle of
the core part of the SBL algorithm. Section 3 presents the hardware acceleration architecture
for the algorithm. Section 4 provides a resources utilization and latency analysis of the
architecture. Section 5 presents the results of simulation experiments on DOA estimation.
The final section summarizes the work and provides future prospects.

The notations used in this paper are as follows:
Vectors and matrices are represented by bold symbols. Particularly, I denotes the

identity matrix with appropriate dimensions according to the context. AT and AH denote
the transpose and Hermitian transpose of matrix A, respectively. A−1 denotes the inverse
of matrix A. ‖x‖1, ‖x‖2 denote the `1 norm and `2 norm of vector x, respectively. ‖A‖F
denotes the Frobenius norm of the matrix A. diag(·) denotes a square diagonal matrix with
the elements of vector on the main diagonal or the diagonal elements of matrix to form a
vector. x∗ represents the conjugate of complex number x. R and C represent the space of
real numbers and the space of complex numbers, respectively.
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2. Algorithm Principle

This section introduces and analyzes the principle part of the algorithm, mainly
including an introduction to the SBL algorithm and derivation of the LDL matrix inversion.

2.1. SBL Algorithm Architecture

The general estimation model of sparse Bayesian learning (SBL) can be described
using the multi-measurement vector (MMV) model Equation (1), which is an extension of
the single measurement vector (SMV) model.

Y = ΦX + E (1)

Without loss of generality, we can assume that the measurement vectors are complex-
valued. Y, E ∈ CM×T are the observed signal and Gaussian white noise, respectively,
received by M sensors and having the length T. Φ ∈ CM×N is the observation dictionary
matrix, and it is fixed and independent of the signal X. X ∈ CN×T is the matrix to be solved,
in which only a few rows are the sparse signals we need.

Assuming that all the sensors exhibit independent and complex Gaussian distributed
noise with a zero mean and a covariance of σ2I, we can calculate the likelihood of variable Y
as Equation (2) based on (1).

p(Y|X, σ2) =
1

(πσ2)MT exp{− 1
σ2 ‖Y−ΦX‖2

F} (2)

The prior of X is given by Gaussian distribution:

p(X; α) =
N

∏
n=1

1
παn

exp{−X2
n

αn
} (3)

where the Xn values are independent of each other and assigned a Gaussian distribution
with mean zero and variance αn.

Our objective is to recover X; therefore, the next task is to provide the posterior
probability of X. According to Bayes rules, the posterior pdf (probability density function)
for X can be derived as

p(X|Y; α, σ2) =
p(Y|X; σ2)p(X; α)

p(Y; α, σ2)
(4)

in which the two terms in the numerator on the right-hand side can be found in
Equations (2) and (3). The denominator can be obtained from the definition of marginal
probability. The conditional probability of Y given parameters α and σ2 is obtained by
integrating the product of Equations (2) and (3) with respect to X. Hence,

p(Y; α, σ2) =
∫

p(Y|X; œ2)p(X; α)dX

=
1

πN
∣∣Σy
∣∣ exp{−XHΣ−1

y X}
(5)

where Σy = (σ2I + ΦΛΦH).
Substituting Equations (2), (3) and (5) into (4), we obtain

p(X|Y; α, σ2) = CN (X| µx, Σx) (6)

with mean µx and covariance Σx:

µx = ΛΦHΣ−1
y Y (7)

Σx = Λ−ΛΦHΣ−1
y ΦΛ (8)
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The Maximum-A-Posteriori (MAP) of X can be regarded as µx. Thence, we can obtain
the recovered signal X after estimating the parameters α and σ2. In the literature [6], the
authors provide a summary of SBL algorithmic models using Gaussian distribution as a
sparse non-informative prior. Due to different derivation methods for parameter updates, it
can be classified as the EM-based M-SBL algorithm as well as the SBL and SBL1 algorithms
which directly take the derivative of the likelihood function. They are summarized in
Algorithm 1.

From Algorithm 1, it is evident that in SBL and SBL1, the iteration formula for αnew
i

involves square root and division operations, while the update formula for (σ2)
new involves

computing the pseudo-inverse matrix. Compared to the update formulas for the two
parameters in M-SBL, the operations in SBL and SBL1 are more complex and not suitable
for implementation on FPGA. Therefore, this paper will use M-SBL as an example to
introduce the hardware implementation process of the algorithm. It should be noted that
the acceleration processing framework described later in this paper is equally applicable to
SBL and SBL1.

Algorithm 1: SBL Algorithm
Input : Y, Φ

Initilize : α = 1, σ2 = 10−3, εmin = 10−3, and itermax = 500
while ε > εmin and iter < itermax do

iter = iter + 1, αold = αnew

Σy = σ2I + ΦΛΦH

Σx = Λ−ΛΦHΣ−1
y ΦΛ

µx = ΛΦHΣ−1
y Y

αi
new =


1
T ‖(µx)i:‖

2
2 + (Σx)ii (M-SBL)

1√
T
‖(µx)i:‖2/

√
φH

i S−1
y φi (SBL)

1√
T
‖(µx)i:‖2/

√
φH

i Σ−1
y φi (SBL1)

(σ2)
new

=


1
T ‖Y−Φµx‖2

F+(σ2)
old
(

N−∑N
i=1

(Σx)ii
αi

)
M (M-SBL)

1
M−K tr

(
(IN −ΦMΦ+

M)Sy
)

(SBL/SBL1)

ε =
∥∥∥αnew − αold

∥∥∥
1
/
∥∥∥αold

∥∥∥
1

end
Output : α, σ2, µx
Where :
itermax: maximum iteration number
Λ: diagonal matrix of α
(µx)i:: i-th row of matrix µx
φi: i-th column of matrix Φ

Sy: The true covariance matrix of Y
K: number of sparsity
ΦM: the active set of Φ

2.2. Matrix Inversion
2.2.1. LDL Factorization

It is evident that the variable Σy in Algorithm 1 is a Hermitian matrix, i.e., the diagonal
elements are positive real numbers, and the other elements are conjugate symmetric along
the diagonal. For a non-singular Hermitian matrix A ∈ CN×N , the most commonly known
method for matrix inversion is based on Cholesky inversion, which involves Cholesky
decomposition, triangular matrix inversion, and matrix multiplication. The Cholesky
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decomposition can be expressed in the form of Equation (9), where L1 represents a complex
lower triangular matrix with positive real diagonal elements.

A = L1LH
1 (9)

Cholesky decomposition has a computational complexity that is only half of LU de-
composition. However, it involves square root operations. To avoid square root extraction,
a closely related variant of Cholesky decomposition is LDL decomposition. By introducing
an additional diagonal matrix D, we can use almost the same algorithm to compute and
utilize the LDL decomposition, as shown in Equation (10).

A = L1LH
1 = LD1/2(LD1/2)H

= LDLH (10)

where the diagonal elements of matrix L are all equal to 1, and matrix D is a diagonal
matrix with positive real elements.

To solve for the elements in L and D, we can express matrix A in the following form:

A =

[
a11 bH

b AN−1

]
(11)

where b ∈ C(N−1)×1 is a column vector and AN−1 ∈ C(N−1)×(N−1) is the sub-matrix.
Therefore, the LDL factorization can be derived as:[

a11 bH

b AN−1

]
=

[
1 0
s LN−1

][
d11 0
0 DN−1

] [
1 sH

0 LH
N−1

]
(12)

Expanding the above equation is not difficult to obtain

d11 = a11 (13)

s = b/a11 (14)

From Equations (13) and (14), the first diagonal element of matrix D and the first
column element of matrix L are solved. AN−1,new = LN−1DN−1LH

N−1 = AN−1 − a11ssH

remains a Hermitian matrix. We can continue to solve it using the above method like in [19],
or we can directly expand Equation (10) as follows:

aij =
N

∑
k=1

[
likdkkl∗jk

]
(1 ≤ i, j ≤ N) (15)

=
j−1

∑
k=1

[
likdkkl∗jk

]
+ lijdjj (1 < j ≤ i ≤ N) (16)

The transformation of Equation (15) to (16) is due to the fact that matrix L is a lower
triangular matrix with all diagonal elements equal to 1. Therefore, it is sufficient to calculate
only the lower part of L excluding the diagonal elements.

By setting i = j in Equation (16), we can obtain the updated Formula (17) for the other
diagonal elements of matrix D. Subsequently, we can derive the updated Formula (18) for
the other elements in matrix L.

djj = ajj −
j−1

∑
k=1

[
ljkdkkl∗jk

]
(1 < j ≤ N) (17)

lij =
aij −∑

j−1
k=1

[
likdkkl∗jk

]
djj

(1 < j < i ≤ N) (18)
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Equations (13) and (17) are used together to solve for D, and Equations (14) and (18)
are used together to solve for L. In Section 3.2, we will present a parallel computational
structure for Equations (17) and (18).

2.2.2. Triangular Matrix Inversion

After LDL factorization, the inverse of matrix A becomes apparent, as shown in
Equation (19).

A−1 = (L−1)HD−1L−1 (19)

Since D is a diagonal matrix of real numbers, obtaining its inverse is straightforward
by taking the reciprocal of each element. Therefore, our focus is on finding the inverse
of L. There are several methods that can be employed, including equation solving, forward
substitution, and block sub-matrix inversion. Regardless of the chosen method, the process
of finding the inverse involves strong data dependencies. In this article, we will utilize the
forward substitution method and provide a parallel implementation structure.

1 0 0 · · · 0

l21 1
...

l31 l32 1 0
...

. . . 0
lN1 lN2 lN3 · · · 1





l−1
11 0 0 · · · 0

l−1
21 l−1

22
...

l−1
31 l−1

32 l−1
33 0

...
. . . 0

l−1
N1 l−1

N2 l−1
N3 · · · l−1

NN


= I (20)

Expanding the equation LL−1 = I, we obtain Equation (20), where l−1
ij represents the

element in the i-th row and j-th column of matrix L−1. Continuing the calculation, let us
take the first column of matrix L−1 multiplied by L as an example, and we obtain:

l−1
11 = 1

l−1
21 = −l21

l−1
31 = −l31 − l32l−1

21
...

l−1
N1 = −lN1 − lN2l−1

21 − · · · − lN(N−1)l
−1
(N−1)1

(21)

Based on the similarity of the results of other elements in L−1 and the form shown in
Equation (21), we can summarize the formula for solving L−1 as:{

l−1
jj = 1 (1 ≤ j ≤ N)

l−1
ij = −∑i

k=j likl−1
kj (1 ≤ j < i ≤ N)

(22)

In Section 3.2, we will also present a parallel computational structure for Equation (22).

3. Proposed Hardware Architecture

This section consists of three parts: the top-level design approach for the hardware
implementation of the SBL algorithm, the implementation architecture for LDL matrix
inversion, and the optimized complex matrix multiplication.

3.1. Top-Level Description

By analyzing the computation process of the SBL algorithm, it becomes evident that in
each iteration, the computational process executed is exactly the same, which means the
operations are repeatable and there is a possibility for pipeline implementation. However,
because the output of the previous iteration is required at the beginning of the next iteration,
there is a data dependency that makes the actual computation process resemble a closed-
loop finite state machine, which prevents the implementation of a pipeline. Even though
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it is possible to optimize the internal computational process of each iteration by using
parallel computing, vectorization, or other techniques to improve the execution speed of
individual iterations, it is still not possible to fundamentally enhance the throughput rate
and processing efficiency of the data from input to output.

Improving the data throughput on FPGA requires increasing the utilization of re-
sources, including time and area resources. Returning to Algorithm 1 with M-SBL, if we
treat each equation in the algorithm as a subtask, the workload of these subtasks remains
unchanged regardless of the received data. This means that the area resources can be
reused. However, when one subtask is executing, other subtasks are in a waiting state
because they need to wait for the completion of the previous subtask to receive the data for
processing. Clearly, this is a waste of time resources.

We can easily come up with the idea of using a pipeline to fully utilize each subtask and
save time resources. However, before a set of data iterations is completed, it is always this
set of data that flows through the subtasks, creating a closed loop that cannot be pipelined.
Consequently, we formulated the subsequent concept: exclusively deploying the subtasks
within the iteration body onto FPGA for computation while entrusting the management
of data input and iteration termination assessment to the external CPU, as depicted in
Figure 1. This breaks the original closed loop. After all the computations in FPGA are
completed, the result is output to ARM. The output results can be temporarily stored in
a memory through a demultiplexer and determined by the CPU whether it still needs
iteration. Then, we use the CPU to control its re-entry into FPGA through the multiplexer
at the appropriate time. Multiple sets of data can be stored in memory, corresponding to
multiple subtasks in FPGA. Therefore, each task can process different data at the same
time, achieving task-level pipelining. The ZYNQ development board is able to assist us
in implementing the aforementioned idea. The pseudocode for this approach is shown in
Algorithm 2.

AX
I D

M
A 

In
te

rf
ac

e

External Memory (DDR)

MUX

DMUX

Software 
systems tasks：

- judge iteration 
termination

- control data input 
& output

- pre-process
- post process

Processing System (PS) Programmable Logic (PL)

Func1 Func2 Func3

Func4

Func5

Func8 Func7 Func6

Task-level Pipeline
(Dataflow)

Figure 1. Overall architecture of the proposed HW&SW co-design task-level pipeline implementation
system. Note: PL (Programmable Logic) refers to the FPGA side, while PS (Processing System) refers
to the processing system side independent of the FPGA. MUX: Multiplexer. DMUX: Demultiplexer.

The “PS part” represents the ARM side in the ZYNQ development board, while the
“PL part” represents the FPGA side. The algorithm is developed in C++ using the Vitis
HLS 2022.2 platform.

We will provide a detailed explanation of Algorithm 2, beginning from the hardware
part implemented on the FPGA.
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Algorithm 2: Task-level pipelined M-SBL Algorithm
PS part :
Initilize : αMemory = 1, σ2

Memory = 10−3, εMemory = 1, iterMemory = 0, εmin = 10−3,
itermax = 500

while 1 do
for n = 1 : size(YMemory) do

ε = εMemory(n)
iter = iterMemory(n)
if ε < εmin or iter > itermax then

Output : αMemory(n), σ2
Memory(n)

YMemory(n) = Ynew
αMemory(n) = (1− η)αMemory(n) + 0.01η1
iterMemory(n) = 0

end
α = αMemory(n)
σ2 = σ2

Memory(n)
Y = YMemory(n)
——————————————————
PL part :
Input : Y, α, σ2

# pragma HLS dataflow
Func1 :

Σy = σ2I + ΦΛΦH

Copy Y, α, σ2

Func2 :
L, D = LDLT(Σy)

Copy Y, α, σ2

Func3 :
L−1, D−1 = inverse(L, D)
Copy Y, α, σ2

Func4 :
Σ−1

y = (L−1)TD−1L−1

Copy Y, α, σ2

Func5 :
Ψ = ΦHΣ−1

y

Copy Y, α, σ2

Func6 :
temp = diag(ΨΦ)
diag(Σx) = α− temp. ∗ (α2)
Copy Y, α, σ2, Ψ

Func7 :
µx = ΛΨY
αi

new = 1
T ‖(µx)i:‖

2
2 + diag(Σx)i, ∀i

Copy Y, α, σ2, diag(Σx)
Func8 :

(σ2)
new

=
1
T ‖Y−Φµx‖2

F+(σ2)
old
(

N−∑N
i=1

diag(Σx)i
αi

)
M

Output : αnew, (σ2)new

——————————————————
εMemory(n) =

∥∥∥αnew − αold
∥∥∥

1
/
∥∥∥αold

∥∥∥
1

iterMemory(n) = iter + 1
αMemory(n) = αnew

σ2
Memory(n) = (σ2)new

end
end
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The part between the two horizontal lines represents the processing flow in the FPGA.
The inversion of the LDL matrix is divided into three subtasks Func2–4. The ΦHΣ−1

y
operation is treated as a independent subtask because its result is reused. The µx and α
computations are combined into one subtask. Finally, the M-SBL algorithm is divided into
eight subtasks based on the functionality and complexity of each subtask: Func1 to Func8.

In each subtask, apart from their respective tasks, there is an additional Copy operation.
This is due to the strict single-producer-single-consumer principle in implementing the
task-level pipeline. It means that each parameter can only be produced by one task and
consumed by the immediately following task. It is not allowed to supply a parameter to
two tasks or skip intermediate subtasks and supply it to later tasks. The purpose of the
Copy operation is to address this constraint, effectively encapsulating each subtask as an
independent black box.

In the Vitis HLS tool, there are two implementation approaches for task-level pipelin-
ing. One involves structuring each subtask with a “for” loop, while the other entails
representing each subtask as a function. Considering the complexity of our subtasks, it
is evident that the latter is more suitable for implementation. Therefore, we encapsulate
each subtask into an independent function. Then, in the top-level function, when applying
the HLS directive “#pragma HLS dataflow”, the HLS tool automatically recognizes the
individual functions and implements task-level pipelining between them.

When transferring data between subtasks, Vitis HLS may employ ping-pong RAM
or FIFO, depending on its ability to determine whether the data are sequentially ac-
cessed. As our data transmissions primarily involve arrays, and configuring FIFO depth
may lead to issues, we manually configure the use of ping-pong RAM here through the
“config_dataflow”.

As for the implementation of individual subtasks, as evident from Algorithm 2, tasks
other than LDL decomposition and inverting triangular matrices mainly involve basic
matrix multiplication and fundamental arithmetic operations. These tasks can be imple-
mented using basic “for” loops. During “for” loops, adjusting resource usage and latency
can be achieved by setting appropriate parameters for loop pipeline intervals or loop
unrolling factors.

Now, we will provide an explanation of the software part that has been implemented
on the ARM processor.

In the ARM memory on the device, there is a temporary storage area for various pa-
rameters, i.e., αMemory, σ2

Memory, εMemory, iterMemory. Firstly, the memory for these parameter
values is initialized. In the subsequent loop, it can be observed that the “while” loop is the
outer loop of the “for” loop, and the “for” loop acts as a counter, continuously selecting
different data inputs with varying identifiers. This approach differs from the conventional
iteration, where a set of data is computed repeatedly before moving on to the next set
of data inputs. By reversing the order of these two loops, we break the original closed
loop structure, laying the foundation for task-level pipelining to simultaneously process
multiple sets of data in an interleaved manner.

Next, we retrieve the data to be processed from each memory block. It is important
to note that there is a termination condition judgment for the iteration, which originally
follows the “while” statement but has been moved here. When a set of data satisfies the
termination condition, we first output the required parameters. Then, we extract a new Y
from the data stream to fill in the YMemory(n) occupied by this set of data. The new α will
include the α result of the completed data as part of the prior, which corresponds to the
sequential estimation strategy we mentioned before. The weight of the previous iteration
estimate is given by (1− η), where η can take the value of 0.2. The term 0.01η1 is used to
prevent the new initial iteration value of α from being 0.

After processing in Func1 to Func8 on the PL side, termination condition ε can be
calculated, along with other parameters, which are stored in their respective memories.
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3.2. Implementation of LDL Matrix Inversion
3.2.1. Implementation of LDL Factorization

To fully leverage the parallel computing capabilities of FPGA, we designed parallel op-
eration structures for Equations (17) and (18), as illustrated in Figures 2 and 3, respectively.
The structures of the two are similar because the main computation of both involves a sum-
mation from k = 1 to j− 1. We did not implement a pipeline for this summation because
the upper limit j− 1 is a variable, and variable bounds cannot be easily pipelined or fully
unrolled. Therefore, we added a conditional operation before each unrolled computation
to check the value of j and determine whether to execute the subsequent computation.
This approach allows for minimal cost full unrolling. Although it increases the usage of
multiplier and other components, it reduces latency. The subsequent summations can be
unrolled accordingly.

𝑗𝑗 ≥ 2

(𝑙𝑙𝑗𝑗𝑗⨂𝑙𝑙𝑗𝑗𝑗∗ )
× 𝑑𝑑𝑗𝑗

enable

(𝑙𝑙𝑗𝑗2⨂𝑙𝑙𝑗𝑗2∗ )
× 𝑑𝑑22

enable

(𝑙𝑙𝑗𝑗(𝑁𝑁−𝑗)⨂𝑙𝑙𝑗𝑗(𝑁𝑁−𝑗)
∗ )

× 𝑑𝑑(𝑁𝑁−𝑗)(𝑁𝑁−𝑗)

enable

SUM

𝑗𝑗

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: 𝑗𝑗

𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼:𝑑𝑑𝑗𝑗𝑗𝑗

…

_𝑎𝑎𝑗𝑗𝑗𝑗

𝑗𝑗 ≥ 3

𝑗𝑗

𝑗𝑗 ≥ 𝑁𝑁

𝑗𝑗

Figure 2. Parallel structure for solving D in LDL factorization. (Note: ⊗ specifically refers to
optimized complex number multiplication, and × represents real number multiplication. The rules
remain the same thereafter.)

𝑗𝑗 ≥ 2

(𝑙𝑙𝑖𝑖𝑖⨂𝑙𝑙𝑗𝑗𝑖∗ )
⨂𝑑𝑑𝑖𝑖

enable

(𝑙𝑙𝑖𝑖𝑖⨂𝑙𝑙𝑗𝑗𝑖∗ )
⨂𝑑𝑑𝑖𝑖

enable

(𝑙𝑙𝑖𝑖(𝑁𝑁−𝑖)⨂𝑙𝑙𝑗𝑗(𝑁𝑁−𝑖)
∗ )

⨂𝑑𝑑(𝑁𝑁−𝑖)(𝑁𝑁−𝑖)

enable

SUM

𝑗𝑗

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: 𝑖𝑖, 𝑗𝑗

𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: 𝑙𝑙𝑖𝑖𝑗𝑗

…

_𝑎𝑎𝑖𝑖𝑗𝑗

𝑗𝑗 ≥ 3

𝑗𝑗

𝑗𝑗 ≥ 𝑁𝑁

𝑗𝑗

÷
𝑑𝑑𝑗𝑗𝑗𝑗

Figure 3. Parallel structure for solving L in LDL factorization.
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Apart from using parallel structures internally, the outer loops for i and j can be
pipelined. However, it is important to note that the principles of LDL factorization result in
data dependencies between elements. For example, computing l32 requires the use of l31,
which means that l31 needs to be calculated before it can be involved in the computation
of l32. Therefore, the data initial interval (II) in the pipeline will be relatively large.

3.2.2. Implementation of Triangular Matrix Inversion

The parallel operation structure for Equation (22) is depicted in Figure 4. Since both the
lower limit j and the upper limit i are variables, two conditional operations are required to
check the values of i and j separately. The results of the two judgments are then connected
through an AND gate to jointly determine whether to execute the subsequent computation.
As mentioned before, when employing a pipeline externally, there will be a relatively large
initial interval due to the same reasons.

…
AND

𝑖𝑖 > 1 𝑗𝑗 ≤ 1

AND

𝑖𝑖 > 𝑁𝑁 − 1 𝑗𝑗 ≤ 𝑁𝑁 − 1

AND

𝑖𝑖 > 2 𝑗𝑗 ≤ 2

𝑙𝑙𝑖𝑖𝑖⨂𝑙𝑙𝑖𝑗𝑗−𝑖

enable

𝑙𝑙𝑖𝑖𝑖⨂𝑙𝑙𝑖𝑗𝑗−𝑖

enable

𝑙𝑙𝑖𝑖(𝑁𝑁−𝑖)⨂𝑙𝑙(𝑁𝑁−𝑖)𝑗𝑗
−𝑖

enable

SUM

𝑖𝑖 𝑗𝑗 𝑖𝑖 𝑗𝑗 𝑖𝑖 𝑗𝑗

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: 𝑖𝑖, 𝑗𝑗

𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: 𝑙𝑙𝑖𝑖𝑗𝑗

Figure 4. Parallel structure for lower triangular matrix inversion.

3.3. Implementation of Complex Multiplication

As is commonly known, DSPs (Digital Signal Processors) are precious resources
in FPGA designs due to their limited availability. These resources are primarily uti-
lized for demanding numerical operations, such as multiplication. Conversely, addi-
tion and subtraction operations are generally implemented using extensive lookup ta-
bles, which are numerous compared to DSP. Traditionally, one complex multiplication of
(a + bi)× (c + di) = Re + Imi requires four multipliers and two adders because

Re = a× c− b× d

Im = a× d + b× c
(23)

To economize DSP resources, we have employed an optimized architecture for complex
multiplication:

A = (a + b)× d

B = (b− a)× c

C = (c + d)× a (24)

Re = C− A

Im = B + C
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As can be seen, the optimization technique changes the resource usage to three multi-
pliers and five adders, resulting in a remarkable 1/4 DSP resource saving during large-scale
computations. Although this optimized approach introduces a slight increase in latency,
this increase becomes nearly negligible when deploying a pipelined design and dealing
with a high volume of computations like matrix multiplication. Overall, our optimized
complex multiplication technique presents an efficient solution to save the limited DSP
resources in FPGA designs.

4. Hardware Implementation

In this section, we will introduce the hardware development approach employed in
this research. Subsequently, we will optimize the results for two different data scales and
compare them with existing works.

In the past, the specialized nature of FPGA design required dedicated FPGA engineers,
leading to a high barrier to entry. Fortunately, in recent years, tools like HDL Coder [21]
and Vitis HLS [22] have emerged, enabling the conversion of Matlab code or C/C++ code
into register transfer level (RTL) languages and assisting synthesis and simulation. While
automatically generated code may be more redundant and slightly less computationally
efficient compared to hand-written Verilog or VHDL code, it is essential to consider that
creating complex algorithmic RTL code manually demands an enormous amount of work
from hardware engineers. Therefore, these tools have bridged the gap between software
engineers and hardware engineers and dramatically accelerated the process of developing
and optimizing architectures on FPGA targets. Thus, in this study, we will leverage the
Vitis HLS 2022.2 tool to achieve high throughput implementation of the SBL algorithm on
FPGA through C/C++ to Verilog conversion. The main development process includes the
following steps:

1. C/C++ Simulation;
2. C/C++ Synthesis;
3. C/C++ and RTL Co-Simulation;
4. Export RTL Design;
5. Hardware Implementation.

For task-level pipelines mentioned in last section, it is common for each subtask to have
different latencies. One major factor that affects the performance of a task-level pipeline
is the maximum subtask latency as it determines the initial interval of each subtask after
implementation. This phenomenon is analogous to the “weakest link” or “bottleneck” effect
in a barrel. Therefore, our optimization goal is to minimize the maximum subtask latency
while ensuring that the latencies of other subtasks are close to this latency. This strategy
allows us to achieve the same throughput performance with minimal resource consumption.

In fact, Vitis HLS can automatically assist us in achieving the most optimizations.
However, for the specific goals mentioned above, certain details still require us to manually
add directives. Apart from using “Dataflow” in the top function, the most frequently
used directives in the sub-functions include “PIPELINE”, “UNROLL”, “LOOP FLATTEN”,
“ARRAY PARTITION”, and others. The data type adopts a 48-bit word length fixed-
point number. The evaluation board adopts ZCU102 based on the Zynq® UltraScale+™
XCZU9EG-2FFVB1156E MPSoC. As a typical application of SBL, we conduct experiments
using DOA estimation as an example, which finds wide engineering use in many areas
such as radar, sonar, communication, and so on. The results will now be presented using
two different data scales.

4.1. Condition A: Number of Sensors M = 8, Number of Angles N = 90, Number of Snapshots T = 8

After optimization, the delays, intervals, and resource usage of the top-level function
and each sub-module are displayed in Table 1. The functions are listed in sequential order
from Func1 to Func8, which are named based on their respective functionalities. First
looking at the delays, the LDL decomposition has the highest delay, which is 1322 cycles.
The delays of other tasks are smaller than this value. Consequently, the initial interval for
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all subtasks, including the top-level function, is 1322 + 1 = 1323 cycles. The addition of 1
is because after completing a task on a particular pipeline, a function cannot immediately
start executing the next task. It requires waiting for one clock cycle.

Table 1. Latency, interval and resource utilization for each module in condition A. (BRAM_18K: 18K
bit Block RAM, DSP: Digital Signal Processing slice, FF: Flip-Flop, LUT: Look-Up Table).

Modules Latency (Cycles) Interval BRAM_18K DSP FF LUT

Top-Function 8974 1323 148 1112 45,076 77,927

cal_C 896 1323 10 193 1546 7890

LDLT 1322 1323 8 86 18,522 28,892

Linverse 961 1323 0 189 1443 3068

Linv_mul 1054 1323 0 70 402 1430

PhiCinv 1224 1323 8 144 1298 4362

cal_Sigma 1273 1323 4 31 398 926

cal_alpha 1270 1323 0 252 1460 4331

cal_sigma2 967 1323 12 147 11,449 14,211

Actually, contemporary FPGAs can perform floating-point operations, and we initially
implemented our solution in this manner. However, upon converting to fixed-point repre-
sentation, we observed that it allowed for lower resource utilization and reduced latency.
Simultaneously, the error remained within an acceptable range. Therefore, after experi-
menting with various fixed-point number lengths and comparing precision, we ultimately
chose to implement the solution using a 48-bit fixed-point representation. The resource and
latency comparison under condition A for both approaches is presented in Table 2.

Table 2. Latency, interval, and resource utilization for different floating-point and 48-bit fixed-point
data types in condition A.

Data Type Latency (Cycles) Interval BRAM_18K DSP FF LUT

floating-point 23,189 6278 328 (17.98%) 1695 (67.26%) 163,953 (29.91%) 185,652 (67.74%)

48-bit fixed-point 8974 1323 148 (8.11%) 1112 (44.13%) 45,076 (8.22%) 77,927 (28.43%)

2× fixed-point modules 18,388 1327 378 (20.72%) 1962 (77.86%) 71,226 (12.76%) 153,630 (56.05%)

Figure 5 illustrates the timeline of (a) data processing and (b) subtask processing
within the FPGA. In (a), each row represents a set of data, and each set of data executes
its iterations along the timeline. Simultaneously, other sets of data do not need to wait for
the completion of the previous data but can be executed in an interleaved manner based
on time intervals. This forms a task-level pipeline. The fundamental reason for this can be
understood from (b). Each row in (b) represents the execution status of a subtask, and it is
evident that each subtask processes different data in an interleaved manner, maximizing
the utilization of time resources.

After synthesis and place-and-route, the clock frequency has been achieved at 110 MHz.
Using the given data, we can calculate the FPGA data throughput as:

Throughput =
Clock f requency

Interval
(25)

=
110 MHz

1323
= 83.2 kHz
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(a)

(b)

Figure 5. (a) Data processing timeline trace and (b) subtask run timeline trace in condition A.

Assume that under the sequential estimation strategy, the average number of iterations
required for each set of data is 150. Considering the effect of pipelining, the FPGA is
processing eight sets of data simultaneously, which means that within a very short time
after the first set of data processing is completed (7× Interval), the other seven sets of data
will also complete their iterations. Therefore, the data output rate can be calculated using
the following equation:

Output =
Data throughput

Iterations
× Number o f Modules (26)

=
83.2 kHz

150
× 8 = 4.44 kHz

On the ZYNQ Ultrascale+ ZCU102 platform, the resource utilization on the FPGA
is also shown in Table 2. Considering that resource utilization is consistently below 50%,
replicating all modules could be a viable option to enhance throughput. We implemented
this idea to demonstrate its feasibility, and the results are presented in the last row of Table 2.
Although the resource utilization is not precisely twice that of the pre-replication state,
the data input interval remains nearly unchanged. This validates that this operation can
approximately double the throughput. The feasibility of this operation may vary depending
on the available resources on different platforms and can be adjusted flexibly accordingly.

4.2. Condition B: Number of Sensors M = 16, Number of Angles N = 512, Number of Snapshots
T = 8

To compare with the existing work, we have set up the same simulation conditions
as presented in reference [17], which is a FPGA implementation of the SBL1 algorithm in
Algorithm 1. Note in [17] that the number of snapshots processed in a single iteration is
T = 64. However, in our case, we have set T = 8. Nonetheless, since we can simultaneously
process eight groups of data, it is effectively equivalent to T = 64. Our results are displayed
in Table 3, and the comparative results are displayed in Table 4.

From the comparison results shown in Table 4, it can be observed that our implemen-
tation method, compared to [17], employed fewer BRAM, FF, and LUT resources since
we reduced the scale of computations in a single iteration. However, to enhance paral-
lelism and minimize intervals, we opted to utilize additional DSP resources when they
were available.

Furthermore, considering the time utilization, the main factor that affects throughput
is the data interval. Due to the utilization of task-level pipelining, our initial interval is
two orders of magnitude smaller than [17]. Therefore, even though our achieved clock
frequency of 100 MHz is lower than their 150 MHz, our achievable throughput can reach
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100M/(9730× 8) = 1284.7 Hz according to Equation (25), while the extra division by 8 is
to ensure fairness in comparison with T = 64. Finally, our result is 30 times higher than
their result of 43 Hz.

Figure 6 illustrates the timeline of data processing and subtask processing in condi-
tion B, similar to Figure 5 in condition A. The power consumption under condition A is
2.4 W, while under condition B, it is 3.0 W. In our study, when parameters deviate from the
two specified conditions, the outcomes vary. When synthesized directly, the HLS tool will
automatically propose optimization solutions, although they may not be the most optimal.
It is essential to readjust optimization directives to achieve the best results. The above
project code is uploaded in link https://github.com/WJinyang/FPGA-implementation-of-
SBL (accessed on 1 January 2024).

Table 3. Latency, interval, and resource utilization for each module in condition B.

Modules Latency (Cycles) Interval BRAM_18K DSP FF LUT

Top-Function 62,603 9730 572 (31.36%) 1970 (78.17%) 73,148 (13.34%) 146,080 (53.30%)

cal_C 8987 9730 162 384 2719 31,779

LDLT 6002 9730 8 181 35,433 45,098

Linverse 9729 9730 0 378 2845 5325

Linv_mul 6404 9730 0 70 423 1692

PhiCinv 8194 9730 16 288 2512 10,673

cal_Sigma 9225 9730 0 30 286 11,620

cal_alpha 5130 9730 3 468 2420 7657

cal_sigma2 8925 9730 36 171 12,442 14,853

Table 4. Comparision of our result with existing works under the same conditions.

Modules FPGA Type Latency
(Cycles) Interval BRAM DSP FF LUT Frequency Throughput

SBL1 [17] Kintex-7 XC7K325T > 106 > 106 890 840 407,600 203,800 150 MHz 43 Hz

Our M-SBL
Zynq Ultrascale+

ZCU102 ≈ 6.26× 104 9730 572 1970 73,148 146,080 100 MHz 1284.7 Hz

(a)

Frames 1–8
Frames 9–16

Frames 17–24
Frames 25–32

Frames 33–40
Frames 41–48

Frames 49–56
Frames 57–64

(b)

Figure 6. (a) Data processing timeline trace and (b) subtask run timeline trace in condition B.

https://github.com/WJinyang/FPGA-implementation-of-SBL
https://github.com/WJinyang/FPGA-implementation-of-SBL
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5. Performance Analysis of DOA Estimation

To evaluate our method, we continue to adopt the application scenario of DOA
estimation. We test the performance of the proposed approach from the following three
aspects: computational precision, number of iterations, and comparison across different
computational platforms.

We assume the reception of signals using an M = 8 elements uniform linear array with
a measurement angle range between [0◦, 180◦]. The angular spacing between measurements
is 2◦, resulting in a total of N = 90 measurement angles. Therefore, the measurement
matrix takes the form of an array manifold matrix, where the element in the m-th row and
n-th column is denoted as am(θn) = ei2πd cos θn (d is element interval). Assume there are
two target sources located at 60◦ and 88◦, respectively. For the multi-snapshot processing,
we set the number of snapshots to T = 8. The received signals Y are normalized to the
range [−1, 1] for both the real and imaginary parts. Noise E is Gaussian white noise. The
above conditions correspond to condition A in Section 4, thus achieving the same hardware
resource utilization results as in condition A.

Since FPGAs are better at fixed-point arithmetic, for most variables, we utilize 48-bit
fixed-point signed numbers, with 14 integer bits, 33 fractional bits, and 1 sign bit. Adopting
the fixed-point data type not only helps conserve storage area resources but also allows us
to transform some floating-point division operations into efficient shift operations, thus
saving computational resources.

5.1. Fixed-Point Precision Test

Firstly, we validate the precision difference between our 48-bit fixed-point results and
floating-point results. The value of α can be used as a measure of signal power, representing
the DOA estimation results. Under a signal-to-noise ratio (SNR) of 20 dB, we conduct
100 Monte Carlo experiments and calculate the absolute error and relative error between
the floating-point and fixed-point results. The results are presented in Figure 7, where the
absolute error and relative error are computed as follows:

Absolute error = f loating-point− f ixed-point results (27)

Relative error =
Absolute error

f loating-point results
(28)

Figure 7a,b display the results of a particular experiment, representing the floating-
point results obtained in MATLAB and the fixed-point results obtained in the FPGA,
respectively. It is evident that the two results are nearly identical, accurately locating
the positions of the target sources. Moving on to the analysis of (c) absolute error and
(d) relative error, both plots show the mean values of 100 experimental results. Regarding
absolute error, the largest values occur at the angles of the two target sources, 60◦ and 88◦,
with absolute values approaching 3× 10−5. However, in the case of relative error results,
the lowest points appear at 60 and 88 degrees, while the highest relative error values are
observed at other angles, peaking at around 3.5%.

These results can be attributed to the nature of the sparse Bayesian learning algorithm,
which leverages the sparsity of signals. The algorithm yields large α values at certain
points, while the rest of the results tend toward zero, leading to sparsity in the outcome.
Consequently, both the floating-point and fixed-point results exhibit larger α values at 60◦

and 88◦ while being considerably smaller at other points, resulting in a higher absolute
error at these two angles. Therefore, due to the inherently larger α values as denominators,
at 60◦ and 88◦, the relative error is lower compared to the other angles where α values are
already quite small, resulting in higher relative errors. Overall, considering both absolute
and relative errors, all results fall within an acceptable range, validating the accuracy and
reliability of the fixed-point estimation method.
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Figure 7. DOA estimation results and the calculation errors. (a) MATLAB result. (b) FPGA result.
(c) Absolute error. (d) Relative error.

5.2. Number of Iterations Test

Next, we tested whether the M-SBL algorithm’s iteration numbers significantly re-
duced under the sequential estimation strategy. Within the SNR range of 0 to 20 dB, with a
0.5 dB interval, we conducted 100 Monte Carlo experiments at each SNR level. We recorded
the algorithm’s iteration count both with and without using the sequential estimation
strategy. The results are presented in Figure 8.

Figure 8. Comparison of algorithm’s iteration numbers.
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From Figure 8, we observe that as the SNR increases, the iteration numbers for both
algorithms gradually decreases. However, when considering the overall trend, the algo-
rithm with the sequential estimation strategy significantly reduces the iteration numbers
compared to the one without it. By calculating the mean iteration numbers for the two
algorithms, we found that the original algorithm’s mean count was 207, while the se-
quential estimation algorithm’s mean count was 106. Consequently, we conclude that
under the sequential estimation strategy, the algorithm’s iteration count can be reduced by
50% approximately.

5.3. Comparison across Different Computational Platforms

Finally, we compare the computational efficiency on different platforms under identical
conditions, namely Matlab R2021b on a Intel(R) Core(TM) i5-10500 CPU at 3.10GHz, C++
on a Intel(R) Core(TM) i5-10500 CPU at 3.10GHz, and ZYNQ UltraScale+ MPSoC ZCU102.

After conducting 1000 independent repeated experiments at an SNR of 20 dB, the
results are obtained through the average execution time and shown in Table 5. From the
results, it can be observed that as a computational tool and programming language, Matlab,
despite its internal matrix operation optimizations, still exhibits slightly slower execution
speeds compared to lower-level languages like C++. Nevertheless, the most noteworthy
aspect is that the FPGA’s computational speed significantly surpasses both Matlab and
C++, which demonstrates the superiority of our implementation method.

Table 5. Comparision of throughput (Hz) on different platforms under the same conditions.

Matlab C++ FPGA

3310 3870 83.2 k

Based on the results from Section 4 and this section, we can conclude that our SBL
ZYNQ implementation method significantly improves computational efficiency while
ensuring a certain level of calculation accuracy.

6. Conclusions

In this paper, we achieved accelerated implementation of the sparse Bayesian learning
algorithm using the ZCU102 evaluation board for rapid prototyping based on the Zynq®

UltraScale+™ XCZU9EG-2FFVB1156E MPSoC (multiprocessor system-on-chip). To address
challenges such as strong data correlation, matrix inversion, matrix multiplication, and high
iteration numbers, we proposed task-level pipelining, LDL matrix inversion, optimized
complex multiplication structure, and sequential estimation strategies to solve the above
difficulties successfully. We conducted hardware implementations for two different data
sizes, in one of which our results demonstrate a speed improvement of 30 times compared
to existing approaches. Finally, we validated the practical engineering feasibility of our
method by applying it to DOA estimation. Due to space constraints, we plan to conduct
future implementations and comparisons of other compressed sensing algorithms. This
will allow us to explore the performance and efficiency of different algorithms in FPGA
environments, providing valuable insights for real-world applications.
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